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The Incentives of Hedge Fund Fees and High-Water Marks

Abstract

Hedge fund managers receive performance fees proportional to their funds’ profits, plus
regular fees proportional to assets. Managers with constant relative risk aversion, constant
investment opportunities, maximizing utility of fees at long horizons, choose constant Merton
portfolios. The effective risk aversion depends on performance fees, which shrink the true
risk aversion towards one. Thus, performance fees have ambiguous risk-shifting implications,
depending on managers’ own risk aversion. Further, managers behave like investors acting on
their own behalf, but facing drawdown constraints. A Stackelberg equilibrium between investors
and managers trades off the costs of performance fees, with their potential to align preferences.
Only aggressive investors voluntarily pay high performance fees, and only if managers are even
more aggressive.

Keywords: Hedge Funds, High-Water Marks, Performance Fees, Portfolio Choice, Incentives, Risk-

shifting.
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1 Introduction

Hedge fund managers receive as performance fees a large fraction of their funds’ profits, in addition

to regular fees proportional to funds’ assets. Performance fees are paid only when the fund exceeds

its previous maximum – the high-water mark. The most common schedule, dubbed Two and Twenty,

entails annual fees of 2% of assets, plus 20% of profits.

This paper studies the incentives of such management contracts. Do performance fees lead fund

managers to take more or less risk than if they owned the fund themselves? We start by studying

the incentives of hedge fund fees on managers’ portfolio choice. Then, we investigate their welfare

implications for both managers and investors, and the effectiveness of performance fees as an agency

tool.

Our central result considers a manager with constant investment opportunities, summarized by

a safe rate r, an expected excess return µ and a volatility σ. The manager has constant relative risk

aversion γM , a long planning horizon, and maximizes expected utility from the accumulated fees,

which can only be invested at the safe rate. Fees include a fraction α (e.g. 20%) of profits with the

high-water mark provision, plus regular fees equal to a proportion ϕ (e.g. 2%) of the assets under

management.

We find that the manager invests a constant fraction π of the fund in the risky asset:

π =
1
γ∗M

µ

σ2
where γ∗M = α+ (1− α)γM . (1)

In other words, a high-water mark contract leads the manager to trade like a Merton investor who

owns the fund, pays no fees, and has the effective risk-aversion γ∗M , equal to the weighted average

of the manager’s risk aversion γM and the myopic1 value of one. The myopic weight is exactly

the fraction of profits paid as performance fees, while regular fees ϕ do not affect the portfolio,

under a mild restriction satisfied for realistic parameter values. Because the optimal portfolio is
1Throughout, the adjective myopic refers to logarithmic utility, corresponding to γ = 1, for which locally mean-

variance optimal portfolios are also globally optimal.
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constant, the fund has constant expected return and volatility. Under this assumption, Goetzmann,

Ingersoll Jr and Ross (2003) estimate the present value of future fees, and find that it can be as

high as a third of the fund’s assets.

Our result leads to three novel implications. First, high-water marks have ambiguous risk-

shifting properties, depending on managers’ preferences. For a risk neutral manager and, more

generally, if risk aversion is less than one (γM < 1), the high-water mark contract decreases risk-

taking (γ∗M > γM ). Thus, if risk aversion is low, we obtain a similar effect to that found by

Panageas and Westerfield (2009)2. They show that the optimal policy for a risk neutral manager,

who maximizes the present value of performance fees, is a constant portfolio, which does not depend

on the level of fees α. Thus, in their model the high-water mark contract reduces risk-taking.

However, high-water marks do increase risk-taking if the manager is more risk averse (γM > 1),

leading to an effective risk aversion γ∗M lower than γM . Thus, the popular intuition that high-water

marks increase risk taking because they are akin to call options, turns out to be incorrect in the

risk-neutral setting where it seems most plausible, but becomes correct if risk aversion is sufficiently

large.

Second, our model captures the dependence of the optimal portfolio (1) on performance fees —

a natural property that has hitherto eluded existing models. We find that higher performance fees

make managers more myopic, shrinking their risk aversion towards one. More myopic can mean

more or less risk averse, depending on managers’ own risk aversion being above or below the myopic

value of one. Unlike previous studies, we consider both performance and regular fees, but we find

that only performance fees affect the portfolio, suggesting that regular fees have no risk-shifting

effects.

Third, we show that the optimal portfolio in (1) coincides with the portfolio of a hypothetical

investor, who trades in the same market on his own account (and hence maximizes utility from the

fund, not fees), has the same risk aversion as the manager, but faces the drawdown constraint of
2In our model, a risk-neutral manager (γM = 0) chooses a portfolio corresponding to a finite effective risk aversion

γ∗M equal to the performance fee α.
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maintaining the fund value above α times its past maximum (Grossman and Zhou, 1993).

The intuition behind this result is that paying performance fees to the manager is equivalent to

leaving them in the fund, confined to the riskless investment. In particular, total fund assets must

never fall below the value of accumulated fees. A drawdown constraint serves this purpose perfectly,

since fees are proportional to the increase in the running maximum of the fund.

Because in our model fees affect optimal portfolios, they may serve investors as agency tools to

align managers’ preferences to their own. To understand this potential, we investigate the conditions

under which an investor, acting as principal, sets performance fees at a positive level, to induce a

manager, acting as agent, to behave to the investor’s advantage. This setting does not reproduce

a realistic hedge fund offering, in which investors have little say on fees. It is rather designed to

highlight the joint conditions on managers’ and investors’ preferences, which lead to the high levels

of performance fees observed in the industry.

We find that only investors with low risk aversion would choose to pay positive performance fees

to a manager, and only if the manager’s own risk aversion is even lower. In contrast, for investors

with high risk aversion, the costs of performance fees are higher than their agency benefits, regardless

of managers’ preferences. The broad conclusion is that high-water mark contracts tend to attract

very aggressive investors – and even more aggressive managers.

Our results rely on some simplifying assumptions that make the problem tractable. First, fees

cannot be reinvested in the fund, but are confined to the safe asset. As in Carpenter (2000), Ross

(2004), and Panageas and Westerfield (2009), this assumption prevents the manager from hedging

the high water mark contract, thereby defeating its incentive purpose. Second, the manager invests

according to a turnpike portfolio, which approximates the optimal portfolio for a manager with

a long but finite horizon. This assumption is crucial to obtain an explicit solution, which is not

available for a finite horizon.

The rest of the paper is organized as follows. Section two describes the model, introducing

relevant definitions and notation. Section three states the solution, consisting in the manager’s
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optimal portfolio, and in the welfare for both the manager and the investor. This section also

discusses the economic implications, including comparative statics and the Stackelberg equilibrium.

Section four provides a heuristic derivation of the main result. Section five contains a discussion of

drawdown constraints and hurdle rates. Section six concludes. All the proofs are in the Appendix.

2 The Model

A fund manager trades on behalf of an investor, who is always fully invested in the fund. The

manager and the investor have potentially different risk aversion, and postpone consumption to a

long horizon. The manager chooses the fund’s investment strategy as to maximize his own expected

utility from cumulative fees. As they are earned, fees must be invested at the safe rate, hence the

manager cannot trade in the fund, which remains owned by the investor at all times.

2.1 Market

The fund manager trades in one safe asset, with constant interest rate r, and in one risky asset,

with expected excess return µ and volatility σ. Thus, denoting by W a Brownian motion, the price

of the risky asset St satisfies:
dSt
St

= (r + µ)dt+ σdWt . (2)

The manager receives two types of fees: a proportion ϕ of the assets under management Xt, plus

a proportion α of the trading profits above a high-water mark X∗t , defined as the last-recorded

maximum of the fund:

X∗t = max
0≤s≤t

Xs . (3)

Both types of fees are deducted continuously. In a small time interval dt the regular fee is equal

to ϕXtdt. The performance fee is calculated as follows: each dollar of trading profits (above the

high-water mark) is divided into α, which is paid to the manager, and 1 − α, which is accrued to

the fund. Hence, the performance fee is equal to α/(1−α) times the net increase in the high-water
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mark (X∗t+dt −X∗t ).

The manager chooses the portfolio π, defined as the proportion of wealth invested in the risky

asset3 which drives the fund’s assets Xt:

dXt = (r − ϕ)Xtdt+ πtXt

(
dSt
St
− r
)
dt− α

1− α
dX∗t . (4)

The fees Ft deducted from the fund are credited to the manager’s account, where they are con-

strained to a risk-free investment:

dFt = rFtdt+ ϕXtdt+
α

1− α
dX∗t . (5)

2.2 Preferences

The manager and the investor have utility functions of power type, with risk aversions γM and γI

respectively. The manager maximizes utility from fees:

max
π

E

[
F 1−γM
T

1− γM

]
(6)

while the investor derives utility E
[
X1−γI
T /(1− γI)

]
from the fund, but cannot exercise any control

over its composition.

The finite-horizon problem in (6) has no closed-form solution, because of the optimal portfolio’s

combined dependence on (i) the planning horizon, (ii) the fund assets X relative to the high-water

mark level X∗t , and (iii) the accumulated fees Ft. To recover an explicit solution, we focus on the

case of a long planning horizon. This approach has already proved effective in portfolio choice with

leverage constraints (Grossman and Vila, 1992), drawdown constraints (Grossman and Zhou, 1993),

and transaction costs (Dumas and Luciano, 1991). Following these authors, for each portfolio π,
3Formally, consider a filtered probability space (Ω,F , (F)t≥0) on which is defined the Brownian motion (Wt)t≥0.

The filtration Ft is the augmentation of the filtration generated by the Brownian motion, and the process (πt)t≥0 is
adapted to Ft and integrable with respect to Wt.
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define the certainty equivalent rate of the corresponding fee process F π as4:

CERγ(F π) = lim
T→∞

1
(1− γ)T

logE[(F πT )1−γ ]. (7)

The manager looks for the portfolio π̂ that maximizes the certainty equivalent rate:

CERγM (F π̂) = max
π

CERγM (F π). (8)

The maximum rate CERγM (F π̂) is interpreted as the hypothetical level of the safe rate, above which

the manager would prefer to retire and invest at this rate only, and below which the manager would

prefer to keep managing the funds and earning the fees. Recall that in the usual Merton problem

of an investor who maximizes power utility from terminal wealth, the certainty equivalent rate of

a constant portfolio π coincides with the mean-variance objective µπ − γ
2π

2σ2 + r. Its maximum

is 1
γ
µ2

2σ2 + r, and is attained by the usual solution π = 1
γ
µ
σ2 , which in the Merton model maximizes

both the certainty equivalent rate in (8), and the expected power utility in (6) at any finite horizon.

3 Solution

The manager’s optimal portfolio entails fixed proportions of wealth in the risky and safe assets, as

in the Merton problem. However, the proportions depend on the performance fees in addition to

the manager’s risk aversion, and the solution holds under a mild parametric restriction. Theorem

1 below computes both the optimal portfolio and the resulting certainty equivalent rates for the

manager and the investor. Its formal proof in the Appendix requires a martingale argument, but

Section 4 below shows an intuitive derivation based on usual stochastic control methods.
4In the limit γ → 1, the objective (7) converges to CER1(Fπ) = limT→∞

1
T
E[logFπT ], which corresponds to the

maximization of logarithmic utility.
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3.1 Main Result

Recall that the effective risk aversion is defined as γ∗M = (1− α)γM + α. Our main result is:

Theorem 1. Assume the parametric restriction:

ϕ− r < µ2

2σ2

min(γ∗M , 1)
γ∗M

2 . (9)

Then, the manager’s problem (8) has the solution:

π̂ =
1
γ∗M

µ

σ2
(optimal portfolio) (10)

CERγM (F π̂) = max
{

(1− α)
(

1
γ∗M

µ2

2σ2
+ r − ϕ

)
, r

}
(certainty equivalent rate) (11)

For γI ≥ 1, the investor’s certainty equivalent rate CERγI (X) is equal to5:


1−α
γ∗M

µ2

2σ2

(
1− (1− α)γI−γMγ∗M

)
− (1− α)(ϕ− r) if ϕ− r < µ2

2σ2
1−2(1−α)(γI−γM )+α(1−γI)

γ∗M
2

1
γ∗M

µ2

2σ2

(
2− γI

γ∗M

)
− (ϕ− r) otherwise.

(12)

Note that (8) has a non-trivial solution only if CERγM (F π̂) > r, i.e. if and only if

ϕ+
α

1− α
r <

1
γ∗M

µ2

2σ2
. (13)

If this condition is not satisfied, then CERγM (F π) = r for any portfolio π.

3.2 Optimal Portfolio

Theorem 1 states that a manager with risk aversion γM behaves as a owner-manager with effective

risk aversion γ∗M = γM (1 − α) + α, which is a weighted average of the true risk-aversion γM and

the myopic value of one, using the performance fee α as the myopic weight. As α increases from 0
5The case of γ < 1 leads to the more cumbersome formulae (67)–(70), detailed in the appendix.
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to 100%, the effective risk aversion changes from γM to 1.

This formula shows that high-water marked performance fees have an ambiguous effect on risk

aversion. If γM < 1 (manager less risk averse than myopic), then γ∗M > γM , and performance

fees increase risk aversion and decrease leverage. Even a risk neutral manager (γM = 0) has a

positive effective risk aversion γ∗M = α. Panageas and Westerfield (2009) also find that a risk-neutral

manager, who maximizes the expected discounted value of future fees, invests in a constant portfolio

with finite leverage. However, in their model this proportion depends on investment opportunities

and on the manager’s discount rate, but not on the level of performance fees α. In contrast, the

optimal portfolio in (1) depends on performance fees, and implies that higher fees lead to less risky

portfolios if managers are risk neutral.

The situation reverses for a risk aversion greater than one. If γM > 1, then γ∗M < γM , and

performance fees induce a lower risk aversion. A popular argument for this claim is that performance

fees are akin to call options, and managers can increase their value by increasing the fund’s volatility.

Carpenter (2000) and Ross (2004) show that this intuition is incorrect for risk averse managers if

the fee schedule is a call or put option. Our analysis shows that, even if the popular argument is

incorrect, the claim in fact holds for managers with high risk aversion, and under the parameter

restrictions (9) and (13) on the levels of fees. In general, high-water marked performance fees make

a manager more myopic, because the effective risk aversion γ∗M is always between 1 and γM . More

myopic translates into more or less risk averse, depending on the manager’s own risk aversion.

The optimal portfolio π̂ = 1
γ∗M

µ
σ2 is constant, and does not depend on the regular fee ϕ, if this

fee is small in that (9) is satisfied. This condition holds for typical parameter values, and is always

satisfied if the safe rate r is greater than or equal to the regular fee ϕ. A more restrictive condition

is (13), which guarantees that the problem has a nontrivial solution, in that the managers’ certainty

equivalent rate is greater than the safe rate. This condition is violated by a highly risk-averse

manager and for high fees, which may reduce the fund’s certainty equivalent rate below the safe

rate. With other parameters held fixed, there is a critical value of the risk aversion, above which no
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ϕ=1%, r = 1%
α

µ/σ 10% 15% 20% 25% 30%
0.25 3.0 2.9 2.9 2.8 2.7
0.5 12.4 12.3 12.3 12.2 12.1
1.0 49.9 49.8 49.8 49.7 49.6
1.5 112.4 112.3 112.3 112.2 112.1

ϕ=1%, r = 5%
α

µ/σ 10% 15% 20% 25% 30%
0.25 2.1 1.8 1.5 1.2 1.0
0.5 8.8 7.6 6.7 5.9 5.3
1.0 35.6 31.1 27.5 24.7 22.3
1.5 80.2 70.1 62.3 55.9 50.7

ϕ=2%, r = 1%
α

µ/σ 10% 15% 20% 25% 30%
0.25 1.5 1.5 1.5 1.5 1.4
0.5 6.5 6.6 6.7 6.8 6.9
1.0 26.2 26.9 27.5 28.2 29.0
1.5 59.1 60.6 62.3 64.0 65.7

ϕ=2%, r = 5%
α

µ/σ 10% 15% 20% 25% 30%
0.25 1.2 1.1 1.0 0.8 0.6
0.5 5.3 4.9 4.6 4.2 3.9
1.0 21.6 20.2 19.0 17.8 16.8
1.5 48.8 45.7 43.0 40.6 38.4

Table 1: The table reports the maximum risk-aversion γM for which ϕ− r < µ2

2σ2 min(γ∗M , 1)/γ∗M
2

and ϕ + α
1−αr <

µ2

2σ2 /γ
∗
M , and hence the optimal portfolio is constant. The safe rate is either 1%

(left panels) or 5% (right panels), and regular fees (ϕ) are either 1% (top panels) or 2% (bottom
panels). Performance fees α vary from 10% to 30%, and Sharpe ratios (µ/σ) vary from 0.25 to 1.5.

portfolio strategy can generate performance fees large enough to be more attractive to the manager

than the safe investment in the private account. Above such critical risk aversion, the manager

effectively pays no attention to the fund’s growth. Thus, (13) is a nondegeneracy condition which

ensures that the central features of the problem are not lost in the long-horizon limit.

The critical risk aversion depends jointly on the investment opportunities r, µ/σ and on the fees

ϕ, α. Table 1 reports it as a function of the Sharpe ratio µ/σ and the performance fee α, for typical

levels of the safe rate and regular fees. The critical risk aversion increases as the Sharpe ratio µ/σ

increases and as the regular fee ϕ decreases. For managers’ risk aversion below the reported critical

values both (9) and (13) hold.

Table 1 shows that both parametric restrictions are satisfied by a Sharpe ratio of hedge fund

investments close to the 0.5 value, typical of postwar US equity data, and by managers’ with risk

aversions up to 4 (with one exception in the right bottom panel, if performance fees are 30%). If
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hedge funds managers can generate substantially higher Sharpe ratios6, the restrictions (9) and (13)

hold for any realistic level of risk aversion. For example, for Sharpe ratios equal to one, even in the

bottom right panel the critical value is always greater than 16.

3.3 Comparative Statics

The certainty equivalent rates in (11) and (12) measure the welfare of the manager and the investor

under a given fee schedule (α,ϕ). Regular fees are a net loss for the investor. An increase in regular

fees ϕ by 1% decreases the certainty equivalent rate by (1 − α)%, because the reduction in the

gross return also implies a reduction in future performance fees. Less intuitively, the same effect

applies to the manager welfare in (11). In this model regular fees hurt both the investor and the

manager, because they decrease the growth rate of the fund. A lower growth rate is undesirable

even for the manager, as the benefit of current regular fees is more than offset by the cost of foregone

performance fees in the future.

In the same vein, performance fees affect the manager’s certainty equivalent rate through two

channels. Obviously, higher fees are attractive because they make the manager richer. However,

higher fees also decrease the fund’s growth, which in turn reduces future fees. This reduction cannot

be compensated by growth in the manager’s private account, where investments are constrained to

the safe rate. The problem is understanding which one of these two effects prevails.

Differentiating (11) with respect to α shows that the manager’s certainty equivalent rate de-

creases in the performance fee. Even though it may appear counterintuitive, the manager’s prefer-

ence for lower fees is a logical, if undesired, consequence of models which combine a long planning

horizon with the ban on managers’ participation in the fund. Because the manager cannot reinvest

fees in the fund, and performance fees decrease the fund’s growth rate, the manager prefers 10%

of the profits in a rapidly growing fund, than 20% of profits in a slowly growing fund. Panageas
6Empirical studies supporting the evidence of excess returns in hedge fund returns include Ackermann, McEnally

and Ravenscraft (1999), Brown, Goetzmann and Ibbotson (1999), Fung and Hsieh (2000), Liang (2001). Getmansky,
Lo and Makarov (2004) show that Sharpe ratios remain high even after controlling for return smoothing and illiquidity.
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and Westerfield (2009) also note that in their model the value function of a risk-neutral manager is

decreasing in the level of performance fees.

Performing the same analysis on the investor’s certainty equivalent rate reveals a more subtle

tradeoff. Again, performance fees affect the investor through two channels: on one hand, fees hurt

the investor because they reduce the growth rate of the fund. This reduction turned out to be

the leading effect for the manager’s welfare. On the other hand, performance fees have an agency

effect, as they change the manager’s effective risk aversion, potentially leading to a more desirable

risk-return profile from the investor’s viewpoint. Indeed, differentiating (12) with respect to α shows

that the investor’s certainty equivalent rate may either increase or decrease in α, which means that

either the cost or the agency effect may prevail, depending on parameter values.

This observation raises a natural question: are performance fees an effective agency tool, to

align the interests of managers with those of investors? The next section studies this question in

the context of a Stackelberg equilibrium.

3.4 Equilibrium Performance Fees

Since performance fees influence the manager’s effective risk aversion, if investors could freely choose

these fees, they would use them to align managers’ risk aversion with their own. In practice, investors

have limited bargaining power (if any) over performance fees, and the assumption that they are free

to choose them seems removed from reality. Still, since high performance fees are the norm in the

hedge fund industry, the question is whether such high fees do serve the interests of investors, in

view of the agency properties of the high-water mark contract. This issue is in turn important

to evaluate the potential consequences, for investors and managers, of proposals to regulate and

possibly limit performance fees.

Since performance fees shrink the manager’s risk aversion towards one, intuition suggests that

they should be a useful agency tool either if 1 < γI < γM or if γM < γI and γM < 1. In these cases,

the investor can drive the effective risk aversion γ∗M closer to her risk aversion γI with α ∈ (0, 1).
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On the contrary, if 1 < γM < γI or γI < γM < 1, then fees only drive the effective risk aversion γ∗M

farther apart from γI .

Consider a Stackelberg equilibrium, in which the investor acts as a leader, choosing the per-

formance fee α that maximizes her certainty equivalent rate, and the manager acts as a follower,

choosing the portfolio that maximizes his certainty equivalent rate from fees. If the investor could

also choose the regular fees ϕ, their optimal value would be zero, but we take ϕ as fixed, including

zero as a special case. The performance fee α∗ optimal for the investor is obtained by maximizing

(12) with respect to alpha. To have economic meaning, this α∗ must lie between zero and one, be-

cause values outside this range are unacceptable either for the manager (α ≤ 0) or for the investor

(α ≥ 1). In addition, the investor’s certainty equivalent rate should be greater than the safe rate,

otherwise she is better off redeeming her wealth, and leaving it invested at the safe rate. Performing

this optimization, Theorem 1 yields the following:

Corollary 2. For a fixed regular fee ϕ ≥ 0, the investor’s certainty equivalent rate (12) admits

a unique positive maximum for an α∗ ∈ (0, 1) if and only if α∗ satisfies (9), (13) and solves the

system:

ϕ− r =
µ2

2σ2

γM
∗ − 2(1− α)(γI − γM )

(γ∗M )3
(14)

ϕ− r < 1
γ∗M

2

µ2

2σ2
(1− 2(1− α)(γI − γM )− α(γI − 1)− (1− γI)+) . (15)

The resulting investor’s certainty equivalent rate is then positive. Furthermore, if ϕ < r then for

(14)–(15) to admit a solution α∗ ∈ (0, 1), which satisfies (9) and (13), it is necessary that γM < 1.

Figure 1 displays the result of this optimization, considering the special case of regular fees equal

to the safe rate ϕ = r. This case is numerically relevant, since ϕ−r is small in practice, and has the

advantage of simplifying calculations, as (14) becomes linear in α and independent of the Sharpe
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Figure 1: The shaded region displays the pairs of risk aversions for the manager (x axis) and the
investor (y axis) such that the investor’s optimal performance fee α∗ is within 0 and 1, and such
that both investor’s and manager’s certainty equivalent rates are greater than the safe rate. Regular
fees ϕ are set equal to the safe rate r, at levels 2% (left panel) and 3% (right panel). The solid line
shows the risk aversion pairs for which the optimal fee is 20%. Since ϕ = r, the graphs are valid for
any choice of the Sharpe ratio µ/σ.

ratio µ/σ, leading to the simple equilibrium relation:

γI =
α

2(1− α)
+

3
2
γM (16)

Combining the restrictions (9), (13) and (14)–(15) leads to the shaded area displayed in Figure 1,

for ϕ = r = 2% (left panel) and ϕ = r = 3% (right panel).

From Figure 1 we see that there is no equilibrium if either the manager or the investor’s risk

aversions are greater than two. If both risk aversions are below two, an equilibrium may exist,

provided that the manager’s risk aversion is below one (i.e. lower than logarithmic utility). In

addition, the investor’s risk aversion must be greater than 3/2 times the manager’s risk aversion

– the diagonal through the origin, which corresponds to zero optimal fees. The restriction (13)

becomes binding depending on parameter values. It corresponds to the upper diagonal boundary

15



in the right panel of Figure 1, and binds when optimal fees become high.

The main message of Corollary 2 and Figure 1 is that an equilibirium with positive performance

fees arises only between an aggressive investor and an even more aggressive manager. The typical

value of a 20% performance fee implies an affine relation between the investor’s and the manager’s

risk aversions. In contrast, sufficiently risk averse investors would not agree to pay any amount of

performance fees, making equilibrium impossible.

4 Heuristic Solution

This section derives the solution to the manager’s portfolio problem using standard heuristic argu-

ments of stochastic control. To simplify notation, assume r = 0, and set p = 1 − γM . To start,

observe that maximizing utility from fees in (6) is the same as maximizing utility from the running

maximum:

max
π

1
p
E[X∗T

p] (17)

This equivalence is clear when regular fees are absent (ϕ = 0), and hence performance fees are affine

in the running maximum:

FT =
α

α− 1
(X∗T −X0) (18)

The advantage of (17) is its homogeneity with respect to the pair of state variables (Xt, X
∗
t ).

Considering the dynamic version of the problem:

V (x, z, t) = sup
π

1
p
E[X∗T

p|Xt = x,X∗t = z] (19)
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from Itô’s formula it follows that:

dV (Xt, X
∗
t , t) =Vtdt+ VxdXt +

1
2
Vxxd〈X〉t + VzdX

∗
t

=Vtdt+ Vx

(
πtXt(µdt+ σdWt)− ϕXtdt−

α

1− α
dX∗t

)
+ Vxx

σ2

2
π2
tX

2
t dt+ VzdX

∗
t

=Vtdt+
(
Vz −

α

1− α
Vx

)
dX∗t +

(
VxXt(πtµ− ϕ)dt+ Vxx

σ2

2
π2
tX

2
t

)
dt+ VxXtπtσdWt

Thus, the Hamilton-Jacobi-Bellman equation for the value function V (x, z, t) is:



Vt + supπ
(
xVx(πµ− ϕ) + Vxx

σ2

2 π
2x2)

)
= 0 x < z

Vz = α
1−αVx x = z

V = zp/p x = 0

V = zp/p t = T

(20)

The maximizer in the above equation is π = − µ
σ2

Vx
xVxx

, which leads to the system:



Vt − ϕxVx − µ2

2σ2
V 2
x

Vxx
= 0 x < z

Vz = α
1−αVx x = z

V = zp/p x = 0

V = zp/p t = T

(21)

The value function is homogeneous, in that V (λx, λz, t) = λpV (x, z, t), and therefore V (x, z, t) =

zp/pV (x/z, 1, t). Passing to partial derivatives, homogeneity implies that xVx + zVz = pV . Then
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the reduced value function u(x, t) = V (x, 1, t) satisfies the system:



ut − ϕxux − µ2

2σ2
u2
x

uxx
= 0 x ∈ (0, 1)

u(x, T ) = 1 x ∈ (0, 1)

u(0, t) = 1 t ∈ (0, T )

ux(1, t) = p(1− α)u(1, t) t ∈ (0, T )

(22)

This system identifies u as a function of two quantities: the residual horizon T−t and the fund value

relative to the high water mark x. Since the value function u(x, T ) typically increases exponentially

with the horizon T , solving the long-horizon problem requires finding (i) the growth rate g of

u(x, T ) and (ii) the limit w(x) = limT→∞ e
−gTu(x, T ). This limit satisfies the system (22), except

the terminal condition u(x, T ) = 1.

To find the long-horizon solution, guess a solution of the form u(t, x) = ce−pβtw(x). The

condition u(0, t) = 1 determines c, while β will be chosen optimally later. Then the system becomes:


−pβw − ϕxwx − µ2

2σ2
w2
x

wxx
= 0 for x < 1

wx(1) = p(1− α)w(1)
(23)

Guess now that w(x) = xθ. The boundary condition implies that θ = p(1 − α). Substituting the

solution w(x) = xp(1−α) into the differential equation yields the value of β, which is the certainty

equivalent rate in (11):

β =
1− α

(1− p)(1− α) + α

µ2

2σ2
− ϕ(1− α) (24)

and the optimal portfolio in (10) follows from the formula π = − µ
σ2

Vx
xVxx

= − µ
σ2

wx
xwxx

:

π =
1

(1− p)(1− α) + α

µ

σ2
(25)

While appealing in its simplicity, this argument does not prove that the portfolio in (25) is optimal,
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because the relation between the system (22) and (23) is only heuristic. In addition, (23) admits

many other solutions for different values of β, and the crucial point is that the solution guessed here

is the optimal one. Yet, the above heuristics are a useful tool to conjecture the optimal portfolio.

Theorem 1 formally proves its optimality with a martingale argument, which is detailed in the

Appendix.

5 Further implications and extensions

This section explores further implications of our model, along with possible extensions. First, the

optimal portfolio in (10) agrees with the one used by an investor who manages her own wealth, but

faces drawdown constraints. We offer a motivation and a heuristic derivation of this fact, in the

case r = 0. Since the general case requires the watermark to grow at a positive hurdle rate, in the

second subsection we extend the model to include this feature.

5.1 Drawdown Constraints

Grossman and Zhou (1993) and Cvitanic and Karatzas (1995) study the portfolio choice problem of

an investor who maximizes power utility at a long horizon, subject to a constraint on the maximum

drawdown (see also the recent paper of Elie and Touzi (2008) for an infinite horizon model with

consumption, and the related work of Janecek and Sırbu (2010)). In other words, their investor

solves the usual Merton problem, with the constraint that wealth cannot drop below a given fraction

of the last recorded maximum. In our notation, imagine that both the fund’s assets Xt and the fees

Ft are kept in the same account, and denote by Ct = Xt +Ft the total account value. Assuming no

fixed fees and zero interest rates (ϕ = r = 0), their problem is written as:

max
{
E[C1−γ/(1− γ)] : π satisfies

Cπt
(Cπ)∗t

≥ 1− δ a.s for all t ≥ 0
}
. (26)

The parameter δ controls the maximum allowed drawdown. Note that Cπt /(Cπ)∗t ≥ 1 − δ is
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equivalent to (Cπ)∗t − Ct ≤ δ(Cπ)∗t . For example, δ = 30% excludes those strategies for which the

investor’s wealth can drop by more than 30% off its last recorded maximum.

Both drawdown constraints and high-water mark fees involve the running maximum, but in

ostensibly different roles. The running maximum merely restricts the set of admissible strategies

in drawdown constraints, while it affects the fund’s value directly with high-water mark fees. Fur-

thermore, the drawdown-constrained investor maximizes utility from wealth, while the high-water

marked manager is only concerned about fees.

Yet, these two problems lead to essentially equivalent portfolios. Grossman and Zhou (1993)

show that the optimal portfolio with drawdown constraint is:

π =
1

δγ + (1− δ)
µ

σ2
(27)

where π denotes the investment in the risky asset, as a proportion of wealth in excess of the lower

bound (thus, the dollar investment is π(Ct − (1− δ)(Cπ)∗t ). We have:

Corollary 3. If ϕ = r = 0, then a manager with risk aversion γM and performance fees α behaves

like an investor with a maximum drawdown bounded by δ = 1− α.

In other words, a manager with a high-water marked performance fee of 20% behaves as if he

owned the fund, but faced the constraint of a maximum drawdown of 80% off the last recorded

maximum. Formally, this equivalence follows from comparing the optimal policies in (10) and in

Grossman and Zhou (1993), but a heuristic argument can help understand the reasons behind

this isomorphism. Once again, the key assumptions are that horizons are long, and that fees are

reinvested in the safe rate only.

Corollary 3 follows from Theorem 1 and the results of Grossman and Zhou (1993). Indeed, first

by adding the budget equations (4) and (5), we obtain:

dCt = (Ct − Ft)πt
dSt
St

. (28)
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Note also that Ct = Xt + Ft ≥ Ft, as the total account value is greater than the value of the fees.

Then, since ϕ = 0, the fees Ft are proportional to the increase in the high-water mark X∗t :

Ft =
α

1− α
(X∗t −X∗0 ) . (29)

Finally, under the assumption r = 0, the increase dC∗t in the maximum of the total account value

is equal to the increase in the high-water mark, plus the increase in fees:

C∗t −X0 = C∗t −C∗0 =
∫ t

0
dC∗s =

∫ t

0
(dX∗s +dFs) =

∫ t

0

(
α

1− α
+ 1
)
dX∗s =

1
1− α

(X∗t −X0) . (30)

Thus, substituting (30) into (28), we obtain

dCt = (Ct − αC∗t )πt
dSt
St

. (31)

Further, substituting (30) into (29), the condition Ct ≥ Ft becomes:

Ct ≥ α(C∗t −X0) (32)

which states that the account value cannot drop below a fraction of its maximum increase to date.

When t becomes large, the term X0 becomes negligible compared to Ct and C∗t , both of which grow

exponentially, and (32) becomes approximately equivalent to the usual drawdown constraint:

Ct ≥ αC∗t , i.e. C∗t − Ct ≥ (1− α)C∗t , (33)

which prescribes a maximum percentage loss from the last recorded maximum.

Thus, with no regular fees, and with zero interest rates, the portfolio choice problems of a

manager under performance fees and of an investor under drawdown constraints are essentially

equivalent. In fact, the same relation carries over to the more general case of a positive interest
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rate, provided that the high-water mark is also updated over time at the same rate. In such a

setting, the argument described above continues to hold, when all quantities are replaced by their

discounted counterparts.

The next section discusses how the results in this paper directly extend to the case of a hurdle

rate equal to the interest rate.

5.2 Hurdle Rates

The main model in Section 2 prescribes that a new high-water mark is set whenever the fund value

achieves a new maximum. In reality, some hedge funds include a provision that the high-water

mark grows at some predetermined rate, called hurdle rate, thereby reducing the basis on which

performance fees are calculated.

A common arrangement is a hurdle rate equal to the safe rate, which effectively prevents fund

managers to earn fees on risk-free investments. This section shows how the results in the paper can

be modified to accommodate a hurdle rate equal to the safe rate. The case of a general hurdle rate

is technically more involved, and is not treated here.

Suppose that a high water-mark is set at time t at level Ht = Xt, and grows at the safe rate

r. Thus, at a future time s > t, a new high-water mark is reached only if Xs ≥ er(s−t)Ht i.e.

if e−rsXs ≥ e−rtHt = e−rtXt. It follows that whenever the discounted fund value X̃t := e−rtXt

achieves a new maximum, then a new high-water mark is reached at level Ht = ertX̃t. Hence,

performance fees evolve as ertdX̃∗t , where X̃∗t = supu≤t e−ruXu. The joint dynamics of the fund and

the fees in (4)–(5), expressed in terms of discounted values X̃t and F̃t = e−rtFt, now becomes:

dX̃t = πtX̃t
dS̃t

S̃t
dt− ϕX̃tdt−

α

1− α
dX̃∗t

dF̃t = ϕX̃tdt+
α

1− α
dX̃∗t ,

(34)

where S̃t = e−rtSt. In addition, CERγI (X) = r + CERγI (X̃) and CERγM (F ) = r + CERγM (F̃ ),
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which shows that the maximization objectives CERγM (F ) and CERγM (F̃ ) are equivalent. Now,

observe that (X̃t, F̃t) have the same dynamics as the fund and fees in (4)–(5) with no hurdle rate

and interest rate r = 0. Hence, Theorem 1 applies, and yields the solution to the present setup.

6 Conclusion

For those hedge fund managers who cannot, or do not, have substantial personal holdings in their

funds, and have long planning horizons, high-water marked performance fees have the effect of

shrinking their risk aversion toward one. This effect reduces risk-taking for risk-neutral managers,

and in general for managers less risk averse than logarithmic utility. In contrast, it increases risk-

taking for managers with typical levels of risk aversion, leading to more risky portfolios. In this

case, higher fees lead to more volatile funds.

Performance fees alter managers’ risk aversion, and are an effective agency tool for aggressive

investors, and even more aggressive managers. By contrast, for conservative investors performance

fees are not effective in aligning their objectives with those of managers’, regardless of managers’

risk aversion.

A Appendix

A.1 The Fund Value

The budget equation (4) defines Xt implicitly in terms of the investment policy π. Finding Xt

explicitly is the first step to solve the portfolio choice problem. The next proposition represents Xt,

the value of the fund after fees, in terms of the logarithmic return Rt of a hypothetical fund which

pays no performance fees, but only regular fees.

Proposition 4. The unique solution to the budget equation (4) is Xt = X0e
Rt−αR∗t , where:

Rt =
∫ t

0

(
µπs −

σ2

2
π2
s − ϕ+ r

)
ds+ σ

∫ t

0
πsdWs (35)
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Proof of Proposition 4. A process Xt satisfies (4) if and only if the process Yt = logXt satisfies:

dYt =
(
µπt −

σ2

2
π2
t − ϕ+ r

)
dt+ πtσdWt −

α

1− α
dY ∗t (36)

This follows by applying Itô’s formula to the budget equation (4), and observing that Xt = X∗t on

the support of the measure dX∗t . Hence:

Yt +
α

1− α
Y ∗t = Rt (37)

By Lemma 5 below, this equation admits the unique solution Yt = Rt − αR∗t . Thus, Xt = X0e
Yt is

the unique solution to (4).

Lemma 5. Let Y be a continuous process, and α > 0. Then Yt + α
1−αY

∗
t = Rt if and only if

Yt = Rt − αR∗t .

Proof. The statement follows from the identity:

R∗t = sup
s≤t

(
Ys +

α

1− α
sup
u≤s

Yu

)
= Y ∗t +

α

1− α
Y ∗t =

1
1− α

Y ∗t (38)

A.2 Proof of Theorem 1

Throughout the proof we assume that γM , γI 6= 0. The case γ = 0 corresponds to the logarithmic

utility and the definition of CER has to be changed accordingly, see footnote 4. We do not detail

out this case here.

For convenience of notation, from now on denote by p = 1− γM and q = 1− γI . The superscript π

highlights the dependence on π of the fund asset X or the fees F . We omit it for simplicity when

this causes no confusion. The proof of Theorem 1 is divided in three steps:
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i) Any integrable, adapted process π satisfies7:

CER1−p(F π) = lim
T→∞

1
pT

logE [(F πT )p] ≤ max
{

1− α
γ∗M

µ2

2σ2
− (1− α)(ϕ− r), r

}
. (39)

ii) If the right-hand side in (39) is greater than r (i.e. if (13) holds) then the portfolio π̂ = 1
γ∗M

µ
σ2

achieves the maximum:

CER1−p(F π̂) =
1− α
γ∗M

µ2

2σ2
− (1− α)(ϕ− r) . (40)

Otherwise any portfolio π achieves CER1−p(F π) = r.

iii) Find the investor’s certainty equivalent rate CERq(X π̂) under the assumption (13).

Steps i) and ii) combined prove (10) and (11), while iii) yields (12). The central argument in the

proof of i) is the following Lemma:

Lemma 6. For any admissible strategy π, the following holds:

CER1−p(Xπ∗) ≤ 1− α
γ∗M

µ2

2σ2
− (1− α)(ϕ− r) (41)

The proof of this Lemma in turn requires the following result (Revuz and Yor, 1999, II.3.12),

see also Carraro et al. (2009).

Lemma 7. Let (Mt)t≥0 be a non-negative continuous local martingale such thatM0 = 1 andMt → 0

a.s. as t ↑ ∞. Then 1/(supt≥0Mt) is uniformly distributed on [0, 1].

Proof of Lemma 6. Write ϕ̄ = ϕ− r. Consider a strategy π, which yields the fees process Ft = F πt

7Here and throughout we write limT→∞ for simplicity, although formally we could write everywhere lim supT→∞,
and then verify that for the optimal strategy the limit indeed exists.
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and the fund process Xt = Xπ
t . Let a ∈ R and rewrite the cumulative log return RT as:

RT =
∫ T

0
σπtdWt −

∫ T

0

(
σ2

2
π2
t − µπt + ϕ̄

)
dt =

∫ T

0
σπtdW̃t −

∫ T

0

(
σ2

2
π2
t + ϕ̄− aσπt

)
dt

=
∫ T

0
(σπt − a)dW̃t −

1
2

∫ T

0
(σπt − a)2dt+ aW̃T − (ϕ̄− a2/2)T,

(42)

where W̃t = Wt + (µ/σ−a)t is a Brownian motion under the probability Q, defined equivalently by

dQ/dP = e−(µ
σ
−a)WT− 1

2
(µ
σ
−a)2T , or by dP/dQ = e(µ

σ
−a)W̃T− 1

2
(µ
σ
−a)2T . Proposition 4 implies that:

E [(X∗T )p] = E[ep(1−α)R∗T ] = EQ

[
ep(1−α)R∗T e(µ

σ
−a)W̃T− 1

2
(µ
σ
−a)2T

]
. (43)

Case ϕ̄ = 0.

The proof is simpler if ϕ̄ = 0. In this case, set a = 0, which turns Q into the usual risk-neutral

probability. For p > 0, Hölder’s inequality with δ > 1 yields:

EQ

[
ep(1−α)R∗T e

µ
σ
W̃T− µ2

2σ2 T

]
≤
(
EQ

[
eδp(1−α)R∗T

]) 1
δ

(
EQ

[
e

δ
δ−1

„
µ
σ
W̃T− µ2

2σ2 T

«]) δ−1
δ

. (44)

The last term is an exponential moment of a Gaussian variable:

(
EQ

[
e

δ
δ−1

„
µ
σ
W̃T− µ2

2σ2 T

«]) δ−1
δ

= e
1
δ−1

µ2

2σ2 T . (45)

To bound the term EQ
[
eδp(1−α)R∗T

]
, observe that eRt is a strictly positive continuous local mar-

tingale, hence a supermartingale, and that eRt converges as t ↑ ∞. If it converges to zero, then

Lemma 7 implies that e−R∗∞ , the reciprocal of its lifetime supremum, is uniformly distributed on

[0, 1]. In general, Rt can be embedded into a positive local martingale converging to zero8, and

8The formal argument goes as follows: let τt =
R t

0
π2
udu and using Dubins–Schwarz theorem write eRt = βτt

for a Brownian motion (βu) (defined on a possibly larger probability space). Since eRt ≥ 0 we necessarily have
τt ≤ H0 := inf{u : βu = 0}. Thus eR

∗
∞ ≤ β∗H0 and 1/β∗H0 is uniformly distributed on [0, 1].
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whose maximum thus dominates R∗∞. In particular, for any δ ∈ (1, 1
p(1−α)):

EQ

[
eδp(1−α)R∗T

]
≤ EQ

[
eδp(1−α)R∗∞

]
≤
∫ 1

0
x−δp(1−α)dx =

1
1− δp(1− α)

(46)

In summary, for p > 0, the Hölder inequality (44) yields:

E [(X∗T )p] ≤
(

1
1− δp(1− α)

) 1
δ

e
1
δ−1

µ2

2σ2 T (47)

which in turn implies:

lim
T→∞

1
pT

logE [(F πT )p] ≤ 1
p(δ − 1)

µ2

2σ2
(48)

and the thesis follows as δ ↑ 1
p(1−α) .

The case p < 0 follows from the same steps, observing that the inequality (44) holds reversed

for δ < 0, (46) holds as it is, but it reverses when raised to the power 1/δ < 0, whence (47) holds

reversed for 1
p(1−α) < δ < 0. Finally, (48) is recovered upon dividing by p < 0. This concludes the

first step in the proof of Theorem 1 in the case ϕ̄ = 0.

The case ϕ̄ < 0 follows instantly from the above. It suffices to use the trivial bound

R∗T ≤
(∫ T

0
σπtdW̃t −

1
2

∫ T

0
(σπt)2dt

)∗
+ |ϕ̄|T.

Case ϕ̄ > 0. In the general case ϕ̄ > 0, take a > 0 in (43). We detail the case p < 0. As above,

apply Hölder’s inequality with δ < 0 to the right-hand side of (43), to obtain:

E [(X∗T )p] ≥
(
EQ

[
eδp(1−α)R∗T

]) 1
δ
(
EQ

[
e

δ
δ−1((µ

σ
−a)W̃T− 1

2
(µ
σ
−a)2T)

]) δ−1
δ

=
(
EQ

[
eδp(1−α)R∗T

]) 1
δ
e

1
δ−1

1
2

(µ
σ
−a)2T .

(49)
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With a 6= 0, exp(Rt) is no longer a Q-local martingale. Instead, setting

Nt =
∫ T

0
(σπt − a)dW̃t −

1
2

∫ T

0
(σπt − a)2dt (50)

from (42) it follows that:

RT = NT + a

(
W̃t +

1
2a

(a2 − 2ϕ̄)
)

= NT + aW̃
(ζ)
T ,

where ζ = 1
2a(a2 − 2ϕ̄) and exp(Nt) is a positive Q-local martingale that converges as t ↑ ∞. The

obvious estimate R∗T ≤ N∗T + aW̃
(ζ)∗

T and the Hölder inequality with δ1 > 1 now imply that (recall

that δ < 0):

EQ

[
eδp(1−α)R∗T

]
≤
(
EQ

[
eδ1δp(1−α)N∗T

]) 1
δ1

(
EQ

[
e

δ1
δ1−1

δp(1−α)aW̃
(ζ)∗
T

]) δ1−1
δ1

, and hence

E [(X∗T )p] ≥
(
EQ

[
eδ1δp(1−α)N∗T

]) 1
δ1δ

(
EQ

[
e

δ1
δ1−1

δp(1−α)aW̃
(ζ)∗
T

]) δ1−1
δ1δ

e
1
δ−1

1
2

(µ
σ
−a)2T .

(51)

As in (46), the first term on the right-hand side is bounded by a finite number if δ1δp(1− α) < 1,

whence:

lim
T→∞

1
pT

logE [(X∗T )p] ≤ 1
p(δ − 1)

1
2

(µ
σ
− a
)2

+ lim
T→∞

δ1 − 1
δ1δpT

logEQ

[
e

δ1
δ1−1

δp(1−α)aW̃
(ζ)∗
T

]
. (52)

Lemma 8 below implies that the second term on the right-hand side is zero if both ζ < 0 and

δ1
δ1−1δp(1− α)a+ 2ζ < 0. It remains to argue that:

min
δ∈∆

1
p(δ − 1)

1
2

(µ
σ
− a
)2

= (1− α)
(
µ2

2σ2

1
γ∗M
− ϕ̄

)
, (53)

which is the right-hand side of (39), where the set of admissible δ is

∆ =
{
δ : δ < 0, δ1 > 1, a > 0, ζ < 0, δ1δp(1− α) < 1,

δ1

δ1 − 1
δp(1− α)a+ 2ζ < 0

}
.
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Let a = 2σ
µ ϕ̄γ

∗
M and observe that ζ < 0 thanks to (9). Let δ1 = 1 + a2

2ϕ̄−a2 so that δ1
δ1−1 = 2ϕ̄

a2

and δ < 0 such that δ1δp(1 − α) = 1 − ε, for ε > 0 small. We conclude that the proposed set of

parameters is in ∆. Taking ε ↓ 0 we obtain (53).

The case p > 0 is analogous. Note that in (9) now 1/γ∗M is smaller while for p < 0 the term

1/γ∗M
2 was smaller. Inequality in (49) is reversed, the first inequality in (51) remains unchanged

and the second one is reversed since δ > 1. The final bound (52) and the optimisation problem (53)

remain unchanged and in the definition of ∆ we just have to take δ > 1 instead of δ < 0. Then the

definitions of parameters remain the same and we just have to unsure δ > 1. For ε = 0 this follows

from (9) and by continuity holds also for ε > 0 small enough.

In view of the previous Lemma, it suffices to estimate the various terms in the expression for

fees, to finish the proof of the upper bound i):

Proof of Theorem 1: Step i). To prove (39) we first solve (5) for Ft explicitly. From

ertd
(
e−rtFt

)
= (dFt − rFtdt) = ϕXtdt+

α

1− α
dX∗t ,

it follows that:

FT = erTF0 + erTϕ
∫ T

0
e−rtXtdt+ erT

α

1− α

∫ T

0
e−rtdX∗t (54)

= erTF0 +
α

1− α
(X∗T − erTX0) + ϕ

∫ T

0
er(T−t)Xtdt+

rα

1− α

∫ T

0
er(T−t)X∗t dt (55)

We deduce that:

FT ≤ erTF0 +
α

1− α
X∗T +

(
ϕ+

rα

1− α

)∫ T

0
er(T−u)X∗udu . (56)
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Now, define R̄t = Rt − r
1−α t, and estimate the last two terms as:

X∗T = erT e(1−α)R∗T−rT ≤ erT e(1−α)R̄∗T (57)

and: ∫ T

0
er(T−t)X∗t dt = erT

∫ T

0
e−rtX∗t dt ≤ erT

∫ T

0
e(1−α)R̄∗t dt ≤ TerT e(1−α)R̄∗T , (58)

which implies that:

FT ≤ erTF0 + erT
(

α

1− α
+
(
ϕ+

rα

1− α

)
T

)
e(1−α)R̄∗T (59)

and hence that CER1−p(F ) ≤ max
{
r, r + CER1−p(e(1−α)R̄∗

}
. To estimate CER1−p(e(1−α)R̄∗), use

Lemma 6 replacing r with r − r/(1− α) to obtain:

CER1−p(e(1−α)R̄∗) ≤ 1− α
γ∗M

µ2

2σ2
− (1− α)(ϕ− r)− r, (60)

which completes the proof of (39).

To complete the proof of Theorem 1, it remains to prove that for the portfolio (10), under (13),

both (40) and (12) hold. This involves exponential moments of a Brownian motion with drift and

its running maximum and the following Lemma characterizes the growth rate of such exponential

moments.

Lemma 8. Let W (ζ)
t = Wt + ζt, where W is a Brownian motion. Then:

E[eλW
(ζ)∗
T ] =

λ+ ζ

λ+ 2ζ
e
λ(λ+2ζ)

2
T erfc

(
−λ+ ζ√

2

√
T

)
+

ζ

λ+ ζ
erfc

(
ζ√
2

√
T

)
(61)
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and

lim
T→∞

1
T

logE[eλW
(ζ)∗
T ] =



λ
2 (λ+ 2ζ) λ+ ζ > 0, λ+ 2ζ > 0

− ζ2

2 λ+ ζ < 0, ζ > 0

0 ζ < 0, λ+ 2ζ < 0

Proof. Computation in (61) can be found e.g. in Borodin and Salminen (2002). For the second

display, first observe that:

lim
T→∞

1
T

log erfc(a
√
T ) = −(a+)2 (62)

where a+ = max(a, 0). Thus, the first term has rate λ
2 (λ + 2ζ) if λ + ζ > 0 and −ζ2/2 otherwise,

while the second term has rate −ζ2/2 for ζ > 0 and 0 otherwise. If λ+ ζ > 0, λ+ 2ζ > 0, the first

rate is λ
2 (λ+ 2ζ). The second rate is −ζ2/2, which is smaller (both for λ < 0 and λ > 0), and the

claim follows. If λ + ζ > 0, ζ > 0, both terms have rate −ζ2/2. Finally, if ζ < 0, λ + 2ζ < 0, the

first rate is negative, while the second one is zero, hence the result is zero.

Proof of Theorem 1: Steps ii) and iii). To finish the proof of Theorem 1 it remains to show that

if (9) and (13) hold and π̂ = 1
γ∗M

µ
σ2 , then (40) and (12) hold. Recall that (13) is equivalent to the

condition CER1−p(X∗) > r. From (54), using trivial inequality r
∫ T

0 er(T−t)X∗t dt ≥ X0(erT − 1), we

deduce that FT ≥ α/(1−α)(X∗T −X0) and hence (40) will follow by proving that CER1−p((X π̂)∗) =

1−α
γ∗M

µ2

2σ2 − (1− α)ϕ̄, where ϕ̄ = ϕ− r and π = π̂.

When the process πt ≡ π = π̂ is constant, Rt can be written as Rt = πσW
(ζ̄)
t with ζ̄ =

µ
σ −

πσ
2 −

ϕ̄
πσ . Consider first (40). Proposition 4 yields

lim
T→∞

1
pT

logE [(Xπ∗
T )p] = lim

T→∞

1
pT

logE[e(1−α)pR∗T ] = lim
T→∞

1
pT

logE[eλW
(ζ̄)∗
T ], (63)

with λ = (1 − α)pπσ. Lemma 8 implies that the above quantity is positive only if λ + ζ̄ > 0 and

λ + 2ζ̄ > 0 and then (63) is equal to λ
2p(λ + 2ζ̄). The condition ζ̄ + λ > 0 for π = π̂ becomes

ϕ̄ < 1
2
µ2

σ2
1

γ∗M
2 , while ζ̄ + 2λ > 0 is equivalent to λ

2p(λ + 2ζ̄) > 0, which is further equivalent to
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ϕ̄ < 1
2
µ2

σ2
1
γ∗M

. These two conditions on ϕ̄ = ϕ− r are summarized by (9).

We turn now to computing investor’s welfare: CERq(X). Note that Xπ
T involves both R∗T and

RT :

(Xπ
T )q = eqRT−αqR

∗
T = eqσπW

(ζ̄)
T −αqσπW

(ζ̄)∗
T . (64)

The dependence on the terminal value can be removed with a change of measure:

E [(Xπ
T )q] =E

[
e−αqσπW

(ζ̄)
T

∗
+qσπWT

]
eqσπζ̄T

=E
[
e−αqσπW

(ζ̄)
T

∗

eqσπWT− (qσπ)2

2
T

]
eqσπ(ζ̄+ qσπ

2
)T (65)

=E
[
e−αqσπW

(ζ̄+qσπ)
T

∗]
eqσπ(ζ̄+ qσπ

2
)T .

Lemma 8 allows to finish the calculation, taking

λ = −αqσπ and ζ = ζ̄ + qσπ =
µ

σ
− πσ

2
− ϕ̄

πσ
+ qσπ. (66)

An elementary, if lengthy, computation of (65) yields:

lim
T→∞

1
qT

logE [(Xπ
T )q] =



1−α
γ∗M

µ2

2σ2

(
1− (1− α)γI−γMγ∗M

)
− (1− α)ϕ̄ λ+ ζ > 0, λ+ 2ζ > 0

− ζ̄2

2 λ+ ζ < 0, ζ > 0

1
γ∗M

µ2

2σ2

(
2− γI

γ∗M

)
− ϕ̄ ζ < 0, λ+ 2ζ < 0

=



1−α
γ∗M

2
µ2

2σ2 (γI − 2(1− α)(γI − γM ) + α(1− γI))− (1− α)ϕ̄ λ+ ζ > 0, λ+ 2ζ > 0

−1
2(1−γI)

(
µ
σ −

µ
2σ

1
γM∗
− σγM

∗

µ ϕ̄
)2

λ+ ζ < 0, ζ > 0

1
γ∗M

2
µ2

2σ2 (γI − 2(1− α)(γI − γM ) + 2α(1− γI))− ϕ̄ ζ < 0, λ+ 2ζ < 0

(67)
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Further calculations also yield:

λ+ ζ > 0⇐⇒ ϕ̄ <
1

γ∗M
2

µ2

2σ2
(1− 2(1− α)(γI − γM )) (68)

λ+ 2ζ > 0⇐⇒ ϕ̄ <
1

γ∗M
2

µ2

2σ2
(1− 2(1− α)(γI − γM ) + α(1− γI)) (69)

ζ > 0⇐⇒ ϕ̄ <
1

γ∗M
2

µ2

2σ2
(1− 2(1− α)(γI − γM ) + 2α(1− γI)). (70)

Note also that λ < 0 if and only if γI ∈ (0, 1). It follows that if γI ≥ 1 then λ+ ζ ≤ 0 implies ζ ≤ 0

and hence only the first and the third case in (67) are possible according to λ+ 2ζ > 0 or not. This

is precisely the statement in (12), which completes the proof of Theorem 1. We note finally that if

γI < 1 and λ+ ζ < 0 then (67) implies that CERγI (X) < 0.

Proof of Corollary 2. Define λ, ζ as in (66), and ϕ̄ = ϕ− r. Recall from (67) that:

CERγI (X) =


F (α) = 1−α

γ∗M

µ2

2σ2

(
1− (1− α)γI−γMγ∗M

)
− (1− α)ϕ̄ λ+ ζ > 0, λ+ 2ζ ≥ 0

G(α) = 1
γ∗M

µ2

2σ2

(
2− γI

γ∗M

)
− ϕ̄ ζ < 0, λ+ 2ζ < 0.

The case {λ+ ζ < 0, ζ > 0} yields a negative growth rate and therefore cannot lead to equilibrium,

since the investor would rather not invest. The case γM = 1 is also excluded, because it leads to a

constant G(α) (i.e. independent of α).

When γM 6= 1, we have that G′(α∗) = 0 for α∗ = γI−γM
1−γM and G has a unique maximum in α∗.

Thus:

α∗ ∈ (0, 1) ⇐⇒ (γM < γI < 1) or (1 < γI < γM ) .

In the first case, plugging the value of α∗ into the condition ζ < 0 in (70) gives ϕ̄ > 1
γ∗M

2
µ2

2σ2 , which

is excluded by (9). In the second case, when 1 < γI < γM , the condition λ + 2ζ < 0, using (69),

turns into

ϕ̄ >
1

γ∗M
2

µ2

2σ2

(
1− (γI − γM )(1− γI)

1− γM

)
>

1
γ∗M

2

µ2

2σ2
,
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which again is ruled out by (9). Hence CERγI (X) can have a maximum for α ∈ (0, 1) only in the

case CERγI (X) = F (α) which corresponds to {λ+ ζ > 0, λ+ 2ζ > 0}.

A straightforward computation shows that

F ′(α) = ϕ̄− µ2

2σ2

γM
∗ + (1− α)(γM − γI)

(γM ∗)3

and hence F ′(α) = 0 for α = α∗ satisfying (14). The additional condition in (15) requires that α∗

satisfies λ + ζ > 0, λ + 2ζ > 0 and CERγI (X) > 0. Note that, for γI ≥ 1, the condition simply

reduces to (69), which in turn implies λ + ζ > 0 and CERγI (X) > 0. We require (9) and (12) to

ensure that the manager’s problem has a non-trivial solution π∗ in (10).

Finally, assume that (14)–(15) admit a solution α∗ ∈ (0, 1) for which (9) and (12) hold. Observe

that when ϕ − r < 0, (14) implies that γI > γM . Combining (14) with the first condition in (15),

it follows that:

2(1− α∗)γI − γMγM ∗ > 2(1− α∗)(γI − γM )− α∗(1− γI)

2(1− α∗)2(γI − γM )(1− γM ) > α∗(γI − 1)γM ∗.
(71)

and it follows that necessarily γM < 1, since γI ≥ max{0, γM}.
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