### 6-loop $\phi^4$ theory in $4-2\varepsilon$ dimensions

Erik Panzer

All Souls College (Oxford)

7th June 2017 Methods and Applications, UPMC Paris

joint work with M. V. Kompaniets Minimally subtracted six loop renormalization of O(n)-symmetric  $\phi^4$  theory and critical exponents [arXiv:1705.06483]

- Motivation
- 2 Calculational techniques
- 8 Results

## $\lambda$ -transition of <sup>4</sup>He (Columbia, October 1992)

Specific heat of liquid helium in zero gravity very near the lambda point [Lipa, Nissen, Stricker, Swanson & Chui '03]



Near the lambda transition ( $T_{\lambda} \approx 2.2K$ ), the specific heat

$$C_{\rho} = \frac{A^{\pm}}{\alpha} |t|^{-\alpha} \left( 1 + a_{c}^{\pm} |t|^{\theta} + b_{c}^{\pm} |t|^{2\theta} + \cdots \right) + B^{\pm} \quad \text{(for } T \geq T_{\lambda}\text{)}$$

 $\Rightarrow \alpha = -0.0127(3)$ 

shows a power-law behaviour  $(t = 1 - T/T_{\lambda})$ .

Near a phase transition at  $T \rightarrow T_c$ , a physical system can be described by power laws in terms of the reduced temperature  $t = 1 - T/T_c$ :

$$egin{aligned} & \mathcal{C}_p \propto |t|^{-lpha}\,, & \xi \propto |t|^{-
u} \,\, ( ext{correlation length}), \ & \chi \propto |t|^{-\gamma}\,, & \langle \psi(0)\psi(r) 
angle \propto r^{2-d-\eta} \,\, ( ext{at} \,\, \mathcal{T} = \,\mathcal{T}_c). \end{aligned}$$

Only two of these critical exponents are independent (scaling relations):

$$D
u = 2 - lpha, \quad \gamma = 
u(2 - \eta), \quad lpha + 2eta + \gamma = 2, \quad eta \delta = eta + \gamma.$$

#### Universality

Critical exponents depend only on:

- dimension D
- internal symmetry group, e.g. O(n)

## Some O(n) universality classes

- O(0) self-avoiding walks: diluted polymers
- O(1) Ising model: liquid-vapor transition, uniaxial magnets
- O(2) XY universality class:  $\lambda$ -transition of <sup>4</sup>He, plane magnets
- O(3) Heisenberg universality class: isotropic magnets

#### Onsager's solution from 1944

Exact solution of the Ising model in D = 2 dimensions:

$$\alpha = 0, \quad \beta = 1/8, \quad \nu = 1, \quad \eta = 1/4.$$

## Some O(n) universality classes

- O(0) self-avoiding walks: diluted polymers
- O(1) Ising model: liquid-vapor transition, uniaxial magnets
- O(2) XY universality class:  $\lambda$ -transition of <sup>4</sup>He, plane magnets
- O(3) Heisenberg universality class: isotropic magnets

#### Onsager's solution from 1944

Exact solution of the Ising model in D = 2 dimensions:

$$\alpha=0,\quad \beta=1/8,\quad \nu=1,\quad \eta=1/4.$$

So far, no exact solutions in D = 3 are known. Approximation methods:

- Iattice: Monte Carlo simulation, high temperature series
- **2** conformal bootstrap (recently: very high accuracy for n = 1)
- **③** RG ( $\phi^4$  theory): in D = 3 dimensions
- Solution RG ( $\phi^4$  theory): in  $D = 4 2\varepsilon$  dimensions ( $\varepsilon$ -expansion)  $\leftarrow$  this talk

Consider scalar fields  $\phi = (\phi_1, \dots, \phi_n)$  with O(n) symmetric interaction  $\phi^4 := (\phi^2)^2$ . The renormalized Lagrangian in  $D = 4 - 2\varepsilon$  dimensions is

$$\mathscr{L} = rac{1}{2}m^2 Z_1 \phi^2 + rac{1}{2}Z_2 \left(\partial\phi\right)^2 + rac{16\,\pi^2}{4!}Z_4\,g\,\mu^{2arepsilon}\,\phi^4.$$

The Z-factors relate the renormalized  $(\phi, m, g)$  to the bare  $(\phi_0, m_0, g_0)$  via

$$Z_{\phi} = rac{\phi_0}{\phi} = \sqrt{Z_2}, \quad Z_{m^2} = rac{m_0^2}{m^2} = rac{Z_1}{Z_2} \quad ext{and} \quad Z_g = rac{g_0}{\mu^{2arepsilon}g} = rac{Z_4}{Z_2^2}.$$

Definition (RG functions:  $\beta$  and anomalous dimensions)

$$eta(m{g}) := \left. \mu rac{\partial m{g}}{\partial \mu} 
ight|_{m{g}_0} \quad \gamma_{m^2}(m{g}) := - \left. \mu rac{\partial \log m^2}{\partial \mu} 
ight|_{m{m}_0} \quad \gamma_{\phi}(m{g}) := - \left. \mu rac{\partial \log \phi}{\partial \mu} 
ight|_{\phi_0}$$

#### RG equation

$$\mu \frac{\partial}{\partial \mu} + \beta \frac{\partial}{\partial g} - k \gamma_{\phi} - \gamma_{m^2} m^2 \frac{\partial}{\partial m^2} \Big] \Gamma_R^{(k)} \left( \vec{p_1}, \dots, \vec{p_k}; m, g, \mu \right) = 0$$

Near an IR-stable fixed point  $g_{\star}$ , that is

$$\beta(g_{\star}) = 0$$
 and  $\beta'(g_{\star}) > 0$ ,

the RG equation is solved by power laws and the critical exponents are

$$\begin{split} 1/\nu &= 2 + \gamma_{m^2}(g_\star), \quad \eta = 2\gamma_\phi(g_\star) \quad \text{and} \quad \omega = \beta'(g_\star). \\ & \text{(scheme independent)} \end{split}$$

Recall specific heat near  $\lambda$ -transition of  ${}^{4}\mathrm{He}$ 

$$C_{p} = \frac{A^{\pm}}{\alpha} |t|^{-\alpha} \left( 1 + a_{c}^{\pm} |t|^{\theta} + b_{c}^{\pm} |t|^{2\theta} + \cdots \right) + B^{\pm} \quad (\text{for } T \geq T_{\lambda})$$

The correction to scaling is determined by  $\theta = \omega \nu \approx 0.529$ .

## DimReg and minimal subtraction (MS)

In MS, the Z-factors depend only on  $\varepsilon$  and g and admit expansions

$$Z_i = Z_i(g, \varepsilon) = 1 + \sum_{k=1}^{\infty} \frac{Z_{i,k}(g)}{\varepsilon^k}$$

From their residues one can read off the RG functions:

$$\beta(g,\varepsilon) = -2\varepsilon g + 2g^2 \frac{\partial Z_{g,1}(g)}{\partial g} \quad \text{and} \quad \gamma_i(g) = -2g \frac{\partial Z_{i,1}(g)}{\partial g} \quad (i = m^2, \phi).$$
  
The critical coupling  $g_* = g_*(\varepsilon)$  vanishes at  $D = 4$  ( $\varepsilon = 0$ ).

 $\varepsilon$ -expansions of critical exponents (formal power series)

$$\begin{split} \beta(g_\star(\varepsilon),\varepsilon) &= 0, & \eta(\varepsilon) = 2\gamma_\phi(g_\star(\varepsilon)) \\ \omega(\varepsilon) &= \beta'(g_\star(\varepsilon)), & 1/\nu(\varepsilon) = 2 + \gamma_{m^2}(g_\star(\varepsilon)). \end{split}$$

In MS, the Z-factors are determined by the projection on poles

$$\mathcal{K}\left(\sum_{k}c_{k}\varepsilon^{k}
ight) \coloneqq \sum_{k<0}c_{k}\varepsilon^{k}$$

after subtraction of UV subdivergences using the  $\mathcal{R}'$  operation:

$$egin{aligned} &Z_1=1+\partial_{m^2}\mathcal{KR}'\Gamma^{(2)}(p,m^2,g,\mu),\ &Z_2=1+\partial_{p^2}\mathcal{KR}'\Gamma^{(2)}(p,m^2,g,\mu) & ext{ and }\ &Z_4=1+\mathcal{KR}'\Gamma^{(4)}(p,m^2,g,\mu)/g. \end{aligned}$$

#### Summary of this method

- Compute ε-expansions of dimensionally regulated Feynman integrals of O(n)-symmetric φ<sup>4</sup> theory.
- **2** Combine them with  $\mathcal{R}'$  and  $\mathcal{K}$  to obtain Z-factors.
- Obduce RG functions and critical exponents.
- By universality, these should describe many different physical systems.

# computational techniques

## infrared rearrangement (IRR)

First note that Z-factors do not depend on  $m^2$ . Using

$$\frac{\partial}{\partial m^2} \frac{1}{k^2 + m^2} = -\frac{1}{k^2 + m^2} \frac{1}{k^2 + m^2},$$

 $Z_2$  can be expressed in terms of a subset of  $\Gamma^{(4)}$ -graphs.

 $\Rightarrow$  we can set all masses to zero

More generally, if a graph G is superficially log. divergent and primitive (no subdivergences), then its residue is independent of kinematics:

$$\Phi(G; \vec{p_1}, \vec{p_2}, \vec{p_3}, \vec{p_4}) = \frac{\mathcal{P}(G)}{\mathsf{loops}(G)\varepsilon} + \mathcal{O}\left(\varepsilon^0\right)$$

#### Example

$$\Phi\left(\left(\vec{p_1}, \vec{p_2}, \vec{p_3}, \vec{p_4}\right)\right) = \frac{2\zeta_3}{\varepsilon} + \mathcal{O}\left(\varepsilon^0\right) \quad \text{where} \quad \zeta_n = \sum_{k=1}^{\infty} \frac{1}{k^n}$$

### Some traditional methods

• use IRR to reduce all  $\mathcal{KR}'\Phi(G)$  to massless propagators (*p*-integrals):

$$G = G_{1-s}^{\text{IR-safe}} = -$$
 , but not  $G_{1-s}^{\text{IR-unsafe}} = -$ 

•  $\mathcal{R}^*$  extends this by allowing for IR-divergences ( $\Rightarrow$  trivializes a loop):



• factorization of 1-scale subgraphs:



• IBP: only up to 4 loops!

Automatized and implemented (open source) [Batkovich & Kompaniets '14].

### Some traditional methods

• use IRR to reduce all  $\mathcal{KR}'\Phi(G)$  to massless propagators (*p*-integrals):

$$G = G_{1-s}^{\text{IR-safe}} = -$$
 , but not  $G_{1-s}^{\text{IR-unsafe}} = -$ 

•  $\mathcal{R}^*$  extends this by allowing for IR-divergences ( $\Rightarrow$  trivializes a loop):



• factorization of 1-scale subgraphs:



• IBP: only up to 4 loops!

Automatized and implemented (open source) [Batkovich & Kompaniets '14].

## irreducible (not 4-loop reducible) 6-loop $\phi^4$ integrals



## Some history

- 4 loops
  - critical exponents [Brezin, LeGuillou & Zinn-Justin '74], [Kazakov, Tarasov & Vladimirov '79]
  - 3-loop propagators [Chetyrkin & Tkachov '81]
- 5 loops
  - $\gamma_{\phi}$  [Chetyrkin, Kataev, Tkachov '81]
  - $\beta$  [Chetyrkin, Gorishny, Larin, Tkachov '83 '86, Kazakov '83]
  - corrections [Kleinert, Neu, Schulte-Frohlinde, Chetyrkin, Larin '91, '93]
  - numeric checks [Adzhemyan, Kompaniets '14]
  - 4-loop propagators [Baikov & Chetyrkin, Smirnov & Tentyukov '10] with arbitrary indices [Panzer '13]
- 6 loops
  - primitives [Broadhurst '85], 5-loop propagator [Broadhurst '93]
  - $\gamma_{\phi}$  [Batkovich, Kompaniets, Chetyrkin '16]
  - $\beta$  and  $\gamma_{\it m^2}$  [Kompaniets & Panzer '16]
  - independent computation [Schnetz '16]
- 7 loops
  - primitives [Broadhurst & Kreimer '95], [Schnetz '10], [Panzer '14]
  - $\gamma_{\phi}$  [Schnetz '16]

## Some history

- 4 loops
  - critical exponents [Brezin, LeGuillou & Zinn-Justin '74], [Kazakov, Tarasov & Vladimirov '79]
  - 3-loop propagators [Chetyrkin & Tkachov '81]
- 5 loops
  - $\gamma_{\phi}$  [Chetyrkin, Kataev, Tkachov '81]
  - $\beta$  [Chetyrkin, Gorishny, Larin, Tkachov '83 '86, Kazakov '83]
  - corrections [Kleinert, Neu, Schulte-Frohlinde, Chetyrkin, Larin '91, '93]
  - numeric checks [Adzhemyan, Kompaniets '14]
  - 4-loop propagators [Baikov & Chetyrkin, Smirnov & Tentyukov '10] with arbitrary indices [Panzer '13]

6 loops

- primitives [Broadhurst '85], 5-loop propagator [Broadhurst '93]
- $\gamma_{\phi}$  [Batkovich, Kompaniets, Chetyrkin '16]
- $\beta$  and  $\gamma_{m^2}$  [Kompaniets & Panzer '16]
- independent computation [Schnetz '16]
- 7 loops
  - primitives [Broadhurst & Kreimer '95], [Schnetz '10], [Panzer '14]
  - $\gamma_{\phi}$  [Schnetz '16] , also  $\beta$  &  $\gamma_{m^2}$  [Schnetz '17]

## New methods

- Parametric integration with hyperlogarithms
- Resolution of singularities
  - via IBP [Panzer '14], [von Manteuffel, Panzer & Schabinger '15]
  - primitive linear combinations
  - one-scale scheme [Brown & Kreimer '13]
- Graphical functions [Schnetz '14]
  - generalized single-valued hyperlogarithms [Schnetz]
  - combined with parametric integration [Golz, Panzer & Schnetz '16]

We do not use any IBP reductions and compute all Feynman integrals. This is feasible because  $\phi^4$  theory has only very few graphs:

| # loops          | 1 | 2 | 3 | 4  | 5   | 6   |
|------------------|---|---|---|----|-----|-----|
| # 4-point graphs | 1 | 2 | 8 | 26 | 124 | 627 |

## New methods

#### 

- 2 Resolution of singularities
  - via IBP [Panzer '14], [von Manteuffel, Panzer & Schabinger '15]
  - primitive linear combinations
  - one-scale scheme [Brown & Kreimer '13] ⇐ this talk
- Graphical functions [Schnetz '14]
  - generalized single-valued hyperlogarithms [Schnetz]
  - combined with parametric integration [Golz, Panzer & Schnetz '16]

We do not use any IBP reductions and compute all Feynman integrals. This is feasible because  $\phi^4$  theory has only very few graphs:

| # loops          | 1 | 2 | 3 | 4  | 5   | 6   |
|------------------|---|---|---|----|-----|-----|
| # 4-point graphs | 1 | 2 | 8 | 26 | 124 | 627 |

### Parametric integration

The  $\alpha$ -representation of  $\mathcal{P}(G)$  for a primitive graph is

$$\mathcal{P}(G) = \int_0^\infty \mathrm{d}\alpha_1 \cdots \int_0^\infty \mathrm{d}\alpha_{N-1} \frac{1}{\psi^2|_{\alpha_N=1}}$$

where the Kirchhoff/graph/first Symanzik polynomial is

$$\psi = \mathcal{U} = \sum_{T \text{ spanning tree } e \notin T} \alpha_e.$$

For linearly reducible graphs G, this integral can be computed exactly in terms of polylogarithms [HyperInt] (open source).

- > read "HyperInt.mpl":
- > E := [[1,2],[2,3],[3,1],[1,4],[2,4],[3,4]]:
- > psi := eval(graphPolynomial(E), x[6]=1):
- > hyperInt(1/psi<sup>2</sup>,[x[1],x[2],x[3],x[4],x[5]]):
- > fibrationBasis(%);

- check for linear reducibility available (HyperInt)
- fulfilled for all but one  $\phi^4$  graph up to  $\leq 6$  loops
- applies also to some non-propagator integrals
- integration works in  $2n 2\varepsilon$  dimensions
- $\varepsilon$ -dependent propagator exponents allowed

$$\mathcal{P}\left(\bigcup_{i=1}^{3} \bigcup_{j=1}^{3} \left(\zeta_{11}^{2} + \frac{3381}{20} \left(\zeta_{3,5,3}^{2} - \zeta_{3}\zeta_{3,5}\right) - \frac{1155}{4}\zeta_{3}^{2}\zeta_{5}^{2} + 896\zeta_{3}\left(\frac{27}{80}\zeta_{3,5}^{2} + \frac{45}{64}\zeta_{3}\zeta_{5}^{2} - \frac{261}{320}\zeta_{8}\right)$$

#### Survey of primitive periods up to 11 loops

The Galois coaction on  $\phi^4$  periods (w. Oliver Schnetz)

- check for linear reducibility available (HyperInt)
- fulfilled for all but one  $\phi^4$  graph up to  $\leq$  6 loops
- applies also to some non-propagator integrals
- integration works in  $2n 2\varepsilon$  dimensions
- $\varepsilon$ -dependent propagator exponents allowed

$$\mathcal{P}\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

#### Survey of primitive periods up to 11 loops

The Galois coaction on  $\phi^4$  periods (w. Oliver Schnetz)

## How to deal with divergences?

- primitive linear combinations  $\leftarrow$  non-trivial to automate
- one-scale BPHZ

Renormalization of subdivergences:

$$\Phi_{R}\left(\mathbf{x},\mathbf{y},\mathbf{y}\right) = \Phi\left(\mathbf{x},\mathbf{y},\mathbf{y}\right) - \Phi^{0}\left(\mathbf{x},\mathbf{y}\right) \Phi\left(\mathbf{x},\mathbf{y}\right)$$
$$-\Phi^{0}\left(\mathbf{x},\mathbf{y}\right) \Phi\left(\mathbf{x},\mathbf{y}\right)$$
$$-\Phi^{0}\left(\mathbf{x},\mathbf{y}\right) \Phi\left(\mathbf{x},\mathbf{y}\right)$$
$$+2\Phi^{0}\left(\mathbf{x},\mathbf{y}\right) \Phi^{0}\left(\mathbf{x},\mathbf{y}\right) \Phi\left(\mathbf{x},\mathbf{y}\right)$$

#### BPHZ-like scheme

 $\Phi^0(G) := \Phi(G)$  at a fixed renormalization point  $(\vec{p_1}^0, \cdots, \vec{p_4}^0, m_0)$ 

Theorem (Renormalization under the integral sign, Weinberg '60)

The BPHZ-subtracted integrand is integrable. (This is false in MS!)

### one-scale renormalization scheme

BPHZ renormalization of log. UV subdivergences via forest formula:

$$\Phi_R(G) = \sum_{F \in \mathcal{F}(G)} (-1)^F \prod_{\gamma \in G} \Phi^0(\gamma) \Phi(G/\gamma)$$

Idea [Brown & Kreimer '13]: Choose  $\Phi^0(\gamma) := \Phi(\gamma^0)|_{p^2=1}$  to be 1-scale!



- $\Phi_R(G)$  is a convergent integral at  $\varepsilon = 0$  $\Rightarrow$  HyperInt ( $\varepsilon$ -expansion under the integral sign)
- $\Phi(G) = \Phi_R(G) + \sum$  products of lower-loop *p*-integrals
- easy to implement

- compute forest formula & choose IR-safe one-scale structures γ<sup>0</sup>
   integrate the (convergent) ∂<sub>p<sup>2</sup></sub>Φ<sub>R</sub>(G) (⇒ HyperInt)
- **③** solve for  $\Phi(G)$ , using products of lower-loop integrals

$$\mathcal{KR}'\left(\mathbf{x},\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y}',\mathbf{y$$



[Batkovich, Kompaniets, Chetyrkin '16]

$$\begin{split} \gamma_{\phi}^{\mathrm{MS}}(g) &= \frac{n+2}{36}g^2 - \frac{(n+8)(n+2)}{432}g^3 - \frac{5(n^2-18n-100)(n+2)}{5184}g^4 \\ &- \left[1152(5n+22)\zeta_4 - 48(n^3-6n^2+64n+184)\zeta_3\right. \\ &+ (39n^3+296n^2+22752n+77056)\right]\frac{(n+2)g^5}{186\,624} \\ &- \left[512(2n^2+55n+186)\zeta_3^2 - 6\,400(2n^2+55n+186)\zeta_6\right. \\ &+ 4\,736(n+8)(5n+22)\zeta_5 \\ &- 48(n^4+2n^3+328n^2+4\,496n+12\,912)\zeta_4 \\ &+ 16(n^4-936n^2-4\,368n-18\,592)\zeta_3 \\ &+ (29n^4+794n^3-30\,184n^2-549\,104n-1\,410\,544)\right]\frac{(n+2)g^6}{746\,496} \\ &+ \mathcal{O}\left(g^7\right) \end{split}$$

Check: large *n*-expansions [Vasilev, Pismak & Honkonen '81] for  $\beta$ : [Broadhurst, Gracey & Kreimer '97]

Result (
$$N = 1$$
),  $D = 4 - 2\varepsilon$ 

$$\begin{split} \beta^{\overline{\mathrm{MS}}}(g) &= -2\varepsilon g + 3g^2 - \frac{17}{3}g^3 + \left(\frac{145}{8} + 12\zeta_3\right)g^4 \\ &- \left(120\zeta_5 - 18\zeta_4 + 78\zeta_3 + \frac{3499}{48}\right)g^5 \\ &+ \left(1323\zeta_7 + 45\zeta_3^2 - \frac{675}{2}\zeta_6 + 987\zeta_5 - \frac{1189}{8}\zeta_4 + \frac{7965}{16}\zeta_3 + \frac{764621}{2304}\right)g^6 \\ &- \left(\frac{46112}{3}\zeta_9 + 768\zeta_3^3 + \frac{51984}{25}\zeta_{3,5} - \frac{264543}{25}\zeta_8 + 4704\zeta_3\zeta_5 \\ &+ \frac{63627}{5}\zeta_7 - 162\zeta_3\zeta_4 + \frac{8678}{5}\zeta_3^2 - \frac{6691}{2}\zeta_6 + \frac{63723}{10}\zeta_5 \\ &- \frac{16989}{16}\zeta_4 + \frac{779603}{240}\zeta_3 + \frac{18841427}{11520}\right)g^7 \\ &+ \mathcal{O}\left(g^8\right) \end{split}$$

Numerical values:  $\zeta_{3,5} = \sum_{1 \le n < m} \frac{1}{n^3 m^5} \approx 0.037707673$ 

$$a \approx -2\epsilon g + 3g^2 - 5.7g^3 + 32.6g^4 - 271.6g^5 + 2849g^6 - 34776g^7 + \mathcal{O}\left(g^8
ight)$$

# asymptotics

Let 
$$\beta^{MS}(g) = \sum_k \beta_k^{MS}(-g)^k$$
.

#### Asymptotics of the perturbation series

According to [McKane, Wallace & Bonfim '84],

$$eta_k^{ ext{MS}} \sim \overline{eta}_k := k! \cdot k^{3+n/2} \cdot C_eta$$
 as  $k o \infty$ 

where  $C_{\beta}$  is a constant that only depends on *n*:

$$C_{\beta} = \frac{36 \cdot 3^{(n+1)/2}}{\pi \Gamma(2+n/2) \mathcal{A}^{2n+4}} \exp\left[-\frac{3}{2} - \frac{n+8}{3}\left(\gamma_{\mathsf{E}} + \frac{3}{4}\right)\right].$$

 $\gamma_{\sf E} = \approx 0.577$  (Euler-Mascheroni) and  $A \approx 1.282$  (Glaisher-Kinkelin)



| loop order $\ell$                                           | 1   | 2    | 3    | 4    | 5    | 6     |
|-------------------------------------------------------------|-----|------|------|------|------|-------|
| $\beta_{\ell+1}^{\mathrm{MS}}/\overline{eta}_{\ell+1}$ in % | 548 | 83.5 | 43.8 | 33.5 | 30.9 | 31.4  |
| $\beta_{\ell+1}^{\mathrm{MS}}$                              | 3   | 5.67 | 32.5 | 272  | 2849 | 34776 |
| $\beta_{\ell+1}^{\text{prim}}$                              | 3   | 0    | 14.4 | 124  | 1698 | 24130 |
| $eta_{\ell+1}^{ m prim}/eta_{\ell+1}^{ m MS}$ in %          | 100 | 0    | 44.3 | 45.8 | 59.6 | 69.4  |
| 4-point graphs                                              | 1   | 2    | 8    | 26   | 124  | 627   |
| primitives                                                  | 1   | 0    | 1    | 1    | 3    | 10    |

$$C_{\beta} = \frac{36 \cdot 3^{(n+1)/2}}{\pi \Gamma(2+n/2) A^{2n+4}} \exp\left[-\frac{3}{2} - \frac{n+8}{3}\left(\gamma_{\mathsf{E}} + \frac{3}{4}\right)\right]$$

| _                                 | loop order $\ell$ | first zero  | second zero | third zero |
|-----------------------------------|-------------------|-------------|-------------|------------|
| (                                 | 1                 | -8          |             |            |
|                                   | 2                 | -4.67       |             |            |
| $\rho MS(n)$                      | 3                 | -4.025      | -41.4       |            |
| $p_{\ell+1}(n)$                   | 4                 | -4.020      | -12.1       | 3219       |
|                                   | 5                 | -4.0017     | -8.76       | -44.0      |
| l                                 | 6                 | -4.00044    | -7.52       | -20.0      |
| (                                 | 6                 | -3.99754    | -7.22       | -35.6      |
|                                   | 7                 | -3.99982    | -6.58       | -15.1      |
| $\beta^{\text{prim}}(\mathbf{r})$ | 8                 | -3.99994    | -6.31       | -10.8      |
| $\rho_{\ell+1}$ (")               | 9                 | -3.999997   | -6.18       | -9.24      |
|                                   | 10                | -3.99999991 | -6.10       | -8.55      |
| l                                 | 11                | -4.00000095 | -6.05       | -8.21      |



# resummation

The  $\varepsilon$ -expansion  $f(\varepsilon) = \sum_{n \ge 0} f_n \varepsilon^n$  of crit. exponents is divergent:

 $f_n \sim Cn! a^n n^{b_0}$  [McKane, Wallace & Bonfim '84]

Borel-resummation after [Le Guillou & J. Zinn-Justin '85]:

$$f(\varepsilon) = \int_0^\infty x^{b-1} \tilde{f}(x) e^{-x/\varepsilon} dx \quad \text{with} \quad \tilde{f}_n = \frac{f_n}{\Gamma(n+b)}$$

Conformal mapping (analytic continuation):

$$ilde{f}(x) = \left(rac{x}{w}
ight)^\lambda \left(a_0 + a_1w + \ldots + a_\ell w^\ell
ight) \quad ext{where} \quad w(x) = rac{\sqrt{1+x}-1}{\sqrt{1+x}+1}$$

Homographic transformation: Re-expand in  $\varepsilon'$  given by

$$\varepsilon = rac{arepsilon'}{1+qarepsilon'}$$

 $\eta(n=1) \approx 0.07407\varepsilon^2 + 0.1495\varepsilon^3 - 0.1333\varepsilon^4 + 0.8210\varepsilon^5 - 5.2015\varepsilon^6 + \mathcal{O}(\varepsilon^7)$ 



 $\eta(n=1) \approx 0.07407\varepsilon^2 + 0.1495\varepsilon^3 - 0.1333\varepsilon^4 + 0.8210\varepsilon^5 - 5.2015\varepsilon^6 + \mathcal{O}(\varepsilon^7)$ 



|                                          |                   | <i>n</i> = 0 | n = 1       | <i>n</i> = 2 | <i>n</i> = 3 | <i>n</i> = 4 |
|------------------------------------------|-------------------|--------------|-------------|--------------|--------------|--------------|
| ſ                                        | (                 | 0.031043(3)  | 0.036298(2) | 0.0381(2)    | 0.0378(3)    | 0.0360(3)    |
|                                          | $\varepsilon^{6}$ | 0.0310(7)    | 0.0362(6)   | 0.0380(6)    | 0.0378(5)    | 0.0366(4)    |
| "                                        | $\varepsilon^{5}$ | 0.0314(11)   | 0.0366(11)  | 0.0384(10)   | 0.0382(10)   | 0.0370(9)    |
|                                          | G/ZJ              | 0.0300(50)   | 0.0360(50)  | 0.0380(50)   | 0.0375(45)   | 0.036(4)     |
| 1                                        | (                 | 0.5875970(4) | 0.629971(4) | 0.6717(1)    | 0.7112(5)    | 0.7477(8)    |
|                                          | $arepsilon^{6}$   | 0.5874(3)    | 0.6292(5)   | 0.6690(10)   | 0.7059(20)   | 0.7397(35)   |
|                                          | $\varepsilon^{5}$ | 0.5873(13)   | 0.6290(20)  | 0.6687(13)   | 0.7056(16)   | 0.7389(24)   |
|                                          | G/ZJ              | 0.5875(25)   | 0.6290(25)  | 0.6680(35)   | 0.7045(55)   | 0.737(8)     |
| $\omega \left\{ \left. \right. \right\}$ | (                 | 0.904(5)     | 0.830(2)    | 0.811(10)    | 0.791(22)    | 0.817(30)    |
|                                          | $\varepsilon^{6}$ | 0.841(13)    | 0.820(7)    | 0.804(3)     | 0.795(7)     | 0.794(9)     |
|                                          | $\varepsilon^{5}$ | 0.835(11)    | 0.818(8)    | 0.803(6)     | 0.797(7)     | 0.795(6)     |
|                                          | G/ZJ              | 0.828(23)    | 0.814(18)   | 0.802(18)    | 0.794(18)    | 0.795(30)    |

## 2d critical exponents

|          |                   | n = -1     | <i>n</i> = 0 | n = 1     |
|----------|-------------------|------------|--------------|-----------|
| 1        | Ń                 | 0.15       | 0.208333     | 0.25      |
|          | $arepsilon^{6}$   | 0.130(17)  | 0.201(25)    | 0.237(27) |
| <i>"</i> | $\varepsilon^{5}$ | 0.137(23)  | 0.215(35)    | 0.249(38) |
|          | LeG/ZJ            |            | 0.21(5)      | 0.26(5)   |
| 1        | Ň                 | 0.625      | 0.75         | 1         |
|          | $\varepsilon^{6}$ | 0.6036(23) | 0.741(4)     | 0.952(14) |
| $\nu$    | $\varepsilon^{5}$ | 0.6025(27) | 0.747(20)    | 0.944(48) |
|          | LeG/ZJ            |            | 0.76(3)      | 0.99(4)   |
| ω        | 7                 |            | 2            | 1.75      |
|          | $arepsilon^{6}$   | 1.95(28)   | 1.90(25)     | 1.71(9)   |
|          | $\varepsilon^{5}$ | 1.88(30)   | 1.83(25)     | 1.66(11)  |
|          | LeG/ZJ            | . ,        | 1.7(2)       | 1.6(2)    |

#### Thanks

#### Thank you for your attention!

- new tools for massless propagators
- $\phi^4$  beta function at six loops
- higher accuracy for critical exponents in D = 3

#### Thanks

#### Thank you for your attention!

- new tools for massless propagators
- $\phi^4$  beta function at six loops
- higher accuracy for critical exponents in D = 3

#### Stay tuned

tomorrow:  $\phi^{\rm 4}$  at 7 loops, by Oliver Schnetz



## Alternative method

Given a graph G, find a linear combination X of graphs such that

- G X is primitive (free of subdivergences) ( $\Rightarrow$  HyperInt)
- 2 each term in X factorizes (has a  $\geq 1$  loop sub-p-integral) [Panzer '13]



- simple: just *p*-integrals, no renormalization
- not straightforward to automate