Renormalization by kinematic subtraction and Hopf algebras

Erik Panzer ${ }^{1}$
Institutes of Physics and Mathematics
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin, Germany

November 7th, 2013

[^0]
Renormalization and algebraic structures

 from quantum field theory (QFT)
Renormalization and algebraic structures

```
from quantum field theory (QFT)
```

- Connes, Kreimer [2, 3]:
- renormalization in QFT formulated as an algebraic Birkhoff-decomposition of characters on a combinatorial Hopf algebra
- formulate renormalization group via β-function of local characters
- combinatorial Dyson-Schwinger equations (DSE) formulated in terms of Hochschild one-cocycles

Renormalization and algebraic structures

 from quantum field theory (QFT)- Connes, Kreimer [2, 3]:
- renormalization in QFT formulated as an algebraic Birkhoff-decomposition of characters on a combinatorial Hopf algebra
- formulate renormalization group via β-function of local characters
- combinatorial Dyson-Schwinger equations (DSE) formulated in terms of Hochschild one-cocycles
- Ebrahimi-Fard, Manchon, Menous, Patras et. al.
- Rota-Baxter algebras [6, 5]
- BPHZ scheme and exponential renormalization [7, 8]
- Dynkin operator, logarithmic derivatives [4, 17]

Renormalization and algebraic structures

 from quantum field theory (QFT)- Connes, Kreimer [2, 3]:
- renormalization in QFT formulated as an algebraic Birkhoff-decomposition of characters on a combinatorial Hopf algebra
- formulate renormalization group via β-function of local characters
- combinatorial Dyson-Schwinger equations (DSE) formulated in terms of Hochschild one-cocycles
- Ebrahimi-Fard, Manchon, Menous, Patras et. al.
- Rota-Baxter algebras [6, 5]
- BPHZ scheme and exponential renormalization [7, 8]
- Dynkin operator, logarithmic derivatives [4, 17]
- Foissy: Structure of the Hopf algebra H_{R} of rooted trees [10, 11, 9], classification of combinatorial Dyson-Schwinger equations and systems [12, 13]

Renormalization and algebraic structures

from quantum field theory (QFT)

- Connes, Kreimer [2, 3]:
- renormalization in QFT formulated as an algebraic Birkhoff-decomposition of characters on a combinatorial Hopf algebra
- formulate renormalization group via β-function of local characters
- combinatorial Dyson-Schwinger equations (DSE) formulated in terms of Hochschild one-cocycles
- Ebrahimi-Fard, Manchon, Menous, Patras et. al.
- Rota-Baxter algebras [6, 5]
- BPHZ scheme and exponential renormalization [7, 8]
- Dynkin operator, logarithmic derivatives [4, 17]
- Foissy: Structure of the Hopf algebra H_{R} of rooted trees [10, 11, 9], classification of combinatorial Dyson-Schwinger equations and systems [12, 13]
- van Baalen, Kreimer, Uminsky, Yeats: study of non-perturbative (analytic) Dyson-Schwinger equations [18, 19, 20, 16]

Aims of the talk

(1) algebraic features of kinematic subtraction

Aims of the talk

(1) algebraic features of kinematic subtraction
(2) Hochschild-cohomology not only describes DSE, but also renormalized characters

Aims of the talk

(1) algebraic features of kinematic subtraction
(2) Hochschild-cohomology not only describes DSE, but also renormalized characters
(3) comparison of different renormalization schemes

Aims of the talk

(1) algebraic features of kinematic subtraction
(2) Hochschild-cohomology not only describes DSE, but also renormalized characters
(3) comparison of different renormalization schemes
(9) analytic vs. combinatorial descriptions

A model of a single scale

Theorem (Universal property)

To any linear map $L \in \operatorname{End}(\mathcal{A})$ on an algebra \mathcal{A} exists a unique morphism $\phi: H_{R} \rightarrow \mathcal{A}$ of algebras (notation $\phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$) such that

$$
\begin{equation*}
\phi \circ B_{+}=L \circ \phi . \tag{1.1}
\end{equation*}
$$

If \mathcal{A} is a Hopf algebra and $L \in H Z_{\varepsilon}^{1}(\mathcal{A})$ a one-cocycle, ϕ is Hopf.

A model of a single scale

Theorem (Universal property)

To any linear map $L \in \operatorname{End}(\mathcal{A})$ on an algebra \mathcal{A} exists a unique morphism $\phi: H_{R} \rightarrow \mathcal{A}$ of algebras (notation $\phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$) such that

$$
\begin{equation*}
\phi \circ B_{+}=L \circ \phi . \tag{1.1}
\end{equation*}
$$

If \mathcal{A} is a Hopf algebra and $L \in H Z_{\varepsilon}^{1}(\mathcal{A})$ a one-cocycle, ϕ is Hopf.
Feynman rules ϕ of QFT map sub graphs to sub integrals, hence

$$
\begin{equation*}
\phi_{s}\left(B_{+}(w)\right)=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{s} f\left(\frac{\zeta}{s}\right) \phi_{\zeta}(w) \quad \text { for any } \quad w \in H_{R} \tag{1.2}
\end{equation*}
$$

A model of a single scale

Theorem (Universal property)

To any linear map $L \in \operatorname{End}(\mathcal{A})$ on an algebra \mathcal{A} exists a unique morphism $\phi: H_{R} \rightarrow \mathcal{A}$ of algebras (notation $\phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$) such that

$$
\begin{equation*}
\phi \circ B_{+}=L \circ \phi . \tag{1.1}
\end{equation*}
$$

If \mathcal{A} is a Hopf algebra and $L \in H Z_{\varepsilon}^{1}(\mathcal{A})$ a one-cocycle, ϕ is Hopf.
Feynman rules ϕ of QFT map sub graphs to sub integrals, hence

$$
\begin{equation*}
\phi_{s}\left(B_{+}(w)\right)=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{s} f\left(\frac{\zeta}{s}\right) \phi_{\zeta}(w) \quad \text { for any } \quad w \in H_{R} \tag{1.2}
\end{equation*}
$$

- s is a physical parameter (mass or momentum)

A model of a single scale

Theorem (Universal property)

To any linear map $L \in \operatorname{End}(\mathcal{A})$ on an algebra \mathcal{A} exists a unique morphism $\phi: H_{R} \rightarrow \mathcal{A}$ of algebras (notation $\phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$) such that

$$
\begin{equation*}
\phi \circ B_{+}=L \circ \phi . \tag{1.1}
\end{equation*}
$$

If \mathcal{A} is a Hopf algebra and $L \in H Z_{\varepsilon}^{1}(\mathcal{A})$ a one-cocycle, ϕ is Hopf.
Feynman rules ϕ of QFT map sub graphs to sub integrals, hence

$$
\begin{equation*}
\phi_{s}\left(B_{+}(w)\right)=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{s} f\left(\frac{\zeta}{s}\right) \phi_{\zeta}(w) \quad \text { for any } \quad w \in H_{R} \tag{1.2}
\end{equation*}
$$

- s is a physical parameter (mass or momentum)
- f is dictated by the graph into which B_{+}inserts

A model of a single scale

Theorem (Universal property)

To any linear map $L \in \operatorname{End}(\mathcal{A})$ on an algebra \mathcal{A} exists a unique morphism $\phi: H_{R} \rightarrow \mathcal{A}$ of algebras (notation $\phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$) such that

$$
\begin{equation*}
\phi \circ B_{+}=L \circ \phi . \tag{1.1}
\end{equation*}
$$

If \mathcal{A} is a Hopf algebra and $L \in H Z_{\varepsilon}^{1}(\mathcal{A})$ a one-cocycle, ϕ is Hopf.
Feynman rules ϕ of QFT map sub graphs to sub integrals, hence

$$
\begin{equation*}
\phi_{s}\left(B_{+}(w)\right)=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{s} f\left(\frac{\zeta}{s}\right) \phi_{\zeta}(w) \quad \text { for any } \quad w \in H_{R} \tag{1.2}
\end{equation*}
$$

- s is a physical parameter (mass or momentum)
- f is dictated by the graph into which B_{+}inserts
- these integrals typically diverge and are understood formally (as a pair of differential form \& domain of integration)

A model of a single scale

Renormalization by kinematic subtraction
Example $\left(f(\zeta)=\frac{1}{1+\zeta}\right)$

A model of a single scale

Renormalization by kinematic subtraction

Example $\left(f(\zeta)=\frac{1}{1+\zeta}\right)$

$$
\phi(1)=1,
$$

A model of a single scale

Renormalization by kinematic subtraction

Example $\left(f(\zeta)=\frac{1}{1+\zeta}\right)$

$$
\phi(1)=1, \quad \phi_{s}(\cdot)=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{\zeta+s},
$$

A model of a single scale

Renormalization by kinematic subtraction

Example $\left(f(\zeta)=\frac{1}{1+\zeta}\right)$

$$
\phi(1)=1, \quad \phi_{s}(\cdot)=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{\zeta+s}, \quad \phi_{s}(\emptyset)=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{\zeta+s} \int_{0}^{\infty} \frac{\mathrm{d} \xi}{\xi+\zeta} .
$$

A model of a single scale

Renormalization by kinematic subtraction
Example $\left(f(\zeta)=\frac{1}{1+\zeta}\right)$

$$
\phi(1)=1, \quad \phi_{s}(\cdot)=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{\zeta+s}, \quad \phi_{s}(\emptyset)=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{\zeta+s} \int_{0}^{\infty} \frac{\mathrm{d} \xi}{\xi+\zeta} .
$$

Such logarithmic divergences are independent of the parameter s and thus renormalizable by a subtraction:

Definition

For a renormalization point μ, let $R_{\mu}:=\mathrm{ev}_{\mu}$ denote the evaluation at $s \mapsto \mu$. The BPHZ- or MOM-renormalized character is

$$
\begin{equation*}
\phi_{\mathrm{R}}:=\left(R_{\mu} \circ \phi\right)^{\star-1} \star \phi=\phi_{\mu}^{\star-1} \star \phi_{s} . \tag{1.3}
\end{equation*}
$$

$R_{\mu} \circ \phi^{\star-1}$ are called the counterterms.

A model of a single scale

Finiteness

Example $\left(f(\zeta)=\frac{1}{1+\zeta}\right.$ as before)

$\phi_{\mathrm{R}}(1)=1$,

$$
\phi_{\mathrm{R}}:=\left(R_{\mu} \circ \phi\right)^{\star-1} \star \phi=\phi_{\mu}^{\star-1} \star \phi_{s} .
$$

A model of a single scale

Finiteness

Example $\left(f(\zeta)=\frac{1}{1+\zeta}\right.$ as before $)$

$\phi_{\mathrm{R}}(1)=1, \quad \phi_{\mathrm{R}}(\cdot)=\left(\mathrm{id}-R_{\mu}\right) \phi(\cdot)=\int_{0}^{\infty} \mathrm{d} \zeta\left[\frac{1}{\zeta+s}-\frac{1}{\zeta+\mu}\right]=-\ln \frac{s}{\mu}$.

$$
\phi_{\mathrm{R}}:=\left(R_{\mu} \circ \phi\right)^{\star-1} \star \phi=\phi_{\mu}^{\star-1} \star \phi_{s} .
$$

A model of a single scale

Finiteness

Example $\left(f(\zeta)=\frac{1}{1+\zeta}\right.$ as before $)$
$\phi_{\mathrm{R}}(1)=1, \quad \phi_{\mathrm{R}}(\cdot)=\left(\mathrm{id}-R_{\mu}\right) \phi(\cdot)=\int_{0}^{\infty} \mathrm{d} \zeta\left[\frac{1}{\zeta+s}-\frac{1}{\zeta+\mu}\right]=-\ln \frac{s}{\mu}$.

Corollary $\left(B_{+} \in \mathrm{HZ}_{\varepsilon}^{1}\right.$ is a cocycle: $\left.\Delta B_{+}=\left(\mathrm{id} \otimes B_{+}\right) \Delta+B_{+} \otimes \mathbb{1}\right)$
The renormalized character ϕ_{R} arises from the universal property of H_{R} :

$$
\begin{equation*}
\phi_{R, S}\left(B_{+}(w)\right)=\int_{0}^{\infty} \mathrm{d} \zeta\left[\frac{f\left(\frac{\zeta}{s}\right)}{s}-\frac{f\left(\frac{\zeta}{\mu}\right)}{\mu}\right] \phi_{R, \zeta}(w) \quad \text { for any } w \in H_{R} . \tag{1.4}
\end{equation*}
$$

A model of a single scale

Finiteness

Corollary $\left(B_{+} \in \mathrm{HZ}_{\varepsilon}^{1}\right.$ is a cocycle: $\left.\Delta B_{+}=\left(\mathrm{id} \otimes B_{+}\right) \Delta+B_{+} \otimes \mathbb{1}\right)$
The renormalized character ϕ_{R} arises from the universal property of H_{R} :

$$
\begin{equation*}
\phi_{R, s}\left(B_{+}(w)\right)=\int_{0}^{\infty} \mathrm{d} \zeta\left[\frac{f\left(\frac{\zeta}{s}\right)}{s}-\frac{f\left(\frac{\zeta}{\mu}\right)}{\mu}\right] \phi_{R, \zeta}(w) \quad \text { for any } w \in H_{R} \tag{1.4}
\end{equation*}
$$

Proof.

Use $S \circ B_{+}=-S \star B_{+}$and write $L=\int_{0}^{\infty} \frac{d \zeta}{s} f\left(\frac{\zeta}{s}\right) \ldots$ to deduce

$$
\begin{align*}
\phi_{\mathrm{R}} \circ B_{+} & =\left(R_{\mu} \phi^{\star-1} \star \phi\right) \circ B_{+}=R_{\mu} \phi^{\star-1} \star \phi B_{+}+R_{\mu} \phi^{\star-1} B_{+} \\
& =R_{\mu} \phi^{\star-1} \star\left[\left(\mathrm{id}-R_{\mu}\right) \circ \phi \circ B_{+}\right]=\left(\mathrm{id}-R_{\mu}\right) \circ L \circ \phi_{\mathrm{R}} .
\end{align*}
$$

A model of a single scale

Finiteness
This is an algebraic Birkhoff decomposition along the splitting $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$induced by the character R_{μ} :

A model of a single scale

Finiteness
This is an algebraic Birkhoff decomposition along the splitting $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$induced by the character R_{μ} :

- $\mathcal{A}_{-}=\operatorname{im} R_{\mu}$ are (infinite) constants independent of s,

A model of a single scale

Finiteness
This is an algebraic Birkhoff decomposition along the splitting $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$induced by the character R_{μ} :

- $\mathcal{A}_{-}=\mathrm{im} R_{\mu}$ are (infinite) constants independent of s,
- $\mathcal{A}_{+}=\mathrm{im}\left(\mathrm{id}-R_{\mu}\right)$ are functions that vanish at $s=\mu$.

A model of a single scale

Finiteness

This is an algebraic Birkhoff decomposition along the splitting $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$induced by the character R_{μ} :

- $\mathcal{A}_{-}=\operatorname{im} R_{\mu}$ are (infinite) constants independent of s,
- $\mathcal{A}_{+}=\mathrm{im}\left(\mathrm{id}-R_{\mu}\right)$ are functions that vanish at $s=\mu$.

Lemma (finiteness for logarithmic divergences)

If the kernel $f(\zeta)$ is continuous on $[0, \infty)$ with asymptotic growth

$$
f(\zeta)-\frac{c_{-1}}{\zeta} \sim \zeta^{-1-\varepsilon} \quad \text { at } \zeta \rightarrow \infty
$$

for some $\varepsilon>0$ and $c_{-1} \in \mathbb{K}$, then ϕ_{R} is finite.

A model of a single scale

Finiteness

This is an algebraic Birkhoff decomposition along the splitting $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$induced by the character R_{μ} :

- $\mathcal{A}_{-}=\operatorname{im} R_{\mu}$ are (infinite) constants independent of s,
- $\mathcal{A}_{+}=\operatorname{im}\left(\mathrm{id}-R_{\mu}\right)$ are functions that vanish at $s=\mu$.

Lemma (finiteness for logarithmic divergences)

If the kernel $f(\zeta)$ is continuous on $[0, \infty)$ with asymptotic growth

$$
f(\zeta)-\frac{c_{-1}}{\zeta} \sim \zeta^{-1-\varepsilon} \quad \text { at } \zeta \rightarrow \infty
$$

for some $\varepsilon>0$ and $c_{-1} \in \mathbb{K}$, then ϕ_{R} is finite. Moreover it is polynomial:

$$
\begin{equation*}
\phi_{R, s}=\operatorname{ev}_{\ell} \circ \phi_{R}, \quad \phi_{R}: H_{R} \rightarrow \mathbb{K}[x] \quad \text { where } \quad \ell:=\ln \frac{s}{\mu} \tag{1.5}
\end{equation*}
$$

A model of a single scale

An algebraic recursion

Inserting the polynomial $\phi_{\mathrm{R}, \zeta}(w) \in \mathbb{K}\left[\ln \frac{\zeta}{\mu}\right]$ into

$$
\phi_{\mathrm{R}, \mathrm{~s}}\left(B_{+}(w)\right)=\int_{0}^{\infty} \mathrm{d} \zeta\left[\frac{f\left(\frac{\zeta}{s}\right)}{s}-\frac{f\left(\frac{\zeta}{\mu}\right)}{\mu}\right] \phi_{\mathrm{R}, \zeta}(w)
$$

actually supplies the algebraic recursion

$$
\begin{equation*}
\phi_{\mathrm{R}} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}}, \tag{1.6}
\end{equation*}
$$

where $P:=\mathrm{id}-\mathrm{ev}_{0}$ annihilates the constant terms and the analytic input of the kernel f is captured by the operator

$$
\begin{align*}
F\left(-\partial_{x}\right) & :=-c_{-1} \int_{0}+\sum_{n \geq 0} c_{n}\left(-\partial_{x}\right)^{n} \in \operatorname{End}(\mathbb{K}[x]) \quad \text { and } \tag{1.7}\\
c_{n-1} & :=\int_{0}^{\infty} \mathrm{d} \zeta\left[f(\zeta)+\zeta f^{\prime}(\zeta)\right] \frac{(-\ln \zeta)^{n}}{n!} \tag{1.8}
\end{align*}
$$

A model of a single scale

An algebraic recursion: Examples

Example

$\phi_{\mathrm{R}}(\mathbb{1})=1$

A model of a single scale

An algebraic recursion: Examples

Example

$$
\begin{aligned}
\phi_{\mathrm{R}}(\mathbb{1}) & =1 \\
\phi_{\mathrm{R}}(\cdot) & =P \circ\left[-c_{-1} \int_{0}+c_{0}-\ldots\right](1)=P\left(-c_{-1} x+c_{0}\right)=-c_{-1} x
\end{aligned}
$$

A model of a single scale

An algebraic recursion: Examples

Example

$$
\begin{aligned}
\phi_{\mathrm{R}}(\mathbb{1}) & =1 \\
\phi_{\mathrm{R}}(\cdot) & =P \circ\left[-c_{-1} \int_{0}+c_{0}-\ldots\right](1)=P\left(-c_{-1} x+c_{0}\right)=-c_{-1} x \\
\phi_{\mathrm{R}}(\mathfrak{\emptyset}) & =P \circ\left[-c_{-1} \int_{0}+c_{0}-c_{1} \partial_{x}+\ldots\right]\left(-c_{-1} x\right) \\
& =P\left(\frac{x^{2}}{2} c_{-1}^{2}-c_{-1} c_{0} x+c_{1} c_{-1}\right)=\frac{x^{2}}{2} c_{-1}^{2}-x c_{-1} c_{0}
\end{aligned}
$$

A model of a single scale

An algebraic recursion: Examples

Example

$$
\begin{aligned}
\phi_{\mathrm{R}}(\mathbb{1}) & =1 \\
\phi_{\mathrm{R}}(\cdot) & =P \circ\left[-c_{-1} \int_{0}+c_{0}-\ldots\right](1)=P\left(-c_{-1} x+c_{0}\right)=-c_{-1} x \\
\phi_{\mathrm{R}}(\emptyset) & =P \circ\left[-c_{-1} \int_{0}+c_{0}-c_{1} \partial_{x}+\ldots\right]\left(-c_{-1} x\right) \\
& =P\left(\frac{x^{2}}{2} c_{-1}^{2}-c_{-1} c_{0} x+c_{1} c_{-1}\right)=\frac{x^{2}}{2} c_{-1}^{2}-x c_{-1} c_{0} \\
\phi_{\mathrm{R}}(\AA) & =P \circ\left[-c_{-1} \int_{0}+\ldots\right]\left(x^{2} c_{-1}^{2}\right)=-\frac{x^{3}}{3} c_{-1}^{3}+x^{2} c_{-1}^{2} c_{0}-2 x c_{-1}^{2} c_{1}
\end{aligned}
$$

A model of a single scale

An algebraic recursion: Examples

Example

$$
\begin{aligned}
\phi_{\mathrm{R}}(\mathbb{1}) & =1 \\
\phi_{\mathrm{R}}(\cdot) & =P \circ\left[-c_{-1} \int_{0}+c_{0}-\ldots\right](1)=P\left(-c_{-1} x+c_{0}\right)=-c_{-1} x \\
\phi_{\mathrm{R}}(\emptyset) & =P \circ\left[-c_{-1} \int_{0}+c_{0}-c_{1} \partial_{x}+\ldots\right]\left(-c_{-1} x\right) \\
& =P\left(\frac{x^{2}}{2} c_{-1}^{2}-c_{-1} c_{0} x+c_{1} c_{-1}\right)=\frac{x^{2}}{2} c_{-1}^{2}-x c_{-1} c_{0} \\
\phi_{\mathrm{R}}(\AA) & =P \circ\left[-c_{-1} \int_{0}+\ldots\right]\left(x^{2} c_{-1}^{2}\right)=-\frac{x^{3}}{3} c_{-1}^{3}+x^{2} c_{-1}^{2} c_{0}-2 x c_{-1}^{2} c_{1}
\end{aligned}
$$

Remark

The Laurent series $F(z) \in z^{-1} \mathbb{K}[[z]]$ is the Mellin transform

$$
\begin{equation*}
F(z)=\int_{0}^{\infty} \mathrm{d} \zeta f(\zeta) \cdot \zeta^{-z}=\sum_{n \geq-1} c_{n} z^{n} \tag{1.9}
\end{equation*}
$$

The Hopf algebra of polynomials

For a field \mathbb{K}, the polynomials $\mathbb{K}[x]$ form a commutative connected graded Hopf algebra with the coproduct $\Delta x=\mathbb{1} \otimes x+x \otimes \mathbb{1}$. Note that:

The Hopf algebra of polynomials

For a field \mathbb{K}, the polynomials $\mathbb{K}[x]$ form a commutative connected graded Hopf algebra with the coproduct $\Delta x=\mathbb{1} \otimes x+x \otimes \mathbb{1}$. Note that:

- $\operatorname{Prim}(\mathbb{K}[x])=\mathbb{K} \cdot x$

The Hopf algebra of polynomials

For a field \mathbb{K}, the polynomials $\mathbb{K}[x]$ form a commutative connected graded Hopf algebra with the coproduct $\Delta x=\mathbb{1} \otimes x+x \otimes \mathbb{1}$. Note that:

- $\operatorname{Prim}(\mathbb{K}[x])=\mathbb{K} \cdot x$
- $\mathcal{G}_{\mathbb{K}}^{\mathbb{K}[x]}=\left\{\mathrm{ev}_{a}: \quad a \in \mathbb{K}\right\}$ are evaluations $\mathrm{ev}_{a}:=[p \mapsto p(a)]$ with

$$
\begin{equation*}
\mathrm{ev}_{a} \star \mathrm{ev}_{b}=\mathrm{ev}_{a+b} \quad \text { (group law) } \tag{1.10}
\end{equation*}
$$

The Hopf algebra of polynomials

For a field \mathbb{K}, the polynomials $\mathbb{K}[x]$ form a commutative connected graded Hopf algebra with the coproduct $\Delta x=\mathbb{1} \otimes x+x \otimes \mathbb{1}$. Note that:

- $\operatorname{Prim}(\mathbb{K}[x])=\mathbb{K} \cdot x$
- $\mathcal{G}_{\mathbb{K}}^{\mathbb{K}[x]}=\left\{\mathrm{ev}_{a}: \quad a \in \mathbb{K}\right\}$ are evaluations $\mathrm{ev}_{a}:=[p \mapsto p(a)]$ with

$$
\begin{equation*}
\mathrm{ev}_{a} \star \mathrm{ev}_{b}=\mathrm{ev}_{a+b} \quad \text { (group law) } \tag{1.10}
\end{equation*}
$$

- $\mathfrak{g}_{\mathbb{K}}^{\mathbb{K}[x]}:=\log _{\star}\left(\mathcal{G}_{\mathbb{K}}^{\mathbb{K}[x]}\right)=\mathbb{K} \cdot \partial_{0}$ for $\partial_{0}:=\left.\frac{\partial}{\partial x}\right|_{x=0}=\left(\sum_{n} p_{n} x^{n} \mapsto p_{1}\right)$

The Hopf algebra of polynomials

For a field \mathbb{K}, the polynomials $\mathbb{K}[x]$ form a commutative connected graded Hopf algebra with the coproduct $\Delta x=\mathbb{1} \otimes x+x \otimes \mathbb{1}$. Note that:

- $\operatorname{Prim}(\mathbb{K}[x])=\mathbb{K} \cdot x$
- $\mathcal{G}_{\mathbb{K}}^{\mathbb{K}[x]}=\left\{\mathrm{ev}_{a}: \quad a \in \mathbb{K}\right\}$ are evaluations $\mathrm{ev}_{a}:=[p \mapsto p(a)]$ with

$$
\begin{equation*}
\mathrm{ev}_{a} \star \mathrm{ev}_{b}=\mathrm{ev}_{a+b} \quad \text { (group law) } \tag{1.10}
\end{equation*}
$$

- $\mathfrak{g}_{\mathbb{K}}^{\mathbb{K}[x]}:=\log _{\star}\left(\mathcal{G}_{\mathbb{K}}^{\mathbb{K}[x]}\right)=\mathbb{K} \cdot \partial_{0}$ for $\partial_{0}:=\left.\frac{\partial}{\partial x}\right|_{x=0}=\left(\sum_{n} p_{n} x^{n} \mapsto p_{1}\right)$
- $\exp _{\star}\left(a \partial_{0}\right)=e v_{a}$

The Hopf algebra of polynomials

For a field \mathbb{K}, the polynomials $\mathbb{K}[x]$ form a commutative connected graded Hopf algebra with the coproduct $\Delta x=\mathbb{1} \otimes x+x \otimes \mathbb{1}$. Note that:

- $\operatorname{Prim}(\mathbb{K}[x])=\mathbb{K} \cdot x$
- $\mathcal{G}_{\mathbb{K}}^{\mathbb{K}[x]}=\left\{\mathrm{ev}_{a}: \quad a \in \mathbb{K}\right\}$ are evaluations $\mathrm{ev}_{a}:=[p \mapsto p(a)]$ with

$$
\begin{equation*}
\mathrm{ev}_{a} \star \mathrm{ev}_{b}=\mathrm{ev}_{a+b} \quad \text { (group law) } \tag{1.10}
\end{equation*}
$$

- $\mathfrak{g}_{\mathbb{K}}^{\mathbb{K}[x]}:=\log _{\star}\left(\mathcal{G}_{\mathbb{K}}^{\mathbb{K}[x]}\right)=\mathbb{K} \cdot \partial_{0}$ for $\partial_{0}:=\left.\frac{\partial}{\partial x}\right|_{x=0}=\left(\sum_{n} p_{n} x^{n} \mapsto p_{1}\right)$
- $\exp _{\star}\left(a \partial_{0}\right)=e v_{a}$
- functionals $\alpha \in \mathbb{K}[x]^{\prime}$ induce coboundaries (let $P:=\mathrm{id}-\mathrm{ev}_{0}$)

$$
\begin{equation*}
\delta(\alpha)=P \circ \sum_{n \geq 0} \alpha\left(\frac{x^{n}}{n!}\right) \partial_{x}^{n} \in \mathrm{HZ}_{\varepsilon}^{1} \subset \operatorname{End}(\mathbb{K}[x]) \tag{1.11}
\end{equation*}
$$

The Hopf algebra of polynomials

For a field \mathbb{K}, the polynomials $\mathbb{K}[x]$ form a commutative connected graded Hopf algebra with the coproduct $\Delta x=\mathbb{1} \otimes x+x \otimes \mathbb{1}$. Note that:

- $\operatorname{Prim}(\mathbb{K}[x])=\mathbb{K} \cdot x$
- $\mathcal{G}_{\mathbb{K}}^{\mathbb{K}[x]}=\left\{\mathrm{ev}_{a}: \quad a \in \mathbb{K}\right\}$ are evaluations $\mathrm{ev}_{a}:=[p \mapsto p(a)]$ with

$$
\begin{equation*}
\mathrm{ev}_{a} \star \mathrm{ev}_{b}=\mathrm{ev}_{a+b} \quad \text { (group law) } \tag{1.10}
\end{equation*}
$$

- $\mathfrak{g}_{\mathbb{K}}^{\mathbb{K}[x]}:=\log _{\star}\left(\mathcal{G}_{\mathbb{K}}^{\mathbb{K}[x]}\right)=\mathbb{K} \cdot \partial_{0}$ for $\partial_{0}:=\left.\frac{\partial}{\partial x}\right|_{x=0}=\left(\sum_{n} p_{n} x^{n} \mapsto p_{1}\right)$
- $\exp _{\star}\left(a \partial_{0}\right)=e v_{a}$
- functionals $\alpha \in \mathbb{K}[x]^{\prime}$ induce coboundaries (let $P:=\mathrm{id}-\mathrm{ev}_{0}$)

$$
\begin{equation*}
\delta(\alpha)=P \circ \sum_{n \geq 0} \alpha\left(\frac{x^{n}}{n!}\right) \partial_{x}^{n} \in \mathrm{HZ}_{\varepsilon}^{1} \subset \operatorname{End}(\mathbb{K}[x]) \tag{1.11}
\end{equation*}
$$

- $\mathrm{HZ}_{\varepsilon}^{1}(\mathbb{K}[x])=\mathbb{K} \cdot \int_{0} \oplus \delta\left(\mathbb{K}[x]^{\prime}\right)$, i.e. the only non-trivial one-cocycle is

$$
\begin{equation*}
\int_{0}: \mathbb{K}[x] \rightarrow \mathbb{K}[x], p=\sum_{n \geq 0} p_{n} x^{n} \mapsto \int_{0}^{x} p(y) \mathrm{d} y=\sum_{n>0} \frac{p_{n-1}}{n} x^{n} \tag{1.12}
\end{equation*}
$$

The renormalization group

$$
\phi_{\mathrm{R}} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}},
$$

The renormalization group

$$
\phi_{\mathrm{R}} \circ B_{+}=\underbrace{P \circ F\left(-\partial_{x}\right)}_{\in \mathrm{HZ}_{\varepsilon}^{1}(\mathbb{K}[x])} \circ \phi_{\mathrm{R}},
$$

The renormalization group

Corollary (since $P \circ F\left(-\partial_{x}\right) \in \mathrm{HZ}_{\varepsilon}^{1}(\mathbb{K}[x])$ is a cocycle)

$\phi_{R}: H_{R} \rightarrow \mathbb{K}[x]$ is a morphism of Hopf algebras: $\Delta \circ \phi_{R}=\left(\phi_{R} \otimes \phi_{R}\right) \circ \Delta$.

The renormalization group

Corollary (since $P \circ F\left(-\partial_{x}\right) \in \mathrm{HZ}_{\varepsilon}^{1}(\mathbb{K}[x])$ is a cocycle)

$\phi_{R}: H_{R} \rightarrow \mathbb{K}[x]$ is a morphism of Hopf algebras: $\Delta \circ \phi_{R}=\left(\phi_{R} \otimes \phi_{R}\right) \circ \Delta$.
This means that
$\phi_{\mathrm{R}, a+b}=\mathrm{ev}_{a+b} \circ \phi_{\mathrm{R}}=\left(\mathrm{ev}_{a} \star \mathrm{ev}_{b}\right) \circ \phi_{\mathrm{R}}=\left(\mathrm{ev}_{a} \circ \phi_{\mathrm{R}}\right) \star\left(\mathrm{ev}_{b} \circ \phi_{\mathrm{R}}\right)=\phi_{\mathrm{R}, a} \star \phi_{\mathrm{R}, b}$.

The renormalization group

Corollary (since $P \circ F\left(-\partial_{x}\right) \in H Z_{\varepsilon}^{1}(\mathbb{K}[x])$ is a cocycle)

$\phi_{R}: H_{R} \rightarrow \mathbb{K}[x]$ is a morphism of Hopf algebras: $\Delta \circ \phi_{R}=\left(\phi_{R} \otimes \phi_{R}\right) \circ \Delta$.
This means that
$\phi_{\mathrm{R}, a+b}=\mathrm{ev}_{a+b} \circ \phi_{\mathrm{R}}=\left(\mathrm{ev}_{a} \star \mathrm{ev}_{b}\right) \circ \phi_{\mathrm{R}}=\left(\mathrm{ev}_{a} \circ \phi_{\mathrm{R}}\right) \star\left(\mathrm{ev}_{b} \circ \phi_{\mathrm{R}}\right)=\phi_{\mathrm{R}, a} \star \phi_{\mathrm{R}, b}$.

Corollary

$\phi_{R}=\exp _{\star}(-x \gamma)$ for the anomalous dimension $\gamma:=-\partial_{0} \circ \phi_{R} \in \mathfrak{g}_{\mathbb{K}}^{H_{R}} \subset H_{R}^{\prime}$.
In other words, $\log _{\star}\left(\phi_{\mathrm{R}}\right)=-x \gamma$ is linear in $x ; \phi_{\mathrm{R}}$ is completely determined by its linear coefficients γ.

The renormalization group

Corollary (since $P \circ F\left(-\partial_{x}\right) \in \mathrm{HZ}_{\varepsilon}^{1}(\mathbb{K}[x])$ is a cocycle)

$\phi_{R}: H_{R} \rightarrow \mathbb{K}[x]$ is a morphism of Hopf algebras: $\Delta \circ \phi_{R}=\left(\phi_{R} \otimes \phi_{R}\right) \circ \Delta$.
This means that
$\phi_{\mathrm{R}, a+b}=\mathrm{ev}_{a+b} \circ \phi_{\mathrm{R}}=\left(\mathrm{ev}_{a} \star \mathrm{ev}_{b}\right) \circ \phi_{\mathrm{R}}=\left(\mathrm{ev}_{a} \circ \phi_{\mathrm{R}}\right) \star\left(\mathrm{ev}_{b} \circ \phi_{\mathrm{R}}\right)=\phi_{\mathrm{R}, a} \star \phi_{\mathrm{R}, b}$.

Corollary

$\phi_{R}=\exp _{\star}(-x \gamma)$ for the anomalous dimension $\gamma:=-\partial_{0} \circ \phi_{R} \in \mathfrak{g}_{\mathbb{K}}^{H_{R}} \subset H_{R}^{\prime}$.
In other words, $\log _{\star}\left(\phi_{\mathrm{R}}\right)=-x \gamma$ is linear in $x ; \phi_{\mathrm{R}}$ is completely determined by its linear coefficients γ.

Example $\left(\widetilde{\Delta}(\Lambda)=2 \cdot \otimes i+\cdots \otimes \cdot\right.$ and $\left.\widetilde{\Delta}^{2}(\Lambda)=2 \cdot \otimes \bullet \otimes \bullet\right)$

$$
\phi_{\mathrm{R}}\left(\AA_{\Omega}\right)=\left[-\frac{x^{3}}{6} \gamma^{\star 3}+\frac{x^{2}}{2} \gamma^{\star 2}-\gamma x\right](\AA .)=-\frac{x^{3}}{3}[\gamma(\cdot)]^{3}+x^{2} \gamma(\cdot) \gamma(!)-x \gamma(\Omega)
$$

Recursions for γ

Using the Mellin transforms, we can calculate γ recursively by
Lemma
$\gamma \circ B_{+}=[z F(z)]_{\star \gamma}:=\sum_{n \geq 0} c_{n-1} \gamma^{\star n}$

Recursions for γ

Using the Mellin transforms, we can calculate γ recursively by

Lemma

$\gamma \circ B_{+}=[z F(z)]_{\star \gamma}:=\sum_{n \geq 0} c_{n-1} \gamma^{\star n}$

Proof.

Exploit $\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$ and apply $-\left.\partial_{x}\right|_{x=0}$ to both sides of

$$
\phi_{\mathrm{R}} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}} .
$$

Recursions for γ

Using the Mellin transforms, we can calculate γ recursively by
Lemma
$\gamma \circ B_{+}=[z F(z)]_{\star \gamma}:=\sum_{n \geq 0} c_{n-1} \gamma^{\star n}$

Proof.

Exploit $\phi_{R}=\exp _{\star}(-x \gamma)$ and apply $-\left.\partial_{x}\right|_{x=0}$ to both sides of

$$
\phi_{R} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}} .
$$

Example

$$
\gamma(\cdot)=\gamma \circ B_{+}(\mathbb{1})=c_{-1} \gamma^{\star 0}(\mathbb{1})=c_{-1}
$$

Recursions for γ

Using the Mellin transforms, we can calculate γ recursively by

Lemma

$\gamma \circ B_{+}=[z F(z)]_{\star \gamma}:=\sum_{n \geq 0} c_{n-1} \gamma^{\star n}$

Proof.

Exploit $\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$ and apply $-\left.\partial_{x}\right|_{x=0}$ to both sides of

$$
\phi_{\mathrm{R}} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}} .
$$

Example

$$
\begin{aligned}
& \gamma(\cdot)=\gamma \circ B_{+}(\mathbb{1})=c_{-1} \gamma^{\star 0}(\mathbb{1})=c_{-1} \\
& \gamma(\mathfrak{!})=\gamma \circ B_{+}(\cdot)=c_{-1} \gamma^{\star 0}(\cdot)+c_{0} \gamma(\cdot)=c_{-1} c_{0}
\end{aligned}
$$

Recursions for γ

Using the Mellin transforms, we can calculate γ recursively by

Lemma

$\gamma \circ B_{+}=[z F(z)]_{\star \gamma}:=\sum_{n \geq 0} c_{n-1} \gamma^{\star n}$

Proof.

Exploit $\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$ and apply $-\left.\partial_{x}\right|_{x=0}$ to both sides of

$$
\phi_{R} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}} .
$$

Example

$$
\begin{aligned}
\gamma(\bullet) & =\gamma \circ B_{+}(\mathbb{1})=c_{-1} \gamma^{\star 0}(\mathbb{1})=c_{-1} \\
\gamma(\mathfrak{\emptyset}) & =\gamma \circ B_{+}(\cdot)=c_{-1} \gamma^{\star 0}(\cdot)+c_{0} \gamma(\cdot)=c_{-1} c_{0} \\
\gamma(\boldsymbol{\AA}) & =\gamma \circ B_{+}(\cdot \bullet)=c_{0} \gamma(\cdot \bullet)+c_{1} \gamma \otimes \gamma(\mathbb{1} \otimes \bullet+2 \cdot \otimes \bullet+\cdots \otimes \mathbb{1}) \\
& =2 c_{1}[\gamma(\cdot)]^{2}=2 c_{-1}^{2} c_{1}
\end{aligned}
$$

Analytic regularization

Regulate divergences by a parameter $z \in \mathbb{C}$, resulting in Feynman rules ${ }_{z} \phi: H_{R} \rightarrow \mathcal{A}$ taking values in Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$:

$$
\begin{equation*}
{ }_{z} \phi_{s} \circ B_{+}:=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{s} f\left(\frac{\zeta}{s}\right) \zeta_{z}^{-z}{ }_{\zeta} . \tag{1.13}
\end{equation*}
$$

Analytic regularization

Regulate divergences by a parameter $z \in \mathbb{C}$, resulting in Feynman rules ${ }_{z} \phi: H_{R} \rightarrow \mathcal{A}$ taking values in Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$:

$$
\begin{equation*}
{ }_{z} \phi_{s} \circ B_{+}:=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{s} f\left(\frac{\zeta}{s}\right) \zeta^{-z}{ }_{z} \phi_{\zeta} \tag{1.13}
\end{equation*}
$$

Lemma

For any forest $w \in H_{R}$, the regularized Feynman character is

$$
\begin{equation*}
{ }_{z} \phi_{s}(w)=s^{-z|w|} \prod_{v \in V(w)} F\left(z\left|w_{v}\right|\right) . \tag{1.14}
\end{equation*}
$$

Analytic regularization

Regulate divergences by a parameter $z \in \mathbb{C}$, resulting in Feynman rules ${ }_{z} \phi: H_{R} \rightarrow \mathcal{A}$ taking values in Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$:

$$
\begin{equation*}
{ }_{z} \phi_{s} \circ B_{+}:=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{s} f\left(\frac{\zeta}{s}\right) \zeta_{z}^{-z} \phi_{\zeta} \tag{1.13}
\end{equation*}
$$

Lemma

For any forest $w \in H_{R}$, the regularized Feynman character is

$$
\begin{equation*}
{ }_{z} \phi_{s}(w)=s^{-z|w|} \prod_{v \in V(w)} F\left(z\left|w_{v}\right|\right) . \tag{1.14}
\end{equation*}
$$

Example

$$
{ }_{z} \phi_{s}(\cdot)=s^{-z} F(z)
$$

Analytic regularization

Regulate divergences by a parameter $z \in \mathbb{C}$, resulting in Feynman rules ${ }_{z} \phi: H_{R} \rightarrow \mathcal{A}$ taking values in Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$:

$$
\begin{equation*}
{ }_{z} \phi_{s} \circ B_{+}:=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{s} f\left(\frac{\zeta}{s}\right) \zeta^{-z}{ }_{z} \phi_{\zeta} \tag{1.13}
\end{equation*}
$$

Lemma

For any forest $w \in H_{R}$, the regularized Feynman character is

$$
\begin{equation*}
{ }_{z} \phi_{s}(w)=s^{-z|w|} \prod_{v \in V(w)} F\left(z\left|w_{v}\right|\right) \tag{1.14}
\end{equation*}
$$

Example

$$
{ }_{z} \phi_{s}(\cdot)=s^{-z} F(z) \quad{ }_{z} \phi_{s}(\emptyset)=s^{-2 z} F(z) F(2 z)
$$

Analytic regularization

Regulate divergences by a parameter $z \in \mathbb{C}$, resulting in Feynman rules ${ }_{z} \phi: H_{R} \rightarrow \mathcal{A}$ taking values in Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$:

$$
\begin{equation*}
{ }_{z} \phi_{s} \circ B_{+}:=\int_{0}^{\infty} \frac{\mathrm{d} \zeta}{s} f\left(\frac{\zeta}{s}\right) \zeta_{z}^{-z} \phi_{\zeta} \tag{1.13}
\end{equation*}
$$

Lemma

For any forest $w \in H_{R}$, the regularized Feynman character is

$$
\begin{equation*}
{ }_{z} \phi_{s}(w)=s^{-z|w|} \prod_{v \in V(w)} F\left(z\left|w_{v}\right|\right) \tag{1.14}
\end{equation*}
$$

Example

$$
{ }_{z} \phi_{s}(\cdot)=s^{-z} F(z) \quad{ }_{z} \phi_{s}(!)=s^{-2 z} F(z) F(2 z) \quad{ }_{z} \phi_{s}(\AA)=s^{-3 z}[F(z)]^{2} F(3 z)
$$

Analytic regularization

Renormalizing as before, the finiteness implies the existence of

$$
\begin{equation*}
\phi_{\mathrm{R}}=\lim _{z \rightarrow 0} \phi_{R}, \quad \text { equivalently } \quad \operatorname{im}\left({ }_{z} \phi_{R}\right) \subset \mathbb{K}[[z]] . \tag{1.15}
\end{equation*}
$$

Analytic regularization

Renormalizing as before, the finiteness implies the existence of

$$
\begin{equation*}
\phi_{\mathrm{R}}=\lim _{z \rightarrow 0} z \phi_{R}, \quad \text { equivalently } \quad \operatorname{im}\left({ }_{z} \phi_{R}\right) \subset \mathbb{K}[[z]] . \tag{1.15}
\end{equation*}
$$

Example (cancellation of poles)

Use antipodes $S(\mathfrak{!})=-!+\bullet \cdot S(\cdot)=-\bullet$ and $R_{\mu} \circ{ }_{z} \phi^{\star-1}=R_{\mu} \circ{ }_{z} \phi \circ S$ in

Analytic regularization

Renormalizing as before, the finiteness implies the existence of

$$
\begin{equation*}
\phi_{\mathrm{R}}=\lim _{z \rightarrow 0} z \phi_{R}, \quad \text { equivalently } \quad \operatorname{im}\left({ }_{z} \phi_{R}\right) \subset \mathbb{K}[[z]] . \tag{1.15}
\end{equation*}
$$

Example (cancellation of poles)

Use antipodes $S(!)=-!+\bullet \cdot S(\cdot)=-\bullet$ and $R_{\mu} \circ{ }_{z} \phi^{\star-1}=R_{\mu} \circ{ }_{z} \phi \circ S$ in

$$
\begin{aligned}
z \phi_{R, s}(\emptyset)= & s^{-2 z} F(z) F(2 z)-\mu^{-z} F(z) s^{-z} F(z) \\
& -\mu^{-2 z}[F(z) F(2 z)-F(z) F(z)]
\end{aligned}
$$

Analytic regularization

Renormalizing as before, the finiteness implies the existence of

$$
\begin{equation*}
\phi_{\mathrm{R}}=\lim _{z \rightarrow 0} z \phi_{R}, \quad \text { equivalently } \quad \operatorname{im}\left({ }_{z} \phi_{R}\right) \subset \mathbb{K}[[z]] . \tag{1.15}
\end{equation*}
$$

Example (cancellation of poles)

Use antipodes $S(!)=-!+\bullet \cdot S(\cdot)=-\bullet$ and $R_{\mu} \circ{ }_{z} \phi^{\star-1}=R_{\mu} \circ{ }_{z} \phi \circ S$ in

$$
\begin{aligned}
{ }_{z} \phi_{R, s}(\emptyset)= & s^{-2 z} F(z) F(2 z)-\mu^{-z} F(z) s^{-z} F(z) \\
& -\mu^{-2 z}[F(z) F(2 z)-F(z) F(z)] \\
= & \left(s^{-z}-\mu^{-z}\right) F(z)\left[\left(s^{-z}+\mu^{-z}\right) F(2 z)-\mu^{-z} F(z)\right]
\end{aligned}
$$

Analytic regularization

Renormalizing as before, the finiteness implies the existence of

$$
\begin{equation*}
\phi_{\mathrm{R}}=\lim _{z \rightarrow 0} z \phi_{R}, \quad \text { equivalently } \quad \operatorname{im}\left({ }_{z} \phi_{R}\right) \subset \mathbb{K}[[z]] . \tag{1.15}
\end{equation*}
$$

Example (cancellation of poles)

Use antipodes $S(!)=-!+\bullet \cdot S(\cdot)=-\bullet$ and $R_{\mu} \circ{ }_{z} \phi^{\star-1}=R_{\mu} \circ{ }_{z} \phi \circ S$ in

$$
\begin{aligned}
{ }_{z} \phi_{R, s}(\mathfrak{\emptyset})= & s^{-2 z} F(z) F(2 z)-\mu^{-z} F(z) s^{-z} F(z) \\
& -\mu^{-2 z}[F(z) F(2 z)-F(z) F(z)] \\
= & \left(s^{-z}-\mu^{-z}\right) F(z)\left[\left(s^{-z}+\mu^{-z}\right) F(2 z)-\mu^{-z} F(z)\right] \\
= & {\left[-c_{-1} \ln \frac{s}{\mu}+\mathcal{O}(z)\right] \cdot\left[c_{0}-\frac{c_{-1}}{2} \ln \frac{s}{\mu}+\mathcal{O}(z)\right] }
\end{aligned}
$$

Analytic regularization

Algebraic characterization of finiteness
The scale dependence ${ }_{z} \phi_{s}={ }_{z} \phi_{\mu} \circ \theta_{-z \ell}$ is dictated by the grading

$$
\theta_{t}:=\sum_{n \geq 0} \frac{(Y t)^{n}}{n!} \in \operatorname{Aut}\left(H_{R}\right), w \mapsto e^{t|w|} \cdot w \quad \text { where } \quad Y w=|w| \cdot w . \text { (1.16) }
$$

Analytic regularization

Algebraic characterization of finiteness
The scale dependence ${ }_{z} \phi_{s}={ }_{z} \phi_{\mu} \circ \theta_{-z \ell}$ is dictated by the grading

$$
\theta_{t}:=\sum_{n \geq 0} \frac{(Y t)^{n}}{n!} \in \operatorname{Aut}\left(H_{R}\right), w \mapsto e^{t|w|} \cdot w \quad \text { where } \quad Y w=|w| \cdot w . \text { (1.16) }
$$

Lemma

For any character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ of Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$ let ${ }_{z} \phi_{s}:={ }_{z} \phi \circ \theta_{-z \ell}$, the following conditions are equivalent:

Analytic regularization

Algebraic characterization of finiteness
The scale dependence ${ }_{z} \phi_{s}={ }_{z} \phi_{\mu} \circ \theta_{-z \ell}$ is dictated by the grading

$$
\theta_{t}:=\sum_{n \geq 0} \frac{(Y t)^{n}}{n!} \in \operatorname{Aut}\left(H_{R}\right), w \mapsto e^{t|w|} \cdot w \quad \text { where } \quad Y w=|w| \cdot w . \text { (1.16) }
$$

Lemma

For any character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ of Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$ let ${ }_{z} \phi_{s}:={ }_{z} \phi \circ \theta_{-z \ell}$, the following conditions are equivalent:
(1) Finiteness: $\operatorname{im}\left({ }_{z} \phi_{R}\right) \subset \mathbb{K}[[z]]\left(\right.$ so $\lim _{z \rightarrow 0}{ }_{z} \phi_{R}$ exists)

Analytic regularization

Algebraic characterization of finiteness
The scale dependence ${ }_{z} \phi_{s}={ }_{z} \phi_{\mu} \circ \theta_{-z \ell}$ is dictated by the grading

$$
\theta_{t}:=\sum_{n \geq 0} \frac{(Y t)^{n}}{n!} \in \operatorname{Aut}\left(H_{R}\right), w \mapsto e^{t|w|} \cdot w \quad \text { where } \quad Y w=|w| \cdot w . \text { (1.16) }
$$

Lemma

For any character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ of Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$ let ${ }_{z} \phi_{s}:={ }_{z} \phi \circ \theta_{-z \ell}$, the following conditions are equivalent:
(1) Finiteness: $\operatorname{im}\left({ }_{z} \phi_{R}\right) \subset \mathbb{K}[[z]]$ (so $\lim _{z \rightarrow 0}{ }_{z} \phi_{R}$ exists)
(2) $\operatorname{im}[z \phi \circ(S \star Y)] \subset \frac{1}{z} \mathbb{K}[[z]]$

Analytic regularization

Algebraic characterization of finiteness
The scale dependence ${ }_{z} \phi_{s}={ }_{z} \phi_{\mu} \circ \theta_{-z \ell}$ is dictated by the grading

$$
\theta_{t}:=\sum_{n \geq 0} \frac{(Y t)^{n}}{n!} \in \operatorname{Aut}\left(H_{R}\right), w \mapsto e^{t|w|} \cdot w \quad \text { where } \quad Y w=|w| \cdot w . \text { (1.16) }
$$

Lemma

For any character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ of Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$ let ${ }_{z} \phi_{s}:={ }_{z} \phi \circ \theta_{-z \ell}$, the following conditions are equivalent:
(1) Finiteness: $\operatorname{im}\left({ }_{z} \phi_{R}\right) \subset \mathbb{K}[[z]]$ (so $\lim _{z \rightarrow 0}{ }_{z} \phi_{R}$ exists)
(2) $\operatorname{im}[z \phi \circ(S \star Y)] \subset \frac{1}{z} \mathbb{K}[[z]]$

For 1. $\Rightarrow 2$. differentiate ${ }_{z} \phi_{R}={ }_{z} \phi \circ\left(S \star \theta_{-z \ell}\right)(\mu=1) ; \Leftarrow$ inductively:

Analytic regularization

Algebraic characterization of finiteness

The scale dependence ${ }_{z} \phi_{s}={ }_{z} \phi_{\mu} \circ \theta_{-z \ell}$ is dictated by the grading

$$
\theta_{t}:=\sum_{n \geq 0} \frac{(Y t)^{n}}{n!} \in \operatorname{Aut}\left(H_{R}\right), w \mapsto e^{t|w|} \cdot w \quad \text { where } \quad Y w=|w| \cdot w . \text { (1.16) }
$$

Lemma

For any character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ of Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$ let ${ }_{z} \phi_{s}:={ }_{z} \phi \circ \theta_{-z \ell}$, the following conditions are equivalent:
(1) Finiteness: $\operatorname{im}\left({ }_{z} \phi_{R}\right) \subset \mathbb{K}[[z]]$ (so $\lim _{z \rightarrow 0}{ }_{z} \phi_{R}$ exists)
(2) $\operatorname{im}[z \phi \circ(S \star Y)] \subset \frac{1}{z} \mathbb{K}[[z]]$

For 1. $\Rightarrow 2$. differentiate ${ }_{z} \phi_{R}={ }_{z} \phi \circ\left(S \star \theta_{-z \ell}\right)(\mu=1) ; \Leftarrow$ inductively:

$$
{ }_{z} \phi \circ\left(S \star Y^{n+1}\right)={ }_{z} \phi \circ\left(S \star Y^{n}\right) \circ Y+\left[{ }_{z} \phi \circ(S \star Y)\right] \star\left[{ }_{z} \phi \circ\left(S \star Y^{n}\right)\right]
$$

Analytic regularization

Algebraic characterization of finiteness

The scale dependence ${ }_{z} \phi_{s}={ }_{z} \phi_{\mu} \circ \theta_{-z \ell}$ is dictated by the grading

$$
\theta_{t}:=\sum_{n \geq 0} \frac{(Y t)^{n}}{n!} \in \operatorname{Aut}\left(H_{R}\right), w \mapsto e^{t|w|} \cdot w \quad \text { where } \quad Y w=|w| \cdot w . \text { (1.16) }
$$

Lemma

For any character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ of Laurent series $\left.\mathcal{A}=\mathbb{K}\left[z^{-1}, z\right]\right]$ let ${ }_{z} \phi_{s}:={ }_{z} \phi \circ \theta_{-z \ell}$, the following conditions are equivalent:
(1) Finiteness: $\operatorname{im}\left({ }_{z} \phi_{R}\right) \subset \mathbb{K}[[z]]\left(\right.$ so $\lim _{z \rightarrow 0}{ }_{z} \phi_{R}$ exists)
(2) $\operatorname{im}[z \phi \circ(S \star Y)] \subset \frac{1}{z} \mathbb{K}[[z]]$

The anomalous dimension can be derived from the regularized character by

$$
\begin{equation*}
\gamma=-\left.\partial_{\ell}\right|_{\ell=0} \phi_{\mathrm{R}}=\lim _{z \rightarrow 0}\left[z \cdot{ }_{z} \phi \circ(S \star Y)\right]=\operatorname{Res}_{z} \phi \circ(S \star Y) \tag{1.17}
\end{equation*}
$$

Minimal subtraction

Minimal subtraction

Definition

Minimal subtraction splits $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$into poles $\mathcal{A}_{-}=z^{-1} \mathbb{K}\left[z^{-1}\right]$ and holomorphic $\mathcal{A}_{+}=\mathbb{K}[[z]]$ along the projection

$$
\begin{equation*}
R_{\mathrm{MS}}: \mathcal{A} \rightarrow \mathcal{A}_{-}, \quad \sum a_{n} z^{n} \mapsto \sum_{n<0} a_{n} z^{n} \tag{1.18}
\end{equation*}
$$

Minimal subtraction

Definition

Minimal subtraction splits $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$into poles $\mathcal{A}_{-}=z^{-1} \mathbb{K}\left[z^{-1}\right]$ and holomorphic $\mathcal{A}_{+}=\mathbb{K}[[z]]$ along the projection

$$
\begin{equation*}
R_{\text {MS }}: \mathcal{A} \rightarrow \mathcal{A}_{-}, \quad \sum a_{n} z^{n} \mapsto \sum_{n<0} a_{n} z^{n} \tag{1.18}
\end{equation*}
$$

Since $R_{\text {MS }}$ is not a character (only Rota-Baxter), the Birkhoff decomposition of a (regularized) character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ entails

- Bogoliubov map (\bar{R}-operation): $\bar{\phi}=\phi+\left({ }_{z} \phi_{-} \otimes_{z} \phi\right) \circ \widetilde{\Delta}$

Minimal subtraction

Definition

Minimal subtraction splits $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$into poles $\mathcal{A}_{-}=z^{-1} \mathbb{K}\left[z^{-1}\right]$ and holomorphic $\mathcal{A}_{+}=\mathbb{K}[[z]]$ along the projection

$$
\begin{equation*}
R_{\mathrm{MS}}: \mathcal{A} \rightarrow \mathcal{A}_{-}, \quad \sum a_{n} z^{n} \mapsto \sum_{n<0} a_{n} z^{n} \tag{1.18}
\end{equation*}
$$

Since $R_{\text {MS }}$ is not a character (only Rota-Baxter), the Birkhoff decomposition of a (regularized) character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ entails

- Bogoliubov map (\bar{R}-operation): $\bar{\phi}=\phi+\left({ }_{z} \phi_{-} \otimes_{z} \phi\right) \circ \widetilde{\Delta}$
- counterterms: ${ }_{z} \phi_{-}=-R_{\text {MS }} \circ \bar{\phi}$

Minimal subtraction

Definition

Minimal subtraction splits $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$into poles $\mathcal{A}_{-}=z^{-1} \mathbb{K}\left[z^{-1}\right]$ and holomorphic $\mathcal{A}_{+}=\mathbb{K}[[z]]$ along the projection

$$
\begin{equation*}
R_{\mathrm{MS}}: \mathcal{A} \rightarrow \mathcal{A}_{-}, \quad \sum a_{n} z^{n} \mapsto \sum_{n<0} a_{n} z^{n} \tag{1.18}
\end{equation*}
$$

Since $R_{\text {MS }}$ is not a character (only Rota-Baxter), the Birkhoff decomposition of a (regularized) character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ entails

- Bogoliubov map (\bar{R}-operation): $\bar{\phi}=\phi+\left({ }_{z} \phi_{-} \otimes_{z} \phi\right) \circ \widetilde{\Delta}$
- counterterms: ${ }_{z} \phi_{-}=-R_{\text {MS }} \circ \bar{\phi}$
- renormalized character: ${ }_{z} \phi_{+}=\left(\mathrm{id}-R_{\text {MS }}\right) \circ \bar{\phi}={ }_{z} \phi_{-} \star_{z} \phi \in \mathcal{G}_{\mathcal{A}_{+}}^{H_{R}}$

Minimal subtraction

Definition

Minimal subtraction splits $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$into poles $\mathcal{A}_{-}=z^{-1} \mathbb{K}\left[z^{-1}\right]$ and holomorphic $\mathcal{A}_{+}=\mathbb{K}[[z]]$ along the projection

$$
\begin{equation*}
R_{\mathrm{MS}}: \mathcal{A} \rightarrow \mathcal{A}_{-}, \quad \sum a_{n} z^{n} \mapsto \sum_{n<0} a_{n} z^{n} \tag{1.18}
\end{equation*}
$$

Since $R_{\text {MS }}$ is not a character (only Rota-Baxter), the Birkhoff decomposition of a (regularized) character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ entails

- Bogoliubov map (\bar{R}-operation): $\bar{\phi}=\phi+\left({ }_{z} \phi_{-} \otimes_{z} \phi\right) \circ \widetilde{\Delta}$
- counterterms: ${ }_{z} \phi_{-}=-R_{\text {MS }} \circ \bar{\phi}$
- renormalized character: ${ }_{z} \phi_{+}=\left(\mathrm{id}-R_{\mathrm{MS}}\right) \circ \bar{\phi}={ }_{z} \phi_{-}{ }_{z} \phi \in \mathcal{G}_{\mathcal{A}_{+}}^{H_{R}}$ Finiteness is trivial, let $\phi_{+}:=\lim _{z \rightarrow 0}{ }^{\prime} \phi_{+}$denote the physical limit.

Minimal subtraction

Definition

Minimal subtraction splits $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$into poles $\mathcal{A}_{-}=z^{-1} \mathbb{K}\left[z^{-1}\right]$ and holomorphic $\mathcal{A}_{+}=\mathbb{K}[[z]]$ along the projection

$$
\begin{equation*}
R_{\mathrm{MS}}: \mathcal{A} \rightarrow \mathcal{A}_{-}, \quad \sum a_{n} z^{n} \mapsto \sum_{n<0} a_{n} z^{n} \tag{1.18}
\end{equation*}
$$

Since $R_{\text {MS }}$ is not a character (only Rota-Baxter), the Birkhoff decomposition of a (regularized) character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ entails

- Bogoliubov map (\bar{R}-operation): $\bar{\phi}=\phi+\left({ }_{z} \phi_{-} \otimes_{z} \phi\right) \circ \widetilde{\Delta}$
- counterterms: ${ }_{z} \phi_{-}=-R_{\text {MS }} \circ \bar{\phi}$
- renormalized character: ${ }_{z} \phi_{+}=\left(\mathrm{id}-R_{\mathrm{MS}}\right) \circ \bar{\phi}={ }_{z} \phi_{-}{ }_{z} \phi \in \mathcal{G}_{\mathcal{A}_{+}}^{H_{R}}$

Finiteness is trivial, let $\phi_{+}:=\lim _{z \rightarrow 0}{ }_{z} \phi_{+}$denote the physical limit.

$$
{ }_{z} \phi_{+}(\cdot)=\left(\mathrm{id}-R_{\mathrm{MS}}\right)_{z} \phi_{s}(\cdot)=\left(\mathrm{id}-R_{\mathrm{MS}}\right) s^{-z} F(z)=s^{-z} F(z)-\frac{c_{-1}}{z}
$$

Minimal subtraction

Definition

Minimal subtraction splits $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$into poles $\mathcal{A}_{-}=z^{-1} \mathbb{K}\left[z^{-1}\right]$ and holomorphic $\mathcal{A}_{+}=\mathbb{K}[[z]]$ along the projection

$$
\begin{equation*}
R_{\mathrm{MS}}: \mathcal{A} \rightarrow \mathcal{A}_{-}, \quad \sum a_{n} z^{n} \mapsto \sum_{n<0} a_{n} z^{n} \tag{1.18}
\end{equation*}
$$

Since $R_{\text {MS }}$ is not a character (only Rota-Baxter), the Birkhoff decomposition of a (regularized) character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ entails

- Bogoliubov map (\bar{R}-operation): $\bar{\phi}=\phi+\left({ }_{z} \phi_{-} \otimes_{z} \phi\right) \circ \widetilde{\Delta}$
- counterterms: ${ }_{z} \phi_{-}=-R_{\text {MS }} \circ \bar{\phi}$
- renormalized character: ${ }_{z} \phi_{+}=\left(\mathrm{id}-R_{\mathrm{MS}}\right) \circ \bar{\phi}={ }_{z} \phi_{-}{ }_{z} \phi \in \mathcal{G}_{\mathcal{A}_{+}}^{H_{R}}$

Finiteness is trivial, let $\phi_{+}:=\lim _{z \rightarrow 0}{ }_{z} \phi_{+}$denote the physical limit.

$$
\begin{aligned}
{ }_{z} \phi_{+}(\cdot) & =\left(\mathrm{id}-R_{\mathrm{MS}}\right)_{z} \phi_{s}(\cdot)=\left(\mathrm{id}-R_{\mathrm{MS}}\right) s^{-z} F(z)=s^{-z} F(z)-\frac{c_{-1}}{z} \\
\phi_{+}(\cdot) & =c_{0}-c_{-1} \ln s
\end{aligned}
$$

Minimal subtraction

Definition

Minimal subtraction splits $\mathcal{A}=\mathcal{A}_{-} \oplus \mathcal{A}_{+}$into poles $\mathcal{A}_{-}=z^{-1} \mathbb{K}\left[z^{-1}\right]$ and holomorphic $\mathcal{A}_{+}=\mathbb{K}[[z]]$ along the projection

$$
\begin{equation*}
R_{\mathrm{MS}}: \mathcal{A} \rightarrow \mathcal{A}_{-}, \quad \sum a_{n} z^{n} \mapsto \sum_{n<0} a_{n} z^{n} \tag{1.18}
\end{equation*}
$$

Since $R_{\text {MS }}$ is not a character (only Rota-Baxter), the Birkhoff decomposition of a (regularized) character ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ entails

- Bogoliubov map (\bar{R}-operation): $\bar{\phi}=\phi+\left({ }_{z} \phi_{-} \otimes_{z} \phi\right) \circ \widetilde{\Delta}$
- counterterms: ${ }_{z} \phi_{-}=-R_{\text {MS }} \circ \bar{\phi}$
- renormalized character: ${ }_{z} \phi_{+}=\left(\mathrm{id}-R_{\mathrm{MS}}\right) \circ \bar{\phi}={ }_{z} \phi_{-}{ }_{z} \phi \in \mathcal{G}_{\mathcal{A}_{+}}^{H_{R}}$

Finiteness is trivial, let $\phi_{+}:=\lim _{z \rightarrow 0}{ }_{z} \phi_{+}$denote the physical limit.

$$
\begin{aligned}
{ }_{z} \phi_{+}(\cdot) & =\left(\mathrm{id}-R_{\mathrm{MS}}\right)_{z} \phi_{s}(\cdot)=\left(\mathrm{id}-R_{\mathrm{MS}}\right) s^{-z} F(z)=s^{-z} F(z) \underbrace{-\frac{c_{-1}}{z}}_{z_{-}(\cdot)} \\
\phi_{+}(\cdot) & =c_{0}-c_{-1} \ln s
\end{aligned}
$$

Minimal subtraction

Dimensional regularization and locality
To obtain dimensionless regularized characters, choose a μ and replace s by $\frac{s}{\mu}=e^{\ell}$. Then $\phi_{+}(\cdot)=c_{0}-c_{-1} \ell$.

Minimal subtraction

Dimensional regularization and locality
To obtain dimensionless regularized characters, choose a μ and replace s by $\frac{s}{\mu}=e^{\ell}$. Then $\phi_{+}(\cdot)=c_{0}-c_{-1} \ell$.

Example

$$
{ }_{z} \phi_{+}(\mathfrak{\emptyset})=\left(\mathrm{id}-R_{\text {МS }}\right)\left[{ }_{z} \phi_{s / \mu}(\mathfrak{\emptyset})+{ }_{z} \phi_{-}(\cdot)_{z} \phi_{s / \mu}(\cdot)\right]
$$

Minimal subtraction

Dimensional regularization and locality

To obtain dimensionless regularized characters, choose a μ and replace s by $\frac{s}{\mu}=e^{\ell}$. Then $\phi_{+}(\cdot)=c_{0}-c_{-1} \ell$.

Example

$$
\begin{aligned}
{ }_{z} \phi_{+}(\mathfrak{(}) & =\left(\mathrm{id}-R_{\text {MS }}\right)\left[{ }_{z} \phi_{s / \mu}(\emptyset)+{ }_{z} \phi_{-}(\cdot)_{z} \phi_{s / \mu}(\cdot)\right] \\
& =\left(\mathrm{id}-R_{\text {MS }}\right)\left[e^{-2 z \ell} F(z) F(2 z)-\frac{c_{-1}}{z} e^{-z \ell} F(z)\right]
\end{aligned}
$$

Minimal subtraction

Dimensional regularization and locality

To obtain dimensionless regularized characters, choose a μ and replace s by $\frac{s}{\mu}=e^{\ell}$. Then $\phi_{+}(\cdot)=c_{0}-c_{-1} \ell$.

Example

$$
\begin{aligned}
{ }_{z} \phi_{+}(!) & =\left(\operatorname{id}-R_{\text {MS }}\right)\left[z \phi_{s / \mu}(!)+{ }_{z} \phi_{-}(\cdot)_{z} \phi_{s / \mu}(\cdot)\right] \\
& =\left(\mathrm{id}-R_{\text {MS }}\right)\left[e^{-2 z \ell} F(z) F(2 z)-\frac{c_{-1}}{z} e^{-z \ell} F(z)\right] \\
& =e^{-2 z \ell} F(z) F(2 z)-\frac{c_{-1}}{z} e^{-z \ell} F(z)+\frac{c_{-1}^{2}}{2 z^{2}}-\frac{c_{-1} c_{0}}{2 z}
\end{aligned}
$$

Minimal subtraction

Dimensional regularization and locality

To obtain dimensionless regularized characters, choose a μ and replace s by $\frac{s}{\mu}=e^{\ell}$. Then $\phi_{+}(\cdot)=c_{0}-c_{-1} \ell$.

Example

$$
\begin{aligned}
z \phi_{+}(!) & =\left(\mathrm{id}-R_{\text {MS }}\right)\left[{ }_{z} \phi_{\text {s/ }}(\emptyset)+{ }_{z} \phi_{-}(\cdot)_{z} \phi_{s / \mu}(\cdot)\right] \\
& =\left(\mathrm{id}-R_{\text {MS }}\right)\left[e^{-2 z \ell} F(z) F(2 z)-\frac{c_{-1}}{z} e^{-z \ell} F(z)\right] \\
& =e^{-2 z \ell} F(z) F(2 z)-\frac{c_{-1}}{z} e^{-z \ell} F(z)+\frac{c_{-1}^{2}}{2 z^{2}}-\frac{c_{-1} c_{0}}{2 z} \\
\phi_{+}(\emptyset) & =\frac{c_{-1}^{2}}{2} \ell^{2}-2 c_{-1} c_{0} \ell+c_{0}^{2}+\frac{3}{2} c_{-1} c_{1} .
\end{aligned}
$$

Minimal subtraction

Dimensional regularization and locality

To obtain dimensionless regularized characters, choose a μ and replace s by $\frac{s}{\mu}=e^{\ell}$. Then $\phi_{+}(\cdot)=c_{0}-c_{-1} \ell$.

Example

$$
\begin{aligned}
& { }_{z} \phi_{+}(\mathfrak{\emptyset})=\left(\mathrm{id}-R_{\mathrm{MS}}\right)\left[{ }_{z} \phi_{s / \mu}(\mathfrak{\emptyset})+{ }_{z} \phi_{-}(\cdot)_{z} \phi_{s / \mu}(\cdot)\right] \\
& =\left(\mathrm{id}-R_{\text {MS }}\right)\left[e^{-2 z \ell} F(z) F(2 z)-\frac{c_{-1}}{z} e^{-z \ell} F(z)\right] \\
& =e^{-2 z \ell} F(z) F(2 z)-\frac{c_{-1}}{z} e^{-z \ell} F(z)+\underbrace{\frac{c_{-1}^{2}}{2 z^{2}}-\frac{c_{-1} c_{0}}{2 z}} \\
& \phi_{+}(\emptyset)=\frac{c_{-1}^{2}}{2} \ell^{2}-2 c_{-1} c_{0} \ell+c_{0}^{2}+\frac{3}{2} c_{-1} c_{1} . \\
& { }_{z} \phi_{-}(!)
\end{aligned}
$$

Minimal subtraction

Dimensional regularization and locality

To obtain dimensionless regularized characters, choose a μ and replace s by $\frac{s}{\mu}=e^{\ell}$. Then $\phi_{+}(\cdot)=c_{0}-c_{-1} \ell$.

Example

$$
\begin{aligned}
{ }_{z} \phi_{+}(\emptyset) & =\left(\operatorname{id}-R_{\text {MS }}\right)\left[z \phi_{s / \mu}(!)+{ }_{z} \phi_{-}(\cdot)_{z} \phi_{s / \mu}(\cdot)\right] \\
& =\left(\operatorname{id}-R_{\text {MS }}\right)\left[e^{-2 z \ell} F(z) F(2 z)-\frac{c_{-1}}{z} e^{-z \ell} F(z)\right] \\
& =e^{-2 z \ell} F(z) F(2 z)-\frac{c_{-1}}{z} e^{-z \ell} F(z)+\underbrace{\frac{c_{-1}^{2}}{2 z^{2}}-\frac{c_{-1} c_{0}}{2 z}}_{z^{\prime} \phi_{-}(!)} \\
\phi_{+}(\emptyset) & =\frac{c_{-1}^{2}}{2} \ell^{2}-2 c_{-1} c_{0} \ell+c_{0}^{2}+\frac{3}{2} c_{-1} c_{1} .
\end{aligned}
$$

Observation: The counterterms ${ }_{z} \phi_{-}(\cdot)=-\frac{c_{-1}}{z}$ and ${ }_{z} \phi_{-}(\mathfrak{l})=\frac{c_{-1}^{2}}{2 z^{2}}-\frac{c_{-1} c_{0}}{2 z}$ are independent of ℓ.

Minimal subtraction

local characters and the β-function

Definition

A Feynman rule ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ is called local $: \Leftrightarrow$ its MS counterterm ${ }_{z} \phi_{-, s}=\left({ }_{z} \phi \circ \theta_{-z \ell}\right)_{-}$is independent of $\ell \in \mathbb{K}$.

Minimal subtraction

local characters and the β-function

Definition

A Feynman rule ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ is called local $: \Leftrightarrow$ its MS counterterm ${ }_{z} \phi_{-, s}=\left({ }_{z} \phi \circ \theta_{-z \ell}\right)_{-}$is independent of $\ell \in \mathbb{K}$.

Theorem

${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ is local \Leftrightarrow the inverse counterterms ${ }_{z} \phi_{-}^{\star-1}: H_{R} \rightarrow \mathbb{K}\left[\frac{1}{z}\right]$ are poles of only first order on $\operatorname{im}(S \star Y)$, equivalently

$$
\begin{equation*}
\beta:=\lim _{z \rightarrow 0}\left[z \cdot{ }_{z} \phi_{-}^{\star-1} \circ(S \star Y)\right]=-\operatorname{Res}\left({ }_{z} \phi_{-} \circ Y\right) \in \mathfrak{g}_{\mathbb{K}}^{H_{R}} \tag{1.19}
\end{equation*}
$$

exists.

Minimal subtraction

local characters and the β-function

Definition

A Feynman rule ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ is called local $: \Leftrightarrow$ its MS counterterm ${ }_{z} \phi_{-, s}=\left({ }_{z} \phi \circ \theta_{-z \ell}\right)_{-}$is independent of $\ell \in \mathbb{K}$.

Theorem

${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ is local \Leftrightarrow the inverse counterterms ${ }_{z} \phi_{-}^{\star-1}: H_{R} \rightarrow \mathbb{K}\left[\frac{1}{z}\right]$ are poles of only first order on $\operatorname{im}(S \star Y)$, equivalently

$$
\begin{equation*}
\beta:=\lim _{z \rightarrow 0}\left[z \cdot{ }_{z} \phi_{-}^{\star-1} \circ(S \star Y)\right]=-\operatorname{Res}\left({ }_{z} \phi_{-} \circ Y\right) \in \mathfrak{g}_{\mathbb{K}}^{H_{R}} \tag{1.19}
\end{equation*}
$$

exists. The physical limit of MS-renormalized local characters is

$$
\begin{equation*}
\phi_{+}=\exp _{\star}(-\ell \beta) \star\left(\varepsilon \circ \phi_{+}\right) \tag{1.20}
\end{equation*}
$$

Here $\varepsilon \circ \phi_{+}=\operatorname{ev}_{\ell=0} \circ \phi_{+} \in \mathcal{G}_{\mathbb{K}}^{H_{R}}$ denote the constant terms.

Minimal subtraction

The scattering formula

Lemma

The vector space im $(S \star Y)$ generates H_{R} as a free commutative algebra.

Minimal subtraction

The scattering formula

Lemma

The vector space im $(S \star Y)$ generates H_{R} as a free commutative algebra.

Corollary

Counterterms ${ }_{z} \phi_{-}$of local characters are completely determined by their first order poles ${ }_{z} \phi_{-}^{\star-1} \circ(S \star Y)=\frac{\beta}{z}$. Explicitly,

$$
\begin{equation*}
{ }_{z} \phi_{-}^{\star-1}=\varepsilon+\frac{\beta \circ Y^{-1}}{z}+\frac{\left[\left(\beta \circ Y^{-1}\right) \star \beta\right] \circ Y^{-1}}{z^{2}}+\mathcal{O}\left(z^{-3}\right) . \tag{1.21}
\end{equation*}
$$

Minimal subtraction

The scattering formula

Lemma

The vector space $\operatorname{im}(S \star Y)$ generates H_{R} as a free commutative algebra.

Corollary

Counterterms ${ }_{z} \phi_{-}$of local characters are completely determined by their first order poles ${ }_{z} \phi_{-}^{\star-1} \circ(S \star Y)=\frac{\beta}{z}$. Explicitly,

$$
\begin{equation*}
{ }_{z} \phi_{-}^{\star-1}=\varepsilon+\frac{\beta \circ Y^{-1}}{z}+\frac{\left[\left(\beta \circ Y^{-1}\right) \star \beta\right] \circ Y^{-1}}{z^{2}}+\mathcal{O}\left(z^{-3}\right) . \tag{1.21}
\end{equation*}
$$

From $\beta=-\operatorname{Res}\left({ }_{z} \phi_{-} \circ Y\right)$ and ${ }_{z} \phi_{-}(\cdot)=-\frac{c_{-1}}{z},{ }_{z} \phi_{-}(\emptyset)=\frac{c_{-1}^{2}}{2 z^{2}}-\frac{c_{-1} c_{0}}{2 z}$ we know $\beta(\cdot)=c_{-1}, \beta(!)=c_{-1} c_{0}$. Now we can check

$$
{ }_{z} \phi_{-}^{\star-1}(\mathfrak{\emptyset})=\frac{\beta\left(\frac{1}{2} \mathfrak{\bullet}\right)}{z}+\frac{[\beta(\cdot)]^{2}}{2 z^{2}}=\frac{c_{-1} c_{0}}{2 z}+\frac{c_{-1}^{2}}{2 z^{2}}={ }_{z} \phi_{-}(-!+\cdot \bullet) .
$$

Comparing the MOM and MS schemes

locality and finiteness
We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

Comparing the MOM and MS schemes

locality and finiteness
We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by	kinematics	regulator dependent

Comparing the MOM and MS schemes

locality and finiteness
We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{R}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by	kinematics	regulator dependent
projection	character $R_{\mu} \in \mathcal{G}_{\mathbb{K}}^{\mathcal{A}}$	Rota-Baxter $R_{\text {MS }} \in \operatorname{End}(\mathcal{A})$

Comparing the MOM and MS schemes

locality and finiteness

We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by projection	kinematics	regulator dependent
character $R_{\mu} \in \mathcal{G}_{\mathbb{K}}^{\mathcal{A}}$	Rota-Baxter $R_{\text {MS }} \in \operatorname{End}(\mathcal{A})$	
finiteness	conditional	${ }_{z} \phi_{+}=\left(\mathrm{id}-R_{\text {MS }}\right) \cdots$

Comparing the MOM and MS schemes

locality and finiteness

We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by	kinematics	regulator dependent
projection	character $R_{\mu} \in \mathcal{G}_{\mathbb{K}}^{\mathcal{A}}$	Rota-Baxter $R_{\text {MS }} \in \operatorname{End}(\mathcal{A})$
finiteness	conditional	built-in

Comparing the MOM and MS schemes

locality and finiteness

We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by projection	kinematics	regulator dependent
character $R_{\mu} \in \mathcal{G}_{\mathbb{K}}^{\mathcal{K}}$	Rota-Baxter $R_{\text {MS }} \in \operatorname{End}(\mathcal{A})$	
finiteness locality	conditional	
counterterm ${ }_{z} \phi_{\mu}^{\star-1}$	built-in	
	conditional	

Comparing the MOM and MS schemes

locality and finiteness

We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by projection	kinematics	regulator dependent
character $R_{\mu} \in \mathcal{G}_{\mathbb{K}}^{\mathcal{A}}$	Rota-Baxter $R_{\text {MS }} \in \operatorname{End}(\mathcal{A})$	
finiteness	conditional	built-in
locality	built-in	conditional

Comparing the MOM and MS schemes

locality and finiteness

We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by projection	kinematics character $R_{\mu} \in \mathcal{G}_{\mathbb{K}}^{\mathcal{A}}$	regulator dependent Rota-Baxter $R_{\text {MS }} \in \operatorname{End}(\mathcal{A})$
finiteness locality	conditional built-in	built-in conditional
RGE	$\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$	$\phi_{+}=\exp _{\star}(-x \beta) \star\left(\varepsilon \circ \phi_{+}\right)$

Comparing the MOM and MS schemes

locality and finiteness

We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by projection	kinematics	
character $R_{\mu} \in \mathcal{G}_{\mathbb{K}}^{\mathcal{A}}$	regulator dependent	
Rota-Baxter $R_{\text {MS }} \in \operatorname{End}(\mathcal{A})$		
finiteness	conditional	built-in
locality	built-in	conditional
RGE	$\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$	$\phi_{+}=\exp _{\star}(-x \beta) \star\left(\varepsilon \circ \phi_{+}\right)$
generator	$\gamma=\operatorname{Res}_{z} \phi \circ(S \star Y)$	$\beta=\operatorname{Res}_{z} \phi_{-}^{\star-1} \circ(S \star Y)$

Comparing the MOM and MS schemes

locality and finiteness

We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by projection	kinematics	
character $R_{\mu} \in \mathcal{G}_{\mathbb{K}}^{\mathcal{A}}$	regulator dependent	
Rota-Baxter $R_{\text {MS }} \in \operatorname{End}(\mathcal{A})$		
finiteness	conditional	built-in
locality	built-in	conditional
RGE	$\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$	$\phi_{+}=\exp _{\star}(-x \beta) \star\left(\varepsilon \circ \phi_{+}\right)$
generator	$\gamma=\operatorname{Res}_{z} \phi \circ(S \star Y)$	$\beta=\operatorname{Res}_{z} \phi_{-}^{\star-1} \circ(S \star Y)$

Lemma

(1) ϕ_{R} is finite $\Leftrightarrow_{z} \phi$ is local

Comparing the MOM and MS schemes

locality and finiteness

We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by projection	kinematics	
character $R_{\mu} \in \mathcal{G}_{\mathbb{K}}^{\mathcal{A}}$	regulator dependent	
Rota-Baxter $R_{\text {MS }} \in \operatorname{End}(\mathcal{A})$		
finiteness	conditional	built-in
locality	built-in	conditional
RGE	$\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$	$\phi_{+}=\exp _{\star}(-x \beta) \star\left(\varepsilon \circ \phi_{+}\right)$
generator	$\gamma=\operatorname{Res}_{z} \phi \circ(S \star Y)$	$\beta=\operatorname{Res}_{z} \phi_{-}^{\star-1} \circ(S \star Y)$

Lemma

(1) ϕ_{R} is finite $\Leftrightarrow_{z} \phi$ is local
(2) $\phi_{+}=\left(\varepsilon \circ \phi_{+}\right) \star \phi_{R^{\prime}}$, equivalently $\Delta \phi_{+}=\left(\phi_{+} \otimes \phi_{R}\right) \circ \Delta$

Comparing the MOM and MS schemes

locality and finiteness

We renormalized ${ }_{z} \phi \in \mathcal{G}_{\mathcal{A}}^{H_{R}}$ in the MOM- and MS-schemes to construct two renormalized characters $\phi_{\mathrm{R}}, \phi_{+}: H_{R} \rightarrow \mathbb{K}[x]$:

	MOM	MS
defined by projection	kinematics	
character $R_{\mu} \in \mathcal{G}_{\mathbb{K}}^{\mathcal{A}}$	regulator dependent	
Rota-Baxter $R_{\text {MS }} \in \operatorname{End}(\mathcal{A})$		
finiteness	conditional	built-in
locality	built-in	conditional
RGE	$\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$	$\phi_{+}=\exp _{\star}(-x \beta) \star\left(\varepsilon \circ \phi_{+}\right)$
generator	$\gamma=\operatorname{Res}_{z} \phi \circ(S \star Y)$	$\beta=\operatorname{Res}_{z} \phi_{-}^{\star-1} \circ(S \star Y)$

Lemma

(1) ϕ_{R} is finite $\Leftrightarrow_{z} \phi$ is local
(2) $\phi_{+}=\left(\varepsilon \circ \phi_{+}\right) \star \phi_{R^{\prime}}$, equivalently $\Delta \phi_{+}=\left(\phi_{+} \otimes \phi_{R}\right) \circ \Delta$
(3) $\beta \star\left(\varepsilon \circ \phi_{+}\right)=\left(\varepsilon \circ \phi_{+}\right) \star \gamma$

Dyson-Schwingerequations (DSEs)

Definition (simplified)

A perturbation series $X(\alpha)$ is the solution of a DSE

$$
\begin{equation*}
X(\alpha)=\mathbb{1}+\alpha B_{+}\left(X^{1+\sigma}(\alpha)\right)=: \sum_{n \geq 0} x_{n} \alpha^{n} \in H_{R}[[\alpha]] \tag{1.22}
\end{equation*}
$$

with coupling constant α. The correlation function is

$$
\begin{equation*}
G(\alpha):=\phi_{\mathbb{R}}(X(\alpha)) \in \mathbb{K}[x][[\alpha]] . \tag{1.23}
\end{equation*}
$$

Dyson-Schwingerequations (DSEs)

Definition (simplified)

A perturbation series $X(\alpha)$ is the solution of a DSE

$$
\begin{equation*}
X(\alpha)=\mathbb{1}+\alpha B_{+}\left(X^{1+\sigma}(\alpha)\right)=: \sum_{n \geq 0} x_{n} \alpha^{n} \in H_{R}[[\alpha]] \tag{1.22}
\end{equation*}
$$

with coupling constant α. The correlation function is

$$
\begin{equation*}
G(\alpha):=\phi_{\mathbb{R}}(X(\alpha)) \in \mathbb{K}[x][[\alpha]] . \tag{1.23}
\end{equation*}
$$

Theorem (Foissy)
$\Delta X(\alpha)=\sum_{n \geq 0} X^{1+n \sigma} \otimes x_{n} \alpha^{n}$ generates a sub Hopf algebra.

Dyson-Schwingerequations (DSEs)

Definition (simplified)

A perturbation series $X(\alpha)$ is the solution of a DSE

$$
\begin{equation*}
X(\alpha)=\mathbb{1}+\alpha B_{+}\left(X^{1+\sigma}(\alpha)\right)=: \sum_{n \geq 0} x_{n} \alpha^{n} \in H_{R}[[\alpha]] \tag{1.22}
\end{equation*}
$$

with coupling constant α. The correlation function is

$$
\begin{equation*}
G(\alpha):=\phi_{\mathbb{R}}(X(\alpha)) \in \mathbb{K}[x][[\alpha]] . \tag{1.23}
\end{equation*}
$$

Theorem (Foissy)
$\Delta X(\alpha)=\sum_{n \geq 0} X^{1+n \sigma} \otimes x_{n} \alpha^{n}$ generates a sub Hopf algebra.
Corollary (in the MOM scheme)
$G_{a+b}(\alpha)=\left(\phi_{R, a} \otimes \phi_{R, b}\right) \Delta X(\alpha)=G_{a}(\alpha) \cdot G_{b}\left(\alpha \cdot G_{a}^{\sigma}(\alpha)\right)$

Dyson-Schwinger equations (DSEs)

RGE for correlation functions
Changing the scale s or renormalization point μ is equivalent to an adjustment of the coupling α.

Dyson-Schwinger equations (DSEs)

RGE for correlation functions
Changing the scale s or renormalization point μ is equivalent to an adjustment of the coupling α. Infinitesimally, with $\widetilde{\gamma}:=\gamma(X(\alpha))$:

$$
\begin{equation*}
\left.G_{\ell}(\alpha) \cdot \widetilde{\gamma}\left[\alpha G_{\ell}^{\sigma}(\alpha)\right]\right)=-\partial_{\ell} G_{\ell}(\alpha)=\widetilde{\gamma}(\alpha) \cdot\left(1+\sigma \alpha \partial_{\alpha}\right) G_{\ell}(\alpha) . \tag{1.24}
\end{equation*}
$$

Dyson-Schwinger equations (DSEs)

RGE for correlation functions

Changing the scale s or renormalization point μ is equivalent to an adjustment of the coupling α. Infinitesimally, with $\widetilde{\gamma}:=\gamma(X(\alpha))$:

$$
\begin{equation*}
\left.G_{\ell}(\alpha) \cdot \widetilde{\gamma}\left[\alpha G_{\ell}^{\sigma}(\alpha)\right]\right)=-\partial_{\ell} G_{\ell}(\alpha)=\widetilde{\gamma}(\alpha) \cdot\left(1+\sigma \alpha \partial_{\alpha}\right) G_{\ell}(\alpha) . \tag{1.24}
\end{equation*}
$$

Example (Mellin transforms)

Consider renormalized characters of the form $\phi_{\mathrm{R}} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}}$:

Dyson-Schwinger equations (DSEs)

RGE for correlation functions

Changing the scale s or renormalization point μ is equivalent to an adjustment of the coupling α. Infinitesimally, with $\widetilde{\gamma}:=\gamma(X(\alpha))$:

$$
\begin{equation*}
\left.G_{\ell}(\alpha) \cdot \widetilde{\gamma}\left[\alpha G_{\ell}^{\sigma}(\alpha)\right]\right)=-\partial_{\ell} G_{\ell}(\alpha)=\widetilde{\gamma}(\alpha) \cdot\left(1+\sigma \alpha \partial_{\alpha}\right) G_{\ell}(\alpha) . \tag{1.24}
\end{equation*}
$$

Example (Mellin transforms)

Consider renormalized characters of the form $\phi_{\mathrm{R}} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}}$:

$$
-\partial_{\ell} G_{\ell}(\alpha)=-\partial_{\ell}\left[1+\alpha \phi_{\mathrm{R}} \circ B_{+}\left(X^{1+\sigma}(\alpha)\right)\right]
$$

Dyson-Schwinger equations (DSEs)

RGE for correlation functions

Changing the scale s or renormalization point μ is equivalent to an adjustment of the coupling α. Infinitesimally, with $\widetilde{\gamma}:=\gamma(X(\alpha))$:

$$
\begin{equation*}
\left.G_{\ell}(\alpha) \cdot \widetilde{\gamma}\left[\alpha G_{\ell}^{\sigma}(\alpha)\right]\right)=-\partial_{\ell} G_{\ell}(\alpha)=\widetilde{\gamma}(\alpha) \cdot\left(1+\sigma \alpha \partial_{\alpha}\right) G_{\ell}(\alpha) . \tag{1.24}
\end{equation*}
$$

Example (Mellin transforms)

Consider renormalized characters of the form $\phi_{\mathrm{R}} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}}$:

$$
-\partial_{\ell} G_{\ell}(\alpha)=-\partial_{\ell}\left[1+\alpha \phi_{R} \circ B_{+}\left(X^{1+\sigma}(\alpha)\right)\right]=[z F(z)]_{-\partial_{\ell}}\left(G_{\ell}^{1+n \sigma}(\alpha)\right)
$$

Dyson-Schwinger equations (DSEs)

RGE for correlation functions

Changing the scale s or renormalization point μ is equivalent to an adjustment of the coupling α. Infinitesimally, with $\widetilde{\gamma}:=\gamma(X(\alpha))$:

$$
\begin{equation*}
\left.G_{\ell}(\alpha) \cdot \widetilde{\gamma}\left[\alpha G_{\ell}^{\sigma}(\alpha)\right]\right)=-\partial_{\ell} G_{\ell}(\alpha)=\widetilde{\gamma}(\alpha) \cdot\left(1+\sigma \alpha \partial_{\alpha}\right) G_{\ell}(\alpha) . \tag{1.24}
\end{equation*}
$$

Example (Mellin transforms)

Consider renormalized characters of the form $\phi_{\mathrm{R}} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}}$:

$$
-\partial_{\ell} G_{\ell}(\alpha)=-\partial_{\ell}\left[1+\alpha \phi_{\mathrm{R}} \circ B_{+}\left(X^{1+\sigma}(\alpha)\right)\right]=[z F(z)]_{-\partial_{\ell}}\left(G_{\ell}^{1+n \sigma}(\alpha)\right)
$$

reduces with $-\partial_{\ell} G_{\ell}^{n \sigma}=\widetilde{\gamma}\left(1+n \sigma+\sigma \alpha \partial_{\alpha}\right)$ at $\ell=0$ to

Dyson-Schwinger equations (DSEs)

RGE for correlation functions

Changing the scale s or renormalization point μ is equivalent to an adjustment of the coupling α. Infinitesimally, with $\widetilde{\gamma}:=\gamma(X(\alpha))$:

$$
\begin{equation*}
\left.G_{\ell}(\alpha) \cdot \widetilde{\gamma}\left[\alpha G_{\ell}^{\sigma}(\alpha)\right]\right)=-\partial_{\ell} G_{\ell}(\alpha)=\widetilde{\gamma}(\alpha) \cdot\left(1+\sigma \alpha \partial_{\alpha}\right) G_{\ell}(\alpha) . \tag{1.24}
\end{equation*}
$$

Example (Mellin transforms)

Consider renormalized characters of the form $\phi_{\mathrm{R}} \circ B_{+}=P \circ F\left(-\partial_{x}\right) \circ \phi_{\mathrm{R}}$:

$$
-\partial_{\ell} G_{\ell}(\alpha)=-\partial_{\ell}\left[1+\alpha \phi_{R} \circ B_{+}\left(X^{1+\sigma}(\alpha)\right)\right]=[z F(z)]_{-\partial_{\ell}}\left(G_{\ell}^{1+n \sigma}(\alpha)\right)
$$

reduces with $-\partial_{\ell} G_{\ell}^{n \sigma}=\widetilde{\gamma}\left(1+n \sigma+\sigma \alpha \partial_{\alpha}\right)$ at $\ell=0$ to

$$
\widetilde{\gamma}(\alpha)=\sum_{n \geq 0} c_{n-1}\left[\widetilde{\gamma}\left(1+n \sigma+\sigma \alpha \partial_{\alpha}\right)\right]^{n}
$$

Dyson-Schwinger equations (DSEs)

RGE for correlation functions: physical examples

Example (fermion propagator of Yukawa theory, [1, 20])

Summation of all iterated self-insertions of the one-loop-correction amounts to $\sigma=-2$ and

$$
F(z)=\frac{1}{z(1-z)}=\sum_{n \geq-1} z^{n}, \quad \text { thus } \quad \widetilde{\gamma}(\alpha)-\widetilde{\gamma}(\alpha)\left(1-2 \alpha \partial_{\alpha}\right) \widetilde{\gamma}(\alpha)=\alpha
$$

which is solved in terms of the complementary error function.

Dyson-Schwinger equations (DSEs)

RGE for correlation functions: physical examples

Example (fermion propagator of Yukawa theory, [1, 20])

Summation of all iterated self-insertions of the one-loop-correction amounts to $\sigma=-2$ and

$$
F(z)=\frac{1}{z(1-z)}=\sum_{n \geq-1} z^{n}, \quad \text { thus } \quad \widetilde{\gamma}(\alpha)-\widetilde{\gamma}(\alpha)\left(1-2 \alpha \partial_{\alpha}\right) \widetilde{\gamma}(\alpha)=\alpha
$$

which is solved in terms of the complementary error function.

Example (photon propagator of quantum electrodynamics, [18, 14])
The setup is analogous, but $\sigma=-1$ yields different solutions in terms of the Lambert W-function.

Summary

- MOM-renormalized Feynman rules have rich algebraic structure

Summary

- MOM-renormalized Feynman rules have rich algebraic structure
- MS and $\beta=\operatorname{Res}_{z} \phi(S \star Y) \longleftrightarrow$ MOM and $\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$

Summary

- MOM-renormalized Feynman rules have rich algebraic structure
- MS and $\beta=\operatorname{Res}_{z} \phi(S \star Y) \longleftrightarrow$ MOM and $\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$
- Mellin transforms reduce all analysis to combinatorics of series

Summary

- MOM-renormalized Feynman rules have rich algebraic structure
- MS and $\beta=\operatorname{Res}_{z} \phi(S \star Y) \longleftrightarrow$ MOM and $\phi_{\mathrm{R}}=\exp _{\star}(-x \gamma)$
- Mellin transforms reduce all analysis to combinatorics of series
- a way to non-perturbative formulations

Bibliography I

嘈
David J. Broadhurst and Dirk Kreimer.
Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality.
Nucl. Phys., B600:403-422, 2001.
arXiv:hep-th/0012146.
Alain Connes and Dirk Kreimer.
Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem.
Commun.Math.Phys., 210:249-273, 2000.
arXiv:hep-th/9912092.

Bibliography II

Alain Connes and Dirk Kreimer.
Renormalization in Quantum Field Theory and the Riemann-Hilbert problem II: The β-Function, Diffeomorphisms and the Renormalization Group.
Commun.Math.Phys., 216:215-241, 2001.
arXiv:hep-th/0003188.
目 K. Ebrahimi-Fard, J. M. Gracia-Bondía, and F. Patras.
A Lie Theoretic Approach to Renormalization.
Communications in Mathematical Physics, 276:519-549, December 2007.
arXiv:arXiv:hep-th/0609035.

Bibliography III

直 K．Ebrahimi－Fard，L．Guo，and D．Kreimer．
Integrable renormalization I：The ladder case．
Journal of Mathematical Physics，45：3758－3769，October 2004.
arXiv：hep－th／0402095．
直 K．Ebrahimi－Fard，L．Guo，and D．Kreimer． Integrable Renormalization II：The General Case．
Annales Henri Poincaré，6：369－395，April 2005.
arXiv：hep－th／0403118．
圊 Kurusch Ebrahimi－Fard and Frédéric Patras．
Exponential renormalization．
Annales Henri Poincaré，11（5）：943－971，October 2010.
URL：http：／／dx．doi．org／10．1007／s00023－010－0050－7．

Bibliography IV

嗇 Kurusch Ebrahimi-Fard and Frédéric Patras.
Exponential renormalisation. II. Bogoliubov's R-operation and momentum subtraction schemes.
Journal of Mathematical Physics, 53(8):083505, August 2012.
arXiv:1104.3415.
Loïc Foissy.
Finite dimensional comodules over the Hopf algebra of rooted trees.
Journal of Algebra, 255(1):89-120, September 2002.
URL: http://www.sciencedirect.com/science/article/pii/ S0021869302001102.

㡽 Loïc Foissy.
Les algèbres de Hopf des arbres enracinés décorés, I.
Bulletin des Sciences Mathématiques, 126(3):193-239, 2002.
URL: http://www.sciencedirect.com/science/article/pii/
S0007449702011089.

Bibliography V

Loïc Foissy.
Les algèbres de Hopf des arbres enracinés décorés, II.
Bulletin des Sciences Mathématiques, 126(4):249-288, 2002.
URL: http://www.sciencedirect.com/science/article/pii/
S0007449702011132.
Loïc Foissy.
Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations.
Advances in Mathematics, 218(1):136-162, 2008.
URL: http://www.sciencedirect.com/science/article/pii/ S0001870807003301.
Roïc Foissy.
General Dyson-Schwinger equations and systems.
ArXiv e-prints, page 27, December 2011.
arXiv:1112.2606.

Bibliography VI

嗇 L. Klaczynski and D. Kreimer. Avoidance of a Landau Pole by Flat Contributions in QED. ArXiv e-prints, September 2013.
arXiv:1309.5061.
Dirk Kreimer and Erik Panzer.
Renormalization and Mellin transforms.
In Carsten Schneider and Johannes Blümlein, editors, Computer Algebra in Quantum Field Theory, volume XII of Texts \& Monographs in Symbolic Computation, pages 193-220. Springer Wien, September 2013.
arXiv:1207.6321.

Bibliography VII

Dirk Kreimer and Karen Yeats.
An étude in non-linear Dyson-Schwinger equations.
Nucl. Phys. Proc. Suppl., 160:116-121, 2006.
Proceedings of the 8th DESY Workshop on Elementary Particle
Theory.
arXiv:hep-th/0605096.
Frédéric Menous and Frédéric Patras.
Logarithmic derivatives and generalized Dynkin operators. Journal of Algebraic Combinatorics, pages 1-13, 2013.
URL: http://dx.doi.org/10.1007/s10801-013-0431-3.

Bibliography VIII

(1. G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats.

The QED β-function from global solutions to Dyson-Schwinger equations.
Annals of Physics, 324:205-219, January 2009.
arXiv:0805.0826.
E- G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats. The QCD β-function from global solutions to Dyson-Schwinger equations.
Annals of Physics, 325:300-324, February 2010.
arXiv:0906.1754.
围 Karen Amanda Yeats.
Rearranging Dyson-Schwinger Equations.
Memoirs of the American Mathematical Society, 211(995):1-82, May 2011.
arXiv:0810.2249.

[^0]: ${ }^{1}$ panzer@mathematik.hu-berlin.de

