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Abstract. In the last two decades, many computational problems aris-
ing in cryptography have been successfully reduced to various systems
of polynomial equations. In this paper, we revisit a class of polyno-
mial systems introduced by Faugère, Perret, Petit and Renault. Based
on new experimental results and heuristic evidence, we conjecture that
their degrees of regularity are only slightly larger than the original de-
grees of the equations, resulting in a very low complexity compared to
generic systems. We then revisit applications to the elliptic curve dis-
crete logarithm problem (ECDLP) for binary curves, to the factoriza-
tion problem in SL(2,F2n) and to other discrete logarithm problems.
As a main consequence, our heuristic analysis suggests that an index
calculus variant due to Diem requires a subexponential number of bit

operations O(2c n2/3 logn) over the binary field F2n , where c is a con-
stant smaller than 2. According to our estimations, generic discrete
logarithm methods are outperformed for any n > N where N ≈ 2000,
but elliptic curves of currently recommended key sizes (n ≈ 160) are not
immediately threatened. The analysis can be easily generalized to other
extension fields.

1 Introduction

While linear systems of equations can be efficiently solved with Gaussian
elimination, polynomial systems are much harder to solve in general. Af-
ter their introduction by Buchberger [14], Gröbner bases have become the
most popular way to solve polynomial systems of equations, in particular
since the development of fast algorithms like F4 [28] and F5 [29]. Polyno-
mial systems arising in cryptography tend to have a special structure that
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catholique de Louvain, Louvain-la-Neuve.

?? This work was partly supported by the Belgian State’s IAP program P6/26
BCRYPT.



simplifies their resolution. In the last twenty years, many cryptographic
challenges have been first reduced to polynomial systems of equations
and then solved with fast and sometimes dedicated Gröbner basis algo-
rithms [46,32,41,11,24,25,34,13,33].

Our contribution

In this paper, we revisit a particular class of polynomial systems intro-
duced by Faugère et al. [36,37], together with their cryptographic applica-
tions. These systems naturally arise by deploying a multivariate polyno-
mial equation over an extension field into a system of polynomial equa-
tions over the ground prime field (a technique commonly called Weil
descent). As pointed out in [36,37], the block structure (called multi-
homogeneous structure in [37]) of the resulting equations and the presence
of an abnormally high number of low degree equations suggest that they
can be solved more efficiently than generic systems.

Our first contribution is a new complexity analysis of these systems.
We first observe that polynomial systems arising from a Weil descent are
a natural generalization of a well-known family of polynomial systems ap-
pearing in the cryptanalysis of HFE [52,46,20,32,41,26,11,24,25]. Starting
from this observation, we extend various experimental and theoretical
results on HFE to the more general class of polynomial systems arising
from a Weil descent. Following [41], we identify a subsystem with a small
number of variables from which we derive an upper bound on the degree
of regularity. We also compute the first fall degrees [24,26] and we ex-
perimentally observe very small values for the degrees of regularity [32].
These results suggest that the degrees of regularity of these systems are
only sligthly larger than the degrees of their equations, essentially as small
as they could be.

Following [37], we subsequently study an elliptic curve discrete loga-
rithm algorithm of Diem [23] in the case of binary fields. Based on our
heuristic analysis of polynomial systems arising from a Weil descent, we
conjecture that the elliptic curve discrete logarithm problem can be solved
over the binary field F2n in subexponential time

O(2c n
2/3 logn),

where c is a constant smaller than 2. For n prime, this problem was
previously thought to have complexity O(2n/2).

Finally, we discuss further applications of polynomial systems arising
from a Weil descent, including the factorization problem in SL(2,F2n),



HFE and other discrete logarithm problems. The various applications of
polynomial systems arising from a Weil descent make our analysis par-
ticularly useful to cryptography. Although we focus on characteristic 2
in this paper, most of our results can be easily extended to other charac-
teristics.

Outline

The remaining of this paper is organized as follows. Section 2 contains
most of the notations and definitions used in the paper. Section 3 pro-
vides general background on algebraic cryptanalysis with Gröbner bases.
Section 4 contains our new analysis of polynomial systems arising from
a Weil descent. The application to Diem’s algorithm is detailed in Sec-
tion 5 and other applications are discussed in Section 6. Finally, Section 7
concludes the paper.

2 Definitions and notations

We mostly follow the notations introduced in [36]. For any “small” prime
p and any n ∈ Z, we write Fpn for the finite field with pn elements.
We see the field Fpn as an n-dimensional vector space over Fp and we
let {θ1, . . . , θn} be a basis for Fpn/Fp. With some abuse of notations, we
use bold letters for all elements, variables and polynomials over Fpn and
normal letters for all elements, variables and polynomials over Fp.

If x1, . . . , xN are variables defined over a field K, we write R :=
K[x1, . . . , xN ] for the ring of polynomials in these variables. Given a set
of polynomials f1, . . . , f` ∈ R, the ideal I(f1, . . . , f`) ⊂ R is the set of
polynomials

∑`
i=1 gifi, where, g1, . . . , g` ∈ R. We write Resxi(f1, f2) for

the resultant of f1, f2 ∈ R with respect to the variable xi. A monomial
of R is a power product

∏k
i=1 x

ei
i where ei ∈ N. A monomial ordering for

R is an ordering > such that m1 > m2 ⇒ m1m3 > m2m3 for any mono-
mials m1,m2,m3 and m > 1 for any monomial m. The leading monomial
LM(f) of a polynomial f ∈ R for a given ordering is equal to its largest
monomial according to the ordering. Its leading term is the corresponding
term. For any polynomial f ∈ R, we denote the set of monomials of f by
Mon(f).

We measure the memory and time complexities of algorithms by re-
spectively the number of bits and bit operations required. Actual exper-
imental results are given in megabytes and seconds. We write O for the
“big O” notation: given two functions f and g of n, we say that f = O(g)



if there exist N, c ∈ Z+ such that n > N ⇒ f(n) ≤ cg(n). Similarly, we
write o for the “small o” notation: given two functions f and g of n, we
say that f = o(g) if for any ε > 0, there exists N ∈ Z such that for any
n > N , we have |f(n)| ≤ ε|g(n)|. Finally, we write ω for the linear algebra
constant. Depending on the algorithm used for linear algebra, we have
2.376 ≤ ω ≤ 3.

3 Background on polynomial system resolution

Whereas linear systems can be solved with Gaussian elimination, poly-
nomial systems of equations are usually solved with Gröbner bases.

3.1 Gröbner basis algorithms

Let R be a polynomial ring and let > be a fixed monomial ordering for
this ring. A Gröbner basis [14,21] of an ideal I(f1, . . . f`) ⊂ R is a basis
{f ′1, . . . , f ′`′} of this ideal such that for any f ∈ I(f1, . . . f`), there exists
i ∈ {1, . . . , `′} such that LT(f ′i)|LT(f).

The first Gröbner basis algorithm was provided by Buchberger in his
PhD thesis [14]. Lazard [48] later observed that computing a Gröbner
basis is essentially equivalent to performing linear algebra on Macaulay
matrices at a certain degree.

Definition 1 (Macaulay Matrix [49,50]). Let R be a polynomial ring
over a field K and let Bd := {m1 > m2 > · · · } be the sorted set of
all monomials of degree ≤ d for a fixed monomial ordering. Let F :=
{f1, . . . , f`} ⊂ R be a set of polynomials of degrees ≤ d. For any fi ∈ F
and tj ∈ Bd such that deg(fi) + deg(tj) ≤ d, let gi,j := tjfi and let
cki,j ∈ K be such that gi,j =

∑
mk∈B c

k
i,jmk. The Macaulay matrix Md(F )

of degree d is a matrix containing all the coefficients cki,j, such that each
row corresponds to one polynomial gi,j and each column to one monomial
mk ∈ Bd.

The idea behind Lazard’s observation is linearization: new equations for
the ideal are constructed by algebraic combinations of the original equa-
tions, every monomial term appearing in the new equations is treated as
an independent new variable, and the system is solved with linear algebra.
Gröbner basis algorithms like F4 [28] and F5 [29] successively construct
Macaulay matrices of increasing sizes and remove linear dependencies in
the rows until a Gröbner basis is found. Moreover, they optimize the
computation by avoiding monomials tj that would produce trivial linear



combinations such as f1f2 − f2f1 = 0. The complexity of this strategy is
determined by the cost of linear algebra on the largest Macaulay matrix
occuring in the computation.

3.2 Degree of regularity and first fall degree

The degree of the largest Macaulay matrix appearing in a Gröbner basis
computation with the algorithm F5 is called the degree of regularity Dreg.
For a “generic” sequence of polynomials f1, . . . , f` ∈ R (with ` ≤ n), this
degree is equal to 1+

∑`
i=1(deg(fi)−1) [7]. The degree of regularity can be

precisely estimated in the case of regular and semi-regular sequences [7,9]
and (assuming a variant of Fröberg conjecture) in a few other cases [30,12].
However, precisely estimating this value for other classes of systems (in
particular for the various structured systems appearing in cryptanalysis
problems) may be a very difficult task.

In practice, the degree of regularity may often be approximated by
the first degree at which a non trivial degree fall occurs during a Gröbner
basis computation.

Definition 2. Let R be a polynomial ring over a field K and let F :=
{f1, . . . , f`} ⊂ R. The first fall degree of F is the smallest degree Dfirstfall

such that there exist polynomials gi ∈ R with maxi(deg(fi) + deg(gi)) =
Dfirstfall, satisfying deg(

∑`
i=1 gifi) < Dfirstfall but

∑`
i=1 gifi 6= 0.

We have Dreg ≥ Dfirstfall. For many classes of polynomial systems, the
two definitions lead to very close numbers. Although this is not true in
general (counter-examples can be easily produced), it seems to be true for
“random systems” and “most real-life systems of equations” [41, p. 350]
including HFE and its variants [32,41,26,24,25,12]. This can intuitively be
explained by the observation that an extremely large number of relations
with a degree fall occur at the degree Dfirstfall or the degree Dfirstfall+1
in these contexts, and these low degree relations can in turn be combined
to produce lower degree relations [26, p. 561], until a Gröbner basis is
finally found. In fact, the first fall degree has even sometimes been called
degree of regularity in the cryptography community [26,24,25].

3.3 Algebraic cryptanalysis

Many polynomial systems arising in cryptanalysis are very far from generic
ones. In fact, their special structures often induce lower degrees of regular-
ity, hence much better time complexities. Gröbner basis techniques have



successfully attacked many cryptosystems, including HFE and its vari-
ants [52,46,32,41,11,24,25], the Isomorphism of Polynomials [34,13] and
some McEliece variants [33]. In many cases, the resolution of these sys-
tems could be accelerated using dedicated Gröbner basis algorithms that
exploited the particular structures. As was first pointed out in [36,37],
this is also the case for polynomial systems arising from a Weil descent.

4 Polynomial systems arising from a Weil descent

Let n, n′,m be positive integers and let V be a vector subspace of F2n/F2

with dimension n′. Let f ∈ F2n [x1, . . . ,xm] be a multivariate polynomial
with degrees bounded by 2t − 1 with respect to all variables. In [36,37],
Faugère et al. considered the following problem:

Find xi ∈ V, i = 1, . . . ,m, such that f(x1, . . . ,xm) = 0. (1)

The constraints xi ∈ V, i = 1, . . . ,m are called linear constraints. From
now on, we assume that mn′ ≈ n such that Problem (1) has about one
solution on average. We also assume n′ ≥ t. The multilinear case (t = 1)
was first considered in [36] and later extended in [37].

4.1 A polynomial system

Following [36,37], Problem (1) can be reduced to a system of polynomial
equations. Let {θ1, . . . , θn} be a basis of F2n over F2 and let {vi|i =
1, . . . , n′} be a basis of V over F2. We define m · n′ variables xij over F2

such that xi =
∑n′

j=1 xijvj and we group them into m blocks of variables
Xi := {xij |j = 1, . . . , n′}. By substituting each xi in f , decomposing in
the basis {θ1, . . . , θn} and reducing by the field equations x2ij − xij = 0,
we obtain

0 = f(x1, . . . ,xm) = f

 n′∑
j=1

x1jvj, . . . ,

n′∑
j=1

xmjvj

 = [f ]↓1 θ1 + . . .+[f ]↓n θn

for some [f ]↓1 , . . . , [f ]↓n ∈ F2[x11, . . . , xmn′ ] that depend on f and on the
vector subspace V . Problem (1) can therefore be reformulated as finding
a solution to the (algebraic) system

[f ]↓1 = 0, . . . , [f ]↓n = 0. (2)

Due to the bounds on the degrees of f , this system has a block structure:
the degrees of all polynomials [f ]↓k are bounded by t with respect to all
blocks of variables. The resolution of System (2) can therefore be greatly
accelerated using block-structured Gröbner basis algorithms [31,36,37].



4.2 Known results and link to HFE

The analysis of Problem (1) was initiated by Faugère, Perret, Petit and
Renault who identified the block structure [36,37]. These authors also
showed that some well-chosen algebraic combinations of the equations of
System (2) produce equations of particularly small degree. Moreover, they
tried to linearize the problem by explicitely adding these new equations
to System (2).

In this paper, we observe that a particular instance of Problem (1) had
previously been studied in the cryptography literature. Indeed, the well-
known problem of inverting HFE [52,32,41] leads to a particular instance
of System (2), where the polynomial f is univariate (m = 1) and the linear
constraints are trivial (V = F2n).1 Interestingly, although the polynomial
f used in HFE has a particular shape (it leads to quadratic equations
over F2), we will see that this shape has generically little influence on the
complexity of Problem (1).

Ten years of research on HFE systems have shown that their degrees
of regularity are abnormally low compared to generic systems, resulting
in very efficient attacks. Although no definitive proof of these results has
been published yet, the experimental observations of [32] are now being
supported by theoretical evidence such as the isolation of a subsystem
with less variables [41], the existence of many low degree equations [19],
first fall degree computations [24,26] and complexity results on the Min-
Rank problem [12]. In this paper, we generalize some of these results to
polynomial systems arising from a Weil descent.

4.3 Experimental observations

We start our analysis of these systems with an experimental study of
their degree of regularity for various parameters n,m, n′, t. For each set
of parameters, we generate a random vector space V of dimension n′ and
a random multivariate polynomial f(x1, . . . ,xm) with degree bounded by
2t − 1 with respect to each variable. We then perform a Weil descent
on this polynomial and we append the field equations to the system.
Finally, we apply the Magma function Groebner to the result and we
collect the maximal degree D reached during the computation, as given
by the Verbose output of the Magma function. We repeat each experiment
100 times.
1 In HFE contexts, the attacker is not given f but only a “hidden” version of Sys-

tem (2). This can be ignored in the complexity analysis of Gröbner basis algorithms
since the hiding transformation only consists of a linear combinations of the equa-
tions and a linear change of variables [52,41].



Table 1: Average maximal degree reached in Gröbner Basis experiments,
average computation time (in seconds) and maximal memory require-
ments (in MB) for random polynomials

t n n′ m mt + 1 Dav Time Mem.

1 6 3 2 3 3.1 0 10
1 6 2 3 4 3.8 0 10
1 8 4 2 3 3.0 0 11
1 12 6 2 3 3.6 0 11
1 12 4 3 4 4.2 0 11
1 12 3 4 5 5.3 0 14
1 12 2 6 7 7.4 1 23
1 15 5 3 4 4.1 5 20
1 15 3 5 6 6.3 7 114
1 16 8 2 3 3.0 14 25
1 16 4 4 5 5.3 16 98
1 16 2 8 9 9.6 69 3388
1 18 9 2 3 3.0 85 74
1 18 6 3 4 4.1 86 89
1 18 3 6 7 7.4 233 5398
1 20 10 2 3 3.0 487 291
1 20 5 4 5 6.2 515 733
1 20 4 5 6 6.2 669 3226

t n n′ m mt + 1 Dav Time Mem.

2 6 3 2 5 5.1 0 10
2 6 2 3 7 6.7 0 10
2 8 4 2 5 5.1 0 11
2 9 3 3 7 7.2 0 12
2 12 4 3 7 7.1 1 38
2 12 3 4 9 9.3 2 95
2 15 5 3 7 7.0 12 263
2 16 8 2 5 5.1 13 36
3 6 3 2 7 6.6 0 10
3 12 6 2 7 7.0 1 31
3 12 4 3 10 10.1 9 70
3 12 3 4 13 12.6 70 113
3 15 5 3 10 10.0 118 2371
3 16 8 2 7 7.0 23 253
3 16 4 4 13 13.2 1891 20135
4 8 4 2 9 8.7 1 11
4 12 4 3 13 12.6 199 116
4 15 5 3 13 13.1 2904 6696

Table 1 reports the average value of D for these experiments, as well as
the average computation time and the maximal memory used (all experi-
ments were done on an Intel Xeon CPU X5500 processor running at 2.67
GHz, with 24 GB RAM). As is often the case in Gröbner basis compu-
tations, our experiments were limited more by the memory requirements
than by the computation time.

For all parameter sets, the maximal degrees occuring during Gröbner
basis computations were much smaller than the degrees of regularity of
regular or semi-regular systems with the same degrees. In fact, our ex-
periments suggest that the degree of regularity of System (2) is not much
higher than the value mt+ 1. In other words since the original equations
have degree mt, the degree of regularity is essentially as small as it could
be. The even lower values obtained for all parameter sets such that t = n′

can be explained by a probable degeneracy in the degrees of the equations.
Taking m = 1, we recover known experimental results on HFE [32].

4.4 Heuristic upper bound on Dreg

The success of Gröbner basis algorithms on HFE-like cryptosystems comes
from the particularly low degrees of regularity of the corresponding sys-



tems [32]. The first theoretical explanation for these low degrees was
provided by Granboulan et al.’s [41] and relies on the construction of a
modified system with less variables and higher or equal degree of regular-
ity. To extend this analysis to all polynomial systems arising from a Weil
descent, we first introduce a new modeling of Problem (1).

We now suppose that {θ1, . . . , θn} is a normal basis of F2n over F2, such
that θi := θ2

i−1
for some θ ∈ F2n . Let vij ∈ F2 such that vi =

∑n
j=1 vijθj .

We define nm auxiliary binary variables yij such that xi =
∑n

j=1 yijθj .

Proceeding to a Weil descent as in Section 4.1, we obtain a new system2

[f ]
↓y
1 = 0, . . . , [f ]↓yn = 0 (3)

in the variables yij , to which we add m(n+n′) field equations y2ij−yij = 0

and x2ij − xij = 0, as well as mn linear equations

yij =

n∑
k=1

xikvkj (4)

modeling the linear constraints. The resulting system of m(n + n′) vari-
ables and n+m(n+n′) +mn equations is equivalent to System (2) (with
the field equations) through the substitution (4), hence they have the
same degree of regularity.

Following Granboulan et al. [41], we perform additional modifications
on this system to obtain a new system with less variables and higher
or equal degree of regularity. First, we observe that linear equations do
not contribute to the degree of regularity and can therefore be removed
without affecting it. The resulting system is composed of n+mn equations
containing only the variables yij and mn′ field equations x2ij − xij = 0.
Without decreasing the degree of regularity, we can focus on the first part
containing Equations (3) and the field equations y2ij − yij = 0.

In the next step, we observe that the degree of regularity of this sys-
tem is not affected if we see the variables yij over F2n rather than over
F2. Thanks to the field equations, the set of solutions is not affected by
this change either. We then apply an invertible linear transformation on
Equations (3), defined by

Fi :=
n∑
j=1

θ2
i+j

[f ]
↓y
j , i = 1, · · · , n.

2 We add a subscript y to the arrows in System (3) to stress that the Weil descent is
done on the yij variables and to distinguish this system from System (2).



This transformation implies Fi = F 2i−1

1 . Finally, we perform a linear
change of variables defined by

zij :=
n∑
k=1

θ2
j+k−1

yik, i = 1, . . . ,m, j = 1, · · · , n.

Since this corresponds to setting zi1 = xi, zi2 = xi
2, . . . , zi,n = xi

2n−1
,

each Fk only depends (linearly) on zij , k ≤ j ≤ t + k − 1. A last linear
transformation changes the field equations into z2ij = zi,j+1 and z2i,n = zi,1.
The resulting system

Fi = 0, i = 1, . . . , n

z2ij = zi,j+1, i = 1, . . . ,m, j = 1, . . . , n− 1

z2i,n = zi,1 i = 1, . . . ,m

(5)

has the same degree of regularity as System (2).
Since F2 = F1 · F1 modulo the field equations, the polynomial F2 can

be expressed at the degree 2mt as an algebraic combination of F1 and
the field equations. Similarly, all polynomials Fi, i ≥ 2 can be recovered
at degree 2mt from algebraic combination of F1 and the field equations.
Therefore, the degree of regularity of the original system is smaller than
the maximum of 2mt and the degree of regularity of the system

F1 = 0,

z2ij = zi,j+1, i = 1, . . . ,m, j = 1, . . . , n− 1

z2i,n = zi,1 i = 1, . . . ,m.

(6)

Finally like [41], we bound this last degree by the degree of regularity of
the subsystem{

F1 = 0,

z2ij = zi,j+1, i = 1, . . . ,m, j = 1, . . . , t− 1.
(7)

Assuming that System eq:system5 behaves like a generic system with the
same degrees and the same number of variables3, its degree of regularity
can be bounded by mt− 1 +m(t− 1) + 1 = m(2t− 1) using Macaulay’s
bound. Under this heuristic assumption, we conclude that the degree of
regularity of System (3) is bounded by 2mt.

We point out that the value 2mt is already much below the degree
of regularity of a generic system of equations (or even a generic binary

3 A similar assumption of semi-regularity is needed in [41] to apply Bardet’s theorem.



system of equations) with the same degrees [7,8]. Still, our experiments
suggest that this bound is not even tight. To explain these experimental
values, we first recall the low degree equations identified in [36,37].

4.5 Low degree equations

A key step in the cryptanalysis of HFE has been the observation that
an abnormally large number of low degree algebraic combinations of the
original equations have a degree lower than expected. This observation ex-
plains to a large extent the good performances of Gröbner basis algorithms
on HFE instances. Explicit formulae for some of the low degree equations
occuring in HFE were recently given by Ding and Hodges in [24].

Similarly, some algebraic combinations of Equations (2) have an ab-
normally low degree. For completeness, we give an example of these
low degree equations, identified by Faugère et al. in [36,37]. Let us first

write the monomial x1 as
∑n

i=1 [x1]↓i θi, where each polynomial [x1]↓i ∈
F2[x11, . . . , x1,n′ ] has degree 0 or 1. Defining aijk ∈ F2 such that θiθj =∑

k aijkθk, we obtain

x1f =

(
n∑
i=1

[x1]↓i θi

) n∑
j=1

[f ]↓j θj

 =
n∑

i,j,k=1

aijk [x1]↓i [f ]↓j θk.

Decomposing x1f according to the basis {θ1, . . . , θn}, we see that every

polynomial [x1f ]↓k can be written (modulo the field equations) as an al-
gebraic combination of the polynomials in (2)

[x1f ]↓k =
n∑

i,j=1

aijk [x1]↓i [f ]↓j =
n∑
j=1

pik(x11, . . . , x1,n′) [f ]↓j (8)

where each polynomial pik(x11, . . . , x1,n′) :=
∑n

i=1 aijk [x1]↓i has degree 0
or 1. On the other hand, since the polynomial x1f has degree at most 2t

in the variable x1, the degree of each polynomial [x1f ]↓i is still bounded
by t with respect to every block of variables Xi and its total degree is mt
(instead of mt + 1 as expected from Equation (8)). Similarly deploying
mf for various monomials m ∈ F2n [x1, . . . ,xn′ ], many more low degree
equations can be generated [36,37]. The existence of these equations is
very specific to polynomial systems arising from a Weil descent.

Removing linear dependencies (such as the vectorial dependencies
identified in [37]) still leaves us with a lot of new “low” degree equations
that can be added to the system, therefore increasing the probability to



obtain linear equations at a pretty low degree with Gröbner basis algo-
rithms. In fact, since the new equations are algebraic combinations of
the original ones, they do not even need to be explicitely added to the
system, but Gröbner basis algorithms will recover them “blindly” and
quickly benefit from their existence.

In [36,37], Faugère et al. used these low degree equations in a lineariza-
tion strategy “à la Lazard [48]” to solve System (2). By a combinatorial
analysis on the number of equations and monomials at increasing de-
grees, they derived a bound on the degree of regularity of System (2). We
point out that the bound given in [37] is very far from the actual value
suggested by our experiments, but the linearization algorithm described
in [37] is clearly suboptimal4. Indeed, this algorithm only includes equa-
tions generated as above, and ignores the majority of algebraic combina-
tions of Equations (2) which do not directly result from a Weil descent
on a polynomial gf . A better linearization strategy should take all these
algebraic combinations into account. The corresponding combinatorial
analysis seems to be much harder than the analysis presented in [36,37],
but we expect it to provide a rigourous explanation for the actual degrees
of regularity observed in Section 4.3.

4.6 First fall degree

As a first step in that direction, we observe that the low degree equations
identified in [36,37] provide a very strong bound on the first fall degree
of System (2).

Proposition 1. The first fall degree of System (2) is at most mt+ 1.

Proof. By definition, the proof amounts to showing the existence of a
polynomial g 6= 0 with degree at mostmt that can be written as g(x11, . . . , xmn′) =∑n

i=1 pi(x11, . . . , xm,n′) [f ]↓i for some polynomials pi ∈ K[x11, . . . , xmn′ ] of

degree 1. In fact, Equation (8) shows that we can take g := [x1f ]↓k for any
k.

This proposition provides a heuristic explanation for the degrees of reg-
ularity observed in Section 4.3 since the first fall degree is often a good
approximation of the degree of regularity. As recalled in Section 3.2, this
heuristic assumption is “classical” in algebraic cryptanalysis, and it has
in particular been verified for various HFE-like systems [41,26,24].

4 On the other hand, the analysis of [36] is wrong since it ignores the vectorial depen-
dencies identified in [37].



Assumption 1. Let n,m, t, n′ ∈ Z. Let f be generated as in our experi-
ments. For all but a negligible fraction of the resulting systems, we have
Dreg = Dfirstfall + o(Dfirstfall).

The assumption intuitively makes sense for System (2): as we saw in
Section 4.5, not only one but many degree falls are occuring at degree
Dfirstfall and the next ones (each monomial m leads to new degree falls).

4.7 Heuristic complexity bounds for Problem (1)

Given the degree of regularity, the complexity of Problem 1 simply follows
from the cost of linear algebra.

Proposition 2. If Assumption 1 holds, Problem 1 can be solved with
standard Gröbner basis algorithms (like F4 or F5) in time O(nωD) and
memory O(n2D), where ω is the linear algebra constant and D ≈ mt.

In the univariate case, this estimation reduces to D ≈ t which perfectly
matches known cryptanalysis results on HFE algebraic systems [32,41].
Interestingly, the special shape of HFE polynomials (they deploy to quadratic
equations over F2) seems to have no impact on the degree of regularity
(although further restrictions on the shape may have an impact as pointed
out in [24]). In the multilinear case, the estimation provided by Proposi-
tion 2 becomes D ≈ m which matches the experimental data of [36].

As observed in [36,37], the block structure of System (2) can be ex-
ploited to accelerate its resolution. According to our analysis, the maximal
degree appearing in the computation is approximately equal to the initial
degree of Equations (2) and can be naturally distributed among the m
blocks. Therefore, a dedicated Gröbner basis algorithm can be designed
to exploit the sparsity induced by the block structure and reduce the time
and memory complexities of solving Problem (1).

Proposition 3. If Assumption 1 holds, Problem 1 can be solved with
block Gröbner basis algorithms in time O((n′)ωD) and memory O((n′)2D),
where ω is the linear algebra constant and D ≈ mt.

Additional heuristic methods like hybrid approaches (consisting in mixing
exhaustive search and polynomial system resolution [59,10]) may lead to
substantial complexity improvements in practice, as was described in [36]
for the multilinear case.



5 Index calculus for elliptic curves

We now turn to the main application (so far) of Problem (1). As pointed
out in [37], an instance of Problem (1) appears in the relation search step
of an index calculus algorithm for elliptic curves proposed by Diem [23].
Given a cyclic (additive) group G, a generator P of this group and another
element Q of G, the discrete logarithm problem asks for computing an in-
teger k such that Q = kP . Groups typically used in cryptography include
the multiplicative groups of finite fields, groups of points on elliptic curves
and hyperelliptic curves and Jacobians of higher genus curves. Index cal-
culus algorithms [47,27] with subexponential complexities have long been
obtained for the multiplicative groups of finite fields [1,18,2,5,43] and
more recently for the Jacobian groups of hyperelliptic curves [3,39,38].
On the other hand, the best algorithms for solving elliptic curve discrete
logarithms remained generic algorithms until very recently.

In 2004, Semaev introduced his summation polynomials and identified
their potential application to build index calculus algorithms on elliptic
curves [57] over prime fields Fp. These ideas were independently extended
by Gaudry [40] and Diem [22] to elliptic curves over composite fields Fpn .
Following this approach, Gaudry [40] and later Joux and Vitse [44,45]
obtained index calculus algorithms running faster than generic algorithms
for any p and any n ≥ 3. On the other hand, Diem [22,23] identified some
families of curves with a subexponential time index calculus algorithm by
letting p and n grow simultaneously in an appropriate way. As far as was
known at the moment, the two families of elliptic curves recommended
by standards [51] (elliptic curves over prime fields Fp or over binary fields
F2n with n prime) remained immune to these attacks. In 2012, Faugère
et al. [37] observed that the computation of the relations in an algorithm
of Diem for binary fields [23] could be reduced to special instances of
Problem (1).

5.1 Diem’s variant of index calculus

Let K be a finite field and let E be an elliptic curve over K defined by
the equation

E : y2 + xy = x3 + a2x
2 + a6 (9)

for some a2,a6 ∈ F2n . Semaev’s summation polynomials Sr are multivari-
ate polynomials satisfying Sr(x1, . . . ,xr) = 0 for some x1, . . . ,xr ∈ K̄
if and only if there exist y1, . . . ,yr ∈ K̄ such that (xi,yi) ∈ E(K̄)
and (x1,y1) + · · · + (xr,yr) = P∞ [57]. The summation polynomials



of the curve (9) can be recursively computed as S2(x1,x2) := x2 + x1,
S3(x1,x2,x3) := x1

2x2
2 + x1

2x3
2 + x1x2x3 + x2

2x3
2 + a6 and for any

r ≥ 4, any k, 1 ≤ k ≤ r − 3,

Sr(x1, . . . ,xr) := ResX (Sr−k(x1, . . . ,xm−k−1,X),Sk+2(xr−k, . . . ,xr,X)) .
(10)

For r ≥ 2, the polynomial Sr is symmetric and has degree 2r−2 in every
variable xi [57].

Summation polynomials were used by Gaudry [40], Joux and Vitse [44]
and Diem [22,23] to compute relations in index calculus algorithms for
elliptic curves over composite fields. The following variant is an adaptation
of Diem [23].

1. Factor Basis definition. Fix two integers m,n′ < n with mn′ ≈ n
and a vector space V ⊂ F2n/F2 of dimension n′. Let FV := {(x,y) ∈
E(K)|x ∈ V } be the factor basis.

2. Relation search. Find about 2n
′

relations aiP + biQ =
∑m

j=1 Pij
with Pij ∈ FV . For each relation,

(a) Compute Ri := aiP + biQ for random integers ai, bi.

(b) Solve Semaev’s polynomial Sm+1(x1, . . . ,xm, (Ri)x) with the con-
straints xi ∈ V .

(c) If there is no solution, go back to (a).

3. Linear Algebra. Perform linear algebra on the relations to recover
the discrete logarithm value.

In previous works [40,22,23,44], a Weil descent was applied to Semaev’s
polynomials and the resulting systems were solved with resultants or
Gröbner basis algorithms. In these works, the complexity of the relation
search step was derived from the complexity of solving generic systems.
However as pointed out in [36,37] and further demonstrated in Section 4
of the present paper, polynomial systems arising from a Weil descent are
very far from generic ones.

5.2 A new complexity analysis

We now revisit Diem’s algorithm [23] and its analysis by [37] in accordance
with our new analysis of Problem (1). Let n,m, n′ be integer numbers.
Before starting Diem’s algorithm, the (m + 1)th summation polynomial
must be computed. Using Collins’ evaluation/interpolation method [17]
for the resultant of Equation (10), this can be done in time approximately



2t1 where5

t1 ≈ m(m+ 1). (11)

We then compute about 2n
′

relations. To obtain these relations, we solve
special instances of Problem (1) where

f(x1, . . . ,xm) := Sm+1(x1, . . . ,xm, (aiP + biQ)x) (12)

has degree 2m−1 with respect to every variable. Since Semaev’s polyno-
mials are clearly not random ones, we perform additional experiments.

In our experiments, we apply Diem’s algorithm to a randomly cho-
sen binary curve E : y2 + xy = x3 + a2x

2 + a6 defined over F2n , where
n ∈ {11, 17}. We first fix m ∈ {2, 3} and n′ := dn/me. We then gener-
ate a random vector space V of dimension n′ and a random point R on
the curve such that Equation (12) has solutions. As in Section 4.3, we
finally use the Groebner function of Magma to solve Semaev’s equation
Sm+1(x1, . . . ,xm, Rx) = 0 with the linear constraints. We repeat this
experiment 100 times for each parameter set, then we repeat all our ex-
periments with the Koblitz curve E : y2 + xy = x3 + x2 + 1. The average
value of the maximal degrees reached during the computation, the average
computation time and the maximal memory requirements are reported
in Table 2.

Table 2: Average maximal degree reached in Gröbner Basis experiments,
average computation time (in seconds) and maximal memory require-
ments (in MB) for Semaev polynomials. (R): Random curves. (K): Koblitz
curves.

E n n′ m t mt + 1 Dav Time Mem.

K 11 6 2 2 5 3.0 0 11
K 11 4 3 3 10 7.1 1 15
K 17 9 2 2 5 4.0 0 15
K 17 6 3 3 10 7.2 132 2133

E n n′ m t mt + 1 Dav Time Mem.

R 11 6 2 2 5 3.0 0 11
R 11 4 3 3 10 7.1 1 15
R 17 9 2 2 5 4.0 0 16
R 17 6 3 3 10 7.1 130 2136

In all cases, the maximal degrees reached in the computations were
even below the first fall degree bound given by Proposition (1). This
phenomenon is probably due to the sparsity of Semaev’s polynomials and
will be exploited in future work (in particular, the degree of Sm+1 with

5 To compute Sm+1, we apply Collins’ algorithm on Sk where k = dm+3
2
e. This

polynomial has degree 2d(m−1)/2e in each variable. Following Collins, Theorem 9, we
have t1 ≤ 2(m + 1)m/2 = m(m + 1).



respect to every variable is 2m−1 but bounded by 2m − 1 in the analysis
of Section 4). From now on in the analysis, we ignore this difference and
analyze Semaev’s polynomials as the random polynomials of Section 4.

Assumption 2. Assumption 1 still holds if f is generated from Semaev’s
polynomials as in the experiments of this section.

Under Assumption (2), Step 2(b) of Diem’s algorithm can be solved
using a dedicated Gröbner basis algorithm taking advantage of the block
structure, in a time (n′)ωD, where D ≈ (m2+1) and ω is the linear algebra
constant. Once the x components of a relation have been computed, the
y components can be found by solving m quadratic equations and testing
each possible combination of the solutions. This requires a time roughly
2m, that can be neglected. On average, the probability that a point Ri :=
aiP + biQ can be written as a sum of m points from the factor basis can

be heuristically approximated by 2mn′−n

m! [23]. Assuming mn′ ≈ n, the
total cost of the relation search step can therefore be approximated by
2t2 , where

t2 ≈ m logm+ n′ + ω(m2 + 1) log n′. (13)

The last step of Diem’s algorithm consists in (sparse) linear algebra
on a matrix of rank about 2n

′
with about m elements of size about n bits

per row. This step takes a time approximately equal to mn2ω
′n′ = 2t3 ,

where
t3 ≈ logm+ log n+ ω′n′ (14)

and ω′ is the sparse linear algebra constant. If Assumption (2) holds and
if mn′ ≈ n, the total time taken by Diem’s algorithm can be estimated
by T := 2t1 + 2t2 + 2t3 , where t1, t2, t3 are defined as above.

5.3 On the hardness of ECDLP in characteristic 2

We now use Formulas (11) to (14) to evaluate the hardness of the elliptic
curve discrete logarithm problem over the field F2n for “small” values
of n. In our estimations, we use ω = log(7)/ log(2) and ω′ = 2. We
consider n ∈ {50, 100, 160, 200, 500, 1000, 2000, 2500, 5000, 104, 2 · 104, 5 ·
104, 105, 2·105, 5·105, 106} and m ∈ {2, . . . , n/2}. For every pair of values,
we compute values t1, t2 and t3 with Equations (11), (13) and (14)
respectively. Finally, we approximate the total running time of Diem’s
algorithm by 2tmax where tmax := max(t1, t2, t3). For every value of n,
Table 3 presents the data corresponding to the value m for which tmax
is minimal. We point out that the numbers obtained here have to be



taken cautiously since they all rely on Assumption 2 and involve some
approximations.

Table 3: Complexity estimates for Diem’s algorithm in characteristic 2
n m n′ t1 t2 t3 tmax

50 2 25 6 92 57 92
100 2 50 6 131 108 131
160 2 80 6 171 168 171
200 2 100 6 195 209 209
500 3 167 12 379 344 379
1000 4 250 20 638 512 638

n m n′ t1 t2 t3 tmax

2000 4 500 20 936 1013 1013
2500 5 500 30 1166 1014 1166
5000 6 833 42 1857 1682 1857
10000 7 1429 56 2919 2873 2919
20000 9 2222 90 4810 4462 4810
50000 12 4167 156 9105 8353 9105

According to our estimations, Diem’s version of index calculus (to-
gether with a sparse Gröbner basis algorithm) beats generic algorithms
for any n ≥ N , where N is an integer close to 2000. An actual attack for
current cryptographically recommended parameters (n ≈ 160) seems to
be out of reach today, but the numbers in [37] suggest that medium-size
parameters could be reachable with additional Gröbner basis heuristics
like the hybrid method [10]. Large prime variations [38] of Diem’s algo-
rithm may also lead to substantial improvements in practice. This will be
investigated in further work.

Letting n grow and fixing n′ := nα and m := n1−α for a positive
constant α < 1, we obtain

t1 ≈ n2(1−α),
t2 ≈ (1− α)n1−α log n+ nα + αωn2(1−α) log n,

t3 ≈ (2− α) log n+ ω′nα

Taking α := 2/3, the relation search dominates the complexity of the
index calculus algorithm and we deduce the following result.6

Proposition 4. Under Assumption 2, the discrete logarithm problem over
F2n can asymptotically be solved in time O(2cn

2/3 logn), where c := 2ω/3
and ω is the linear algebra constant.

In particular if the Gaussian elimination algorithm is used for linear al-
gebra, we have ω = 3 and c = 2. We stress that Proposition 4 holds even
when n is prime. Until now, the best complexity estimates obtained in
that case corresponded to generic algorithms that run in time 2n/2.

6 Note that the weaker bound Dreg ≤ 2mt derived in Section 4.4 with Macaulay’s
bound also leads to a subexponential complexity but with a constant c = 4ω/3.



6 Further applications of Problem (1)

6.1 Factoring elements in SL(2, F2n)

The factorization problem in a non Abelian (multiplicative) group G is
the following one: given a set of generators S := {s1, . . . , sk} for this group
and an element h ∈ G, the problem asks for a decomposition h =

∏N
i=1 smi

as a product of the generators. The preimage security of Cayley hash func-
tions, an interesting family of cryptographic hash functions with natural
parallelism, directly relies on this problem [58,16,53,55]. The problem be-
comes potentially hard when additional restrictions are put on the length
N of the product. For a family of groups of increasing size, the standard
computational assumption is that no product of polynomial length can
be computed in polynomial time, the complexity parameter being the
logarithm of the size of the groups. The mere existence of these products
in general depends on a famous conjecture of Babai on the diameter of
Cayley graphs [6,42].

Using a sequence of reductions introduced in [54], Faugère et al. [36]
reduced the factorization problem in SL(2,F2n) to a particular instance
of Problem (1) with t = 1, where

f(x1, ...,xm) := ( 1 1 )

[
m∏
i=1

(
x+xi 1
1 0

)]
( 1
1 ) (15)

for some x ∈ F2n . The first fall degree of the corresponding system is at
most m+1. We remark that the polynomial f is not totally random since
f(x1, ...,xm) = f(xm, ...,x1), so Assumption 1 needs to be adapted to this
case. The experimental data presented in [36] supports the corresponding
assumption. Combining [54,36] and the analysis of Section (4), we easily
deduce that for any S and any h, a polynomial length factorization of h
can be computed in probabilistic subexponential time. Since our estima-
tion of the degree of regularity is smaller than in [36], we can also derive
new smaller complexity estimates for this problem.

6.2 HFE and other discrete logarithm problems

As we pointed out above, System (2) can also be seen as a generalization
of HFE systems. These systems have been intensively studied in the lit-
erature [32,41,26,24,25,12], and Assumption (1) has been widely verified
in this case. As recalled above, the main specificity of HFE polynomi-
als with respect to “random” polynomials is that they lead to quadratic



polynomials over the prime field. Interestingly, the polynomial systems
arising from “generic” HFE polynomials seem to have the same degree
of regularity as if they arised from random polynomials with the same
degrees. It is however known that further restrictions on f may lower the
degree of regularity [24].

Besides ECDLP, factoring in SL(2,F2n) and HFE, the analysis of
this paper can be applied to analyze index calculus algorithms over a
wide variety of groups, including the Jacobian of higher genus curves.
(These additional applications had also been identified by Faugère et
al. [37,35]). In particular, discrete logarithm problems in the field F2n

can be reduced to an instance of Problem (1) and then solved in heuristic

time O(2
1
2
ωn1/2 logn). The complexity of this approach does not compete

with Coppersmith’s algorithm [18] but is comparable to Adleman’s first
index calculus algorithm [1].

7 Conclusion and perspectives

In this paper, we revisited the complexity of solving a class of polynomial
systems previously considered by Faugère et al. [36,37]. These systems ap-
pear when a multivariate polynomial over an extension field is deployed
via a Weil descent into a system of polynomial equations over the ground
prime field. We observed that these systems can be seen as natural exten-
sions of HFE systems and we generalized various results on HFE. Based
on experimental results and heuristic arguments, we conjectured that the
degree of regularity of polynomial systems arising from a Weil descent
are only slightly larger than their original degrees, and we deduced new
heuristic bounds on their resolution. Interestingly, our bounds nicely gen-
eralize previous bounds on HFE.

The most proeminent consequence of our analysis so far concerns the
elliptic curve discrete logarithm problem (ECDLP) over binary fields.
Indeed, our heuristic analysis suggests that ECDLP can be solved in
subexponential time O(2c n

2/3 logn) over the binary field F2n , where c is a
constant smaller than 2. This complexity is obtained with an index cal-
culus algorithm due to Diem [22] and a block-structured Gröbner basis
algorithm. In practice, our estimations predict that the resulting algo-
rithm is faster than generic algorithms (previously thought to be the best
algorithms for this problem) for any n larger than N , where N is an in-
teger approximately equal to 2000. In particular, binary elliptic curves of
currently recommended sizes (n ≈ 160) are not immediately threatened.



Besides ECDLP in characteristic 2, the systems introduced in [36,37]
have a wide range of applications. We briefly discussed the factorization
problem in SL(2,F2n), HFE systems and other discrete logarithm prob-
lems. We leave a refinement of our analysis to the particular polynomials
appearing in these applications to further work, similarly to what was
done in [24] for HFE in odd characteristic.

Our complexity estimates are based on heuristic assumptions that
differ from other index calculus algorithms, but are common in algebraic
cryptanalysis. The polynomial systems appearing in the cryptanalysis
of HFE have been intensively studied in the last 15 years, yet we have
no definitive proof for their commonly admitted complexity. Our paper
broadens the interest of these researches to all polynomial systems arising
from a Weil descent and to their various applications. We leave further
experimental and theoretical investigation of our heuristic assumptions
to further work.

To conclude this paper, we point out that most of our results gen-
eralize quite easily to other fields, resulting in comparable asymptotic
complexities.
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Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1,
1): Algorithms and complexity. J. Symb. Comput., 46(4):406–437, 2011.

32. Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of Hidden
Field Equation (HFE) cryptosystems using Gröbner bases. In Dan Boneh, edi-
tor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 44–60.
Springer, 2003.

33. Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich.
Algebraic cryptanalysis of mceliece variants with compact keys. In Henri Gilbert,
editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
279–298. Springer, 2010.

34. Jean-Charles Faugère and Ludovic Perret. Polynomial equivalence problems: Algo-
rithmic and theoretical aspects. In Serge Vaudenay, editor, EUROCRYPT, volume
4004 of Lecture Notes in Computer Science, pages 30–47. Springer, 2006.

35. Jean-Charles Faugère, Ludovic Perret, Christophe Petit, and Guénaël Renault.
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