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Special point problems with elliptic modular surfaces

Jonathan Pila

Abstract

We prove a “special point” result for products of elliptic modular surfaces,

elliptic curves, multiplicative groups and complex lines, and deduce a result

about vanishing linear combinations of singular moduli and roots of unity.
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1. Introduction

The objectives of this paper are twofold: to generalise the main result of [34], and

to obtain an analogue for singular moduli of Mann’s theorem [25] on linear relations

between roots of unity. In particular we affirm the “mixed André-Oort conjecture” for

products of elliptic modular surfaces (see §2.2). This is a special case of a “generalised

André-Oort conjecture” suggested by André [3], where it is affirmed in the case of a

single elliptic modular surface; it is also a special case of the Zilber-Pink conjecture

[7, 40, 41, 56]. More generally we establish a “special point” result for varieties of the

form

X = B1 × . . .×Bn × E1 × . . .× Em ×G` × Ck,

where k, `,m, n are non-negative integers, Bi are elliptic modular surfaces associated

with suitable congruence subgroups Γi ⊂ SL2(Z), Ej are elliptic curves defined over C,

and G = Gm = Gm(C) is the multiplicative group of non-zero complex numbers (we

identify a variety with its set of complex points).

By a subvariety T ⊂ X we will mean a Zariski closed irreducible subvariety of

X. Associated with X is a collection of subvarieties called special subvarieties. These

are defined in detail below (§4). Let us say here that we may (and will) assume

that the Ei are all non-CM. Then a special subvariety of X is a cartesian product of

special subvarieties in
∏
iBi,

∏
j Ej ,G

`, and Ck. In
∏
j Ej (and respectively G`) these

are torsion cosets, namely translates of abelian subvarieties (respectively subtori) by

torsion points. The special subvarieties of Ck we take to be subvarieties with a Zariski-

dense set of rational points. Special subvarieties of dimension 0 are called special points,

and they are Zariski-dense in any special subvariety. The “special point” result asserts

the converse of this: a subvariety T ⊂ X with a Zariski-dense set of special points is

special. This may be equivalently stated as follows.
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1.1. Theorem. A Zariski closed algebraic subset V ⊂ X defined over C contains only

finitely many maximal special subvarieties.

For a Shimura variety and its special subvarieties the “special point” problem is

known as the André-Oort conjecture (AO; [1, 28]) and has been affirmed, under GRH

for CM fields, in work of Klingler, Ullmo, and Yafaev [22, 51]. Unconditional results

have been obtained in various special cases [2, 9, 34, 36, 37, 50]. Each Bi contains the

associated modular curve Yi = Γi\H (where H is the complex upper half-plane) as a

special subvariety, so the present result includes the result of [34] affirming AO for a

product of modular curves, in particular for the Shimura variety Y (1)n whose complex

points may be identified with Cn parameterising n-tuples of elliptic curves by their

j-invariants. In the case n = 2 this is a result of André [2]; a proof that is unconditional

and effective has recently been given by Kühne [23] and (see [23]) independently by

Bilu, Masser, and Zannier. In Y (1)n the special points are n-tuples of singular moduli ,

the j-invariants of CM elliptic curves.

For multiplicative groups and abelian varieties, the “special point” problem is

known as the Manin-Mumford conjecture. For abelian varieties it is a theorem of

Raynaud [42, 43]; for the multiplicative group it is a special case of a (“multiplicative

Mordell-Lang”) theorem of Laurent [24]; in the semiabelian setting it is due to Hindry

[21]. For k = n = 0 Theorem 1.1 recovers a rather special case. Our present result

improves that in [34] here in allowing the Ej to be defined over C rather than Q.

In fact we can generalise Theorem 1.1 to a version in which some finite number of

Hecke orbits of moduli are considered to be special in addition to the CM ones, giving

a version that includes the “Mordell-Lang” statement for Y (1)n established in our joint

paper [19] with Philipp Habegger (extending it to finite subsets of C rather than Q).

The case of Theorem 1.1 (and of its generalisation 6.6) with k = 0, together with

all the results mentioned above, are comprehended within the Zilber-Pink conjecture

(ZP), in which the ambient variety is a mixed Shimura variety. An additional feature

in 1.1 is the factor Ck for which, by itself, the special point result reduces to a triviality.

It amounts essentially to a uniformity aspect of the result, which was already observed

in [34, §13]. Here we explicate a particular consequence: the aforementioned modular

analogue of Mann’s theorem.

Let a, b ∈ Q∗. André’s original result applied to the curve ax + by = 1 in Y (1)2

(which is never modular), implies that there are only finitely many pairs (j1, j2) of

singular moduli with

aj1 + bj2 = 1.

Theorem 1.1 applied to the product of Y (1)n with G`×Cn+`+1 gives a stronger finite-

ness statement about linear relations among singular moduli and roots of unity.

1.2. Definition. Let n, ` be non-negative integers.

1. A tuple (j1, . . . , jn, ζ1, . . . , ζ`) is called an (n, `)-tuple if the ji are special, the

ζj are roots of unity, and they satisfy a non-trivial relation

a1j1 + . . .+ anjn + b1ζ1 + . . .+ b`ζ` + c = 0
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where ai, bj , c are rational numbers.

2. An (n, `)-tuple is called non-degenerate if

(i) there do not exist a non-empty subset I ⊂ {1, . . . , n} and a singular modulus j

such that ji = j for all i ∈ I and
∑
i∈I ai = 0,

(ii) no proper (non-empty) subsum of b1ζ1 + . . .+ b`ζ` + c vanishes (but we allow c to

be absent if ` = 0).

1.3. Theorem. For given n, ` there are only finitely many non-degenerate (n, `)-tuples.

Modulo some rather elementary considerations to characterise special subvarieties

of linear subvarieties, this theorem follows from [34, Theorem 13.2]. For roots of unity

only (i.e. n = 0) the result is due to Mann [25]. It preceded the Manin-Mumford

conjecture, which may be deduced from it in the multiplicative case (see [12]). Mann’s

result is effective (even explicit); ours is not. For further developments see [15, 13] and

§7.8. For ` = 0 and n = 2 the finiteness result follows from the proof of AO for Y (1)2 in

[33] (see also Kühne [23, Theorem 3]). None of these results appear to enable effective

determination of the finitely many (2, 0)-tuples, as asked at the AIM conference on

“Unlikely intersections in algebraic groups and Shimura varieties”, Centro De Giorgi,

Pisa, 2011. Here again we frame a version allowing a finite number of Hecke orbits.

We follow the strategy of [34], opposing the Counting Theorem for rational points

on definable sets in o-minimal structures [38] with lower bounds for the size of the

Galois orbit of a special point as originally proposed by Umberto Zannier for reproving

the Manin-Mumford conjecture [39]. This shows the efficacy of the Point-Counting

strategy in the mixed setting. As in [34] we also use o-minimality in other parts of the

argument, and it is crucial to the uniformity aspects (which are crucial to 1.4).

A key ingredient in this strategy is a certain functional algebraic independence

statement which I have dubbed “Ax-Lindemann-Weierstrass”. The statement and proof

here generalise those in [34]; the proof, which uses point counting in definable sets as

in [34, 37, 52], is therefore presented efficiently, in §5.

The proof of Theorem 1.1 is carried out in §6. It has an inductive structure

in which it is crucial to observe that the special subvarieties (and even weakly special

subvarieties) occur as “special points” of certain semialgebraic families. This was easily

observed in [34] for the case of products of modular curves, and has also been carried out

for Siegel modular varieties [37] and general Shimura varieties [50]. The corresponding

structure here is somewhat cumbersome in detail; §4 is devoted to this. Finally the

proof of 1.4 is carried out in §7.

The present results overlap with those of Habegger [18], with no inclusion in either

direction. Habegger treats fibred products of elliptic surfaces over a general base curve,

while we treat cartesian products of elliptic surfaces over a modular base curve.

Acknowledgements. I thank Philipp Habegger, Jacob Tsimerman, and Boris Zilber

for helpful conversations and communications. Part of the research and writing of this

paper was carried out while I was participating in the “Model Theory and Applications”
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programme at the Max Planck Institute for Mathematics (April-June 2012). I thank the

organisers for inviting me to participate, and the Max Planck Institute for its hospitality

and for the excellent environment it provides for mathematics. I am grateful to the
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2. Preliminaries

Elliptic modular surfaces

2.1. Notation. The semidirect product SL2(Z) .< Z2 acts on H× C by

((
a b
c d

)
, (u, v)

)
(τ, z) =

(aτ + b

cτ + d
,
z + uτ + v

cτ + d

)
.

This action may be extended to SL2(R) .< R2 in the obvious way. We will write

`(g, τ) = cτ + d for g =

(
a b
c d

)
∈ SL2(R), τ ∈ H.

For a congruence subgroup Γ < SL2(Z) we set

Γ+ = {(g, λ) ∈ SL2(Z) .< Z2 : g ∈ Γ}.

We take a fundamental domain FΓ for the action of Γ on H consisting of finitely many

images γF0 of the usual fundamental domain F0 for SL2(Z) with γ ∈ SL2(Z). For

τ ∈ H we let Lτ = {α + βτ ∈ C : 0 ≤ α, β ≤ 1}, a (closure of a) fundamental domain

for Λ = Z + Zτ on C. Then

F+
Γ = {(τ, z) : τ ∈ FΓ, z ∈ Lτ}

is a fundamental domain for the action of Γ+ on H× C.

2.2. Elliptic modular surfaces. Let Γ ⊂ SL2(Z) be a congruence subgroup, which

we assume does not contain −id, and so acts effectively on H. The quotient of H× C
by Γ+ is a quasiprojective algebraic surface fibred over the modular curve YΓ = Γ\H,

with a section. Such a surface, which we will denote BΓ, is called an elliptic modular

surface. It is an elliptic surface: the fibre over y ∈ Y , the image of τ ∈ H, is the

elliptic curve corresponding to τ ∈ H. For further information see [47, 49]. The map

π : H × C → BΓ is given by suitable quotients of theta-functions (see e.g. [33] for the

case of the Legendre surface L : y2 = x(x− 1)(x− λ), L = Γ(2)\H× C).

Uniformisation, group action, real coordinates, definability

We will be dealing throughout with certain transcendental uniformisations π :

U → X, where X is a quasi projective variety, and π is invariant under the action of

some discrete subgroup Γ of a real group G of biholomorphic automorphisms of U .
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2.3. Definition.

1. For an elliptic modular surface X = Γ+\H×C as above, we have UX = H×C
and πX the quotient map. We have ΓX = Γ+, with fundamental domain FX = F+

Γ as

described above, and GX = SL2(R) .< R2. We take real coordinates on UX by writing

(τ, z) = (x, y, u, v) where τ = x+ iy and z = u+ vτ . We use real and imaginary parts

on X.

2. For an elliptic curve X = E we choose some σ ∈ H such that C/Λσ, where Λσ =

Z + Zσ, is analytically isomorphic to E. So UX = C, the uniformisation πX given e.g.

by the Weierstrass ℘-function and its derivative. We have ΓX = Z2, GX = R2 (where

(u, v) acts by translation by u+ vσ). We take FX = {w = u+ vσ ∈ C : 0 ≤ u, v < 1}.
We put real coordinates on C by writing w = u+ vσ, and use real and imaginary parts

on X.

3. For X = G we take UX = C and πX = exp. We have ΓX = Z and GX = R,

with u ∈ R acting by translation by 2πiu. We take FX = R×i[0, 2π). We use Re(z)/2π

and Im(z)/2π as real coordinates on UX , real and imaginary parts on X.

4. For X = C we take U = C and πX = id, the identity map. We take ΓX =

GX = {1} and FX = C, and we use real and imaginary parts on UX and X.

5. In general X is a cartesian product of quasiprojective varieties Xi of the above

kinds. Then UX ,ΓX , GX , FX are the corresponding cartesian products of UXi
, ΓXi

,

GXi , FXi and the real coordinates on UX , X are the cartesian product of the real

coordinates on UXi
, Xi.

Different forms of X are considered in various parts of the paper. We try to make

it clear in each (sub-)section which form of X is being considered and drop “X” as a

subscript.

2.4. Definability and point-counting. For the definition of an “o-minimal structure

over R” and a summary of key properties see [34]. For a development of the theory

see [11]. To apply the Counting Theorem [38, 34] it is essential that the uniformising

maps, restricted to the relevant fundamental domains, are definable in an o-minimal

structure over R (and indeed in the same structure). In fact, all these (restricted)

maps are definable in Ran exp. For the elliptic modular uniformisations this is due to

Peterzil-Starchenko [31]. On the other factors the definability in Ran exp is obvious.

The o-minimality of Ran exp is due to van den Dries-Miller [14], building on the o-

minimality of Rexp, due to Wilkie [53], and of Ran. The latter follows from Gabrielov’s

theorem [17], as observed by van den Dries [10].

Henceforward, definable means definable (with parameters) in Ran exp.

“Subvarieties” of U

In all the cases we consider U is open in the corresponding ambient complex space

CN , and semialgebraic as a subset of the relevant ambient real space R2N . We will call

such a domain a semialgebraic complex domain.
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We will need to consider various complex algebraic “subvarieties” of our uniformis-

ing spaces U . Due to the H factors, these U are not themselves complex algebraic, and

may not contain any complex algebraic subvarieties of CN (e.g. H does not, being

biholomorphic via an algebraic map to the open unit disc).

2.5. Definition. For a semialgebraic complex domain U , a subvariety of U will mean

a non-empty connected component W of U ∩ Y for some complex irreducible variety

Y ⊂ CN .

3. Special points

Special points

In this subsection we take

X = B1 × . . .×Bn ×G` × Ck, U =
(
H× C

)n × C` × Ck.

Let σ ∈ H. The Hecke orbit of σ is GL+
2 (Q)σ. We say τ1, τ2 are Hecke equivalent

if they are in the same Hecke orbit.

3.1. Definition. Let Σ ⊂ H and d ∈ N+.

1. A special point of H is a point τ ∈ H with [Q(τ) : Q] = 2. A Σ-special point of H
is a point τ such that τ is either special or in the Hecke orbit of σ for some σ ∈ Σ.

2. Let τ ∈ H. A τ -special point of C is a division point of the lattice Λτ .

3. An exp-special point of C is a rational multiple of 2πi.

4. A d-special point in C is a point t with [Q(t) : Q] ≤ d.

3.2. Definition. With X,U as above, let Σ ⊂ H, d ∈ N+. A point

(τ1, z1, . . . , τn, zn, w1, . . . , wm, ζ1, . . . , η`, t1, . . . , tk) ∈ U

is called (Σ, d)-special if:

1. each τi is Σ-special,

2. each zi is τi-special,

3. each ζi is exp-special, and

4. each ti is d-special.

We now define, for a subset S ⊂ Y (1)(C), the (S, d)-special points of X. This will

be in terms of the j-invariant of the elliptic curves parameterised by the corresponding

points of the Bi. For x ∈ C write Ex for an elliptic curve with j-invariant j(E) = x.

Such a curve is unique up to isomorphism over C. We consider an elliptic curve Ex
to be S-special if it is isogenous to Es for some s ∈ S. Suppose x = j(τ), y = j(σ)

where σ, τ ∈ H. Then Ex and Ey are isogenous precisely if τ ∈ GL+
2 (Q)σ. As j−1(x)

is an SL2(Z)-orbit in H, this condition is independent of the pre-image chosen. We will

then say that x, y (like τ, σ) are Hecke equivalent and in the same Hecke orbit (it is

obviously an equivalence relation). The following definition is therefore independent of

the chosen Σ ⊂ j−1(S) provided it contains at least one pre-image of each s ∈ S.
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3.3. Definition. Let S ⊂ Y (1)(C) and d ∈ N+. Let Σ ⊂ H consist of one element

σ ∈ j−1(s) for each s ∈ S. An (S, d)-special point of X is the image under π of a

(Σ, d)-special point of U .

Galois orbits of special points

In this subsection we take

X = B1 × . . .×Bn ×G`

and fix a finite subset S ⊂ Y (1)(C). We may assume that the elements of S are

non-special and pairwise Hecke inequivalent. We set K = Q(S).

3.4. Definition. Let u ∈ X be an S-special point. We define the S-complexity of

u, denoted ∆S(u), as follows. Let us write u = (P1, . . . , Pn, y1, . . . , y`) with Pi ∈ Ei a

torsion point of order Ti and yi ∈ G torsion of order Ri.

1. If Ei is CM, we let Di be the discriminant of the endomorphism ring of Ei, and

take ∆(Pi) = max(|Di|, Ti).
2. If Ei is isogenous to Es for some s ∈ S, we let Ni be the minimal degree of a

cyclic isogney Es → Ei and take ∆(Pi) = max(Ni, Ti).

3. We take ∆(yi) = Ri.

Finally we set

∆S(u) = max
(
∆(Pi),∆(yj)

)
.

3.5. Lemma. With X,S fixed as above and K = Q(S), there exist positive constants

c, δ, depending on X,S, such that, if u ∈ X is S-special,

[K(u) : K] ≥ c∆S(u)δ.

Proof. It suffices to show there exist c, δ > 0 such that, if P is one of the Pi, and y is

one of the yi,

[K(P ) : K] ≥ c∆(P )δ, [K(y) : K] ≥ c∆(R)δ.

In the following, ci, δi are positive constants depending (at most) on X,S.

Let B be a transcendence basis of K and d = [K : Q(B)]. We deal with K(y) first.

We have [Q(y) : Q] ≥ c1∆δ1 for suitable c1 for any δ1 < 1, by estimates for the Euler

φ-function (see e.g. Hardy and Wright [20, Th. 327]). Then

[K(y) : K] ≥ (1/d)[Q(B, y),Q(B)] = (1/d)[Q(y) : Q] ≥ (c1/d)∆(y)δ1 .

The argument for P is similar. First suppose that P lies in a CM fibre E whose

endomorphism ring has discriminant D. Suppose T ≤ |D|8. Let v = j(E). By Siegel

we have

[Q(v) : Q] ≥ c2(δ)|D|δ2

for suitable positive c2(δ) (ineffective) for any δ2 < 1/2. Since there is a rational map

from B to the corresponding modular curve Y , and a finite map from Y to Y (1),

[K(P ) : K] ≥ (1/d)[Q(B,P ) : Q(B)] = (1/d)[Q(P ) : Q] ≥ c2|D|δ2 ≥ c3∆(P )δ3
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by our assumption on T . On the other hand if T ≥ |D|8, we have (by Silverberg [48],

Corollary 3 and Lemma 5), if L is a field of definition for E

[L(P ) : L] ≥ c4T δ4
(
[L : Q]

)−1

for suitable positive c4 provided δ4 < 1; take say δ = 1/2. A field of definition L for E

may be taken with [L : Q] ≤ c5[Q(v) : Q] ≤ c6|D| ≤ c6T 1/8 (effectively) and so

[K(P ) : K] ≥ c6[Q(P ) : Q] ≥ c7T 1/4 = c7∆(P )1/4.

Finally we suppose that P lies on E having a cyclic isogeny of degree N to Es,

s ∈ S. Suppose first that s is algebraic. Suppose T ≤ N8. By the results of Masser

and Wüstholz [27] (or their subsequent improvements [8, 29]) we know that

[Q
(
j(E), j(Es)

)
: Q
(
j(Es)

)
] ≥ c8Nδ8

for suitable positive c8, δ8 (c8 depends on Es but we may take δ8 = 1/(4 + o(1)) [29]).

Then

[K(P ) : K] ≥ (1/d)[Q(B,P ) : Q] ≥ c9Nδ8 ≥ c9∆(P )δ9 .

So suppose T ≥ N8. We have an isogeny φ : Es → E of degree N . Let Q ∈ φ−1(P ), a

point of order at least NT . By results of Masser [26],

[Q(Q) : Q] ≥ c10(NT )δ10 ≥ c10T
δ11

so that

[Q(P ) : Q] ≥ c10T
δ11/N ≥ c11T

δ12

and then

[K(P ) : K] ≥ c12[Q(P ) : Q] ≥ c13T
δ12 ≥ c13∆(P )δ13 .

If s is transcendental we assume s ∈ B then [Q(j(E)) : Q(j(Es)] = deg ΦN and the

rest of the argument is the same.

Height bounds for special points

We need to show that the pre images in U of special points in X lying in a fixed

fundamental domain for the Γ-action have height that is bounded by a power of their

complexity.

Suppose y ∈ G is a special point, a root of unity of (minimal) order R. Then the

pre image ζ ∈ FG of y is of the form ζ = 2πiq where q ∈ Q and H(q) ≤ R (in fact

H(q) = R).

Consider now the uniformisation π : H×C→ B of an elliptic modular surface B,

with fundamental domain FB .
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3.6. Lemma.

1. If P ∈ B is special then its pre-image (τ, z) ∈ F corresponds (in the real

coordinates) to a point (x+ iy, u+ vτ) where x ∈ Q, y is quadratic, and u, v ∈ Q, and

H(x, y, u, v) ≤ C∆(P ).

2. If P ∈ B is s-special but not special, where s ∈ C with pre-image σ ∈ F0,

then the pre-image (τ, z) ∈ F of P has z = u + vτ with u, v ∈ Q and there is a

g =

(
a b
c d

)
∈ GL+

2 (Q) with τ = gσ such that

H(u, v, a, b, c, d) ≤ C∆(u)10.

Proof. 1. The assertion for τ is (easy and) established in [34, 5.7]. For z it is easy.

2. The assertion for z is again easy. For τ it is (not hard and) in [19, 5.2].

4. Special subvarieties

For this section (and the next) it is convenient to omit the Ei factors from X, by

viewing Ei as the corresponding fibre of some elliptic modular surface. Let then

X = B1 × . . .×Bn ×G` × Ck, U =
(
H× C

)n × C` × Ck.

We define “linear”, “weakly special” and “special” subvarieties of U . We start by

defining them in a product of elliptic modular surfaces.

Linear subvarieties of UX for X = B1 × . . .×Bn

4.1. Definition. Let n be a non-negative integer. An augmented partition will mean a

collection T of disjoint subsets Ta, a = 1, . . . ,#T of {1, . . . , n}, each with a distinguished

subset T d
a ⊂ Ta (with T d

a = Ta and T d
a = ∅ allowed). We set T f

a = Ra − Rd
a, the

complementary set. The underlying set of T we denote T = ∪aTa.

For a subset A ⊂ {1, . . . , n} we let

UA =
(
H× C

)#A
coordinatised by τj , zj , j ∈ A. We let

XA =
∏
j∈A

Bj

and we have a uniformisation

πA : UA → XA.

invariant under the corresponding product ΓA = Πj∈AΓ+
j .
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Let T be an augmented partition whose underlying set is A. For each partitand Ta
of T let jTa be the smallest index in Ta. We let SL2(R)A be SL2(R)#A whose elements

are tuples indexed by A, and we let

SL2(R)T ⊂ SL2(R)A

be the set of tuples g = (gj) ∈ SL2(R)A with the condition that gjTa = 1 for each

a = 1, . . .#T . We now let

UT ⊂ UA × SL2(R)A

be the subset defined by the equations

τj = gjτjTa

where j ∈ Ta, a = 1, . . . ,#T, and

zj = 0

for all j ∈ T f
a, a = 1, . . . ,#T .

We view this as a family of subsets of UA parameterised by points of SL2(R)A,

the fibre over g ∈ SL2(R) being denoted

UT,g ⊂ UA.

We observe that UT,g is stable under the action of

GT,g =
∏
a

{(gjαg−1
j )j∈Ta

: α ∈ SL2(R)}+.

For now we make no rationality assumptions on g. But let us observe here that if

g ∈ GL+
2 (Q)A then UT,g, and we set XT,g = πA(UT,g), then the restriction πT,g of πA

to UT,g is invariant under

ΓT,g =
∏
a

⋂
j∈Ta

gjΓjgj ,

a product of congruence subgroups. It has a fundamental domain FT,g contained in

finitely many translates under ΓA of a fundamental domain for πA : UA → XA under

ΓA.

4.2. Definition. Let R,S, T be augmented partitions. We write R ≺ T if the following

conditions are satisfied:

1. Each partitand Ra of R is a union of partitands of T . We will write b ≺ a if

Tb ⊂ Ra.

2. Each Rd
a ⊂

⋃
b≺a T

d
b .

We write

(R,S) ≺ T

if R ≺ T , S ≺ T and R ∪ S = T .
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Suppose R,S, T are augmented partitions with (R,S) ≺ T . We write

SL2(R)(R,S),T ⊂ SL2(R)R × SL2(R)S × SL2(R)T

to denote the subset consisting of pairs (k, h, g) such that k, h are “consistent” with g,

meaning that if Tb, Tc ⊂ Ra and jRa = jTb then, for each j ∈ Tc, we have

hj = gjhc,

and for each j ∈ Tb we have

hj = gj

and likewise for S. Now suppose as before that A = T . Put B = R. We will use

variables σj , wj for UB to distinguish them from the corresponding variables in UA.

We let

MS = CN , N =
∑
a

#Sd
a

(
#Sf

a + 2
)
,

denote the space of coefficients p = (pjk, rj , sj) of a system of equations comprising

(assuming some choice of h ∈ SL2(R)S has been made), for each a = 1, . . . ,#S and

j ∈ Sd
a , an equation

`(hj , τj)zj = rjτjSa + sj +
∑
k∈Sf

a

pjk`(hk, τk)zk.

We let

LR = CN , N =
∑
a

#Rf
a

(
#Rf

a + 1
)
,

denote the space of coefficients q = (qjh) of a system of equations comprising (assuming

some choice of k ∈ SL2(R)R and a choice of (σj , wj) ∈ UB have been made), for each

a = 1, . . . ,#R and j ∈ Rd
a, an equation

`(kj , τj)(zj − wj) =
∑
h∈Rf

a

qjh`(kh, τk)zh.

4.3. Definition. With (R,S) ≺ T and further notation as above we define now the

subset

W (R,S),T ⊂ UA × UB × SL2(R)(R,S),T × LR ×MS

to be the tuples (τ, z, σ, w, k, h, g, q, p), satisfying:

1. (τ, z) ∈ UT,g;
2. (σ,w) ∈ UBk ;

3. τi = σi;

4. the equations corresponding to q ∈MS , given h;

5. the equations corresponding to p ∈ LR, given k and w.

11



In the applications T and g ∈ SL2(R)T will be fixed, and we view W (R,S),T as a

family of subsets

W
(R,S),T
(σ,w,k,h,g,q,p) ⊂ U

T,g

parameterised by the points of the projection

P (R,S),T
g ⊂ UB × SL2(R)(R,S),T × LR ×MS

of its points with the given g, and we in turn view P
(R,S),T
g as a family of copies UR,k

fibred over the points with the given g and k of SL2(R)(R,S),T × LR ×MS .

4.4. Definition. A linear subvariety of UT,g is a subvariety of the form

W
(R,S),T
(σ,w,k,h,g,q,p)

for some (σ,w, k, h, g, q, p) ∈ P (R,S),T
g . Abusing the notation, we refer to W

(R,S),T
(σ,w,k,h,g,q,p)

as the translate of W
(R,S),T
(k,h,g,q,p) by (σ,w) ∈ UR,k.

We may observe that UT,g is a linear subvariety of itself by taking (R,S) ≺ T with

R empty and S to be the same partition as T but Sd
a = T f

a, with equations zj = 0 for

j ∈ Sd
a .

Weakly special and special subvarieties of UX for X = B1 × . . .×Bn

4.5. Definition. A linear subvariety W
(R,S),T
(σ,w,k,h,g,q,p) is called weakly special if

1. The components of k, h, g all belong to the image of GL+
2 (Q) in SL2(R);

2. The components of q all belong to Q;

3. For each partitand Ra of R, either the corresponding coordinates of p belong to

Q or they all belong to some imaginary quadratic field and the corresponding

σj , j ∈ Ra all belong to this same field.

Since the σj corresponding to j ∈ Ra are (for a weakly special subvariety) related

by elements of GL+
2 (Q), the last condition is equivalent to one of them being in the

appropriate quadratic field.

We will refer to an element g ∈ SL2(R) as belonging to GL+
2 (Q) if it belongs to

the image of the latter in the former. One may observe now that UT,g is weakly special

just if g consists of matrices from GL+
2 (Q).

4.6. Definition. Let Σ ⊂ H. A weakly special subvariety W
(R,S),T
(σ,w,k,h,g,q,p) is called

Σ-special if (σ,w) is a Σ-special point of UB .

It is easily seen that these subgroup schemes over special subvarieties in Hn are

indeed special subvarieties as defined in [40, 41].

12



Linear, weakly special, and special subvarieties of UX for X = G`

Now we have to define analogous notions for G`, where the combinatorial baggage

is much lighter. Let ` be a non-negative integer. Let B ⊂ A ⊂ {1, . . . , `}. We write

CA = C#A

coordinatised by ζj , j ∈ A, and for CB we will use ηj , j ∈ B to distinguish the variables

from the two spaces. We also write GA for the corresponding factors in G`, and we

have

expA : CA → GA.

We let

NB,A = CB×(A−B)

denote the space of coefficients r = (rjm) of a system of equations comprising, for each

j ∈ B, an equation

ζj − ηj =
∑

m∈A−B
rjmzm.

4.7. Definition. With B ⊂ A ⊂ {1, . . . , `} and further notation as above we define

the subset

WB,A ⊂ CA × CB ×NB,A

to be the set of tuples (ζ, η, r) satisfying the above equations.

We view WB,A as a family of subsets WB,A
(η,r) ⊂ CA parameterised by points (η, r) ∈

CB ×NB,A.

4.8. Definition. An exp-linear subvariety of CA is a fibre of WB,A for some B ⊂ A.

A linear subvariety WB,A
(η,r) is called exp-weakly special if the coordinates of r are all

rational. An exp-weakly special subvariety WB,A
(η,r) is called exp-special if η ∈ CB is a

special point.

Linear, weakly special, and special subvarieties of UX for X = Ck

Finally we need the analogous notions for Ck as uniformisation of itself by the

identity map.

4.9. Definition. Let d ∈ N+. An id-linear subvariety of Ck is a Zariski closed

(irreducible) subvariety of Ck. An id-weakly special subvariety of Ck is the same thing,

and a (d-id)-special subvariety of Ck is a Zariski closed (irreducible) subvariety with a

Zariski-dense set of d-special points.

Linear, weakly special, and special subvarieties of U

Let R be an augmented partition, A ⊂ {1, . . . , `}, k a non-negative integer. Let

U =
(
H× C

)R × CA × Ck.

4.10. Definition. A linear subvariety of U is a cartesian product of linear subvarieties

in (H× C
)R

, CA, and Ck. Likewise for weakly special and special subvarieties.
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4.11. Definition. A weakly special subvariety T ⊂ X is the image π(W ) where W is

a weakly special subvariety of U . Likewise for special subvarieties.

A weakly special T ⊂ X is a subvariety (Zariski closed and irreducible). To

see this, note we have observed that T is the image of W over a finite number of

fundamental domains, hence its algebraicity may be seen for example by results of

Peterzil-Starchenko [32, Theorem 5.3]. We observe a further fact in this direction

below. In particular, the image

XT,g,A = π(UT,g × CA) ⊂ XT ×GA

is a special subvariety.

We now assume that there are no Ck factors:

X = B1 × . . .×Bn ×G`

Then the linear subvarieties of U come in finitely many semialgebraic families

W (R,S),T,(B,A)

indexed by the combinatorial data: (R,S) ≺ T , B ⊂ A ⊂ {1, . . . , `}. In particular,

the linear subvarieties form a definable (even semialgebraic) family. A countable set of

parameters (k, h, g, q, p, r) give rise to weakly special subvarieties. For a given choice

of these we may take

D = ((R,S), T, k, h, g, q, p, A,B, r)

and view the set W (R,S),T,(B,A) with those parameters fixed as a set

WD ⊂ UT,g × CA × UR,k × CB

which we view as a family of weakly special subvarieties

WD
((σ,w),η) ⊂ U

T,g × CA

parameterised by points

((σ,w), η) ∈ UD = UR,k × CB .

The special subvarieties correspond to the parameters being special points.

4.12. Definition. A set D as above we call a weakly special format.

4.13. Proposition. With D a weakly special format as above, the set

WD ⊂ UT,g × CA × URk × CB

is a special subvariety.
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Proof. Immediate from the definitions.

Therefore, with XD = πD(UD), we have that π(WD) is a special subvariety

TD ⊂ X ×XD,

and corresponds to a family of weakly special subvarieties of X parameterised by the

points of XD. The fibre TDx ⊂ X is a special subvariety precisely if x ∈ XD is a special

point.

Recalling that UD = UR,k is a certain subvariety of UR, the uniformisation

UD → XD

is invariant under a group ΓD which is the cartesian product of (Γ∗i )
+ for suitable

congruence subgroups Γ∗i of Γi, with fundamental domain FD.

4.14. Proposition. The uniformisation

π : U × UD → X ×XD

has a fundamental domain consisting of (the intersection of U×UD with) finitely many

fundamental domains for the action of Γ× ΓA on U × UA.

Proof. Immediate by previous observations.

5. Ax-Lindemann-Weierstrass

In this section we continue to take

X = B1 × . . .×Bn ×G`m × Ck, U =
(
H× C

)n × C` × Ck,

and a Zariski closed algebraic subset V ⊂ X. We set

Z = π−1(V ), Z = π−1 ∩ F

the latter being a definable set (the former generally not).

By a maximal algebraic subvariety of Z we mean an algebraic subvariety W of U

in the sense of 2.4, with W ⊂ π−1(V ), and maximal among such objects.

5.1. Theorem. A maximal algebraic subvariety W ⊂ Z is weakly special.

Proof. The proof closely follows the scheme of proof of [34, 6.8], with which the reader

is assumed to be familiar, with modifications for the interaction between the H and C
factors parameterising elliptic modular surfaces. The subvariety W is parameterised by

algebraic functions on some choice of variables corresponding to the factors of U . The

variables for the H factors will be called H-variables. The variables for the C factors will

be called ℘-variables (respectively exp-variables, respectively id-variables) according
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as they correspond to elliptic modular factors (respectively G factors, respectively C
factors) of X.

Choice of parameterising variables

We choose a set of parameterising variables as follows. First we take a maximal set

of algebraically independent H-variables τi (so all other H-variables are algebraically

dependent on W on these). Next we choose a maximally independent (over the τi)

subset of the ℘-variables among which we denote by zj the ones whose corresponding

H-variable is among the τi, the others wa. Next we choose a maximal independent

(over the τi, zj , wa) of the exp-variables, calling these ζb. Finally we choose a maximal

set of independent id-variables, tc. The various sets of variables we will also regard as

tuples denoted τ, z, w, ζ, t.

The other variables are “dependent”, and parameterised by algebraic functions.

The “dependent” H-variables are parameterised by algebraic functions σi(τ). Among

the dependent ℘-variables we distinguish those that have a corresponding H-variable

among the τi, parameterising these by φi(τ, z, w), and those parameterising these by

ψi(τ, z, w). The dependent exp-variables are parameterised by θi(τ, z, w, ζ), and the

dependent id-variables by κ(τ, z, w, ζ, t). The tuples we denote σ, φ, ψ, θ, κ. For reasons

of brevity it is sometimes convenient to concatenate tuples into a single tuple and write

e.g. φψ. The dependencies are

σ = σ(τ), φψ = φψ(τ, z, w), θ = θ(τ, z, w, ζ) κ = κ(τ, z, w, ζ, t).

Then W may be parameterised locally as(
τ, z, w, ζ, t; σ, φ, ψ, θ, κ

)
where the semi-colon separates the free and dependent variables.

The τ -dependencies

Exchanging variables if need be, we are able (as is [34]) to take some “free” H-

variable, say τ1, to its boundary. We distinguish cases according to whether the cor-

responding ℘-variable is among the free variables, or the dependent ones, taking the

former case that it is z1 first. We write τ̂ for the tuple of free H-variables excluding τ1,

and ẑ for the free ℘-variables with free corresponding ℘-variables excluding z1. So we

have (
τ1, τ̂ , z1, ẑ, w, ζ, t; σ, φ, ψ, θ, κ

)
⊂ Z

locally on some product of open disks and an “upper-half disk” U1 for τ1 on its bound-

ary, and by analytic continuation everywhere, where now the dependencies are

σ = σ(τ1, τ̂), φψ = φψ(τ1, τ̂ , z, w), θ = θ(τ1, τ̂ , z, w, ζ), κ = κ(τ1, τ̂ , z, w, ζ, t).

We take g0 =

(
a b
c d

)
∈ SL2(Z) with a/c ∈ U1. Then we take g ∈ SL2(Z) of the

form

g = gs =

(
a b+ sa
c d+ sc

)
, s ∈ R.
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For sufficiently large s and τ ∈ U ′1, gτ1 ∈ U ′1 and all the parameterising functions are

well-defined and non-singular. Therefore we have(
gτ1, τ̂ , z1, ẑ, w, ζ, t; σ(gτ1, τ̂), φψθκ(gτ1, τ̂ , . . .)

)
⊂ Z

where the variables not indicated remain as previously. Then the Γ-transforms of this

locus are also contained in Z, in particular the g−1-image(
τ1, τ̂ , `g(τ1)z1, ẑ, w, ζ, t; σ(gτ1, τ̂), φψθκ(gτ1, τ̂ , z1, ẑ, . . .)

)
⊂ Z

for the same domains of the variables. For fixed τ1, τ̂ , w, ζ, t, the z1 dependence may

be extended to the whole z1-plane less finitely many points. Then we may change

variables calling `g(τ1)z1 again z1 to find(
τ1, τ̂ , z1, ẑ, w, ζ, t; σ(gτ1, τ̂), φψθκ(gτ1, τ̂ , z1/`g−1(τ1), ẑ, . . .)

)
⊂ Z.

Now we act by further elements of Γ to bring the locus back into our fixed fundamental

domain, where it will intersect Z in a set of the full dimension of W .

We choose elements hi to bring the dependent H-variables back to their funda-

mental domain. The action by hi affects the corresponding wi and ψi. If we set

hσ = (.., hiσi, ..), w∗ = (..,
wi

`hi
(σi)

, ..), ψ∗ = (..,
ψi

`hi
(σi)

, ..)

then we have(
τ1, τ̂ , z1, ẑ, w

∗, ζ, t; hσ(gτ1, τ̂), φψ∗θκ(gτ1, τ̂ , z1/`g−1(τ1), ẑ, w∗, . . .)
)
⊂ Z.

Now we may rename variables to replace w∗ by w and we find(
τ1, τ̂ , z1, ẑ, w, ζ, t; hσ(gτ1, τ̂), φψ∗θκ(gτ1, τ̂ , z1/`g−1(τ1), ẑ, .., wi`hi

(σi), ..)
)
⊂ Z.

Finally, we choose translations λi on the variables parameterised by the coordinates of

φψ∗, and µi translations of the coordinates of θ such that, writing λ, µ for the tuples

and

Wgs,h,λ,µ

for the locus(
τ1, τ̂ , z1, ẑ, w, ζ, t; hσ(gτ1, ..), φψ

∗(gτ1, .., z1/`g−1(τ1), .., wi`hi
(σi), ..

)
− λ,

θ
(
gτ1, .., z1/`g−1(τ1), .., wi`hi

(σi), .., ζ
)
− µ, κ

(
gτ1, .., z1/`g−1(τ1), .., wi`hi

(σi), .., ζ, t
))
,

we have

dimRWgs,h,λ,µ ∩ Z = dimRWgs,h,λ,µ.
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Now since all the functions here are algebraic, it is straightforward to see (as estab-

lished in [34, 5.3, 5.4, 5.5]) that, for a large integer s, the height of all the hi, `hi
, λi, µi

are bounded polynomially in s.

We may take an element of Γ corresponding to the data g0, s, h, λ, µ by taking

identity elements for the remaining group variables. Considering g0 to be fixed, the

corresponding element will be denoted

(gs, h, λ, µ) ∈ Γ.

For any g0 =

(
a b
c d

)
with a/c as above, sufficiently large real s, and any h, λ, µ in

the respective real groups we have an algebraic locus

W(gs,h,λ,µ)

given by(
τ1, τ̂ , z1, ẑ, w, ζ, t; hσ(gτ1, ..), φψ

∗(gτ1, .., z1/`g−1(τ1), .., wi`hi
(σi), ..

)
− λ,

θ
(
gτ1, .., z1/`g−1(τ1), .., wi`hi

(σi), .., θ
)
− µ, κ

(
gτ1, .., z1/`g−1(τ1), .., wi`hi

(σi), .., ζ, t
)
.

This is a definable family of open subsets of complex algebraic varieties. Then the set

R = Rg0 = {(gs, h, λ, µ) ∈ G : dimR
(
W(gs,h,λ,µ) ∩ Z

)
= dimRW}

(with certain coordinates of (gs, h, λ, µ) fixed as described above) is a definable set with

“many” rational (indeed integer) points. Here “many” means that, for some positive

c, δ, we have N(R, T ) ≥ cT δ for (arbitrarily) large T , where N(R, T ) counts the rational

points of R up to height T . And for (gs, h, λ, µ) ∈ R we have W(gs,h,λ,µ) ⊂ π−1(V ) by

analytic continuation.

Then R contains some semi-algebraic “blocks” (see [34, 3.4]) B that (as T in-

creases) contain arbitrarily many integer points. Thus we can choose (gs, h, λ, µ) de-

pending semialgebraically on some real parameter x such that the family

W (x) = W(gs,h,λ,µ)(x)

is contained in Z, and contains some W(gs,h,λ,µ) corresponding to an integer point

(gs, h, λ, µ)(x0) ∈ Γ

of R at a smooth point s0 (if all the integer points in B are in its singular set, then we

consider the singular set, which has some bounded degree in terms of the degree of the

blocks. Since we have “many” integer points, we eventually find a smooth one).

First we may observe that, near the smooth point (gs, h, λ, µ)(x0), we have

W (x) = W(gs,h,λ,µ)(x) ⊂ π−1(V )
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also for complex values of the parameter x. This is because for each fixed choice of values

for the “free” variables, the functions that define π−1(V ) are complex analytic functions

vanishing for real x in a neighbourhood of x0, which therefore vanish identically.

Now suppose that one of the functions

τ∗ = hi(x)σi
(
gs(x)τ1, τ̂

)
∈ C(τ1, τ̂ , x)

is nonconstant. Then x is algebraic over

C(τ1, τ̂ , τ
∗)

and we have an algebraic subvariety W ′∩π−1(V ) of dimension dimW+1 parameterised

by (
τ1, τ̂ , τ

∗, z1, ẑ, w, ζ, t; . . .
)
.

But since W was assumed to be maximal, its Γ translate W(gs,h,λ,µ)(x0) is also maximal.

So such a W ′ contradicts our hypothesis on W . Thus the function

hi(x)σi
(
gs(x)τ1, τ̂

)
must be constant.

Now suppose that σi does not have its real locus coincident with that of τ1. Then

by a suitable choice of fundamental domain for the corresponding variable, and small

enough domain for τ1, we can take hi = 1. However, gs(x) is certainly non-constant,

and we conclude that σi does not depend on τ1. The same argument shows that none

of the functions θi, κj depend on τ1.

Suppose then that σi does have its real axis coincident with τ1. Considering two

Γ-points on the x-curve we find, as in [34, p1817], that σi satisfies an identity, namely

σ(gτ) = hσ(τ), g = gs1g
−1
s2 =

(
1− ac(s2 − s1) a2(s2 − s1)
−c2(s2 − s1) 1 + ac(s2 − s1)

)
, h ∈ SL2(Z).

We may choose families gt for any a/c in the real boundary of τ1, and it follows as in

[34, p1817-1818] (or see [35]) that σi is itself an SL2(R) transformation, and indeed is

given by an element of GL+
2 (Q). Then σi depends only on τ1, as an element of SL2(R)

cannot depend complex algebraically on another variable.

This takes care of the dependencies of the σi on τ1 in this case (that the ℘-variable

associated to τ1 was among the free variables). The other case however may be argued

with only a slight variation. We then have W ⊂ Z parameterised by(
τ1, τ̂ , z, w, ζ, t; σ, φ1, φ̂, ψ, θ, κ

)
on some suitable product of disks and an “upper-half disk” for τ1. Here φ1 parameterises

the ℘-variable z1 associated to τ1. Now for families gs as above an sufficiently large s

we have (
gτ1, τ̂ , z, w, ζ, t; σ(gτ1, ..), φ1(gτ1, ..), φ̂ψθκ(gτ1, ..)

)
⊂ Z
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whence (
τ1, τ̂ , z, w, ζ, t; σ(gτ1, ..), `g(τ1) φ1(gτ1, ..), φ̂ψθκ(gτ1, ..)

)
⊂ Z.

Then as before(
τ1, τ̂ , z, w

∗, ζ, t; hσ(gτ1, ..), `g(τ1) φ1(gτ1, ..), φ̂ψ
∗θκ(gτ1, ..)

)
⊂ Z

from which, after renaming variables, the locus(
τ1, τ̂ , z, w, ζ, t; hσ(gτ1, ..), `g(τ1) φ1(gτ1, .., wi`hi

(σi), ..), φ̂ψ
∗θκ(gτ1, ..wi`hi

(σi), ..)
)

is contained in Z and the argument proceeds in the same way to show that σi is either

independent of τ1 or depends only on τ1 through an element of GL+
2 (Q).

Thus, we see that the dependencies among the non-constant H variables are given

pairwise by elements of GL+
2 (Q). Also we have seen that the θi, κj do not depend on

the τa. Similarly, a dependent ℘-variable cannot depend on any H-variable other than

the one it is associated to, because we can carry out the argument to vary W without

having to “move” this variable.

The z and w dependencies

Now we consider the dependencies among ℘-variables. Let us consider some φi.

Among the free ℘-variables we now denote by zj those whose associated H-variable is

free or independent of τi, and by wk those whose associated H-variable is dependent

on τi or is τi itself. We have

W :
(
. . . , τi, . . . , zj , . . . , wa, . . . , ζb, . . . , tc, . . . ; . . . , φi(..τi, .., zj , .., wa, ..), . . .

)
⊂ Z.

We find some region where φi and all the other algebraic functions remain defined for

zj +sλ, where λ ∈ Λj the lattice in the zj variable, for all sufficiently large real positive

s. Then the maximality of W leads to identities (as in [34, p1819])

φi(. . . , zj + s2λ, . . .) = φi(. . . , zj + s1λ, . . .)− ατi − β.

Here s1, s2 are large positive integers s1 6= s2, α, β ∈ Z, and the identity holds for all zj
and all other variables. Differentiating with respect to zj , the algebraic function with

a period is constant, and we see that φi depends linearly on zj , say

φj = qzj + b

where q, b may of course depend on the other variables. However, since s1, s2 ∈ Z we

see that

Nqλ

for some 0 6= N ∈ Z, and since we may take any λ ∈ Λj we in fact have

NqΛj ⊂ Λi.
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This restricts q to a countable set (so it cannot depend on the other variables), moreover

as the H-variable associated to zj is independent of τi, we must have q = 0.

If we repeat the same argument with the wk, we also find linear dependence in the

above form. Then q is again independent of all other variables, and we find that

φi =
∑
k

qikwk + b(τi)

where NikqikΛk ⊂ Λi. Now the lattices are in the same Hecke orbit, but will not have

CM for general τi, so we have qk ∈ Q. Now we consider the dependence on τi. We take

a positive integer p such that

g =

(
1 ps
0 1

)
∈ Γi, s ∈ Z.

We may assume τi in a region where b(gτi) is defined for all sufficiently large real s.

We have(
..., gτi, ..., zj , ..., wa, ..., ζb, ..., tc, ...;σ(.., gτi, ..), . . . , φi(.., gτi, .., wa, ..), . . .

)
⊂ Z

and we take the g−1-image to get(
..., τi, ..., zj , ..., wa, ..., ζb, ..., tc, ...;σ(.., gτi, ..), . . . , `g(τi)φi(.., gτi, .., wa, ..), . . .

)
⊂ Z.

We transform σ back to our fixed fundamental domain to see that the locus(
.., τi, .., zj , ..,

wa
`hk

(σk)
, .., ζb, ...tc, ...;hσ(.., gτi, ..), ..., `g(τi)φi(.., gτi, .., wa, ..), ...

)
⊂ Z

and rename variables(
.., τi, ..zj , .., wa, .., ζb, .., tc, ..;hσ(.., gτi, ..), ..., `g(τi)φi(.., gτi, .., `hk

(σk)wk, ..), ...
)
⊂ Z.

Then φi (and the other ℘-variables) can be brought back to a fixed fundamental region

by a suitable (respective) lattice element. This leads to an identity

φi(.., τi + ps, .., `hk
(σk)wk, ..) = φi(.., τi, .., wk, ..)− ατi − β.

We may consider this identity in particular with all wk = 0. This gives

b(τi + ps) = b(τi)− ατi − β

for suitable α, β ∈ Z. Differentiating twice, the algebraic function with a period is

constant and we see that

b(τi) = qτ2
i + rτi + s
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where moreover q, r ∈ Q. Now we consider transforming τi by a general family of g as

before. This leads to

`g(τi)
(∑

k

qk`hk
(σkgτi)wk + b(gτi)

)
=
∑
k

qkwk + b(τi)− ατi − β.

Considering all wk = 0 shows that q = 0 and r, s ∈ Q, i.e. that

φi =
∑
k

qikwk + rτi + s, qik, r, s ∈ Q

where wk are the free ℘-variables whose associated H-variable is dependent on τi (pos-

sibly τi itself).

Now we consider the ℘-dependencies of ψi. Here there are two cases. In the first

the associated H-variable σi depends on some free τj . We can exchange σi and τj , and

argue as above. This leads to the same form as above

ψi =
∑
k

qkwk + rσi + s, qk, r, s ∈ Q

where wk are the ℘-variables whose associated H-variable is dependent on τj (possibly

τi itself). In the second case the associated H-variables is constant. Now the same

analysis finds

ψi =
∑
k

qikwk + bi

over wk whose associated H-variables are constant with qk such that NqkΛk ⊂ Λi for

suitable integer N (some fixed σi may have CM, so it is possible that the qk belong to

the associated field).

The ζ dependencies

We consider now the dependence of the θi, which we have already seen do not

depend on the τj . We denote all the free ℘-variables by zj . Proceeding with a similar

analysis changing zj to zj + sλ, λ ∈ Λj we find that

θi = qzj + b

where qΛj ⊂ 2πiZ. This however forces q = 0. Thus θi does not depend on any of

the free ℘-variables. By similar arguments the dependence of the θi on the ζj must be

linear of the form

θi =
∑

qi`ζ` + bi, qi` ∈ Q, bi ∈ C.

Finally, the id-variables cannot depend on any of the variables except the t-

variables. This completes the proof.
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6. Proof of Theorem 1.1

In this section we will prove Theorem 1.1, but we start with a version omitting

the Ei-factors and the Ck factors. Let

X = B1 × . . .×Bn ×G`.

6.1. Theorem. Let V ⊂ X × Ck be a Zariski closed algebraic subset, let Σ ⊂ H be

a finite set, and d a positive integer. Then there is a finite set D = D(V ) of weakly

special formats and a positive integer ∆ = ∆(V,Σ, d) with the following property.

Let y ∈ Ck be a d-special point and Vy ⊂ X the corresponding fibre of V . If

T ⊂ Vy is a maximal (Σ, d)-special subvariety then there exists D ∈ D and u ∈ UD a

(Σ, d)-special point with ∆(u) ≤ ∆ such that

T = π
(
WD
u

)
.

Proof. Replacing V by the Zariski closure of its Σ-special points, we may assume that

V is defined over some finite algebraic extension of a finitely generated extension of Q.

Viewing V as a definable family of fibres Vy ⊂ X, the set of D such that some translate

WD
u ⊂ Vy and is maximal among such translates is a definable set, but countable by

Ax-Lindemann-Weierstrass. Therefore this set is finite, and we denote it D.

Now let h ∈ {0, . . . ,dimX} and suppose it is established that there is a ∆h such

that, for y ∈ Ck a d-special point, any maximal specialW ⊂ Vy of dimension dimW ≥ h
is of the form W = WD

u where u ∈ UD with ∆(u) ≤ ∆h (and note that we know this

for h = dimX), then we establish the same assertion for h− 1.

Let then Dh−1 ⊂ D be the subset of elements D whose translates WD
u have di-

mension h − 1, and let y ∈ Ck be a d-special point. Let V Dy ⊂ XD
y be the subvariety

of points πD(u) ∈ XD for which WD
u ⊂ Vy (Zariski closed subvariety by 4.13). Write

ZDy = π−1
D (V Dy )∩FD and suppose u ∈ ZDy a Σ-special point such that WD

u ⊂ Vy but is

not contained in any special subvariety WD′

u′ ⊂ Vy of larger dimension. The degree of

the field Ky,h of definition of Vy and all its special subvarieties of dimension ≥ h over

K is bounded depending only on V,Σ, d, and so u has, for suitable positive c, δ, at least

c∆(u)δ

conjugates u∗ over this field for which WD
u∗ is likewise not contained in any special

subvariety of larger dimension. Each such point gives rise to an Σ-special point σ∗ ∈
ZDy . Now apply the Counting Theorem to the family V as in [19]; the coordinates

τ of the σ∗ that are Hecke equivalent to σ ∈ Σ may not be algebraic, but they are

the images of rational points in GL+
2 (R) under the map g 7→ gσ, and the Counting

Theorem is applied to a definable subset Y in a suitable product of H and GL+
2 (R),

as in [19, Proof of Theorem 3]. The height estimate in the GL+
2 (R) factors is provided

by Lemma 3.6, and one finds that the Σ-special points give rise to points in Y which
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are rational in the GL+
2 (R) coordinates, quadratic in the H coordinates and of height

at most

C∆(u)K

for suitable constants C,K. The points are thus contained in c∆(u)ε blocks with

ε = δ/2 say and these blocks are projected back to Hn to obtain c′∆(u)ε there. If

∆(u) is sufficiently large compared to ∆h, C,K, c, δ this means that Zy contains a

semialgebraic variety of larger dimension than WD
u , and by [36, Lemma 4.1] there is

a complex algebraic subvariety of π−1(V ) containing it, and by Theorem 5.1 a weakly

special subvariety of larger dimension containing at least one (in fact many) of these

points, which must then be special. This contradicts the fact the WD
u∗ are not contained

in any larger special subvariety, and implies that ∆(u) ≤ ∆h−1 for some suitable

constant ∆h−1(V ).

Repeating this argument leads to the conclusion for h = 0, which proves the

theorem with ∆ = max(∆dimX , . . . ,∆0).

Now let

X = B1 × . . .×Bn ×G` × Ck.

6.2. Theorem. Let V ⊂ X be a Zariski closed algebraic subset, Σ ⊂ H a finite set,

and d a positive integer. Then V contains only finitely many maximal (Σ, d)-special

subvarieties.

Proof. Viewing V as a family of subsets of B1× . . .×Bn×G` and applying Theorem

6.1, we see that there are only finitely many possibilities for (D,u) for a maximal special

subvariety WD
u ⊂ Vy for any d-special y ∈ Ck. For each such (D,u) we consider the

d-special points of Ck such that WD
u ⊂ Vy. The Zariski closure of this set consists of

finitely many d-special subvarieties of Ck, Y (D,u). Then the finite set of WD
u × Y (D,u)

includes all the maximal (Σ, d)-special subvarieties of V .

Now we return to the setting of Theorem 1.1. We will prove a more general version

allowing U -special points in
∏
Bi, and d-rational points in Ck. Let

X = B1 × . . .×Bn × E1 × . . .× Em ×G` × Ck.

6.3. Definition. Let X as above, S ⊂ Y (1)(C) a finite set, and d a positive integer.

An (S, d)-special point of X is a point

R = (P1, . . . , Pn, Q1, . . . , Qm, y1, . . . , y`, t1, . . . , tk)

such that

1. Each Pi ∈ Bi is a torsion point on an S-special fibre;

2. Each Qj ∈ Ej is a torsion point;

3. Each yh is a torsion point;

4. Each tb is a d-special point.
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Now suppose X,S, d as above. We want to define (S, d)-special subvarieties of X.

Now some of the Ei may be S-special, and then we can regard X as a subvariety of

X ′ obtained by adding additional elliptic modular factors B′i and regarding V ⊂ X ′.

Therefore in framing the definition we may assume that the Ei are all non-S-special.

6.4. Definition. Let X,S, d as above, with all the Ei non-S-special. Then an (S, d)-

special subvariety of X is a cartesian product of

1. An S-special subvariety of B1 × . . .×Bn;

2. A torsion coset of E1 × . . .× Em;

3. A torsion coset of G`;
4. A d-special subvariety of Ck.

6.5. Proposition. Suppose X,S, d as above with all the Ei non-S-special. Let

S∗ = S ∪ {j(Ei), i = 1, . . . ,m}

and put

X ′ = B1 × . . .×Bn ×B′1 × . . .×B′m ×G` × Ck.

If T ⊂ X ′ is an (S∗, d)-special subvariety of X which contains an (S, d)-special point

of X then it is an (S, d)-special subvariety of X.

Proof. Since the Ei are not S-special, there cannot be relations between the τ -

coordinates in X ′ corresponding to them and the other τ -coordinates, and T must

factor into a product.

6.6. Theorem. Let S ⊂ Y (1)(C) be a finite set and d a non-negative integer. Let V ⊂
X be a Zariski closed algebraic subset. Then V contains only finitely many maximal

(S, d)-special subvarieties.

Proof. Let S∗ = S ∪ {j(Ei), i = 1, . . . ,m}. View V ⊂ X ⊂ X ′ as above and apply

Theorem 6.2 to find finitely many maximal (S∗, d)-special subvarieties of V . Take

the finite subset that contain (S, d)-special points of X. Then these are the maximal

(S, d)-special subvarieties of V .

6.7. Remarks. 1. One would like to extend “finite generation” to the fibres. This

would encompass Mordell-Lang in products of elliptic curves and G`.
2. It would be interesting to see if the the present methods could prove the special

point problem for powers Pn of the Poincaré biextension P of an elliptic modular curve

studied in [4, 5, 6].

7. Linear relations between singular moduli

Let us call elements g1, . . . , gn ∈ GL+
2 (Q) “independent modulo SL2(Z)” if they

are in distinct SL2(Z) orbits when considered in PSL2(R), i.e. there are no relations

gi = γgj as fractional linear transformations of H where γ ∈ SL2(Z).
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7.1. Proposition. Suppose g1, . . . , gn ∈ GL+
2 (Q) are independent modulo SL2(Z).

Then the functions

1, j(g1τ), . . . , j(gnτ)

on H are linearly independent over C.

Proof. We use the q-expansion

j(τ) =
∞∑

m=−1

c(m)qm =
1

q
+ 744 +

∞∑
m=0

c(m)qm

where q = exp(2πiτ) and c(m) ∈ Z are well known to be positive, in fact they grow

rapidly by a result of Petersson (see e.g. [30, §3, eqn. (24), p 202]).

If g ∈ GL+
2 (Q) we may write g = γh where γ ∈ SL2(Z) and hτ = rτ + s where

r, s ∈ Q with 0 < r and 0 ≤ s < 1. Let us write g ∼ rτ + s in this situation. The

gi are SL2(Z)-inequivalent iff the corresponding linear functions riτ + si are distinct.

Different gi may have the same ri, so we will re-index them as gij so that

gij ∼ riτ + sij , r1 < . . . < rk.

Suppose the functions are linearly dependent over C, so we have a relation∑
i,j

aijj(gijτ) = b, aij , b ∈ C.

Let us consider τ = it with t ∈ [1,∞) . We have q = exp(−2πt) and so

(∗)
∞∑

m=−1

c(m)
∑
i,j

aijq
mri exp

(
2πimsij

)
= b

identically in q. Thus, apart from the constant term

744
∑
i,j

aij = b

the coefficient of each distinct power of q on the left-hand side of (∗) must vanish.

Now it is easy to see that for infinitely many suitable m, the only contribution to the

coefficient of tmr1 comes from the r1 terms (just take m to be a large prime number),

and so, since c(m) 6= 0, for infinitely many m we have∑
1,j

a1j exp
(
2πims1j

)
= 0.

As the exp(2πis1j) are distinct, we must have a1j = 0 for all j. Then the same holds

for r2, . . . , rk and finally we see that b = 0 as well.
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In the following, a “partition” of {1, . . . , N} will mean a pair (A0, {A1, . . . , AM})
where A0 ⊂ {1, . . . , N}, possibly empty, and A1, . . . , AM is a partition of {1, . . . , N}\A0

in the usual sense (no Aj , j > 0 is empty, and the partitands are unordered). We allow

A0 = {1, . . . , N},M = 0.

7.2. Proposition. Suppose V ⊂ Y (1)n is a linear subvariety defined over C. Then

a maximal weakly special Y ⊂ j−1(V ) has the following form. There is a “partition”

(A0, {A1, . . . , Ak}) of {1, . . . , n} and ci ∈ C for i ∈ A0 such that (z1, . . . , zn) ∈ Y

provided

zi = gijzj

for some gij ∈ SL2(Z) whenever i, j ∈ Ak, k > 0, and

zi = ci ∈ C

for each i ∈ A0.

Proof. Let Y ⊂ j−1(V ) be a maximal weakly special subvariety. Choose I maximal

such that the variables xi are algebraically independent on V . Then every other xj is

linearly dependent on them, so by Proposition 7.1 the corresponding zj must satisfy a

relation zj = gijzi for some i ∈ I, with gij ∈ SL2(Z) or be constant.

A weakly special subvariety T as in Proposition 7.2 is uniquely determined by the

“partition” A = (A0, {A1, . . . , Am}) and the tuple c = (ck : k ∈ A0). Let us denote

it TA,c. Let us say that a “partition” B = (B0, {B1, . . . , Bh}) is a refinement of A if,

for each i > 0, Bi ⊂ Aj for some j ≥ 0, while B0 ⊂ A0. If B is a refinement of A

but B 6= A then we must have h > m, and then the corresponding TB,d has bigger

dimension than TA,c.

7.3. Proposition. Let V ⊂ Y (1)n be a linear subvariety defined over C, and T ⊂ Cn

weakly special. Then T is a maximal weakly special subvariety of V if and only if:

1. T ⊂ V
2. T = TA,c for some “partition” A and tuple c

3. There is no refinement B of A with B 6= A and tuple d with di = ci for i ∈ B0

such that TB,d ⊂ V .

Proof. Clear from the discussion above.

7.4. Proposition. Let V ⊂ Y (1)n be a linear subvariety defined over C and T = TA,c
a weakly special linear subvariety as above. Then T ⊂ V if and only if, for any linear

equation
n∑
i=1

aixi = b

vanishing on V we have∑
i∈Aj

ai = 0, j = 1, . . . ,m, and
∑
i∈A0

aici = b.
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Proof. Take new variables ξj , j = 1, . . . ,m. Putting xi = ξj for i ∈ Aj , j = 1, . . . ,m

and αj =
∑
i∈Aj

ai we see that the above equation holds on T just if

k∑
j=1

αjξj = b−
∑
i∈A0

aici

for all choices of the ξj , which means that αj = 0, j = 1, . . . ,m and b =
∑
i∈A0

aici as

required.

We also observe the following.

7.5. Proposition. Let V ⊂ Y (1)n be linear, defined over C, and S ⊂ Y (1)(C). If T is

a maximal S-special subvariety of V then it is also a maximal weakly special subvariety

of V .

Proof. Suppose T = TA,c. Since T is special, all the ci are special. If TB,c is weakly

special with T ⊂ TB,d then di = ci are special, so TB,d is special.

In G`, if we consider linear relations

V :
∑̀
i=1

aixi = b

to be solved in roots of unity xi = ζi we see that, if (ζ1, . . . , ζ`) is a solutions for which

some subsum
∑
i∈A aiζi vanishes, then we can multiply the corresponding ζi, i ∈ A by

an arbitrary root of unity ζ, yielding a torsion coset of positive dimension. Torsion

cosets T ⊂ V thus corresponds to a “partition” (A0, {A1, . . . , Am}) of {1, . . . , n}, and

tuple ζ = (ζ1, . . . , ζn) of roots of unity such that
∑
i∈Ak

aiζi = 0 for i = 1, . . . , k while∑
i∈A0

aiζi = b. Putting A = (A0, {A1, . . . , Am}) and ζ = (ζi : i ∈ A0) we may call

this coset TA,ζ . The parameter ζ is unique if we specify that ζj = 1 for the smallest

index in each Aj , j ≥ 1.

Then TA,ζ is maximal if there is no refinement (B0, {B1, . . . , Bh}) of the parti-

tion A = (A0, {A1, . . . , Am}) and tuple η = (η1, . . . , ηn) of roots of unity with the

same properties such that TA,ζ ⊂ TB,η but B 6= A. The zero-dimensional torsion cosets

T ⊂ V which are maximal correspond to the indecomposable solutions (no subsum van-

ishes) in the terminology of Dvornicich-Zannier [15]; sometimes called non-degenerate

solutions.

According to Mann’s theorem [25], see also refinements and extensions in [15],

given d, ` there are only finitely many indecomposable solutions, and indeed this is

obtained with explicit effective bounds. We state a more general form of Theorem 1.3

allowing S-special j-invariants for any finite S ⊂ C and d-special coefficients.

7.6. Definition. Let d be a positive integer, let n, ` non-negative integers and let

S ⊂ Y (1)(C).

1. A tuple (j1, . . . , jn, ζ1, . . . , ζ`) is called an (S, d, n, `)-tuple if the ji are S-special,

the ζj are roots of unity, and they satisfy a non-trivial relation

a1j1 + . . .+ anjn + b1ζ1 + . . .+ b`ζ` + c = 0

where ai, bj , c are algebraic numbers, each of degree ≤ d over Q.
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2. An (S, d, n, `)-tuple is called non-degenerate if

(i) there does not exist a non-empty subset I ⊂ {1, . . . , n} and a singular modulus j

such that ji = j for all i ∈ I and
∑
i∈I ai = 0,

(ii) no proper (non-empty) subsum of b1ζ1 + . . . + b`ζ` + c vanishes (but c may be

absent if ` = 0).

7.7. Theorem. For given d, n, ` and finite S ⊂ Y (1)(C) there are only finitely many

non-degenerate (S, d, n, `)-tuples.

Proof. Let d, n, `, S be given and apply Theorem 6.2 to the variety

V ⊂ X, X = Cn ×G` × Cn+`+1

defined by

a1x1 + . . .+ anxn + b1y1 + . . .+ b` y` + c = 0

where (x1, . . . , xn) ∈ Cn, (y1, . . . , y`) ∈ G`, and p = (a1, . . . , an, b1, . . . , b`, c) ∈ Cn+`+1.

For p ∈ Cn+`+1 we let Vp ⊂ Cn × G` be the fibre of V . We see that, for any p

whose coordinates have degree ≤ d over Q, there are just finitely many possibilities for

maximal

T = TA,j × TB,ζ ⊂ Vp.

We see that TA,j determines j uniquely, as does TB,ζ determine ζ (with the above

normalising assumption ζi = 1 on least indices in partitands). Then T is of dimension

zero just if the (S, d, n, `)-tuple (j, ζ) is non-degenerate.

7.8. Remarks. 1. For roots of unity only (i.e. n = 0), an effective result on (in our

terms) non-degenerate (∅, d, 0, `)-tuples was obtained by Schinzel [45], substantially

improved by Zannier [54], and further in [15].

2. For arbitrary complex coefficients, an effective bound on the number of non-

degenerate solutions to a linear equation in roots of unity is due to Schlickewei [46],

substantially improved by Evertse [16]. The corresponding uniform AO statement

for families of subvarieties of Y (1)n follows from AO for all such powers Y (1)ν by

“automatic uniformity” as shown by Scanlon [44]. On such uniformity aspects of ZP

see Zannier [55, 1.3.8] and the Appendix B by Masser.

3. The result presumably holds (and is implied by ZP) with finite generation on

the G` points as well, but this is not accessible to the present methods.

References
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