
Functional transcendence via o-minimality

Jonathan Pila

These notes are an edited version of notes prepared for a series of five lectures

delivered during the LMS-EPSRC Short Course on “O-minimality and Diophantine

Geometry”, held at the University of Manchester, 8-12 July 2013. Not everything here

was covered in the lectures, in particular many details were skipped.

Synopsis. We describe Schanuel’s conjecture, the differential version (“Ax-Schanuel”),

and their modular analogues. We sketch proofs of the “Ax-Lindemann” parts in both

settings using o-minimality, and describe connections with the Zilber-Pink conjecture.

1. Algebraic independence

1.1. Definition. Let L be a field and K ⊂ L a subfield.

1. An element x ∈ L is called algebraic over K if there exists a polynomial

p ∈ K[X], non-zero, such that p(x) = 0.

2. Elements x1, . . . , xn ∈ L are called algebraically dependent over K if there is a

polynomial p ∈ K[X1, . . . , Xn], non-zero, such that p(x1, . . . , xn) = 0. Otherwise, they

are called algebraically independent over K.

1.2. Proposition. Let L be a field, K ⊂ L a subfield, and x ∈ L. The following

assertions are equivalent:

1. x is algebraic over K.

2. There exists a finite dimensional K-vector space V ⊂ L such that xV ⊂ V .

Proof. Exercise.

1.3. Corollary. The collection of x ∈ L which are algebraic over K form a subfield of

L (containing K). Exercise.

An element that is not algebraic (over K) will be called transcendental (over K).

If K is not specified, we take it to be Q; if L also not specified we take it to be C.

We denote by Q the field of algebraic numbers in C, i.e. the elements of C that are

algebraic over Q.

1



1.4. Definition. Let L be a field and K ⊂ L a subfield.

1. A transcendence basis for L over K is a maximal algebraically independent

(over K) subset.

[Transcendence bases exists; if T is a transcendence basis for L over K then every

element of L is algebraic over K(T ); any two transcendence bases of L over K have

the same cardinality. (Exercises: Like vector space dimension. Hint: use the

1.5. Steinitz Exchange Principle. Let K ⊂ L be fields and u, v, w1, . . . , wk, y ∈ L.

Say that v depends on u over w1, . . . , wk if v is algebraic over K(w, u) but not over K(w)

Suppose that v depends on u over w1, . . . , wk. Then u depends on v over w1, . . . , wk
and if y is algebraic over K(w, u) then it is algebraic over K(w, v).)]

2. The transcendence degree of L over K is the cardinality of a transcendence

basis; it is denoted tr.d.KL or tr.d.(L/K). If S is a set we will also write tr.d.KS for

tr.d.KK(S), and also tr.d.(S) for tr.d.QS.

1.6. Examples. tr.d.(Q) = 0; tr.d.(C) = 2ℵ0 ; tr.d.C
(
C(X1, . . . , Xn)

)
= n, for

independent indeterminates Xi; tr.d.Q(K) = tr.d.Q(K).

2. Transcendental numbers

References for this section are Baker [5], Lang [31], Nesterenko [43], Waldschmidt

[65]. The existence of transcendental numbers (in C over Q) may be established by a

counting argument: the set of algebraic numbers is countable, but the set of complex

numbers is uncountable. Before Cantor’s theory of transfinite sets was formulated,

Liouville showed in 1844 that certain fast-converging series are transcendental, because

irrational algebraic numbers do not admit “very good” approximations by rationals;

e.g.
∑

10−n! ([5]).

But the first “naturally occurring” number to be shown transcendental was e, the

base of the natural logarithm, by Hermite in 1873. The transcendence of π was proved

a little later by Lindemann in 1882. Lindemann stated the following generalisation of

his results, a full proof being given by Weierstrass (1885).

2.1. Theorem. (Lindemann/Lindemann-Weierstrass) Let x1, . . . , xn be algebraic

numbers which are linearly independent over Q. Then

ex1 , . . . , exn

are algebraically independent over Q.

The transcendence of e follows (n = 1, x1 = 1); the transcendence of any non-zero

logarithm of an algebraic number also follows, in particular the transcendence of (πi

and hence of) π.
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Observe that the result is sharp: if x1, . . . , xn are linearly dependent over Q then

ex1 , . . . , exn are algebraically dependent over Q. (Just exponentiate the linear relation

and use the functional property of exp.)

Euler had expressed the view that a ratio of logarithms, if irrational, must be

transcendental, e.g. log 3/ log 2. This became Hilbert’s 7th problem and was later

solved independently in the 30’s by Gelfond and Schneider.

The logarithm function is multivalued. One can define principal values which are

single valued, but in general for a nonzero complex number a we will use log a to denote

any complex number c with ec = a.

The non-zero elements of a field K will be denoted K×.

2.2. Theorem. (Gelfond-Schneider) Let a, b ∈ Q×. Then log b/ log a is either rational

or transcendental.

Otherwise put: if a ∈ Q is algebraic and not equal to 0 or 1 and r ∈ Q − Q then

b = ar is transcendental (else r = log b/ log a contradicts the theorem). E.g. 2
√
2 is

transcendental. Also eπ = (−1)−i. This theorem was generalised by Baker.

2.3. Theorem. (Baker, 1966) Suppose a1, . . . , an ∈ Q× and log a1, . . . , log an are

linearly independent over Q. Then

1, log a1, . . . , log an

are linearly independent over Q.

The methods of proof of these theorems will not be relevant to our discussion of

the functional versions, and we won’t discuss them.

The functional relation exp(x + y) = exp(x). exp(y) forces e.g. log 6, log 2, log 3

to be algebraically dependent. On the general principle that “numbers defined using

exponentiation should be as algebraically independent as permitted by the functional

relation” one expects things like:

2.4. Conjecture on algebraic independence of logarithms. If a1, . . . , an ∈ Q×

are multiplicatively independent (i.e. there are no nontrivial multiplicative relations∏
akii = 1, ki ∈ Z) then any determination of the log ai are algebraically indepen-

dent. However, it is not known that tr.d.(logQ) > 1. Baker’s Theorem (above) is the

strongest result known here.

2.5. Gelfond’s conjecture. Suppose a ∈ Q − {0, 1} and b is algebraic of degree

d. Then the numbers ab, ab
2

, . . . , ab
d−1

are algebraically independent; one knows this

for d = 2, 3 (Gelfond); in general it is known that tr.d.(ab, ab
2

, . . . , ab
d−1

) ≥
[
d+1
2

]
(Brownawell, Waldschmidt, Philippon, Nestrenko, Diaz; see [43]).

2.6. Various conjectures. ee is transcendental; e, ee, . . . are algebraically indepen-

dent; e + π is transcendental and e and π are algebraically independent. A result of

Brownawell/ Waldschmidt (1974/3) implies (see Baker): Either ee or ee
2

is transcen-

dental. A result of Nesterenko (1996) implies: π and eπ are algebraically independent

(see [43]).
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2.7. The “Four exponentials” conjecture. Suppose x1, x2 ∈ C are l.i./Q, and

that y1, y2 ∈ C are l.i./Q. Then at least one of the four exponentials exp(xiyj) is

transcendental. E.g. suppose t is irrational (so 1, t are l.i./Q). Since log 2, log 3 are

l.i./Q, at least one of 2, 3, 2t, 3t should be transcendental. This is not known: indeed

it is not known that if t ∈ R and 2t, 3t are both integers then t ∈ N. If one has three

xi then the conclusion is known (“six exponentials”; Siegel, Lang, Ramachandra; see

[31]).

3. Schanuel’s conjecture

Schanuel, in the 1960’s, came up with a conjecture that implies all the theorems and

conjectures above, succinctly summarising all the expected transcendence properties of

the exponential function. It is stated in Lang’s book [31, p30].

3.1. Schanuel’s conjecture. (SC) Let x1, . . . , xn ∈ C be linearly independent over

Q. Then

tr.d.Q(x1, . . . , xn, e
x1 , . . . , exn) ≥ n.

For example, when all the xi are algebraic we recover Lindemann’s theorem, and

when all the exi are algebraic we recover the conjecture on algebraic independence of

logarithms.

Exercise. Deduce the other statements above from SC (the ones involving π and e

take a bit of work).

References: Kirby [26], Lang [31], Waldschmidt [65, 66], Zilber [71, 72] and espe-

cially [73].

4. Differential fields

According to Ax [3], Schanuel made the same conjecture for power series and (more

generally) for differential fields (i.e. fields with derivations). As a reference, see Lang

[32].

4.1. Definition. A differential field is a pair (K,D) where K is a field and D : K → K

is a derivation: an additive function satisfying the Leibniz rule: D(xy) = xDy + yDx.

In a differential field, the kernel of D is a field (Exercise) called the field of

constants. It always contains the prime field. More generally we will deal with fields

with several (commuting) derivations. The derivations D of a field K form a vector

space over K: (zD)(x) = z(Dx). Let L be finitely generated over K, of transcendence

degree r. Denote by D the vector space of derivations of L over K (i.e. trivial on K).

We have a pairing (D, L)→ L given by

(D,x) 7→ Dx.
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Thus each x ∈ L gives an element dx of the dual space of D, and we have d(yz) =

ydz + zdy, d(y + z) = dy + dz. These form a subspace of the dual space of D if we

define ydz by (D, ydz) = yDz.

4.2. Proposition. (see Lang [32, VIII, 5.5]) Let L be a separably generated and

finitely generated extension of a field K, of transcendence degree r. Then the vector

space D (over L) of derivations of L which are trivial on K has dimension r. Elements

t1, . . . , tr ∈ L form a separating transcendence basis of L over K iff dt1, . . . dtr form a

basis for the dual of D over L.

4.3. Examples. The paradigm examples are fields of functions, where the derivation

is induced by differentiation.

1. In algebraic geometry one considers an (affine) algebraic set V ⊂ Cn defined as

the locus of common zeros of some set of polynomials in C[X1, . . . , Xn], and hence of

the ideal I generated by them. The coordinate ring

C[V ] = C[X1, . . . , Xn]/I

is the ring of functions induced on V by C[X1, . . . , Xn]. This ring is a domain just if I

is prime, and then V is called irreducible (over C), or an (affine) variety (though this

word is used with a lot of flexibility), and then it has a quotient field C(V ), which is

called an algebraic function field.

Such fields have derivations: on C(X) one has the derivative with respect to X,

which extends non-trivially to C(V ) if X is non-constant on V . If dimV = k it has k

independent derivations Di (over C) given by extending the derivations corresponding

to k independent coordinatesXi (as C(V ) is finitely separably generated over C). E.g. if

V : F (X,Y ) = 0 the derivation D with DX = 1 extends to C(V ) with DY = −FX/FY .

2. The same in an analytic context: let V be a complex analytic variety. Then

the field K of meromorphic functions on V has dimV independent (over K, trivial on

C) derivations coming from differentiation with respect to suitably chosen coordinate

functions (say V ⊂ CN ).

In both examples, one can add exponentials of any finite number of elements to

these fields, perhaps restricting to a neighbourhood of some point of V , in such a way

that if y = exp(x) then Dy = yDx for the derivations mentioned.

5. Ax-Schanuel

We follow Ax’s terminology. We consider a tower of fields Q ⊂ C ⊂ K and a set

of derivations D = {D1, . . . , Dm} on K with C =
⋂
j kerDj . By “rank” below we mean

rank over K.

5.1. Definition. Elements x1, . . . , xn ∈ K are called linearly independent over Q
modulo C, which we write “l.i./Q mod C”, if there is no nontrivial relation

n∑
i=1

qixi = c, qi ∈ Q, c ∈ C

where nontrivial means not all qi, c are zero.
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5.2. Definition. Elements y1, . . . , yn ∈ K× are called multiplicatively independent

modulo C if there is no nontrivial relation

n∏
i=1

ykii = c, ki ∈ Z, c ∈ C

where nontrivial means that not all ki = 0.

5.3. Theorem. (“Ax-Schanuel”; Ax [3], 1971) Let xi, yi ∈ K×, i = 1, . . . , n with

(a) Djyi = yiDjxi for all j, i

(b) the xi are l.i. over Q modulo C [or (b′) the yi are mult. indpt. over C]

Then

tr.d.CC(x1, . . . , xn, y1, . . . , yn) ≥ n+ rank(Djxi)i=1,...,n,j=1,...,m.

The proof (like the setting) is differential algebra. See also Ax [4], Kirby [25],

Brownawell-Kubota, Bertrand-Pillay [9] for generalisations, including to the semi-

abelian setting.

We now consider this statement in a complex setting. We take

π : Cn → (C×)n

given by

π(z1, . . . , zn) = (exp z1, . . . , exp zn).

Let A ⊂ U be a complex analytic subvariety of some open set U ⊂ Cn, so that locally

the coordinate functions z1, . . . , zn and exp(z1), . . . , exp(zn) are meromorphic on A,

and we have derivations {Dj} with rank(Djzi) = dimA, the rank being over the field

of meromorphic functions, and with Dje
zi = eziDzj for all i, j. (I.e. we take the Dj to

be differentiation with respect to some choice of dimA independent coordinates on A.

5.4. “Complex Ax-Schanuel” Conjecture. In the above setting, if the zi are

linearly independent over Q modulo C, then

tr.d.CC(z1, . . . , zn, exp(z1), . . . , exp(zn)) ≥ n+ dimA.

This clearly implies a weaker “two-sorted” version where the transcendence degree

of the zi and exp(zi) are computed separately: with the same setting and hypotheses,

tr.d.CC(z1, . . . , zn) + tr.d.CC(exp(z1), . . . , exp(zn)) ≥ n+ dimA.

5.5. Definition. A subvariety W ⊂ Cn will be called geodesic if it is defined by (any

number ` of) equations of the form

n∑
i=1

qijzi = cj , j = 1, . . . , `,

where qij ∈ Q, cj ∈ C.
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5.6. Definition. By a component we mean a complex-analytically irreducible compo-

nent of W ∩ π−1(V ) where W ⊂ Cn and V ⊂ (C×)n are algebraic subvarieties.

Let A be a component of W ∩ π−1(V ). We can consider the coordinate functions

zi and their exponentials as elements of the field of meromorphic functions (at least

locally) on A, and we can endow this field with dimA derivations {Dj} as above with

rank(Dzi) = dimA. Then (with Zcl denoting Zariski closure)

dimW ≥ dim Zcl(A) = tr.d.C(zi), dimV ≥ dim Zcl(exp(A)) = tr.d.C(exp zi)

and the “two-sorted” Ax-Schanuel conclusion becomes

dimW + dimV ≥ dimX + dimA

provided that the functions zi are l.i. over Q mod C.

This last condition is equivalent to A not being contained in a proper geodesic

subvariety. Let us take U ′ to be the smallest geodesic subvariety of Cn containing

A. Let X ′ = expU ′, which is a coset of an algebraic subtorus of (C×)n, and put

W ′ = W ∩ U ′, V ′ = V ∩X ′. We can choose coordinates zi, i = 1, . . . ,dimA which are

l.i. over Q mod C and derivations as previously with rank(Dzi) = dimA. We then get

the following variant of Ax-Schanuel in this setting.

5.7. Formulation A. Let U ′ be a geodesic subvariety of Cn. Put X ′ = expU ′ and let

A be a component of W∩π−1(V ), where W ⊂ U ′ and V ⊂ X ′ are algebraic subvarieties.

If A is not contained in any proper geodesic subvariety of U ′ then

dimA ≤ dimV + dimW − dimX ′.

I.e. (and as observed still more generally by Ax [4]), the components of the in-

tersection of W and π−1(V ) never have “atypically large” dimension, except when A

is contained in a proper geodesic subvariety. It is convenient to give an equivalent

formulation.

5.8. Definition. Fix V ⊂ (C×)n.

1. A component with respect to V is a component of W ∩π−1(V ) for some W ⊂ Cn.

2. If A is a component we define its defect by δ(A) = dim Zcl(A)− dimA.

3. A component A with respect to V is called optimal for V if there is no strictly

larger component B w.r.t. V with δ(B) ≤ δ(A).

4. A component A w.r.t. V is called geodesic if it is a component of W ∩ π−1(V )

for some geodesic subvariety W , with W = Zcl(A).

5.9. Formulation B. Let V ⊂ Cn. An optimal component for V is geodesic.

We show that these two formulations are equivalent using only formal properties

of weakly special subvarieties, so that the equivalence will hold in more general settings

we will consider.
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Proof that A implies B. We assume Formulation A and suppose that the component

A of W ∩ π−1(V ) is optimal, where W = Zcl(A). Suppose that U ′ is the smallest

geodesic subvariety containing A, and let X ′ = π(U ′). Then W ⊂ U ′. Let V ′ = V ∩X ′.
Then A is optimal for V ′ in U ′, otherwise it would fail to be optimal for V in Cn. Since

A is not contained in any proper geodesic subvariety of U ′ we must have

dimA ≤ dimW + dimV ′ − dimX ′.

Let B be the component of π−1(V ′) containing A. Then B is also not contained in any

proper geodesic subvariety of U ′, so, by Formulation A,

dimB ≤ dimV ′ + dim Zcl(B)− dimX ′.

But dimB = dimV ′, whence dim Zcl(B) = dimX ′, and so Zcl(B) = X ′, and B is a

geodesic component. Now

δ(A) = dimW − dimA ≥ dimX ′ − dimV ′ = δ(B)

whence, by optimality, A = B.

Proof that B implies A. We assume Formulation B. Let U ′ be a geodesic subvariety

of Cn, put X ′ = π(U). Suppose V ⊂ X ′,W ⊂ U ′ are algebraic subvarieties and A is

a component of W ′ ∩ π−1(V ′) not contained in any proper geodesic subvariety of U ′.

There is some optimal component B containing A, and B is geodesic, but since A is not

contained in any proper geodesic, B must be a component of π−1(V ′) with Zcl(B) = U ′

and we have

dimW − dimA ≥ δ(A) ≥ δ(B) = dimX ′ − dimV

which rearranges to what we want.

6. “Ax-Lindemann”

We retain the setting π : Cn → (C×)n and terminology from the previous section.

A component of defect zero with respect to V ⊂ X is then just an algebraic subvariety

W ⊂ π−1(V ). We thus have by Formulation B:

6.1. Ax-Lindemann, Form 1. A maximal algebraic subvariety W ⊂ exp−1(V ) is

geodesic.

Let us explicate Form 1. If W ⊂ π−1(V ) then we may consider W to be a

component w.r.t. V . If W is not contained in any proper geodesic subvariety we find

dimW ≤ dimV + dimW − dimX

so that dimX ≤ dimV , i.e. π(W ) is Zariski-dense in X. Let us consider then a

subvariety W ⊂ U with z1, . . . , zn denoting the elements of C(W ) induced by the

coordinate functions. We get the following.
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6.2. Ax-Lindemann, Form 2. If z1, . . . , zn ∈ C(W ) are l.i./Q mod C then the

functions

ez1 , . . . , ezn

are algebraically independent over C.

In this form it should be clear that this is an analogue of Lindemann’s theorem

for algebraic functions (i.e. elements of the algebraic function field C(W )), hence the

neologism “Ax-Lindemann” to denote (retrospectively) this part of Ax-Schanuel.

However it is Form 1 that is important in the applications: for it essentially char-

acterises the “algebraic part” of π−1(V ). The algebraic part is defined in terms of

real semi-algebraic subsets of π−1(V ) (connected and of positive dimension). Because

π−1(V ) is complex analytic, it turns out that π−1(V )lag is in fact a union of complex

algebraic varieties. By “Ax-Lindemann” it is a union of geodesic subvarieties.

We give direct proofs of the equivalence of these two forms, which are formal (and

therefore will hold in more general settings).

Proof that 1 implies 2. Suppose ez1 , . . . , ezn as in Form 2 are not algebraically

independent over C. So exp(W ) ⊂ V for some proper algebraic subvariety V ⊂ (C∗)n.

By Form 1, there is a geodesic W ′ with W ⊂ W ′ ⊂ exp−1(V ). Since V is a proper

subvariety, so is W ′ and so there is a non-trivial equation
∑
qizi = c that holds on W .

Hence the coordinate functions z1, . . . , zn are linearly dependent over Q modulo C.

Proof that 2 implies 1. We consider V as in the statement of Form 1, and W ⊂
exp−1(V ) maximal. Choose a maximal subset zi, i ∈ I ⊂ {1, . . . , n} such that ezi are

algebraically independent over C. So all the other zj are “geodesically dependent” on

these, i.e. there is an equation zj = cj+
∑
i∈I qij , cj ∈ C, qij ∈ Q. Since the exp zi, i ∈ I

are algebraically independent, we see that the geodesic subvariety T defined by the

above equations for each j /∈ I is contained in π−1(V ). By maximality W = T .

7. The modular function

Let H = {z ∈ C : Im(z) > 0} denote the complex upper half-plane. The (elliptic)

modular function or modular invariant or j-function is a holomorphic function

j : H→ C

with remarkable arithmetic properties. We will describe some of its properties before

briefly indicating the role this function plays in the arithmetic of elliptic curves.

In the following, various 2× 2 real matrices with positive determinant act on H as

Mobius transformations as follows:

g =

(
a b
c d

)
acts by z 7→ gz =

az + b

cz + d
.

The condition det g > 0 ensures g(H) = H.
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Firstly, j is invariant under the action by SL2(Z). The action of SL2(Z) on H has

a classical fundamental domain

F = {z ∈ H : |Re(z)| ≤ 1/2, |z| ≥ 1}.

More precisely this is the closure of a true fundamental domain F ∗ (i.e. where each

SL2(Z) orbit is represented just once), as the transformation z 7→ z + 1 identifies the

vertical strips Re(z) = ±1/2 and the transformation z 7→ −1/z identifies two segments

of the circular boundary. A proof that F is a fundamental domain can be found in

Serre [57]. Examining it yields a quantitative statement that will be important for us.

7.1. Proposition. ([48]) Let z ∈ H. The (unique) γ ∈ SL2(Z) such that γz ∈ F ∗ has

entries bounded by a polynomial (of degree ≤ 7) in max(|z|, (Im(z))−1).

More generally, we consider the action by GL+
2 (Q), where the + denotes positive

determinant. Scaling a matrix does not change its action, so we could reduce everything

to actions by elements of SL2(R). However this does not preserve rationality of the

entries, so it is convenient to work with GL+
2 (Q).

For each g ∈ GL+
2 (Q) we may scale the matrix until its entries are in Z but

relatively prime. The determinant of this matrix we denote N = N(g).

For each N ≥ 1 there is a modular polynomial

ΦN ∈ Z[X,Y ],

symmetric for N ≥ 2 (Φ1 = X − Y ), such that, if N(g) = N ,

ΦN
(
j(z), j(gz)

)
= 0,

i.e. the two functions j(z), j(gz) are algebraically dependent (over Q). For example,

2z =

(
2 0
0 1

)
z, and X = j(z), Y = j(2z) are related by Φ2(X,Y ) = 0 where

Φ2 = −X2Y 2 +X3 + 1488(X2Y +XY 2) + Y 3 − 162.103(X2 + Y 2) + 40773375XY

+8748.103(X + Y )− 157464.109.

More details and examples can be found e.g. in Zagier [67], Diamond-Sherman [17].

Since j is invariant under z 7→ z + 1 it has a Fourier expansion, known as the

q-expansion

j(z) = q−1 + 744 +
∞∑
m=1

cmq
m, q = e2πiz

where (it turns out) ci ∈ Z (e.g. c1 = 196884). Thus, as one goes vertically to infinity,

say along z = it, j(z) grows like e2πt and has an essential singularity at∞, and likewise

at every rational point on the real line (SL2(Z) acts transitively on Q ∪ {∞}).
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If z ∈ H with [Q(z) : Q] = 2 then j(z) is algebraic, indeed it is an algebraic integer

with rich arithmetical properties described by the theory of complex multiplication of

elliptic curves. For now we mention that, if z satisfies the quadratic equation

az2 + bz + c = 0

where a, b, c ∈ Z, a > 0, (a, b, c) = 1, letting D(z) = b2 − 4ac < 0 be its discriminant

then

[Q
(
j(z)

)
: Q] = h(D)

where h(D) is the class number of the corresponding quadratic order; in particular if

D is square-free then the corresponding order is the ring of integers in Q(z), and h(D)

is the order of its class group, the (finite) group of ideal classes under composition.

By a result of Schneider (1937), there are no other z ∈ H for which z and j(z) are

simultaneously algebraic (“Modular Hermite-Lindemann”).

The modular function satisfies a third order algebraic differential equation, but

none of any smaller order (Mahler [34]). Indeed (see e.g. Bertrand-Zudilin [10])

j′′′ ∈ Q(j, j′, j′′),

more precisely (Masser [35])

Sj +
j2 − 1968j + 2654208

2j2(j − 1728)2
(j′)2 = 0

where

Sf =
f ′′′

f ′
− 3

2

(f ′′
f ′

)2
is the Schwarzian derivative. We have Sf = 0 iff f ∈ SL2(C).

Let us now say a little about how j(z) arises in the theory of elliptic and curves.

If Λ ⊂ C is a lattice (discrete Z module of rank 2), one can create doubly periodic

meromorphic functions. By scaling one can always consider such lattices to be of the

form

Λτ = Z + Zτ, τ ∈ H.

Then one forms the Weierstarsss ℘-function ℘τ (z) by summing a suitable simple

expression over the lattice being careful that it converges. It is doubly periodic and

has double poles at the lattice points.

Its derivative is also Λτ periodic, and by taking suitable combinations one can

eliminate the pole. The resulting function must vanish and one finds a relation of the

form

℘′2 = 4℘2 − g2(τ)℘(z)− g3(τ).

for suitable g2(τ), g3(τ) ∈ C. Thus the map

z 7→ (℘, ℘′)
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maps C/Λτ to a complex algebraic curve (including the point at ∞, giving a smooth

projective curve). This is an elliptic curve, which we denote Eτ , and inherits a group

law from the additive structure on C/Λτ . On Eτ the group law is given by some rational

functions.

An elliptic curve is determined up to isomorphism over C by its j-invariant

j(τ) = 1728
g32(τ)

g32(τ)− 27g23(τ)
.

The isomorphism can also be read in the lattices: τ1, τ2 give isomorphic curves if they

are equivalent under SL2(Z) which amounts to change of basis and rescaling. Thus the

SL2(Z) invariance of j.

Actions by g ∈ GL+
2 (Q) correspond to isogenies (homomorphisms with finite ker-

nel) between elliptic curves. This can be seen as taking the quotient of a given curve

by some (cyclic) subgroup, and so the j-invariant of the quotient has some algebraic

relation to the given curve.

It is an elaborate and beautiful theory. See Diamond and Shurman [17], Zagier

[67].

8. Modular Schanuel Conjecture

8.1. Definition. A point z ∈ H is called special if [Q(z) : Q] = 2.

Our principle now is that “numbers defined using the j-function should be as

algebraically independent as permitted by the modular relations and the special values”.

We introduce a suitable “independence” notion.

8.2. Definition. Elements z1, . . . , zn ∈ H are called GL+
2 (Q)-independent if the zi are

not special and there are no relations

zi = gzj , i 6= j, g ∈ GL+
2 (Q).

In fact the special points are fixed points, so one could rephrase this as “no non-

trivial GL+
2 (Q) relations between the zi”, the trivial ones being zi = 1zi. Note also

that the relations are pairwise: if a set of n elements is dependent then one or two of

them are already dependent. This is the hallmark of a “trivial pregeometry”.

A first formulation might be the following.

8.3. Conjecture. Suppose z1, . . . , zn are GL+
2 (Q)- independent. Then

tr.d.
(
z1, . . . , zn, j(z1), . . . , j(zn)

)
≥ n.

Schneider’s result gives this for n = 1; for n ≥ 2 it is not known. Even the

“Lindemann” statement (i.e. with zi algebraic) is open. Many things are known beyond

Schneider’s result, for which I refer to Diaz [18] and Nesterenko [43].
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The above conjecture does not take into account the derivatives of j. These fit into

a much bigger conjectural picture which includes elliptic functions as well as modular

ones (and the higher dimensional analogues), namely the Generalised period conjecture

of Grothendieck-André: see André [2], Bertolin [7]. The following may be deduced

from an explication of this conjecture in the case of one-dimensional “motives” in [7].

8.4. Modular Schanuel Conjecture. Suppose z1, . . . , zn are GL+
2 (Q)- independent.

Then

tr.d.
(
z1, . . . , zn, j(z1), . . . , j(zn), j′(z1), . . . , j′(zn), j′′(z1), . . . , j′′(zn)

)
≥ 3n.

This does not reflect some transcendence properties of the derivatives at special

points, but it is sufficient for our purposes here.

9. “Modular Ax-Schanuel”

We work in the complex setting rather than digressing on formulating a “Modular

Ax-Schanuel” in a differential field. We consider

π : Hn → Cn, π(z1, . . . , zn) = (j(z1), . . . , j(zn)).

Let A ⊂ U be a complex analytic subvariety of some open U ⊂ Hn, with the coordi-

nate functions z1, . . . , zn and j(z1), . . . , j(zn) meromorphic on A, and with derivations

{Dk} induced by differentiation w.r.t. zk such that rank(Dkz`) = dimA, the rank

being over the field of meromorphic functions on A.

9.1. Definition. The functions z1, . . . , zn on A are called geodesically independent if

no zi is constant and there are no relations zk = gz` where k 6= ` and g ∈ GL+
2 (Q).

The following conjecture might be considered the analogue of “Ax-Schanuel” for

the j-function.

9.2. “Modular Ax-Schanuel” Conjecture. In the above setting, suppose that the

zi are geodesically independent. Then

tr.d.CC(z1, . . . , zn, j(z1), . . . , j(zn)) ≥ n+ dimA.

This conjecture is open beyond some special cases described below (including fur-

ther below in §16); it is of intrinsic interest, but also very useful in addressing Zilber-

Pink problems (see §15).

We pursue now geometric formulations analogous to those obtained earlier for the

exponential function, and they will take exactly the same form. To frame these we need

a definition of “geodesic subvariety”, but we also need to pause on the meaning of an

“algebraic subvariety” of Hn. We can map Hn to the product ∆n of open unit discs by

an invertible algebraic map, whence one sees that there can be no positive dimensional

algebraic varieties contained inside Hn.
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9.3. Definition. By a “subvariety” of Hn we mean an irreducible (in the complex

analytic sense) subvariety of W ∩Hn for some algebraic subvariety W ⊂ Cn.

9.4. Definition. A subvariety W ⊂ Hn is called geodesic if it is defined by some

number of equations of the forms

zi = ci, ci ∈ C; zk = gk`z`, g ∈ GL+
2 (Q).

These are the “weakly special subvarieties” in the Shimura sense. The word

“geodesic” is adopted from Moonen [41] who shows that, in a Shimura variety, the

weakly special subvarieties are the “totally geodesic” ones. I wanted a word that gave

a readable “suchly independent” phrase in analogy with “linearly independent” and

“algebraically independent”.

Since we have defined the “weakly special subvarieties” it is opportune to define

the special ones.

9.5. Definition.

1. A special point in Hn is a tuple of special (i.e. quadratic) points.

2. A special subvariety in Hn is a weakly special subvariety containing a special

point; equivalently, the fixed coordinates ci above are all special.

3. The images under π of these are the special subvarieties in Cn.

We now define components, their defects, and optimal components exactly as

before and find that the conjecture above implies the following two formulations of a

“Weak Modular Ax-Schanuel” conjecture, which are equivalent by exactly the same

proofs given previously.

9.6. Formulation A. Let U ′ be a geodesic subvariety of Hn. Put X ′ = expU ′ and let

A be a component of W∩π−1(V ), where W ⊂ U ′ and V ⊂ X ′ are algebraic subvarieties.

If A is not contained in any proper geodesic subvariety of U ′ then

dimA ≤ dimV + dimW − dimX ′.

9.7. Formulation B. Let V ⊂ Cn. An optimal component for V is geodesic.

Formulation B is the form that is needed to tackle Zilber-Pink problems using

o-minimality and point-counting. However, a true “Modular Ax-Schanuel” should take

into account the derivatives of j.

9.8. Conjecture (Modular Ax-Schanuel with derivatives). In the setting of

“Modular Ax-Schanuel” above, if z` are geodesically independent then

tr.d.CC(z1, . . . , zn, j(z1), . . . , j(zn), j′(z1), . . . , j′(zn), j′′(z1), . . . , j′′(zn)) ≥ 3n+ dimA.

The “geodesic independence” condition is evidently equivalent in the complex set-

ting (in analogy with Ax [3]) to: the j(zi) are “modular independent”, i.e. non-constant

and no relation ΦN (j(zk), j(z`)) = 0 holds for k 6= `,N ≥ 1.
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10. “Modular Ax-Lindemann”

We retain the setting of the previous section, and consider V ⊂ Cn.

10.1. “Modular Ax-Lindemann” Form 1. A maximal algebraic subvariety W ⊂
j−1(V ) is geodesic.

10.2. “Modular Ax-Lindemann” Form 2. Let W ⊂ Cn with W∩Hn 6= ∅. Suppose

that the coordinate functions z1, . . . , zn ∈ C(W ) are geodesically independent. Then

the functions

j(z1), . . . , j(zn),

defined locally on W , are algebraically independent over C.

These two formulations are equivalent, by variants of the proofs for the exponential

case (Exercise). It is Form 1 that arises in the o-minimal approach to the André-Oort

conjecture for products of modular curves. It is proved in [48], and we sketch the proof

later. A version “with derivatives” is established in [49].

11. The general setting

Both settings described above: exp : Cn → (C∗)n, j : Hn → Cn fit into a bigger

picture

π : U → X

where X is a Shimura or mixed Shimura variety (see Pink [55, 56], or Daw [16] in this

volume), and U is (essentially) its universal cover.

The prototypical Shimura varieties are modular varieties. For example C, as the

j-line, is the moduli space of elliptic curves up to isomorphism over C. The higher

dimensional analogues are the Siegel moduli spaces Ag which parameterise (principally

polarised) abelian varieties of dimension g, i.e. g-dimension complex tori which admit

an algebraic structure (when g ≥ 2 not all do). The dimension of Ag is g(g + 1)/2.

One has

πg : Hg → Ag

where Hg is the Siegel upper half space, and the uniformisation (which is given by Siegel

modular forms) is invariant under Sp2g(Z). See e.g. van der Geer [19].

Each point x ∈ Ag parameterises an abelian variety Ax; the corresponding mixed

Shimura variety consists of Ag fibered by the Ax. The simplest example is given by

the Legendre family of elliptic curves, that is the elliptic surface

y2 = x(x− 1)(x− λ)

considered as a family of elliptic curves, one for each λ ∈ C − {0, 1} fibered over the

λ-line.

Maybe here is the point to mention that H is not the universal cover of C. The

covering by j is ramified at two points whose pre-images are fixed by elements of SL2(Z),
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namely j(i) and j(ρ). But if one takes a suitable finite index (congruence) subgroup

one has no such points: the covering

λ : H→ C− {0, 1}

associated with the Legendre family is universal, and the corresponding congruence

subgroup is isomorphic to the free group on two generators.

In general, mixed Shimura varieties arise as quotients of symmetric hermitian

domains by suitable arithmetic subgroups of their group of biholomorphic self-maps.

They have the structure of an algebraic variety. Each mixed Shimura variety X has a

collection S = SX of “special subvarieties” and a larger collectionW =WX of “weakly

special subvarieties”, which is what I have termed “geodesic”.

Shimura varieties are the setting for an arithmetic conjecture called the “Andre-

Oort conjecture”. This fits into the much broader “Zilber-Pink” conjecture in the

setting of mixed Shimura varieties, which concerns the interaction between subvarieties

V ⊂ X and the collection of “special subvarieties” (see §15).

In the approach to these conjectures via o-minimality, suitable functional tran-

scendence statements are a key ingredient. In particular, to carry out this approach to

prove AO for a Shimura variety X one requires:

11.1. “Ax-Lindemann” Conjecture for X. Let V ⊂ X. A maximal algebraic

subvariety W ⊂ π−1(V ) is weakly special.

Klingler-Ullmo-Yafaev have recently announced [30] a proof of this for all Shimura

varieties: Tsimerman and I [52] proved it for Ag, building in part on Ullmo-Yafaev’s

proof [64] for all compact Shimura varieties (when there are no cusps in the funda-

mental domain, the quotient is a compact, i.e. projective, variety). In proving this

theorem (using o-minimality) they also established the definability of the uniformisa-

tion restricted to a fundamental domain, extending the work of Peterzil-Starchenko

[47] who did it for Ag (indeed for the mixed Shimura variety associated with Ag). The

extension to mixed Shimuras may not be far away.

This means, by work of Ullmo [60], that a full proof of AO is now reduced to (1)

a statement about Galois orbits of special points being “large”, and (2) a statement

that the height of a pre-image of a special point is “not too large”. For Ag, the latter

was proved in [51]; for g ≤ 6, the Galois lower bound is known due to Tsimerman ([58];

under GRH it is known for all g by Tsimerman and independently by Ullmo-Yafaev

[62]). More generally one expects the following.

11.2. Weak Ax-Schanuel Conjecture. Let X be a (mixed) Shimura variety and

V ⊂ X. An optimal component for V ⊂ X is weakly special.

For a still more general setting see Zilber [73].

12. Exponential Ax-Lindemann via o-minimality

We give a proof of “Ax-Lindemann” using o-minimality and point-counting, to

motivate the proof of the modular analogue which follows.
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For a proof of the full Ax-Schanuel statement via o-minimality and point-counting

see Tsimerman [59], in this volume. We consider

exp : Cn → (C∗)n, V ⊂ (C∗)n.

The complex exponential is definable when restricted to a fundamental domain for the

2πiZ action (by translation) on C. We take say

F = {z ∈ C : 0 ≤ Im(z) < 2πi}.

Then exp is definable on Fn, and we let

Z = exp−1(V ) ∩ Fn,

which is also definable.

12.1. Theorem. A maximal algebraic subvariety W ⊂ exp−1(V ) is geodesic.

12.2. Idea. 1. The action of (2πiZ)n on Fn divides Cn into fundamental domains

γFn, where γ ∈ (2πiZ)n. We find that W is “present” in “many” of them. Then the

suitable translation of these pieces back to Fn belongs to exp−1(V ).

2. The γ ∈ (2πiZ)n for which W is “present” in γF belong to a certain definable

subset of (2πiR)n for which the corresponding translate of W is contained in exp−1(V ),

and which thus contains “many” rational points. By the Counting Theorem, this set

contains positive dimensional semi-algebraic families of translates of W .

3. Consider such a family of translations, say with a real parameter t. If the union

over this family of translations is bigger than W , we could “complexify” the parameter

and get a complex variety W ′ containing W but of bigger dimension. This contradicts

our assumption that W is maximal. So these translations must translate W along itself.

This forces W to be linear and even to be a coset of a rational subspace.

Proof. We suppose W ⊂ exp−1(V ) is maximal, say of dimension k. We can suppose

that z1, . . . , zk are independent functions on W , and that the other variables depend

algebraically on them

z` = ψ`(z1, . . . , zk), ` = k + 1, . . . , n.

Of course these algebraic functions will have some branching, but locally at smooth

points they are functions and can be analytically continued throughout z1, . . . , zk-space

avoiding some lower-dimensional branching locus.

We will write below z for the tuple of “free” variables (z1, . . . , zk), and ψ for the

tuple of functions (ψk+1, . . . , ψn).

Fix some small product of discs U ⊂ Ck in the z1, . . . , zk-variables such that the

ψ` are all unbranched at points

(z + 2πit) = (z1 + 2πit1, z2 . . . , zk)
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for (z1, . . . , zk) ∈ U and all sufficiently large real t1 (this is true generically). By

the periodicity of exp, for any translation of W by integer multiples of 2πi on the

coordinates is again inside exp−1(V ).

But we are going to use definability, so can only make use of exp on finitely many

fundamental domains. We will just use Fn.

For any integer t, there exists a unique integer vector

m′(t) = (mk+1, . . . ,mn)

such that the graph on U of

ψ(z + 2πit)− 2πim′(t)

intersects Z in a set of real dimension 2k (which is its full real dimension).

For any m′ ∈ ×Rn−k and t ∈ R we let

W (U,m′, t)

denote the graph on U of the functions

ψ(z + 2πit)− 2πim′.

Fixing U we consider now the definable set

Y = {(m′, t) ∈ Rn−k × R : dimR
(
W (U,m′, t) ∩ Z

)
= 2k}.

Since the functions ψ` have polynomial growth in t, the components of m′(t) are

bounded by some polynomial in t. Therefore Y contains “many” rational (in fact

integer) points.

Therefore Y contains semi-algebraic curves which contain arbitrarily large finite

numbers of integer points, which seems to give us a positive family of translates of W

contained in exp−1(V ) if we “complexify” the parameter t locally.

But W is maximal, so we must be just translating W along itself, in particular we

have for suitable integers s1 6= t1 and integer vectors m′(s1),m′(t1)

(∗) ψ`(z1 + 2πis1, z2, . . . , zk)− ψ`(z1 + 2πit1, z2, . . . , zk) = 2πim′(s1)− 2πim′(t1)

holding for all ` identically in z.

Fix (z2, . . . , zk). Differentiating with respect to z1, we see that

ψ′`(z1 + 2πis1, z2, . . . , zk)− ψ′`(z1 + 2πit1, z2, . . . , zk) = 0.

The algebraic function ψ′`(z1, z2, . . . , zk) (as a function of z1, the other zi being fixed)

with a period must be constant. So we have

ψ`(z1, z2, . . . , zk) = q(z2, . . . , zk)z1 + r(z2, . . . , zk).
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Since we have integer points, if we go back to (∗) the coefficient q(z2, . . . , zk) must

be rational. But then q(z2, . . . , zk), which is an algebraic function, must be constant

(could use definability here) and we have

ψ`(z1, z2, . . . , zk) = q`1z1 + r(z2, . . . , zk), q`1 ∈ Q.

We repeat the argument for all the free variables to find that

ψ` = r` +
∑

q`izi, q`i ∈ Q, r` ∈ C, ` = k + 1, . . . , n

and so W is geodesic.

13. Modular Ax-Lindemann via o-minimality

We sketch a proof of Modular Ax-Lindemann via o-minimality and point-counting,

essentially following the argument in [48]. This follows the previous argument, with

just a few minor additional technicalities due to the boundary of Hn and the more

intricate group action. We now consider

j : Hn → Cn, V ⊂ Cn.

13.1. Definability. Let F be the standard fundamental domain for the SL2(Z) action

on H, as described above. Then j|F : F → C is definable in Ran exp. (Follows from the

q-expansion; Peterzil-Starchenko [46] observed this while proving definability for the

Weierstrass ℘ function as a function of both variables.)

13.2. Theorem. A maximal algebraic subvariety W ⊂ j−1(V ) is geodesic.

13.3. Idea. The same.

Proof. We suppose W ⊂ j−1(V ) is maximal, with dimW = k, and that, locally on

some region D ⊂ Ck, we may take z1, . . . , zk as independent variables and parameterise

W by

z` = φ`(z1, . . . , zk), ` = k + 1, . . . , n.

If g ∈ SL2(Z)n then gW is also a maximal algebraic subvariety. It is locally

parameterised by

z` = g`φ`(g
−1
1 z1, . . . g

−1
k zk), ` = k + 1, . . . , n

on (g1, . . . , gk)D.

We can then analytically continue these functions, perhaps with some branching,

remaining inside Hn (and hence within j−1(V )), until some free or dependent variable

runs into its real line.

For example, keeping z2, . . . , zk in a small neighbourhood, we can analytically

continue the functions in z1 up to the real boundary unless some φ` becomes real. This
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φ` then depends on z1 over z2, . . . , zk, and we can exchange z1 and z`, and now we

have a parameterisation that goes up to the boundary of z1.

This gives a subregion of Hn bounded by loci where some z1, . . . , zk or some

φ`(z1, . . . , zk) becomes real, in particular including some “disc” U1 where z1 becomes

real, the other free variables remain away from their real lines (so it is a product of

a half-disc in z1, and discs in the other free zi). Some of the dependent z` may also

be real on U1, others not: we can move to a smaller “disc” so that such dependent

variables are either real on all of U1, or are away from their real lines - and contained

in a single fundamental domain for SL2(Z).

Again moving to a smaller “disc” if necessary we can assume that all the φ` are

regular and non-branching.

We let Φ denote the tuple (φk+1, . . . , φn) and put

W1 = {(u,Φ(u)) : u ∈ U1} ⊂W,

a definable (even semi-algebraic) set.

The point will be that in the z1 half disc there are infinitely many fundamental

domains but the variables away from their real lines will be confined to finitely many

fundamental domains.

Fix a fundamental domain F1 inside the z1 half disc, and a rational point a/c with

(a, c) = 1 on the boundary of this half disc. Take a matrix

g0 =

(
a b
c d

)
∈ SL2(Z)

and write

g0(t) =

(
a b+ t
c d+ t

)
, t ∈ R.

For large real t and z ∈ F1, g0(t)z is in the half disc. Let

G0 = {g ∈ SL2(R)n : g1 = g0(t), some t, gi = 1, i ≤ 2 ≤ k}

with no restriction on gk+1, . . . , g`. This set is clearly definable.

For any definable G′ ⊂ SL2(R)n, W ′ ⊂ W (of full complex dimension k say) and

Z ′ ⊂ j−1(V ) the set

R(G′,W ′, Z ′) = {g ∈ G′ : dimR(gW ′ ∩ Z) = 2k}

is definable. Further, for any such g we have gW ⊂ j−1(V ) by dimensional considera-

tions and analytic continuation.

Consider the definable set

R(G0, Y1, Z).

For large t the action by g0(t) keeps part of the z1 half disc within itself. For any such

t we may find elements of SL2(Z) to bring the relevant coordinates to F , for t a large
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integer this will give an element of R(G0, Y1, Z), and the size of the group element are

bounded by some polynomial in t (by Proposition in §7). So R(G0, Y1, Z) has “many”

integer points, and by the Counting Theorem there are semi-algebraic subsets with

arbitrarily large finite numbers of integer points.

Now maybe all these sets have fixed t. Then we can find an integer t and a positive

dimensional set of translations, and hence a smooth one-dimensional set of translations

contained in j−1(V ) containing an integer point. But the integer translation of W is

maximal, and is contained in a larger family by complexifying the parameter.

So we have semi-algebraic sets with many integer points and variable t. By the

maximality, these translates parameterise the same translate of W .

Now we observe that the dependent variables away from their boundaries did not

need to move. Therefore these variables do not depend on z1.

For the other variables, we get identities (using two integer points on the same

algebraic set where the translate is constant) of the form

φ(gz) = hφ(z), φ(z) = φ`(z, z2, . . . , zk), g, h ∈ SL2(Z).

We know that g is of the form

g0(s)g0(t)−1 =

(
1− ac(s− t) a2(s− t)
−c2(s− t) 1 + ac(s− t)

)
and so is parabolic with fixed point a/c, and we get such identities for every a/c ∈ I,

the real boundary of the z1 half disc.

Now there is an “end-game” to show that φ ∈ GL+
2 (Q). This part gets more

conceptual in the various generalisations [64, 52, 30] : using monodromy considerations

one shows essentially that W is an orbit of the group that stabilises it. Here I use

elementary arguments.

1. φ ∈ SL2(C)

The following argument is different to the argument in [48] and to the alternative

argument offered in [49].

We have P (x, φ(x)) = 0 for some irreducible P ∈ C[X,Y ]. We have infinitely

many parabolic g with distinct (real) fixed points for which we have an identity

φ(gz) = hφ(z).

This identity continues to hold wherever we may continue φ. If xg is the fixed point of

g then yg := φ(xg) is fixed by h, and there are infinitely many distinct yg, even with φ

pre-images distinct from branch points of φ.

If φ(x) = yg, then also φ(gx) = yg. Then x is pre-periodic under g, but since g is

parabolic it has no pre-periodic points other than its unique fixed point. So for such

yg there is only one xg (the fixed point) with φ(xg) = yg.

Since this holds for infinitely many distinct yg, P must be linear in X. Exchanging

roles (Steinitz exchange), it is also linear in Y . So φ is a fractional linear transformation.
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2. φ ∈ SL2(R)

Because it preserves the real line (Exercise).

3. φ is independent of z2, . . . , zk

Because there is no non-constant holomorphic function (here complex algebraic)

to SL2(R). E.g. the image of 0 must be a real function of a complex variable.

So the dependencies are all by fixed elements of SL2(R), and extend throughout

all Hk. And so we get identities for all rational a/c (and so even all r ∈ R).

4. φ ∈ GL+
2 (Q)

Some elementary work. Write φ =

(
A B
C D

)
where AD−BC = 1. We must show

that the ratios of entries are all rational (so it is in the image of GL+
2 (Q)).

We can take g with a = 1, c = 0. Write u = (s − t). Then for some λ ∈ R,

h ∈ GL+
2 (Q) we have

φgφ−1 =

(
1− uAC uA2

−uC2 1 + uAC

)
= λh

for suitable (many) integer choices of u. If C = 0 we see that A2 ∈ Q and then AD = 1

implies A/D ∈ Q. Similarly, A = 0 implies B/C ∈ Q. Otherwise (A,C 6= 0) we have

A2/C2 ∈ Q and (1 − uAC)/C2 ∈ Q, for many different u, giving A/C ∈ Q. Taking

a = 0, c = 1 we get similarly(
1− uBD uB2

−uD2 1 + uBD

)
= λh.

Now B = 0 leads to A/D ∈ Q, D = 0 leads to B/C ∈ Q and otherwise (B,D 6= 0) we

have B/D ∈ Q.

Now suppose C = 0, so we have A/D ∈ Q. If B = 0 we have the required form.

We cannot have D = 0, so B 6= 0 gives B/D ∈ Q and we have again the right form.

Similarly, if any of A,B,C,D = 0 we get the right form: If B = 0 we have A/D ∈ Q.

If C = 0 we are done. We can’t have A = 0, so if C 6= 0 we get A/C ∈ Q and are done.

So we may assume all A,B,C,D 6= 0. We Have A/C = q,B/D = r ∈ Q and φ is

up to scaling (
1 α
q rα

)
, r 6= q, α ∈ R.

Then

ψ =

(
1 0
−q 1

)
φ =

(
1 α
0 (r − q)α

)
satisfies identities of the same kind (with the same g), but now there is a zero entry, so

we are done!
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14. SC and CIT

Boris Zilber’s work on the model theory of the exponential function led him to

formulate ([70, 71]) an arithmetic conjecture which he called CIT: “Conjecture on

Intersections with Tori”.

In the language of exponential fields one cannot formulate SC in a first order way.

One can list all subvarieties V ⊂ C2n defined over Q and of dimension dimV < n.

Then

tr.d.(z, ez) < n, z = (z1, . . . , zn), ez = (ez1 , . . . , ezn)

just means that (z, ez) lies on one of these V and one could aspire to go through them

asserting: “If (z, ez) ∈ V then...”. However one cannot assert that the coordinates of

z are l.i over Q in a first order way, as this requires a quantification over Q. One could

do this, however, if for each such V only finitely many such linear dependencies arise:

one could then just write them out explicitly.

But one must be a bit careful: the assertion “Let V ⊂ C2n be defined over Q. There

exists finitely many non-trivial linear forms L(z1, . . . , zn) with integer coefficients such

that if

(z, ez) = (z1, . . . , zn, e
z1 , . . . , ezn) ∈ V

then

L(z1, . . . , zn) = 0.

for (at least) one of these forms” is simply false.

14.1. Example. Take V ⊂ C3 × C3 defined by

z1z2 = z23 , w1 = 1, w2 = 1, w3 = 1.

So dimV = 2. If k1k2 = k23 and z` = 2πik` then

(z1, z2, z3, e
z1 , ez2 , ez3) ∈ V,

but these points are not contained in finitely many rational subspaces (they all lie in

some proper rational subspace though!).

The right statement is a variant of this:

14.2. Uniform Schanuel Conjecture. (USC; [71]) Let V ⊂ C2n be a closed al-

gebraic set defined over Q with dimV < n. There exists a finite set µ(V ) of proper

Q-linear subspaces of Cn such that if

(z1, . . . , zn, e
z1 , . . . , ezn) ∈ V

then there is M ∈ µ(V ) and k ∈ Zn and such that (z1 + 2πik1, . . . , zn + 2πikn) ∈ M .

Moreover if M is codimension 1 (in Cn) then k = 0.
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For more on the model theory of exponentiation see [69, 28]. For the present

purposes I want to work with a weaker version of USC:

14.3. Weak SC. If tr.d.(z, ez) < n then the coordinates of ez are multiplicatively

dependent.

14.4. Uniform Weak SC. Let V ⊂ C2n defined over Q with dimV < n. There

is a finite set K = K(V ) of non-trivial integer tuples k ∈ Zn such that such that if

(z, ez) ∈ V then
∏

exp(ziki) = 1 for some k ∈ K.

Now we formulate “CIT”. We consider algebraic subgroups of X = (C∗)n. These

are subvarieties defined by some number of equations of the form

n∏
i=1

xkii = 1

for vectors k = (k1, . . . , kn) of integers. These can be reducible (e.g. x21 = 1 in C∗),
and they decompose into finitely many irreducible subvarieties which are called tori if

they are subgroups, or cosets of tori by torsion points, called torus cosets, generally.

We will also call torus cosets special subvarieties, and denote the collection of them

by S = S(X). This is a countable collection.

Now two algebraic subvarieties V,W ⊂ X generically intersect in an algebraic set

whose components have dimension

dimV + dimW − dimX

by simple “counting conditions” (i.e. codim V conditions are required to be on V ,

codim W conditions to be on W ). It is a basic fact that such components can never

have smaller dimension than this (see e.g. Mumford [42, 3.28]); but it can be bigger.

14.5. Definition. Let V ⊂ X = (C∗)n.

1. A component A ⊂ V ∩ T , where T ∈ S, is called atypical if

dimA > dimV + dimT − dimX.

2. Denote by

Atyp(V ) =
⋃
A

the union of all atypical components of V ∩ T over all T ∈ S.

Thus Atyp(V ) is potentially a countable union.

14.6. Conjecture. (CIT) For V ⊂ (C∗)n, Atyp(V ) is a finite union.

Otherwise put: V contains only finitely many maximal atypical components.

14.7. Remarks.

1. Zilber [70, 71] stated the conjecture for semi-abelian ambient varieties, and for

V defined over Q, which is what is needed for the SC application.
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2. Zilber showed that CIT for (semi-)abelian varieties implies the “Mordell-Lang

conjecture” (a theorem of Faltings, Raynaud, Vojta, Faltings, McQuillan), including the

Manin-Mumford conjecture (Raynaud), and exponential CIT implies the multiplicative

versions (Mann-Lang-Liardet-Laurent).

3. The same conjecture in the exponential setting (in a different formulation) was

stated by Bombieri-Masser-Zannier ([13], for V/C). They earlier proved partial results

for curves [12]. They later proved [15] that the various formulations were equivalent in

the exponential case, and that CIT/Q implies CIT/C.

4. Exponential CIT is open. Various partial results are known: including a

complete result for curves; see Bombieri-Masser-Zannier [12, 13, 14], Maurin [39, 40],

Habegger [20, 21]; and [11].

5. The same kind of conjecture was formulated (again independently) by Pink

[55, 56] in the setting of “mixed Shimura varieties”. Apparently his object was to

find a unifying statement including the Mordell-Lang on the “semiabelian side” and

André-Oort [1, 44, 29, 61] on the Shimura side. See Zannier’s book [68].

Zilber [70, 71] proves the following theorem.

14.8. Theorem. SC + CIT implies USC.

I will prove this for the weak uniform version adapting the proof in [71].

14.9. Theorem. SC + CIT implies UWSC.

Proof. We consider some V ⊂ C2n defined over Q and of dimension dimV < n. We

let W be the projection of V onto the second Cn factor, d the dimension of the generic

fibre of this projection, and V ′ ⊂ V the proper subvariety where the fibre dimension

exceeds d.

According to CIT, there is a finite set of torus cosets S1, . . . , S` whose atypical

components with W contain all atypical components.

Now suppose (z, ez) ∈ V . According to SC, z lies in some proper rational subspace

T ⊂ Cn, whose dimension we may take to be l.d.(z). The image of exp(T ) is a subtorus

S ⊂ (C∗)n, of the same dimension.

14.10. Claim. Suppose (z, ez) ∈ V − V ′. Then ez lies in an atypical component of

W ∩ S.

Pf. We estimate tr.d.(z, ez) below by SC and above by the intersection of V with the

π pre image of W ∩ S. Let A be the component of W ∩ T containing ez. We find

dimT ≤ tr.d.(z, ez) ≤ d+ dimA = dimV − dimW + dimA < n− dimW + dimA.

Rearranging we see that

dimA > dimT + dimW − n

and this proves the claim.

So if (z, ez) lies in V − V ′ then ez satisfies one of finitely many multiplicative

relation. Otherwise (z, ez) ∈ V ′, and we repeat the argument with its components V ′i ,

putting W ′i = πV ′i with generic fibre dimension d′i outside V ′′i ⊂ V ′ etc.
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15. Zilber-Pink

Let X be a mixed Shimura variety, and S its collection of “special subvarieties”.

The following is essentially Zilber’s formulation in Pink’s setting. We define atypical

components and Atyp(V ) for V ⊂ X exactly as previously.

15.1. Zilber-Pink conjecture. Let V ⊂ X. Then Atyp(V ) is a finite union.

It is natural to formulate this conjecture for V/C, but it is again the version for

V/Q that connects a Schanuel conjecture with its uniform version.

We consider the modular setting (X = Cn).

15.2. Modular SC. (MSC) Let z ∈ Hn and let T be the smallest special subvariety

of Hn containing z. Then

tr.d.(z, j(z)) ≥ dimT.

15.3. UMSC. Let V ⊂ C2n defined over Q and of dimension dimV < n. There exists

finitely many proper special subvarieties T1, . . . , T` such that if

(z, j(z)) ∈ V

then there exists Ti and γ ∈ SL2(Z)n such that z ∈ Ti. Equivalently, there are finitely

many special subvarieties Si = j(Ti) ⊂ Cn such that j(z) ∈ Si for some i.

15.4. Theorem. MSC + MZP implies UMSC.

Proof. This is just the same as the proof of 14.9. Let V be given and define W,d, V ′

as before. Suppose (z, j(z)) ∈ V . Then z ∈ T for some proper special T . Let S = j(T ),

so dimS = dimT . Suppose (z, j(z)) ∈ V − V ′. Let A be the component of W ∩ S
containing j(z). Then

dimT ≤ tr.d.(z, j(z)) ≤ d+ dimA = dimV − dimW + dimA < n− dimW + dimA.

So A is atypical and by MZP it is contained in an atypical component of one of finitely

many proper specials Si. Repeat for V ′.

16. Zilber-Pink and Ax-Schanuel

Other special cases of ZP have been successfully proved via o-minimality and

point-counting (e.g. Masser-Zannier [36, 37, 38], Habegger-Pila [23], Bertrand-Masser-

Pillay-Zannier [8], Orr [45], Bays-Habegger [6]) and in several of these one needs a

suitable “Ax” type statement. In [23] it the modular analogue of “Ax-Logarithms”,

the algebraic independence of logarithms of algebraic functions.

16.1. Theorem (Ax-Logarithms). (Ax) Suppose C ⊂ (C∗)n is a curve. If logC,

locally on some disc, is contained in an algebraic hypersurface then C is contained in

a proper weakly special subvariety.
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16.2. Theorem (Modular Ax-Logarithms). ([23]) Suppose C ⊂ Cn is a curve.

If j−1(C), locally on some disc, is contained in an algebraic hypersurface then C is

contained in a proper weakly special subvariety.

This is proved using monodromy (not o-minimality). The required statements in

Masser-Zannier are also proved using monodromy arguments.

In work in progress [24], Habegger-Pila show that “Weak Modular Ax-Schanuel”

(as in §9) together with a suitable arithmetic statement that Galois orbits of certain

atypical intersections are “large” implies, via o-minimality and point-counting, the full

Zilber-Pink conjecture for Cn.
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