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Abstract. This paper presents new proofs of some classical transcendence theorems. We
use real variable methods, and hence obtain only the real variable versions of the theorems
we consider: the Hermite–Lindemann theorem, the Gelfond–Schneider theorem, and the
Six Exponentials theorem. We do not appeal to the Siegel lemma to build auxiliary
functions. Instead, the proof employs certain natural determinants formed by evaluating
n functions at n points (alternants), and two mean value theorems for alternants. The
first, due to Pólya, gives sufficient conditions for an alternant to be non-vanishing. The
second, due to H. A. Schwarz, provides an upper bound.
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1. Introduction

The purpose of this paper is to give new proofs of some classical results in the transcendence
theory of the exponential function. We employ some determinantal mean value theorems,
and some geometrical properties of the exponential function on the real line. Thus our
proofs will yield only the real valued versions of the theorems we consider.

Specifically, we give proofs of (the real versions of) the six exponentials theorem, the
Gelfond-Schneider theorem, and the Hermite-Lindemann theorem.

We do not use Siegel’s lemma on solutions of integral linear equations. Using the
data of the hypotheses, we construct certain determinants. With the aid of one of the
mean value theorems, we show that these determinants are not zero. This result is, more
precisely, a generalization due to Pólya [6] of Rolle’s theorem to a determinant consisting
of n functions evaluated at n points (i.e. an alternant). A second mean value theorem
furnishes an upper estimate for this determinant, and a contradiction is reached in the
usual way to conclude the transcendence proofs. This second mean value theorem, our
proposition 2.1, goes back to H. A. Schwarz [11]. Versions of both results can be found in
Pólya and Szegö [7].

The determinantal mean value theorems are given in section 2. None of the state-
ments in that section relate specifically to the exponential function. The proofs of the
transcendence theorems are then given in section 3.

In the Hermite-Lindemann and Gelfond-Schneider cases, our argument can be quan-
tified to yield a transcendence measure. To do this one must give a lower bound for the
non-vanishing alternant. The resulting transcendence measure appears to be weaker (in
all aspects) than those obtainable by other methods; we nevertheless include the lower
bound argument, in section 4. This involves yet another mean value theorem, one that
does not hold for arbitrary sufficiently smooth functions. It depends on a curious positivity
property.

Our approach was motivated by the following considerations. Let Ld denote the space
of real algebraic plane curves of degree ≤ d. The space Ld forms a real projective space of
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dimension 1
2 (d+1)(d+2)−1 = D−1. Thus, D−1 points in the plane always lie on a curve

in Ld, while D points in general do not. A function f(x), defined on an interval I and
possessing D− 1 derivatives will be called d-averse if no D points on the graph Γ of f(x)
lie on a curve in Ld (counting multiplicity). This notion is the “Geometric Postulation”
of the title. A curious fact is that the exponential function is d-averse for every d. This
follows immediately from the abovementioned theorem of Pólya, our proposition 2.2; it is
also readily proved using induction (on d) and the ordinary mean value theorem (see [7,
vol.II, ch.V, problem 75]).

The aversity property entails the non-vanishing of a certain form of determinant (see
[5]), and upper bounds furnished by Schwarz’s mean value theorem can then be used to
control integrality. Such considerations were applied by Bombieri and the author [1] to get
upper bounds for the number of integral points on the graphs of functions under various
kinds of hypotheses, and by the author to obtain some extensions in [5].

It was thus natural to attempt to link the aversion of the exponential function for
algebraic curves with its aversion for algebraic points. Thus the title of the present paper.

We have not pursued the question of deducing the full complex statements of the
theorems considered from the real versions; further, it seems attractive to consider other
transcendence statements in these terms.

Note. Since submitting this paper we have been informed that these methods have
been found independently and somewhat earlier by Laurent, but are not yet published.
In [3], Laurent uses interpolation determinants to give a proof of the full six exponentials
theorem. In place of our appeal to Pólya’s mean value theorem, which shows that the
determinant is not zero in the real case, he appeals to a zero lemma of Philippon to show
that the determinant has large rank. His starting point [4] was the work of Cantor-Strauss
connected with Lehmer’s conjecture. Waldschmidt [15] gives a proof of six exponentials
in the real case essentially identical to that given here. He also gives indications for the
Hermite-Lindemann and Gelfond-Schneider theorems. They use complex variable methods
to estimate the determinants, as opposed to our strictly real variable treatment using
Schwarz’s mean value theorem. According to a recent talk of Waldschmidt [16], they
have been able to prove many other transcendence theorems by these methods. Since our
treatment via mean value theorems is somewhat different, as was our motivation, we feel
that the present paper may still be of some interest. We would like to thank Laurent,
Waldschmidt, and the referee for drawing our attention to this work.

Acknowledgement. We would like to thank V. Duchovni for several helpful conver-
sations in the course of this work.

2. Determinantal Identities

The propositions of this section are all generalizations of the mean value theorem to deter-
minants of matrices formed by evaluation of n functions at n points (with multiplicities).
The qualitative (Rolle’s theorem) and quantitative aspects are generalized separately. This
distinction is meaningful in the presence of several variables.

2.1 A Mean Value Theorem
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The following identity was established in [1]. It leads to a mean value theorem. Both are
generalized in section 2.4. We begin with some notation. Let x, xi, yij for i, j = 1, · · · , n
be indeterminates, and let V (x1, · · · , xk) denote the Vandermonde determinant. Define

gij(x) =
−1

V (x1, · · · , xi)
det


1 x1 . . . xi−1

1 y1j

...
1 xi . . . xi−1

i yij

1 x . . . xi−1 0

 .

Note that, for an indeterminate y,

gij(x) =
−1

V (x1, · · · , xi)
det


1 x1 . . . xi−1

1 y1j

...
1 xi . . . xi−1

i yij

1 x . . . xi−1 y

 + y ,

so that gij(x) is the unique polynomial in x of degree i−1 with gij(xk) = ykj for k = 1, · · · , i.
We write g

(`)
ij for ( d

dx )`gij .

Lemma 2.1. With the above definitions,

det(yij) =
V (x1, · · · , xn)
1! . . . (n− 1)!

det
(
g
(i−1)
ij

)
.

We apply the lemma choosing yij = φj(xi), where x1, · · · , xn ∈ I are distinct points
and φj ∈ Cn−1. Then the mean value theorem shows that g

(i−1)
ij is in the range of φ

(i−1)
j

(see for example Swinnerton–Dyer [13], Lemma 1, p. 131, or Posse [7]). We therefore get
the following proposition.

Proposition 2.1. Suppose the functions φ1, φ2, . . . , φn possess derivatives of order
n − 1 on an interval I = [a, b] and that x1, . . . , xn are distinct points of I. Let ∆ =
det(φj(xi)) be the n× n determinant. Then there exist intermediate points ξij such that

∆ =
V (x1, . . . , xn)

Λ(n)
det

(
φ

(i−1)
j (ξij)

)
,

where

Λ(n) =
n∏

i=1

(i− 1)!.

A version of this theorem in which the interpolation points are the same in each
column was proved by H.A. Schwarz ([11], Zw. Bd., p. 300), and also by T. Stieltjes [12].
A proof is also outlined in Pólya and Szegö [7, volume II, part 5, problems 95, 96].

It is natural to ask under what circumstances we can interpolate ∆ by an intermediate
value of the Wronskian: that is, take all the ξij to be the same. That this does not hold in
general is shown by the two functions sinx, cos x. In section 4 we show that it does hold
for functions exp(xξ) for distinct real ξ.
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2.2 A Non-Vanishing Criterion

The following generalization of Rolle’s theorem is due to Pólya [6]. The version without
multiplicities is also outlined in Pólya and Szegö [7, volume II, part 5, problem 99]. For
functions φ1, φ2, . . . , φn possessing n− 1 derivatives on an interval,

W (φ1, φ2, . . . , φn)

will denote the n× n Wronskian determinant.

Proposition 2.2. Suppose the functions φ1, φ2, . . . , φn possess derivatives of order
n− 1 on an interval I = [a, b] and satisfy:

W (φ1) > 0, W (φ1, φ2) > 0, . . . , W (φ1, . . . , φn−1) > 0

for x ∈ I. Suppose that x1, . . . , xh are distinct points of I, and k1, . . . , kh are positive
integers satisfying:

a ≤ x1 < x2 < . . . < xh ≤ b, k1 + k2 + . . . + kh = n.

Let ∆ be the n× n determinant:

det



φ1(x1) φ2(x1) . . . φn(x1)
φ′1(x1) φ′2(x1) . . . φ′n(x1)
...

...
. . .

...
φ

(k1−1)
1 (x1) φ

(k1−1)
2 (x1) . . . φ

(k1−1)
n (x1)

φ1(x2) φ2(x2) . . . φn(x2)
...

...
. . .

...
φ

(kh−1)
1 (xh) φ

(kh−1)
2 (xh) . . . φ

(kh−1)
n (xh)


.

There exists an intermediate point x, with x1 < x < xk, such that the value assumed at x
by the Wronskian W (φ1, . . . , φn) is <,=, > 0 according as ∆ is <,=, > 0.

We appeal to the following contrapositive of the proposition: if

W (φ1), W (φ1, φ2), . . . , W (φ1, . . . , φn)

are non-vanishing on I, then ∆ is not zero.

2.3 A Determinant of Vandermonde Type

We evaluate a determinant of Vandermonde type. The result is due to Schendel [10]. In the
next subsection, this will be used in an extension of proposition 2.1 to the case where the
rows occur with multiplicities. We begin with some notation. Let ki be positive integers
for i = 1, . . . , h, with k1 + . . . kh = n, and suppose that xi, i = 1, . . . , h are indeterminates.
We denote by

V (k1, . . . , kh)
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the determinant of the n× n matrix

1 x1 x2
1 . . . xk1−1

1 . . . xn−1
1

1 2x1 . . . (k1 − 1)xk1−2
1 . . . (n− 1)xn−2

1

2 . . . . . . . . .
...

...
...

(k1 − 1)! . . .
1 x2 x2

2 . . . xk2−1
2 . . . xn−1

2

1 2x2 . . . (k1 − 1)xk2−2
2 . . . (n− 1)xn−2

2

2 . . . . . . . . .
...

...
...

(k2 − 1)! . . .
...

...
...

1 xh x2
h . . . xkh−1

h . . . xn−1
h

...
...

...
(kh − 1)! . . .



.

Thus if h = n and ki = 1, then V (1, 1, . . . , 1) reduces to the ordinary Vandermonde
determinant on x1, . . . , xn; while if h = 1 and k1 = n we have

V (n) =
n∏

i=1

(i− 1)! = Λ(n).

The case in which the ki have a common value is given in Weihrauch [17]. The general
case is due to Schendel [10], and we will refer to V (k1, . . . , kh) as a Schendel determinant.
(The referee suggests the more descriptive term: confluent Vandermonde determinant.)

Lemma 2.3. With the above definitions,

V (k1, . . . , kh) =
h∏

i=1

Λ(ki)
∏
i<j

(xj − xi)kikj .

2.4 A Further Mean Value Theorem

We now generalize lemma 2.1, and deduce a corresponding generalization of proposition 2.1.
The extension we need replaces the Vandermonde determinant appearing in the statement
with a Schendel determinant; however it eases notation to prove a version involving a
completely arbitrary matrix. The proof procedure is identical to that given in [1].

We begin by letting

M = (mij), Y = (yij), i, j = 1, . . . , n

be matrices of indeterminates. For a matrix A, we denote by

Ai, A∗j , Ak, A(a,b)
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respectively the top left i× i submatrix of A, the rectangular matrix formed by removing
column j of A, the column vector consisting of column k of A, and the (a, b) minor
determinant of A. We further let Xi be the row vector (1, x, . . . , xi−1).

Now set

gij(x) =
−1

det Mi
det

(
Mi Y j

i

Xi 0

)
.

We view gij(x) as a polynomial in x, and denote by g
(k)
ij (x) its derivative of order k.

Lemma 2.4. With the above definitions,

det(Y ) =
det M

Λ(n)
det

(
g
(i−1)
ij

)
.

Proof. By evaluation of the right-hand side.
det Mn

Λ(n)
det

(
g
(i−1)
ij

)
=

det Mn

Λ(n)
det

(
−1

det Mi
det

(
Mi Y j

i

X
(i−1)
i 0

))

=
det Mn

det M1 . . .detMn
det (det (M∗i

i Y j
i ))

=
1

det M1 . . .detMn−1
det

( i∑
k=1

(−1)k−iM
(k,i)
i ykj

)
.

We express this last matrix as a product of a lower triangular matrix and the matrix Y to
obtain the expression

1
det Mn−1

det

 ©
. . .

(−1)j−iM
(j,i)
i

 det(yij)

=
1

det M1 . . .det Mn−1
·

n−1∏
k=1

det Mk · det(yij)

= det(yij) .

We apply the lemma taking M = V (k1, . . . , kh), and

Y =



y0
11 y0

12 . . . y0
1n

y1
11 y1

12 . . . y1
1n

...
...

...
yk1−1
11 yk1−1

12 . . . yk1−1
1n

y0
21 y0

22 . . . y0
2n

...
...

...
ykh−1

h1 ykh−1
h2 . . . ykh−1

hn


.
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Note that, for an indeterminate y,

gij(x) = y − 1
det Mi

det
(

Mi Y j
i

Xi y

)
,

so that gij(x) is the unique polynomial in x of degree i − 1 with g
(p)
ij (x`) = yp

kj for ` =
1, · · · ; p = 1, . . . , k`.

We choose yp
ij = φ

(p)
j (xi), where x1, · · · , xh are distinct points and φj ∈ Cn−1. Then

the mean value theorem shows that g
(i−1)
ij is in the range of φ

(i−1)
j . We thus get the

following proposition.

Proposition 2.4. Suppose the functions φ1, φ2, . . . , φn possess derivatives of order
n− 1 on an interval I = [a, b], that x1, . . . , xh are distinct points of I and that k1, . . . , kh

are positive integers with k1 + . . . + kh = n. Let ∆ be the n× n determinant

det



φ1(x1) φ2(x1) . . . φn(x1)
φ′1(x1) φ′2(x1) . . . φ′n(x1)
...

...
. . .

...
φ

(k1−1)
1 (x1) φ

(k1−1)
2 (x1) . . . φ

(k1−1)
n (x1)

φ1(x2) φ2(x2) . . . φn(x2)
...

...
. . .

...
φ

(kh−1)
1 (xh) φ

(kh−1)
2 (xh) . . . φ

(kh−1)
n (xh)


.

Then there exist intermediate points ξij such that

∆ =
V (k1, . . . , kh)

Λ(n)
det

(
φ

(i−1)
j (ξij)

)
.

2.5 The Quantity Λ(n)

We have defined

Λ(n) =
n∏

i=1

(i− 1)! =
n∏

i=1

(i− 1)n−i+1.

The size of this quantity is crucial to our arguments. Chiefly we need lower bounds, but
in our proof of the Hermite-Lindemann theorem we require also upper bounds. We have

log Λ(n) =
n−1∑
i=1

(n− i) log i.

We obtain upper and lower bounds by comparing with the corresponding integrals.

Lemma 2.5. For n ≥ 2, we have

n2

2
log n− 3n2 ≤ log Λ(n) ≤ n2

2
log n− n2.
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3. Transcendence Proofs

3.1 The Six Exponentials Theorem

Here we use the non-vanishing of the determinant

∆ = det
(
exp(xiξj)

)
whenever {x1, . . . , xm} and {ξ1, . . . , ξm} are sets of distinct real numbers. This follows
from proposition 2.2, since the corresponding Wronskian determinants do not vanish: this
is because the functions comprising them form a basis of solutions to a linear ordinary
differential equation. Another proof is given in Pólya and Szegö [7, vol. II, part 5, problem
76]. They go on to show the non-vanishing of a determinant det(F (xiξj)) when F has a
non-terminating Taylor expansion with non-negative coefficients (problem 86). This is in
connection with an investigation into Descarte’s rule of signs.

Theorem 3.1. Suppose that x1, x2, x3 are real numbers, linearly independent over
the rational numbers, and suppose that ξ1, ξ2 are real numbers, linearly independent over
the rational numbers. Then one at least of the six numbers

exp(xiξj)

is transcendental.

This theorem is given in Lang [2, Ch.2, thm 1], but was known to Siegel and others, as
remarked by Lang. The result was also discovered independently by Ramachandra [8]. A
stronger statement, the strong six exponentials theorem, has been proven by Waldschmidt
[14]. A discussion is given there of related results and conjectures.

Proof. The proof is by contradiction: we suppose the numbers to be algebraic, and
to generate a finite extension L of Q of degree m. Let S be the set of embeddings of L in
C. We suppose without loss of generality that x1, x2, x3, ξ1, ξ2 are positive, and bounded
by B. We choose T so that

| exp(xiξj)σ| ≤ T, i = 1, 2, 3; j = 1, 2; σ ∈ S,

and positive integers eij such that

eij exp(xiξj)

are algebraic integers. We let N =
∏

eij .
We now take n ≥ 2 to be an integer, later to be sent to infinity, and let ∆ be the

n6 × n6 determinant with entries

exp
(
(i1x1 + i2x2 + i3x3)(j1ξ1 + j2ξ2)

)
,

where 1 ≤ i1, i2, i3 ≤ n2 index rows, and 1 ≤ j1, j2 ≤ n3 index columns.
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As remarked above, ∆ is not zero. We now estimate ∆ as an algebraic number. Since
iνjµ ≤ n5, and ∆ is a n6 × n6 determinant, we find that, for any σ ∈ S,

|∆σ| ≤ n6!(T 6n5
)n6

.

Thus
log |∆σ| = o(n12).

By multiplying each row of ∆σ by Nn5
, one obtains an algebraic integer. Thus

Ω = Nmn11 ∏
σ∈S

∆σ

is a non-vanishing rational integer. Thus

1 ≤ |Ω|.
We now seek an upper bound for |Ω|. For |∆σ| we will use the estimate above; but

for ∆ itself we will use the mean value theorem (proposition 2.1). We find that

∆ =
V ({i1x1 + i2x2 + i3x3})

Λ(n6)
det(M),

with
M =

(
(j1ξ1 + j2ξ2)i−1 exp((j1ξ1 + j2ξ2)ηi(j1,j2))

)
where rows are indexed by i, and ηi(j1,j2) is an appropriate intermediate point of the
i1x1 + i2x2 + i3x3.

Now since xi ≤ B and iν ≤ n2 we have

|V ({i1x1 + i2x2 + i3x3})| ≤ (3n2B)
n12
2 ,

so that
log |V | ≤ n12 log n + smaller terms,

while according to 2.5
Λ(n6) ≥ exp(3n12 log n− 3n12).

Considering M , we have j1ξ1 + j2ξ2 ≤ 2n3B, and

exp
(
(j1ξ1 + j2ξ2)ηi(j1,j2)

)
≤ exp(6n5T );

thus an entry in row i is bounded by

(2n3B)i−1 exp(6n5T ).

We conclude that

|detM | ≤ n6! exp(6n11T )(2n3B)Σ
n6
i=1i−1 ≤ n6! exp(6n11T )(2n3B)

n12
2 ,

from which we see that

log |detM | ≤ 3
2
n12 log n + smaller terms.

Combining, we find that

|Ω| ≤ exp(−1
2
n12 log n + smaller terms);

this contradicts 1 ≤ |Ω| when n is sufficiently large.
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3.2 The Gelfond-Schneider Theorem

Here we use the non-vanishing of the determinant

∆ = det
(
xj1

i exp(λj2xi)
)

when the xi are distinct real numbers, λ is real and not zero, j1 = 0, 1, . . ., and j2 are
distinct. Again this follows from proposition 2.2, since the corresponding Wronskian de-
terminants do not vanish: as before this is because the functions comprising them form a
basis of solutions to a linear ordinary differential equation.

Theorem 3.2. Suppose that α is a real positive algebraic number with α /=1, and
suppose β is a real algebraic irrational number. Then αβ is transcendental.

Proof. Let γ = αβ . The proof is by contradiction: we suppose γ to be algebraic,
and that α, β, γ generate a finite extension L of Q of degree m, with embeddings S. We
suppose without loss of generality that β is positive. We choose T so that

|ασ|, 1 + |βσ|, |γσ| ≤ T, σ ∈ S,

and positive integers a, b, c such that

aα, bβ, cγ

are algebraic integers. We let N = abc.
We now take n ≥ 2 to be an integer, and let ∆ be the n4×n4 determinant with entries

exp ((i1 + i2β)(j2 log α)) (i1 + i2β)j1−1,

where 1 ≤ i1, i2 ≤ n2 index rows, and 1 ≤ j1 ≤ n3, j2 ≤ n index columns.
Thus ∆ ∈ L is non-zero. We estimate ∆ as an algebraic number. The entries have

the form:
σ(α)i1j2σ(γ)i2j2σ(i1 + i2β)j1 ,

and these have absolute value bounded by

Tn3
Tn3

(n2T )n3
.

Thus
|∆σ| ≤ n4!T 3n7

n2n7
.

Multiplying each row of ∆σ by Nn3
yields an algebraic integer. Thus

Ω = Nmn7 ∏
σ∈S

∆σ

is a non-vanishing rational integer. Thus 1 ≤ |Ω|.

10



We now pursue an upper bound for |Ω|. For |∆σ| we will use the estimate above; but
for ∆ itself we will use proposition 2.1. We find that

∆ =
V ({i1 + i2β})

Λ(n4)
det(M),

with

M =
(
(xj1αj2x)(i−1)

∣∣∣∣
x=ηi(j1,j2)

)
where rows are indexed by i, superscript (i − 1) means differentiation, and ηi(j1,j2) is an
appropriate intermediate point of the i1 + i2β.

We have
|V ({i1 + i2β})| ≤ (n2T )

n8
2 ,

while
Λ(n4) ≥ exp(2n8 log n− 3n8).

Considering M , we first note (log α)ηi(j1,j2) ≤ n2T . Now

(
d

dx
)`(xj1αj2x) =

∑
ν+µ=`

`!
ν!µ!

(
d

dx
)νxj1(

d

dx
)µαj2x.

It suffices to use the estimate
∑

ν+µ=`
`!

ν!µ! ≤ 2`; but we will be more frugal, and note that
( d

dx )νxj1 vanishes if ν ≥ j1 + 1, and that j1 ≤ n3 − 1. Thus an entry in row i of M is
bounded by

n3(i− 1)n3
n3!(n2T )n3

(Tn2)n(n log α)i−1,

the last term being the dominant and significant one. We conclude that

|det(M)| ≤ n4!
[
n3(n4)n3

n3!(n2T )n3+n
]n4

(n log α)Σ
n4
i=1i−1.

Since
∑n4

i=1 i− 1 ≤ 1
2n8, combining our estimates yields

|Ω| ≤ exp(−1
2
n8 log n + smaller terms);

this contradicts 1 ≤ |Ω| when n is sufficiently large.

3.2 The Hermite-Lindemann Theorem

Here we use the non-vanishing of the determinant

∆ = det
(
(xj1

i1
exp(j2xi1))

(i2−1)
)

when the xi are distinct real numbers: indeed the Wronskians are the same as in the
previous subsection. The proof proceeds as before, except that we appeal to proposition
2.4 instead of proposition 2.1 since we now have multiplicities in the rows.
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Theorem 3.3. Suppose that α is a non-zero real algebraic number. Then eα is
transcendental.

Proof. We can assume that α is positive. Suppose that α and eα are algebraic and
generate a finite extension L of Q of degree m, with embeddings S. We choose T so that

|ασ|, |(eα)σ| ≤ T, σ ∈ S,

and positive integers a, b such that
aα, beα

are algebraic integers. We let N = ab.
We now take n ≥ 2 to be an integer, and let ∆ be the n4×n4 determinant with entries(

exp(j2x)xj1−1
)(i1−1)∣∣

x=(i2−1)α
,

where 1 ≤ i1, i2 ≤ n2 index rows, and 1 ≤ j1 ≤ n3,and 1 ≤ j2 ≤ n index columns.
Thus ∆ ∈ L is non-zero. We estimate ∆ as an algebraic number. Since each entry is

bounded by
2n2

n3!(n2T )n3
nn2

Tn3

we conclude that for any σ ∈ S

|∆σ| ≤ n4!2n6
(n3!)n4

(n2T 2)n7
nn6

.

Further,
Ω = Nmn7 ∏

σ∈S

∆σ

is a non-vanishing rational integer, whence 1 ≤ |Ω|.
By proposition 2.4

∆ =
Λ(n2)n2

V ({(i2 − 1)α})n4

Λ(n4)
det(M),

with

M =
(
(xj1ej2x)(i−1)

∣∣∣∣
x=ηi(j1,j2)

)
where rows are indexed by i, superscript (i − 1) means differentiation, and ηi(j1,j2) is an
appropriate intermediate point of the (i2 − 1)α.

We have
|V |n

4
≤ (n2T )

n8
2 ;

Λ(n2)n2
≤ exp(n6 log n);

Λ(n4) ≥ exp(2n8 log n− 3n8).

12



The derivatives of xj1 vanishing after order j1 ≤ n3, we find that an entry in row i of
M is bounded by

n3(i− 1)n3
n3!(n2T )n3

Tn3
ni−1.

Therefore

|det(M)| ≤ n4!
[
n3(n4)n3

n3!(n2T 2)n3
]n4

(n)Σ
n4
i=1i−1.

Since
∑n4

i=1 i− 1 ≤ 1
2n8, combining our estimates yields

|Ω| ≤ exp(−1
2
n8 log n + smaller terms);

contrary to 1 ≤ |Ω| for n sufficiently large.

4. A Determinant

We consider here the determinant

∆ = det
(
exp(xiξj)

)
where xi and ξj are distinct complex variables. It is divisible (as an entire function) by
the Vandermonde determinants in each system of variables, Vx and Vξ. The quotient

∆
Vx Vξ

is entire: the value taken when arguments are repeated being the quotient by the ap-
propriate Schendel determinants of the determinant in which repeated arguments yield
differentiated rows or columns.

Our main conclusion is that this quotient, as a function of 2n real variables, is strictly
increasing in each of them. It follows that if A ≤ xi ≤ B and C ≤ ξj ≤ D then

exp(nAC)
Λ(n)

≤ ∆
Vx Vξ

≤ exp(nBD)
Λ(n)

.

We will prove this via a completely formal argument. We let

F (z) =
∞∑

i=0

aiz
i

be a formal power series with indeterminate coefficients. Further let xi, ξj , i, j = 1, . . . , n
be indeterminates and put

∆ = det
(
F (xiξj)

)
.

Proposition 4.1 The quotient
∆

Vx Vξ

is a formal power series in Z[ai][[xi, ξj ]] whose coefficients are all non-negative integers.
Moreover, the term corresponding to any selection of n distinct ai is non-vanishing.
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Proof. Expanding the determinant ∆, we see that all the terms have the form

ak1x
k1
1 ξk1

j1
· · · akn

xkn
n ξkn

jn

where jn gives a permutation of 1, . . . , n. We will consider the terms corresponding to a
particular choice of n of the ai. Consider a selection of n distinct ai,

ak1 , ak2 , . . . , akn
; k1 < k2 · · · kn.

The corresponding part of the determinant, comprising all terms whose ai lie among the
selected set, is given by

det
( n∑

m=1

akm
xkm

i ξkm
j

)
.

We can factor this matrix to obtain the expression

det
(
akj

x
kj

i

)
det

(
ξki
j

)
= ak1 · · · akn

det
(
x

kj

i

)
det

(
ξki
j

)
.

We thus see that all the surviving terms in the expansion of ∆ involve some selection of
n distinct ai. The assertion of the lemma is now reduced to showing that for k1 < k2 <
· · · < kn the quotient of determinants

det
(
x

kj

i

)
det

(
xj−1

i

)
is a symmetric function with non-negative integral coefficients. This is easily shown by
induction on n: subtracting the first row of the matrix in the numerator from the subse-
quent rows, dividing through row i /=1 by xi − x1, and using the column linearity of the
determinant expresses the desired quotient as a positive integral sum of like determinants
of order n− 1.

Corollary. Suppose that F (z) = Σaiz
i is a power series with non-negative real

coefficients, of which at least n are not zero. Suppose the power series converges for
|z| ≤ r, r > 0. Then the determinantal quotient of the proposition is analytic for |xiξj | < r,
and, as a function of 2n real variables, is strictly increasing in each of them for all positive
values.

The determinantal quotient formed using the exponential function is strictly increasing
for all real arguments, positive or negative, because

det
(
exp((xi + h)ξj) = exp(hξ1 + · · ·hξn) det

(
exp(xiξj)

)
,

det
(
exp(xi(ξj + k)) = exp(kx1 + · · · kxn) det

(
exp(xiξj)

)
while the Vandermonde (or Schendel) determinants are translation invariant.
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We conclude that, given x1 ≤ · · · ≤ xn and ξ1 ≤ · · · ≤ ξn (allowing multiplicities),
there exist intermediate points x and ξ such that

∆
Vx Vξ

=
exp(nxξ)

Λ(n)
.

The above enables us to simplify the estimates for the determinants ∆ used in the
transcendence proofs. However, we have preferred to prove those theorems using only the
mean value theorems valid for arbitrary functions.

To get lower bounds for ∆ we must have lower bounds for the corresponding Schendel
determinants. These can be evaluated explicitly in the Hermite-Lindemann case, since
the xi are integral multiples of α, and the ξj are integers. In the Gelfond Schneider case,
a lower bound for the Schendel determinant may be obtained using (say) the Liouville
estimate for rational approximations to an irrational algebraic number. The lower bound
can then be used to get a transcendence measure, as remarked in the introduction.
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