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O-minimality and the André-Oort conjecture for C"

Jonathan Pila

Abstract

We give an unconditional proof of the André-Oort conjecture for arbitrary products of modular
curves. We establish two generalizations. The first includes the Manin-Mumford conjecture for
arbitrary products of elliptic curves defined over QQ as well as Lang’s conjecture for torsion points
in powers of the multiplicative group. The second includes the Manin-Mumford conjecture for
abelian varieties defined over (. Our approach uses the theory of o-minimal structures, a part
of Model Theory, and follows a strategy proposed by Zannier and implemented in three recent
papers: a new proof of the Manin-Mumford conjecture by Pila-Zannier; a proof of a special (but
new) case of Pink’s relative Manin-Mumford conjecture by Masser-Zannier; and new proofs of
certain known results of André-Oort—Manin-Mumford type by Pila.

2010 Mathematics Subject Classification: 11G18, 03C64

Keywords: Definable set, rational point, André-Oort conjecture, Manin-Mumford conjecture.

1. Introduction

In this paper we give an unconditional proof of the André-Oort conjecture for arbitrary products of
modular curves. Under the Generalized Riemann Hypothesis for imaginary quadratic fields this result
is due to Edixhoven [32, 34]; for n = 2 it is an unconditional result of André [3]. Our approach uses the
theory of o-minimal structures, a part of Model Theory. It leads naturally to a more general result that
is an “André-Oort—Manin-Mumford-Lang” statement for varieties of the form

X=YiX...xY,xE; X...x Ep xG*

where n,m, ¢ are non-negative integers, Y1 = I''\H, ..., Y, = T';,\H are modular curves corresponding
to the quotient of the upper half plane H by congruence subgroups I'; of SLo(Z), E1, ..., E,, are elliptic
curves defined over Q, and G = G, (C) is the multiplicative group of non-zero complex numbers. (In this
paper complex algebraic varieties will be identified with their sets of complex-valued points.) Combining
the methods of this paper with those of Pila and Zannier [71] we prove an “André-Oort—Manin-Mumford”
statement for varieties of the form

X=Y1x..xY,xA

where Y; are modular curves as above and A is an abelian variety defined over Q.

It is well known ([33, 35]) that level structure is inessential for the André-Oort conjecture. Here too
the case in which each I'; = SLs(Z), so that Y; = C, exhibits all the essential features, and we restrict
to this case for the latter part of the introduction. In particular, the definitions of “special point” and
“special subvariety” are given for X of this special form in 1.2 and 1.3 below. The definitions in the
general case are given in 6.7. One observes that a “special point” is the same as a “special subvariety of
dimension 0”, and that special subvarieties of positive dimension contain infinitely many — even a Zariski
dense set of — special points (see Aside 1.4). Thus if V' C X contains a special subvariety of positive
dimension then V' will contain infinitely many special points.

A weak version of the “André-Oort—Manin-Mumford-Lang” statement about a variety X is the
converse of the above statement:

If V. C X contains infinitely many special points then it contains a special subvariety
of positive dimension.



When such a result is known it is generally known in a more refined version asserting:

A subvariety V C X contains a finite number of special subvarieties of X (of dimension
0 or greater) that contain all the special points of X lying in V.

We establish our result in this stronger form, and since any special subvariety contained in V' is contained
in some mazimal special subvariety contained in V' we can state our main result as follows.

1.1. Theorem. Let
X=YiX...xYyXE; X...x Ep xG*

where n,m, ¢ > 0, Y; = T;\H are modular curves corresponding to congruence subgroups I'; of SLa(Z),
and E; are elliptic curves defined over Q. Suppose V is a subvariety of X. Then V contains only a
finite number of mazximal special subvarieties.

Note that the subvariety V need not be irreducible, nor need it be defined over Q, but since special
points are algebraic the proof reduces immediately to this case.

Another way of stating this result concerns the Zariski closure of an arbitrary set ¥ of special
points of X. Let Vs be the Zariski closure of 3. By 1.1, V& contains finitely many maximal special
subvarieties. Then it coincides with their union. As special subvarieties are irreducible (see 1.3; this
holds also generally Shimura varieties — but note that varieties as in 1.1 are not in general Shimura
varieties, even mixed ones), one concludes the following.

1.1*. Theorem. Suppose X is as in 1.1. Let ¥ be an arbitrary set of special points of X with Zariski
closure Vy,. Then the irreducible components of Vx are special subvarieties.

In fact this second version is equivalent to the first. For suppose V is a subvariety of X. We may
apply the second version to the set X of special points of X contained in V. The Zariski closure of
3 then comprises a finite union of irreducible components, which (as special points are Zariski dense
in a special subvariety) are just the maximal special subvarieties contained in V. In §12 we prove the
assertion of 1.1 for subvarieties V' C X for X = Y] x ... x Y, x A, where A is an abelian variety of
arbitrary dimension defined over Q. This is again equivalent to the assertion of 1.1* for arbitrary sets ¥
of special points of X.

For fixed X, the number and “complexity” of maximal special subvarieties contained in V' is bounded
uniformly for subvarieties V' of given degree and degree over Q of field of definition. A precise statement
is formulated in §13. Theorem 1.1 is ineffective in the j aspects due to its reliance on lower bounds for
class numbers. Siegel’s well-known result [84], which is nearly as good as would follow from GRH, is in
fact stronger than we need. Landau’s weaker lower bound [47] suffices (see Remark 5.9.1) though it too
is ineffective, as are all known bounds of the requisite form. Unlike the proofs in [34, 91], which depend
on the existence of a small split prime, and so rely on GRH, a suitable lower bound for class numbers is
all we require. In §13 we explicate what would be required to make the rest of our argument effective,
and give a further statement that would follow.

The André-Oort conjecture (AO) is the assertion in 1.1 (more usually stated in the form 1.1%) for
an arbitrary Shimura variety X (see e.g. [62, 97]). It is trivial if dim X = 1, since X is irreducible as a
variety and so a proper V C X reduces to a finite set of points. AO is the compositum of a conjecture
of Oort [63] (AO for subvarieties of the moduli space A, of principally polarized abelian varieties) and
one of André [2] (AO for curves in an arbitrary Shimura variety). As already mentioned, André [3]
proved AO unconditionally for a product of two modular curves. Independently, Edixhoven [32] proved
the same under GRH for imaginary quadratic fields, and later, under the same GRH assumptions, for
an arbitrary product of modular curves [34] (see also [91]). Under GRH for suitable CM fields, Yafaev
[95] affirms AO for products of two Shimura curves, Edixhoven [33] for Hilbert modular surfaces, and
Yafaev [96] for curves in an arbitrary Shimura variety. In the subsequent work, equidistribution results
(see e.g. [23, 90]) have played a major role. By combining the Galois- and equidistribution- theoretic
methods, a proof of the André-Oort conjecture in full, under GRH for CM fields, has been announced
in work of Klingler, Ullmo, and Yafaev [46, 92].



Unconditional results have been obtained for certain X and V under additional hypotheses on
the special points X. In particular if the points in ¥ lie in one Hecke orbit then 1.1* is affirmed in
[33] for Hilbert modular surfaces, in [34] for products of modular curves, and these results are further
strengthened and generalized in [35, 96, 46], see also Zhang [99]. Moonen [60] affirms 1.1* for A, under
different conditions on the points in 3.

Theorem 1.1 affirms AO in the case of a product X =Y; x ... x Y,, of modular curves (the more
general X we consider in 1.1 are not Shimura varieties). To the knowledge of the author, these are the
only Shimura varieties X (with dim X > 2) for which AO is known unconditionally. (For mixed Shimura
varieties one has also the result of André [4] on elliptic pencils, for which a proof along the present lines
is given in [68].)

For X = E; x ... x E,, Theorem 1.1 is a special case of the Manin-Mumford conjecture (MM)
for subvarieties of abelian varieties and our proof is a variant of the one in [71] for abelian varieties
over Q. (The Manin-Mumford conjecture was originally proved by Raynaud [76, 77]. For a survey see
[88]). For X = G* the result is a special case of a theorem of Laurent [50] (see also Sarnak-Adams [82]),
generalizing earlier cases due to Liardet [52] to affirm for G’ a conjecture of Lang on the intersection of a
subvariety of a semi-abelian variety with the division points of a finitely generated subgroup. For torsion
points (i.e. division points of the trivial subgroup) weak forms of the conjecture go back to Chabauty
(see Lang [49]), while proofs of it in the simplest case of plane curves, due to Ihara-Serre-Tate, are given
in [48]. For X = F1 X ... X Ep, X G* our result is a special case of Hindry’s theorem [42] affirming the
torsion point case of Lang’s conjecture for subvarieties of commutative group varieties. MM became part
of the Mordell-Lang conjecture (ML, proved by Faltings, Vojta,...) on the one hand, and a special case
of the Bogomolov conjecture on the other. It has a great variety of proofs, some in conjunction with
these other problems, including a proof by Hrushovski [43] using the model theory of difference fields
(quite a different flavour of Model Theory to that employed here).

For X = C x A a much stronger result than ours, allowing finite generation and points of small
height (as in the Bogomolov conjecture) in the abelian variety A, is due to Buium-Poonen [21] (see also
[22]), who further allow the modular curve C to be replaced by a Shimura curve. An earlier result along
these lines is due to Nekovar-Schappacher [61], and a proof in the case of C x E is in [68].

In making their conjectures, André and Oort were mindful of the analogy between AO and MM,
and there has been an interplay of methods used for AO and MM and related problems. Notably,
equidistribution played a key role in the proof by Ullmo [89] and Zhang [98] of the Bogomolov conjecture.
In the other direction, Ratazzi-Ullmo [75] give a proof of MM using methods developed for AO. A
conjecture of Pink [73, 74] combines AO, MM and ML in a far-reaching generalization. A related
conjecture in the semi-abelian setting (encompassing MM and ML but not AO) had been earlier proposed
by Zilber [100] and, independently, Bombieri-Masser-Zannier [14] proposed a similar conjecture for Gt
In [15] it is shown that, for Ge, all the formulations are equivalent if taken in sufficient generality. The
aformentioned result of André on elliptic pencils is contained in Pink’s conjecture, as is the result of
Masser-Zannier [56]. Theorem 1.1 (12.1) combines AO for products of modular curves with MM for
products of elliptic curves and linear tori (abelian varieties), treating the various factors in a uniform
manner, although we also exploit incompatibilities in the underlying geometries.

For the rest of the introduction we restrict consideration to varieties
X=C"xFEy%X...x Epn xG*

where n,m, ¢ > 0 and E; are elliptic curves defined over Q, except that, for convenience (and brevity),
the following definitions are given with Fq X ... X E,, replaced by an arbitrary abelian variety.

1.2. Definition.

1. Let n > 0. A special point of C™ is a point ¢ = (¢, ..., ¢,) such that each ¢; is the j-invariant of
an elliptic curve with complex multiplication. By convention the point C° is special.

2. Let A be an abelian variety of dimension m > 0. A special point of A is a point a € A of finite
order, i.e. a torsion point. So if m = 0 then A consists of a single point, which is special.

3. Let £ > 0. A special point of G is a point g = (g1,---,9¢0) € G* of finite order, i.e. such that
each g; is a root of unity. By convention the point G° is special.
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4. Let
X=C"xAxG*

where n,/ > 0 and A is an abelian variety of dimension m > 0. A special point of X is a point
(c,a,g) € X such that c is a special point of C", a is a special point of A, and g is a special point of Gt

1.3. Definition.

1. A special subvariety in C™ is an irreducible component of a cartesian product of fibred products of
modular curves and special points, which we detail more precisely as follows. For N > 1 let &y € Z[z, y]
denote the classical modular polynomial (see e.g. [58]; @y is symmetric for N > 2, e.g. ®p = 23 + y3 —
22y? + 14882y (z + y) — 162000(2? + y?) + 407733752y + 8748000000(x + ) — 157464000000000, and we
take ®q(z,y) = z —y). Let n > 0. Let SpUS; U...US, be a disjoint partition of {1,...,n} with
w > 0 and Sy only permitted to be empty. Let j; be a special point of C for each i € Sy. Let s; be the
smallest element of \S; for each ¢ > 0 and for each j € S;,j # s; choose a positive integer N;;. A special
subvariety of C™ is an irreducible component Y of a subvariety of the form

{(cl,...,cn) EC“ICIL Zji,ZIESQ,(I)N”(Cs“Cj) :O,] ESi,j#Si,iZL...,w}

associated to some choice of data S;, j;, N;; as indicated. The dimension of the special subvariety is
equal to w. Note that for n = 0 one must have w = 0.

2. Let A be an abelian variety of dimension m > 0. A special subvariety of A is a subvariety of the
form

a+ B

where B is an abelian subvariety of A (possibly trivial) and a is a torsion point.
3. Let £ > 0. A special subvariety of G* is a subvariety of the form

gH

where H is an irreducible algebraic subgroup (possibly trivial) and g = (g1,...,g¢) is a torsion point
(i.e. g; are roots of unity).

4. Let X =C" x A x G* where n,¢ > 0 and A is an abelian variety of dimension m > 0. A special
subvariety of X is a subvariety of the form

Y X (a+ B) x gH

where Y is a special subvariety of C", a + B is a special subvariety of A, and gH is a special subvariety
of G*.

1.4. Aside. We give a brief indication of the assertion that special points are Zariski dense in special
subvarieties. In an abelian variety, the density of torsion points in the analytic topology is evident when
A is viewed as a complex torus, the torsion points being the division points of the lattice. This is clearly
preserved for torsion cosets of abelian subvarieties. In G, torsion points are Zariski dense because there
are infinitely many of them. As an irreducible algebraic subgroup of G’ is isomorphic to G for some
A < /4, one gets Zariski denisty in an irreducible algebraic subgroup, and thence in any torsion coset . In
C as a modular variety the Zariski density again follows from there being infinitely many special points,
but here they are also dense in the analytic topology being the images of quadratic points under the
uniformisation j : HH — C by the elliptic modular function. If an elliptic curve has CM then so does
any isogenous elliptic curve. Thus if ®x(z,y) = 0 and x is special then y is also special. This gives
the (analytic) density of special points in modular curves, and density in all special subvarieties of C™
follows.

Our method of proof of Theorem 1.1 follows the same basic strategy originally proposed by Zannier
and worked out by the present author and Zannier to give a new proof [71] of the Manin-Mumford
conjecture. The same strategy has been exploited in two further papers. Masser and Zannier [56] prove
a special case of Pink’s relative Manin-Mumford conjecture, and Pila [68] gives new proofs of some simple
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results of André-Oort—Manin-Mumford type (including the X = C? and X = C x F cases of 1.1). Tt
relies on results from the theory of o-minimal structures over R, a part of Model Theory. O-minimality
is used at three distinct junctures in our argument. The definition of an o-minimal structure over R,
and the key examples, are set out in Section 2. For some remarks on further prospects for this approach
see 11.4.2.

With X = C" x Ey x ... x E,, x G, let H denote the upper half-plane and, for j =1,...,m, let
A; C C be alattice such that C/A; is complex analytically isomorphic to E; by means of the Weierstrass
p-function p; corresponding to A; and its derivative p; Let

U=H"xC™xC"
The starting point for this strategy is the transcendental uniformization
m:U—X

where 7 is given by applying the j function on the factors of H", the functions p;, p},j =1,...,mon
the factors of C™, and the exponential function on the factors of C. The map 7 is invariant under a
discrete group I' of isometries of U, generated by the action of SLy(Z)™ on H™, translation by the lattices
A; on the respective factors of C™, and translation by 2miZ on the factors of C*. The discrete group I'
is a subgroup of a suitable algebraic group G of isometries of U (G is a product of copies of SLy(R), R?,
and R). Let F be a standard fundamental domain for the action of T" on U. (These definitions are set
out formally and more generally for X as in 1.1 in §4. The notations X, V,U, G, n,I',F above and Z, Z
below remain fixed from §4 onwards, except that we take X to be of more or less restricted form at
various places).

Call the pre-images in U of special points of X pre-special points. They have certain rationality
properties. Specifically, if (71, ..., Tn, 215 - - - Zm, (1, - - - » C¢) 18 special then the 7; are quadratic algebraic
points in H, the z; are division points with respect to the lattices A;, and the (; are rational multiples
of 2mi. Let

Z=n"1V)

and
Z =ZNF.

To count special points in V' we may count instead their pre-images in Z.
We consider
UcRY, XcRY, N=2m+m+/)

in suitable real coordinates so that pre-special points are algebraic of bounded degree. All the sets being
considered may then be viewed as subsets of RYY. By work of Gabrielov [38] and van den Dries [26] on
projections of semi-analytic sets, Wilkie [93] on the exponential function, Peterzil-Starchenko [64] on the
Weierstrass p-function, and others, the set

ZcRY

is a definable set in a suitable o-minimal structure over R (a “definable set”; see §2). (In contrast Z is
generally not so definable, due to the I'-periodicity.) We apply a result of Pila-Wilkie [70] concerning the
distribution of rational points on definable sets in R” (more precisely a refinement [67] of it applicable
to algebraic points of bounded degree stated as Theorem 3.2 below). This gives an upper bound for the
number of pre-special points in Z up to a given height that do not lie on some connected semialgebraic
subset of Z of positive dimension.

On the other hand, special points of V' are algebraic, so their suitable Galois conjugates lie again
on V, and are also special points. Siegel’s lower bound for class numbers of imaginary orders gives, via
the theory of complex multiplication, a lower bound for the degree of a special point of C in terms of the
size of the discriminant of the corresponding order. Masser [54] gives a lower bound for the degree of a
torsion point of an abelian variety (i.e. the degree over Q of a field of definition for the point) in terms
of its order of torsion. The degree ¢(n) of a primitive nth root of unity has elementary lower bounds.
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In combination these give (as in [71, 68]) a lower bound for the number of conjugates of a special point,
and hence for the number of pre-special points in Z in terms of the“complexity” (size of discriminant
of corresponding quadratic order, minimal order of torsion, or maximum of these: see §5) of one such
point in V. It is elementary to bound the height of a pre-special point in F in terms of its complexity.

The crux of the strategy is the incompatibility of the upper and lower bounds once the complexity
of the pre-special point is too large, unless Z contains semi-algebraic subsets of positive dimension.
Looking back one finds an antecedent of this strategy of opposing Galois lower bounds to archimedean
upper bounds used by Sarnak in an unpublished manuscript [81] to reprove Lang’s conjecture (on torsion
points) for subvarieties of G’. In the published version [82] this proof is replaced by a slicker argument.
It was in fact this manuscript [81] that raised the questions about diophantine properties of smooth and
analytic curves that led to the paper [16], whose ideas developed ultimately into [70].

To conclude the proof of 1.1 we must identify the possible semi-algebraic subsets of Z = 7=1(V).
It turns out that they correspond (in the complex coordinates) almost exactly to components of pre-
images of special subvarieties of V' (the “almost” is explained in Section 6: there are some additional
possible components but they contain no pre-special points). This identification amounts to proving the
algebraic independence of certain functions, namely the composition of the component functions of 7
with algebraic functions, under suitable hypotheses. The main work and the main novelty in this paper
occur at this juncture. We make further use of the conjunction of definability and diophantine properties
with a second and independent application of the Pila-Wilkie result (with a further slight refinement
established here as Theorem 3.6 below)

For X = G' the result we need is the following. Let W C C be an irreducible algebraic variety,
and (1,...,Ce the restrictions of the coordinate function on C° to W, i.e. their images in the function
field C(W). Then the functions

exp(C1); - - -, exp(Ce),

mapping W — C, are algebraically independent (over C) provided that the ¢; are linearly independent
over Q modulo constants, i.e. provided there do not exist ¢; € Q, not all zero, such that 3" ¢;¢; = c € C.
(Note that if this condition fails then the exp((;) are indeed algebraically dependent over C.) This follows
from the results of Ax [5] establishing power series and differential field versions of Schanuel’s conjecture,
the results known as “Ax-Schanuel”. More precisely it is the part of Ax-Schanuel corresponding to
the Lindemann-Weierstrass Theorem (which asserts the algebraic independence of the exponentials of
algebraic numbers that are linearly independent over Q), and accordingly we call this “Ax-Lindemann-
Weierstrass” (ALW). It was remarked in [71] that the method of proof there should give a new proof of
Lang’s conjecture on torsion points on subvarieties of G* using Ax-Schanuel. Such a proof is included in
the proof of 1.1, but our method introduced here for studying algebraic subsets of Z also reproves the
required ALW part of Ax-Schanuel.

For the case X = C" the result we must prove is equivalent (as we show) to the analogue of ALW
for the j function. Namely, suppose W C C" is an irreducible algebraic variety having a non-empty
intersection with H" (so WNH" is Zariski dense in W) and that 77, ..., 7, are the images in the algebraic
function field C(WW) of the coordinate functions on C™. Let P € W NH". Then the functions

](TI)""vj(ﬁ)v

mapping WNA — C for some open neighbourhood A of P, are algebraically independent over C, unless
some 7; is constant or there is a relation of the form 7, = g7, where a # b and g € GL2(Q)* (where
“+” indicates positive determinant and GL2(Q)" acts on H by fractional linear transformations). Note
again that if the condition on the 7; fails, then the j(7;) are algebraically dependent over C, by a suitable
modular relation @ (j(75), 7(7)) = 0 if 74 = g7 with g € GLo(Q)T. This result appears to be new (cf
the very special cases treated by Amou [1]). (For a generalization of Schanuel’s conjecture encompassing
the j-function, the exponential function and more see [8].)

For a product X = E; x ... x E,, of elliptic curves (defined over C), the corresponding ALW result
required is for the composition of Weierstarss p-functions with algebraic functions

pl(zil)v R @m(%),



where Z; are the images of the coordinate functions in some algebraic function field, under suitable (and
necessary) “linear independence” conditions (see 1.5.2). This follows (even for X = E) x ... x E,, x GY)
from the “Ax-Schanuel” results for Weierstrass functions of Brownawell-Kubota [20], though again we
reprove the ALW part directly by our methods.

For X = A an abelian variety (over C) the corresponding characterization of the “algebraic part”
proved in [71] is likewise equivalent (by the argument given here) to an ALW-type result. An Ax-
Schanuel result for abelian and indeed semi-abelian varieties is established in work of Ax [6] and Kirby
[45], (see also [9, 10]), which thus includes all of the results discussed above except the one concerning
the j-function. Of course ALW for the j function is the crucial ingredient required to admit products of
modular curves in Theorem 1.1.

To prove 1.1 we must establish a functional algebraic independence result encompassing all the
Ax-Lindemann-Weierstrass results mentioned, which we now frame.

1.5. Definition. Let n,m,¢ be non-negative integers. Let X = C" x E; X ... x E,, x G' where
E; are elliptic curves over C corresponding to lattices A; C C with Weierstrass p-functions ;. Let
A=A @...®&A, CC™ Let U=Uyx. Let W C C""™™** be an irreducible algebraic variety, closed in
X, having a non-empty intersection with U. Let

Tly--+5Tn, 21y yZmy Cl,...,Cg

be the coordinate functions on C"*™** and
TLyee s Ty ZlyevosZms Clyeeos Go

their images in C(W). A subset of these, which for simplicity we take to be
Tlyee s Ty ZseeosZmy Cloeeos G,

where 0 < v < n,0 < p <m,0 <A < /{, will be called geodesically independent if all of the following
conditions hold.

1. The functions 77, ..., 7,, are non-constant and there are no relations of the form 7, = g7, where
a#band g € GL2(Q)". If v = 0 we consider this condition to be satisfied.
2. The functions Z7,...,Z, do not satisfy any system of p — h linearly independent equations

Z;‘:l a2 = ¢t =1,..., ;0 — h, h < u, where ¢; € C and the h-dimensional linear subspace L defined
by Z;‘:l a;;2; = 0,4 =1,...,u — h contains L N A as a lattice (i.e. of full rank 2h). Ie., the locus
(Z1,...,7%,) is not a coset of a proper subtorus of C/A. If 4 = 0 we consider this condition to be satisfied.

3. The functions (i,...,( are Q-linearly independent modulo constants, i.e there do not exist
qi,---,qx € Q, not all zero, such that Zj‘zl qi¢; € C. If X\ = 0 we consider this condition to be satisfied.

The term “geodesic” here is suggested by the notion of a totally geodesic subvariety studied by
Moonen [59]; see Remark 6.4 below. As observed, the geodesic independence of the arguments is a
necessary condition for the compositions with the respective j, @;,exp to be algebraically independent
over C. The required result is the sufficiency of this condition.

1.6. Theorem. Let the notation (and assumption WNUx # () be as in Definition 1.5. If the functions

Ty 5 Tuy  Zlye--y2p, C1,y---,C0

in C(W) are geodesically independent then the functions

](Tl)v"'vj(?l/)7 pl(a)v"'vpﬂ(zilt)v exp((l),...,exp(g),

defined locally on W N Uy, are algebraically independent over C.

This result is equivalent to the characterization of semi-algebraic subsets of Z required to prove 1.1
(see 9.1, 9.2). Another way of stating the conclusion of 1.6 is that under the associated map 7 : U — X,
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where U = H” x C* x C* and X = C* x F; x...x E, x G, the image (W) is Zariski dense in X. In fact
we can prove a stronger version, namely that under the same conditions these functions are algebraically
independent over C(W) (see 9.6 et seq). One can rephrase the statement of 1.6 to consider arbitrary
elements ar,...,a,, b1,... ,E, C1,...,Cx in an algebraic function field C(W). The conclusion of 1.6
then holds provided that these functions are geodesically independent as in 1.5, and there is a point

P € W such that (ag,...,a,, by, ... by, ©i,...,ex)(P) € U, so that the required compositions are
all defined locally on W.

With the identification of the maximal algebraic subsets of Z and the upper and lower bounds for
prespecial points in Z we can establish the AOMML statement in its weak form: V C X contains only
finitely many special points unless it contains a special subvariety of positive dimension. The deduction
of the stronger form enunciated in Theorem 1.1 is by an induction that requires knowing that only
finitely many different (up to “translation”) maximal special subvarieties occur. Here we make a third,
though quite elementary, use of o-minimality properties in conjunction with rationality. Essentially, we
use the fact that a definable set consisting only of rational points is finite. Probably this step could be
effected by elementary means, as is the corresponding result in the case of abelian varieties (see e.g. the
corresponding deduction in [71] recalling arguments from [17]), however the argument using o-minimality
is quite transparent.

The paper is organized as follows. The definition and key examples of o-minimal structures over
R are recalled in §2. The upper bound result for the height density of algebraic points of bounded
degree on definable sets is given in §3. In §4 we set up some notation with respect to the uniformization
7 : U — X and the discrete group I' for which 7 is invariant. We specify the real coordinates that we
will use on U, and observe the definability of the key sets. In §5 we introduce some height-like quantities,
including the “complexity” of a pre-special point alluded to above. Sections 6,7, and 8 are devoted to
proving Theorem 6.8, which characterizes the algebraic part of Z = 7=%(V) when X is of the form
C" x Ey X ... % E,, x G, and are the heart of the paper. In §9 we show that 1.6 is equivalent to 6.8,
and deduce more general forms of both statements. After some further preparations in §10 relating to
the maximal algebraic components of Z, the proof of Theorem 1.1 is given in §11. In §12 we show how
to combine the present methods with the results of [71] to establish the “André-Oort—-Manin-Mumford”
statement for varieties Y; x ... x Y;, x A where A is an abelian variety over Q. Finally, §13 addresses
uniformity and effectivity.
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2. O-minimal structures over R

An o-minimal structure over R is a collection of subsets of R”, v = 1,2, ... that is closed under some
basic operations corresponding to definability in a suitable first-order language (i.e. a “structure” in the
sense of first-order Model Theory), but which also enjoys strong finiteness properties. The notion grew
out of work of van den Dries [25, 26] on Tarski’s problem concerning the decidability of the real ordered
field with the exponential function, and was studied in the more general context of linearly ordered
structures by Pillay and Steinhorn [72], to whom the term “o-minimal” (“order-minimal”) is due.

2.1. Definition. A pre-structure is a sequence S = (S, : v > 1) where each S, is a collection of
subsets of R”. A pre-structure S is called a structure (over the real field) if, for all v, u > 1, the following
conditions are satisfied:

(1) S, is a boolean algebra (under the usual set-theoretic operations)
(2) S, contains every semi-algebraic subset of R”



(3)if Ae S, and B€ S, then Ax BeS,4,
(4) if p>vand A€ S, then 7(A) € S, where 7 : R* — R” is projection onto the first v coordinates.

If S is a structure and, in addition,
(5) the boundary of every set in & is finite

then S is called an o-minimal structure (over the real field).

If S is a structure and Z C R”, we say Z is definable in S if Z € S,. A function f : A — B is
definable in S if its graph is definable, in which case the domain A of f and image f(A) will also be
definable by the definitions.

Sets that are definable in an o-minimal structure are well-behaved. For example, they have finitely
many connected components and admit cell decomposition. Indeed, o-minimal structures over R can
be considered as candidates for Grothendieck’s idea of “topologie modérée” [40, 27, 79]. For the theory
of o-minimal structures we refer to [27, 31], which we reference as needed. We now describe the key
examples.

The collection of all semi-algebraic subsets of RY, v = 1,2,... is a structure, and is o-minimal. Here
a semi-algebraic set in R” is a the set of solutions to a finite collection of equations and inequalities (<, <)
involving polynomials in R[X7, ..., X,]. Equivalently, it is the collection of subsets of R”,v = 1,2, ...
definable with parameters in the language of ordered fields. Conditions (1), (2), and (3) are evidently
satisfied, while (4) follows from the Tarski-Seidenberg Theorem. The collection R, of globally subanalytic
sets in R”, v =1,2,... is an o-minimal structure. These are the subsets of R” that are subanalytic when
considered as subsets of P”(R); the o-minimality follows from Gabrielov’s Theorem [38], as observed
by van den Dries [26]. The collection Reyp, of subsets of R”, v = 1,2,... that are definable using the
exponential function (or, alternatively, the smallest structure containing the graph

Top = {(z,y) €R* 1y = ",z € R}

of the exponential function) is o-minimal. This follows from the work of Wilkie [93] in conjunction with
Khovanskii’s finiteness results [44]. Neither of the structures R,p, Rexp contains the other. For example
(see e.g. [30]) the set I'exp is not subanalytic at infinity, so is not contained in R,y, while R,, contains
the graphs of restricted analytic functions such as {(z,y) € R? : y = sin(z),z € [~1,1]} that are not
definable in Rexp (see [12]). However the structure Rap exp generated by the union of R, and Rexp is
o-minimal (van den Dries and Miller [31], see also [29]).

Further examples may be found described in [80, 86, 79]. The latter surveys methods of constructing
o-minimal structures and discusses the connections with “topologie modérée”. In particular [80], there
exist pairs of o-minimal structures that are incompatible in that their union is not contained in any
o-minimal structure, and consequently there does not exist a “largest” o-minimal structure over R.
Examples are given in [28] of natural functions that are not definable in Rup cxp. For example the
error function fom exp(—t?)dt and the logarithmic integral f;o exp(—t)dt/t on (0,00) are not definable in
Ran exp, though their restrictions to any compact subinterval are, and they are definable in the o-minimal
structure Rpgg generated by Pfaffian functions (see e.g. [94, 79]).

However, Ry cxp contains all the sets that are required in this paper. Therefore, from Section 4
onwards, “definable” will mean “definable in R, cxp.” The reader who is unfamiliar with these
notions need only be content to accept that certain sets are definable in the structure R,y oxp and that, as
a consequence of this and the o-minimality of the structure, various properties, notably the diophantine
properties set out in Theorem 3.6, hold for those sets.

3. Rational (and algebraic) points of definable sets

Let & be an o-minimal structure over R, fixed for this Section, so that “definable” will, in this
section, mean “definable in §”. The distribution of rational points on definable sets is studied in [70],
with some refinement to deal with algebraic points of bounded degree in [67].

We state first the basic result to the effect that, if Z C R is definable in an o-minimal structure
over R, then Z contains only “few” rational (or algebraic of bounded degree) points of height < T, in
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a suitable sense, as T — o0, unless Z contains a semi-algebraic subset of positive dimension. More
precisely, we consider the distribution of rational (or algebraic of bounded degree) points that lie outside
the algebraic part of a set Z C R”, defined as follows.

3.1. Definition. Let Z C R”. The algebraic part of Z, which we denote Z#, is the union of all
connected positive-dimensional semi-algebraic subsets of Z.

For a set Z C R”, an integer k > 1 and a real number T > 1 we set
Z(k,T)=4{2=(21,...,2,) € Z : max|Q(z;) : Q] < k,max H(z;) < T}
where H(«) is the absolute multiplicative height of an algebraic number, as defined in e.g. [13], and

Nu(Z,T) = #Z(k,T).

3.2. Theorem. ([70] for k =1 and [67] in general) Let Z C R” be definable, let k > 1 and e > 0. There
is a constant ¢(Z, k,€) such that, for all T > 1,

Ne(Z — Z¥8,T) < ¢(Z,k,e)T¢. 0

This statement suffices for our first application to the algebraic points of Z. In fact Theorem 3.2
is proved in [70, 67] in a more elaborate form, in particular it is proved for definable families of sets
(see below), which is the source of the uniformity mentioned for 1.1, and using a variant height. In
considering the semi-algebraic subsets of Z we need a more refined version.

Let us note for definiteness that, for a rational number ¢ = a/b in lowest terms ((a,b) = 1)) we have
H(q) = max{|al|, |b|}. For a v-tuple ¢ = (q1,...,q,) € Q" we will adopt a coordinate-wise height (rather
than projective height) setting H(q) = max; H(g;).

3.3. Definition. Let k be a positive integer. The polynomial height (of degree k), denoted H}jOly(a) of
a real number « is given by

k
HE (o) = min{H(q) : ¢ = (qo,-- .. q) € Q"' = {(0,...,0)}. Y qia’ = 0}
=0

if [Q(a) : Q] < k. Otherwise we take HP*Y (a) = co. For a v-tuple 2 = (21, ...,2,) we set H>*Y(z) =
max; HP°Y(z;). The relation between absolute height and Mahler measure ([13], 1.6.5, 1.6.6) implies
that, when [Q(a) : Q] < k,

HXY(a) < 2°H(a)*.

Let us put, for a set Z C R”,
7PN (k,T) ={z € Z: HX*™(2) <T}, NPY(Z,T)=#2Z°Y(k,T).

Then Theorem 3.2 may be proved using HP°Y rather than H. Le. there is a constant cP°%(Z, k, €) such
that, for T'> 1,
NPOW(Z — 28, T) < > (Z, k, e)T".

This version evidently implies Theorem 3.2 in view of the above exhibited relation between the two
heights.
By a definable family of sets we mean a definable set in R” x R¥, considered as the family of fibres

Zy={xeR":(z,y) € Z}, yeR"

The set Y = {y € R" : Z, # 0} is then definable, so it will be immaterial whether we consider
quantifications over Y or R”. Note that we consider the fibre Z, to be a subset of R, so any rationality
considerations relate to the R”-coordinates and not to the coordinates of the parameter y € R".
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For a definable set Z and each pair k,p € N = {0,1,2,...} we define the p-regular points of Z of
dimension k, denoted regP(Z), to be the set of x € Z such that there is an open neighbourhood U of
x with U N Z a CP embedded submanifold of R” of dimension k. Then each regh(Z) is definable, and
indeed this is true over a family, i.e. for a definable family Z the set

{z=(z,y) € Z:z eregh(Z,)}

is definable ([30, B.10]). A regular point of dimension k will mean a l-regular point of dimension k.
The dimension of a definable set Z is the maximum & such that Z has a regular point of dimension k.
Therefore, if Z has dimension k, then Z —regl (Z) has dimension < x — 1. A regular point of a definable
set of dimension k will mean a regular point of dimension x.

The term “definable block” which we now introduce was termed a “basic block” in [67]. However,
our purpose here is to eliminate the need for what was termed a “block” in [67], so here we will just use
the term “definable block”. We also explicate the degree in our definitions.

3.4. Definition.

1. A definable semialgebraic block or definable block of dimension w and degree d in R” is a connected
definable set W C R of dimension w, regular at every point, such that there is a semialgebraic set
A C RY, of dimension w and degree < d, regular at every point, with W C A.

2. A definable semialgebraic block family or definable block family of dimension w and degree d is a
definable family W C R” x R" such that every non-empty fibre W,,y € R is a block of dimension w
and degree < d.

Note that dimension 0 is allowed: a point is a definable block. Further, a definable block of positive
dimension is a union of connected semi-algebraic sets of positive dimension (the intersection of the
definable block with small neighbourhoods of each point), and so if such a definable block is contained in
a set Z it is contained in Z*&. In the following lemma, a semi-algebraic map means a definable function
in the structure of semi-algebraic sets, i.e. f: B — R* where B C R” and {(z, f(z)) € R“** : 2 € B}
are semi-agebraic sets. If W C R” then f(W) will mean f(W N B).

3.5. Lemma. Suppose B C R" is a semi-algebraic set and ¢ : B — R” is a semialgebraic map.

1. If W C R” is a definable block then ¢(W) is a finite union of definable blocks.

2. If W C R" xR" is a definable block family then ¢(W) is a finite union of definable block families
in RY x RH.

Proof. 0. Suppose W C R”" is a definable block with respect to a semi-algebraic set A C R", and
B C R" is a semi-algebraic set. Let A’ be the set of regular points of AN B and W' a connected
component of W N A’. Then W’ is a definable block with respect to A’, since locally at each point of
W it coincides with A. Since W N A’ is definable it has finitely many connected components (see the
remarks following Definition 2.1), it suffices to consider the intersection of W’ with the set of singular
points of AN B. This set has lower dimension. Thus, by induction on dimension, W N B is a finite union
of definable blocks.

1. By the above, ¢(W) = ¢(W N B), and W N B is a finite union of definable blocks. So we reduce
to the case that ¢ is defined on A, and by the same argument we reduce further to the case that ¢ is
continuous on A. Now we look at the image. The image ¢(A) is semi-algebraic, and has some degree d’
and dimension w’. There is a semialgebraic set S C A, closed in A and of lower dimension, such that,
on A — S, the image of ¢ is a regular point of dimension w’. The set A — S consists of finitely many
connected components, as does W N (A —S), and we can reduce to the case that A—S and WN(A—S)
are connected. Then W' = W N (A — 5) is a definable block with respect to A — S and ¢(W') is a
definable block with respect to ¢(A — S) of dimension w’ and degree d’. Further W NS is a finite union
of definable blocks, and the proof of assertion 1 is completed by induction.

2. We need only observe that all the steps above can be carried out in definable families. O

We can now state our refinement of 3.2, incorporating the refinements of the versions in [70, 67].
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3.6. Theorem. Let Z C R” x R be a definable family, k > 1 and € > 0. There is a finite number
J =J(Z,k,€) of definable block families

W cRY x (R xRY), j=1,...,J,

of dimension w; and degree dj, and a constant cPoY (Z, k, €) with the following properties:
1. For all (y,n) € R* x R,

W

(y,m) C Zy.

2. ForallyeR* and T > 1, Z§°ly(k7T) is contained in the union of at most
PV (Z, k, e)Te

definable blocks of the form W((j)n) for somej=1,...,J andn € R,

3.7. Remarks.
1. Since each definable block in Z, of positive dimension is contained in Z;lg, Theorem 3.6 implies
that
NP (Z, — Z28,T) < ™ (Z, k,¢€) T°

for all y € R” and T > 1, thus giving a uniform version of 3.2.

2. However, the main point of this version is that not just the number of points outside the algebraic
part is T bounded, but that the “connected semi-algebraic pieces” i.e. definable blocks required to
contain the rational points are similarly controlled in number and come from finitely many definable
block families. Further all the points of all the definable blocks are regular.

3. Let W%%¢ C R” xR* be the family whose fibre at y € R is the union over all j = 1,..., J(Z, k, €)
and n € R* of the fibres of W((zj,)n) of positive dimension. Then W%%:€ is definable,

Z,k,e alg
Wy C Z,®,

and
NPY(Z, — WZEE T) < P (Z,k, )T .

Since the algebraic part of a definable set may not be definable, this shows that the T bound may
be achieved by removing a definable subset of the algebraic part, and this may be done uniformly over
families. Corresponding assertions appeared in [70, 67]. Indeed, the degrees d; are bounded by some
d(n, k,e€), independent of Z (but not so the J(Z, k,¢)).

4. The result for HP°Y implies the same result using H (with possibly different constants .J, ¢ and
fibres W).

Proof. We need to elaborate the proof of [67, Theorem 5.3], which gives the conclusion for a finite
number of families of semi-algebraic images of definable block families. Here we just need to apply
Lemma 3.5 above at a suitable juncture to get the additional refinement of the conclusion required. For
k =1 (i.e. for rational points) however the required conclusion is established in [67, Theorem 3.5], in
which a “basic block family” is precisely our present “definable block family”. We did not explicate
there that the definable blocks have degrees, but this follows from the proof. For k > 1, a slightly weaker
result is established in [67, 5.3]. In the course of the proof of [67, 5.3], a definable family

Y c RFEHDY « Re

(depending on Z, k) is constructed, together with a finite number of definable maps ¥ — Z, preserving
the fibres, such that the algebraic points of the fibres Z,, are images of rational points on the corresponding
fibre Y,,. Moreover, the definable maps alluded to are the restrictions of semi-algebraic maps ¢;, defined
and continuous on semi-algebraic subsets B; C RE+DY (depending only on v, k) such that:

1. For all y € R*, Y, is the union of pre-images of Z, under the maps ¢;.

2. If x € R with H};Oly(;v) < T then there is an index ¢ and a preimage £ of x under ¢; with
H(E) <T.
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Now [67, 3.5] establishes the conclusion of the theorem for the rational points on the fibres of Y
we have a finite number of definable block families V() ¢ RFTDY 5 (R* x RY) satisfying the desired
conclusions for Y. We have only to show that these conclusions regarding block families are preserved
under the semialgebraic maps ¢;. This is afforded by the present Lemma 3.5: the ¢; images of the V()
can be decomposed into a finite number of definable block families satisfying the required conclusions
for Z. O

4. Uniformization, group actions, fundamental domains, real coordinates, and definability

In this section we give formally the definition of the uniformizing space U associated to the variety
X, an associated real algebraic group G of isometries of U and a discrete subgroup I" such that the map
7w : U — X is I'-invariant. We normalize the definition in such a way that I' < G(Z) in each case. We
specify a fundamental domain. We specify real coordinates on U, and observe the definability properties
that will be crucial to the application of 3.6. The variety X is specified in the notation as it determines
U and T' (while U does not determine I'). However it will be omitted when the intended variety X is
clear from the context.

4.1. Notation.

1. Let X be a modular curve I'\H. Then Ux = H and 7nx : U — X is an embedding of the
quotient as a quasiprojective curve given by a suitable choice of modular functions for I'. The group
Gx = SLy(R) acts on H by fractional linear transformations and I'x = I'. The fundamental domain Fx
is taken to be a suitable finite union of SLy(Z) translates of the standard fundamental domain for the
modular group (see e.g. Serre [83]).

2. Let X = A be an abelian variety of dimension m. Let A be a lattice in C™ such that C™/A
is complex analytically isomorphic to A. (For definiteness we could specify that A corresponds a point
in some chosen fundamental domain of moduli, so e.g. for an elliptic curve that A has generators 1,7
where 7 is in the usual fundamental domain for SLy(Z), but this is not necessary.) Then Ux = C™ and
mx : C™ — A is the composition of the quotient map C™ — C™ /A with the isomorphism C™ /A — A.
Let {\1,..., A2} be a Z-basis for A. We take G4 = R?™, acting as translations of C™ as follows. If
g=(r1,...,72m) € Ga, then g(z) = z + t for = € C™ where t = 212211 riXi. Then T'y = GA(Z) = Z°™
corresponds to translations by elements of A. We take F4 to be the fundamental parallelogram for A
given by {dD t; A :0<t; <1,i=1,...,2m}.

3. Let X =G. Then Ux = C and mx : U — X is the exponential function. We take Gx = R acting
as translations in the imaginary direction, where g = r € R acts by g(z) = z+2wir, and 'y = G(Z) = Z
acts as translations by 2miZ. We take Fxy = {z € C: 0 <Im(z) < 27}.

4. For a cartesian product X = Y] x ... x Y, x A x Ge, where n,¢ > 0, Y; = T';\H are modular
curves with uniformisations m; : H = U; — Y; and fundamental domains FF;, and A is an abelian variety
of dimension m > 0, we take the cartesian product of the uniformisations, groups, and fundamental
domains. Thus Ux :le...xUnxUAx(UG)é andmy : U — X, x :7r1><...><7rn><7TA><(7TG)é. We
take Gx = SLa(R)" x G4 x (Gg)", T'x =T x...anxPAxF(‘é, and Fy =T, x...x]anIE‘AxIE‘é}.

We adopt real coordinates on the spaces Ux in such a way that pre-special points have suitable
algebraicity properties. By giving real coordinates for an open domain U € C* we mean giving functions
Z1,..., 22k : U — R such that the assignment z — x(z) = (z1(2),...,z2x(z)) gives a bijection of U with
an open domain in R?*. We identify subsets of U (including U itself) with their images in Rk,

4.2. Real coordinates.

1. For X = I'\H we put real coordinates on Ux = H using the real and imaginary parts. If we
write 7 = u + iv then pre-special points i.e. quadratic 7 € H are then certain points (u,v) with u € Q
and v of degree < 2.

2. For X = A, an abelian variety, we put real coordinates on Ux = C™ using a basis of A. Then
the pre-special points are rational points. If m4(z) = P € A is special (i.e. torsion) then the minimal
order of P is equal to the minimal denominator z.

3. For X = G we put real coordinates on Uy = C by using Re(z) and Im(z)/27. Then the set of
pre-special points is {(0,q) : ¢ € Q}.

13



4. For X =Y; x...xY, x Ax Ge, where n,¢ > 0, Y; = I';\H and A is an abelian variety of
dimension m > 0, we put real coordinates on Ux using the real coordinates on the cartesian factors.

We observe that, with the real coordinates we have adopted, the restriction 7x : Fx — X is
definable (in Ran exp)-

4.3. Proposition. Let X =Y x...x Y, x Ax Gé, where n, ¢ >0, Y; = I;\H are modular curves, and
A is an abelian variety of dimension m > 0. Then the restriction of mx to Fx is definable in Ran exp-

Proof. For X = C, the restriction of m = j to F is definable by the results of Peterzil-Starchenko
[64]. Hence it is definable on any other fixed SLy(Z) translate of F, and on any finite union of such
domains. Then for a modular curve X = I'\H definability follows since j is definable on the fundamental
domain, and so any algebraic function of j is too. For X = A, the restriction of w4 to F is definable in
R.n, since, in the real coordinates, the map is real analytic on (a neighbourhood of the closure of) the
bounded semi-algebraic set IF 4. For X = G, the restriction of mg = exp to F is given by a polynomials
in the real exponential function and the restrictions of the sine and cosine function to [0, 27). The former
is definable in Rexp, the latter in R,,, so mx on F is definable in R,y exp. For the cartesian product
X =Y; x...xY, x Ax G the restriction of mx to Fyx is the cartesian product of the corresponding
mapson the factors, and so is definable in R,y oxp by the basic properties of structures. 0

4.4. Remark. Peterzil and Starchenko [64] establish a definability result for p(7,2) as a function of
both variables. Here only the definability j on F is required, which follows easily from the g-expansion.

5. Intricacy and complexity

We introduce a notion of intricacy for the points of U, and of complexity for pre-special points in
U. The former will be used in the arguments in Section 8 characterizing the maximal algebraic subsets
of 7=1(V). The latter is the natural quantity to which we relate the lower bound for the number of
conjugates of a special point, and the height of a corresponding pre-special point lying in Fx.

5.1. Definition. Let X =Y x ... xY,, x A X GZ, where n, ¢ > 0, Y; are modular curves, and A is an
abelian variety of dimension m > 0. Let F be a fundamental domain for the action of I'x on Ux and
u € Ux. We define the T"x-intricacy of u with respect to F, denoted [I}F( (u), by

Iy (u) = H(g)
where g € I'x is the unique element such that g(u) € F.

5.2. Proposition. Let X = C, with F = F¢ and D any fundamental domain of the form gF,g € T.
Let 7 € H. Then there is a bivariate polynomial P = Ppy with positive real coefficients such that

Ip(r) < P(Ir], ——).

- Im(7)

Proof. For D = F we observe the quantitative statement we need from the proof that F is a fundamental

domain given e.g. in Serre [83]. For g = <CCL Z) € I" we have
Im(7)
II[ =
(97) ler + d|?

Therefore Im(gz) has a maximum as g varies over I', and it is attained for some g with

|C|§m

otherwise we could take ¢ = 0,d =1, and

l < IelIRe(r)] < oy < s



Then a, b can be chosen with

7|
b| < .
|a‘7‘ | =1 (7_)2

We next take a translation h = ((1) T) such that hgr has real part between -1/2 and 1/2. As shown

in [83], hgT € F, so that
I () = H(hg).
We estimate the height of h and then of hg. If ¢ # 0,
laT + b < [7](|7] + 1)
|7 +d/c| = TIm(r)3 ~’

In| <g7| <
le

while if ¢ = 0 we have d # 0 and
laT + 0] < |7](]7] + 1)

< <
Il < lorl < T < TR

Then

H(hg) = H(a + nc,b+nd,c,d) < |7|(|7] + 1)2<Im1(7') + ﬁ),

which gives what we need for F. For general D we need only observe that there is a fixed element gy € T’
with D = gofF, so that
In(7) = H(gohg) < CH(hg)

for some constant C' depending only on D. O

The result we need is that the intricacy of a point is not increased too much by application of an
algebraic function, under suitable conditions. By a (complez) algebraic function on C we will mean a
function ¢(z) defined and univalent on some connected open domain in C formed by removing some
branch points and cuts (which we can always assume are line segements between branch points or rays
joining a branch point to co) that satisfies an algebraic relation P(z,¢(z)) = 0 where P € C[X][Y] is
non-constant in Y~ and absolutely irreducible over C(X).

5.3. Proposition. Let X = T'\H. Suppose that ¢ is an algebraic function on C, real-valued on R. Let
P e R, and B an open disk centred at P. Suppose that the closure of B is at positive distance from any
components of {T € C: ¢(1) € R} other than R, and from the poles of ¢. Suppose that ¢(B NH) C H.
Suppose that D is a fundamental domain for T'x of the form gFx,g € T', and that 7 € B. There is a
untvariate polynomial P = Px g r 4 with positive real coefficients with the following property. If g € I'x
is such that g7 C B then

In(p(g7)) < Px,B,ro(H(g)).

Proof. Since Fx is a finite union of gF¢ for some fixed g € I'(x, and the conclusion is easily seen to be
true for gIF, for a fixed g, if it is true for I, it suffices to assume that X = C and D = F = F=. We have
then

I (067)) < P (10607 s )

Since B is away from the poles of ¢, we see that ¢ is bounded on B, and so ¢(g7) is bounded by a
quantity depending on B and ¢ under our assumptions. Since B is away from all loci apart from R where
¢ is real, we have that the zero-set of Im(¢(2)) in the closure B is contained in the zero set of Im(2) on
B. Both functions Im(¢(2)) and Im(z) are continuous on B. Since the structure of semi-algebraic sets
is polynomially bounded, we can apply the Lojasiewicz inequality [30, 4.14(2)] to get positive constants
C(B, ¢),c(B, ¢), that

Im(¢(2)) > C(Tm(z))".

Ifg= <(Cl Z) we see that

1 < l<|CT+d|
Tm(7)

Im(¢(g7)) = C

which gives the required form of dependence on H(g). 0

) <c'Hy
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The corresponding results when X is an elliptic curve or X = G are more trivial, but we give the
statements we will use later.

5.4. Proposition. Let X = F be an elliptic curve, U = Ug = C, and D a fundamental domain for I'g
of the form gFg,g € I'g.
1. There is a (linear) polynomial P = Py with positive real coefficients such that, for z € C,

In(z) < P(|2)).

2. Suppose A is a lattice with E = C/A, with a chosen basis, and that A € A. Let ¢ be an algebraic
function, z € C. There is a polynomial P = PE7]D)7/\)Z)<Z$ such that, for sufficiently large |t| (depending on
A (with its basis), D, ¢, z),

Ip((z +1tA)) < P([t]).

Proof. 1. 'y = Z? acts by translations by A, the identification being provided by the chosen basis. The
size of the element of Z? required to translate a given z into the I is evidently bounded by C max{1,|z|}
for some suitable C' = C(A), where this dependence assumes a choice of basis.

2. By the first part of the proof we have Iy(¢(z +tA)) < Cmax{1,|¢(z + t\)|}. But [¢p(z + At)]
grows polynomially (depending on ¢, A, z) in |¢| for large |t|. O

5.5. Proposition. Let X = G, U = Ug = C and D a fundamental domain for I'c of the form

IFg,9€lg-
1. There is a (linear) polynomial P = Pg 1 with real coefficients such that, for ¢ € C,

Ip(¢) < P(IIm()]).

2. Let ¢ be an algebraic function and ¢ € C. There is a polynomial P = Pg Y. such that, for
sufficiently large t (depending on G, D, ¢, (),

Ip(o(¢ + 2mit)) < P([¢]).

Proof. 1. Now I' = Z acting as translations, with 1 € Z acting as translation by 2mi. For D = Fg
we then have ITy(¢) < max{1,Im(¢)/27i}. For general D we need only add a bounded quantity to the
height.

2. Combine part 1 with the polynomial growth (for sufficiently large |t|) of the imaginary part of
(¢ + 2mit). O

We next formalize our notion of “complexity” of a pre-special point. For a complex quadratic 7 € H
we have that 7 is the root of a unique polynomial ar? + br + ¢ with a,b,c € Z, (a,b,c) = 1,a > 0. The
discriminant D(7) of 7 is then the discriminant b? — 4ac of this polynomial.

5.6. Definition. Let X = Y; x ... x Y, x By X ... E,, x G*, where n,m,¢ >0, Y; = [;\H, and E;
are elliptic curves. Let u = (71,...,Tn, 21, -+, Zm,C1,---,C¢) € Ux be a pre-special point. Let D; be the
discriminant of 7,4 = 1,...,n, let T be the order of the image of (21,...,2,) n C" /A1 &...® A, and
let N be the order of the image of ({1, ..., () in (C/27iZ)¢. We define the complezity of u to be

A(u) = max(|D1],...,|Dn], T, N).

Observe that, given X and a positive B, there are only finitely many special points of X corre-
sponding to pre-special points u with A(u) < B.

5.7. Proposition. Let X =Y, x ... x Yy, X E1 X ... E,, x GY. There is a positive constant Cheight (X)
such that if w = (T1,...,Tny 215+« 2m,C1,---,C) € Fx be a pre-special point. Then

H(u) < Cheight (X)A(u).
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Proof. Write 7; = u; 4+ ivj,7 = 1,...,n. Consider some 7;, the root of a quadratic polynomial
at? 4+ bt + ¢ = 0 as above. Since u € Fx, we have 7; belongs to one of finitely many gFc, g € SLa(Z).
Suppose that 7; € Fr, which is equivalent to the triple (a,b,c) being reduced, namely [b| < a < ¢ and
b>0if a=|b| or a =c. Then

dac = b* — D(1;) < ac — D(7})

whence
3ac < |D(t;)]|.
We have
_ b VP
uj; = , v =
2a 2a

so that v is a root of the polynomial 4a?v? — |D|. Then, using [13, 1.6.5, 1.6.6],
H(u) < max{b,2a} < 2a < |D(1;)| < A(u), H(v) < max{4a®, |D(7;)|} < 4|D(7;)|/3 < 2A(u).

In general, these inequalities hold for some g7, where g € SLy(Z) are from a finite set. If g7 satisfies
at? + br + ¢ = 0 then ¢~ !7 satisfies A2 + BT + C = 0 where A, B,C are bounded by some fixed
constant multiple (depending on g) of max(|al,|b|,|c|). Then the height of 7 as a real point is at most
some constant multiple of the height of g7, and we conclude

H(u), H(v) < cheight (X)A(u).

Since z; € Fg is pre-special we have that the real coordinates of z; are rational fractions < 1 with de-
nominator 7', and hence of height <7 < A(u). Similarly for {; € F and pre-special, the corresponding
real point is rational with height < N < A(u). o

It is convenient to record here the results we will use for the lower bound on the number of conjugates
of a special point. This combines results that are rather deep for the cases X = C and X = E, with the
elementary one required for the case X = G.

5.8. Proposition. Let X = Y; X ... X Y, X By X ... X Ep, x G' where n,m, 0 >0, Y; = \H, and
E1, ..., E,, are elliptic curves defined over Q. There is a positive constant Cdegree(X) such that if u € Ux
be a pre-special point then

[Q(m(w)) : Q] > Caegree(X)A(u)"/7.

Proof. Write

u = (7-1’---7Tnazla-~-7Zm>C17~-~,CZ)~

By the theory of Complex Multiplication (see e.g. [18]) for the equality and Siegel (see e.g. [39] for the
statement for maximal orders, [51] for the general version) for the inequality we have, if v > 0,

[QUj(7:)) : Q] = h(D(73)) = csiegel ()| D ()12,
The modular curve Y; is some finite cover of C, and we get a similar lower bound up some constant

depending on Y;.
By the results of Masser [54] we have (effectively), if P; € E; is the image of z;, that

[Q(P) : Q] > c(E;)TY7.
Finally, according to [41, Theorem 327] we have (effectively)

o)

nl—l/

for every positive v. O
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5.9. Remarks.

1. In the proof of 5.8 we have appealed to Siegel’s lower bounds [84] for class numbers of imaginary
quadratic fields. In fact any bound of the form h(D) > ¢|D|® with ¢, § > 0 would suffice for the eventual
proof of 1.1. In particular at the cost of replacing the exponent 1/7 by 1/8 we could use Landau’s
[47] bound h(D) > ¢|D|'/®. This highlights the fact that the present proof requires only rather weaker
bounds than are afforded by GRH. I thank Peter Sarnak for this observation and the reference to Landau.
Of course Landau’s result is ineffective, and the known effective lower bounds for h(D) due to Goldfeld-
Gross-Zagier (see [39]) are of the form h(D) > C(log|D|)¢ while our argument requires a lower bound
by a positive power of |D].

2. The results of Masser [54] appealed to in 5.8 hold for abelian varieties. For elliptic curves
they have been improved subsequently by Masser [55] and David [24], and there are alternative bounds
available. Masser [54] mentions results of P.B. Cohen. Ineffectively one has even better results from
Serre’s open image theorem, in the non-CM case, while for CM elliptic curves one has results of Silverberg
[85]. However, for us it suffices to have any positive exponent of A(u) (even one depending on X would
suffice), and since the constant is anyway ineffective due to the Landau/Siegel bound, there seems little
point optimizing the exponent at this juncture.

3. Apart from the lower bound for class numbers, the other ingredients of the lower bound are
effective.

6. The algebraic part: preliminaries

In this and the subsequent sections we characterize maximal algebraic subsets of
Z=7YV)cCU=Uyk.

It is convenient to do this first (in §§6-8) for X of the special form X = C" X Fy X ... x E,, X G*. The
same result for X of the more general form required in Theorem 1.1 is deduced in §9.

We have defined the map 7w : U — X by means of Weierstrass g-functions for the elliptic curve
factors. These are meromorphic, but the maps may be alternatively given by entire (theta-)functions.
Then Z C U is a complex analytic subset of U (i.e. it is defined in a neighbourhood of each point
P € U by the vanishing of a finite number of regular functions depending on P), indeed it is defined by
the vanishing of finitely many polynomials in the coordinate functions of 7, which may be taken to be
regular on U (the j-function has a natural boundary on the real line).

First we will observe that, in studying Z*#, we may reduce to considering complez algebraic sets
rather than real semi-algebraic subsets. Suppose that W is an irreducible complex algebraic set in
C"t™* Then W NU consists, as a complex analytic set, of finitely many connected components (since
W NU is semi-algebraic as a real set), and (since U is open in C™t"T)
complex analytic subsets of U all having the same dimension as W. If Y is such a component, and Z
contains the intersection of Y with any open disc, then, by analytic continuation, Y C Z. The union of
such components we call the complex algebraic part of Z.

these components are then

6.1. Definition. Let U be an open domain in CM that is semi-algebraic considered as a subset of R2M
and let Z C U be a complex analytic subset. We define a complex algebraic component of Z to be a
connected component Y of positive dimension of W N U with Y C Z where W is an irreducible closed
complex algebraic set W € CM. The complex algebraic part of Z, denoted Z°, is the union of complex
algebraic components of Z.

Let again Z = 7= 1(V) € U = Ux where X is as above. With the real coordinates described in
Section 4 we have Z C U ¢ RY, where N = 2(n 4+ m + f) and we have then the algebraic part Z*& as
defined in Section 3.

6.2. Proposition. Let X = C" x E; X...x Ep, xG*, V C X a subvariety, and Z = n=*(V) c U = Ux.
Then 28 = z°2,
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Proof. This follows from Lemma 2.1 of [68] as the complex coordinates are polynomial functions of the
real coordinates on U. O

To study 2 for Z as in 6.2 we may thus study its complex algebraic components. We will call such
a component Y mazimal if it is not contained in a complex algebraic component Y of larger dimension.
Every constituent component Y of Z° is contained in some maximal component. The main result of
this and the following two Sections describes the possible form of such maximal algebraic components of
Z = 77 1(V): They are components of the inverse image of a subvariety of V' C X that is almost special.

6.3. Definition.

1. A quasi-special subvariety of X = C™ is a subvariety as set out in 1.2.1 except that the points j;
for i € Sy need not be special.

2. A quasi-special subvariety of X = A, an abelian variety, is a translate of an abelian subvariety
(i.e. by a not-necessarily special point).

3. A quasi-special subvariety of X = G' is a translate of an absolutely irreducible algebraic subgroup.

4. A quasi-special subvariety of X = C" x A x G* is a subvariety of the form Y x (a+ B) x gH
where Y is a special subvariety of C", a + B is a special subvariety of A, and gH is a special subvariety

of G.

6.4. Remark. For X = C" the notion of quasi-special subvariety coincides with the notion of totally
geodesic subvariety studied for general Shimura varieties by Moonen [59].

The following definitions are given for more general X than those under consideration in the present
section, so that we have them in hand when considering more general X in §§9-13.

6.5. Definition. (The use of the word “basic” here adapts the usage in [100].)

1. Let n > 0. Let Sy US; U...U Sk be a disjoint partition of {1,...,n} with ¥ > 0 and Sy only
permitted to be empty. Let h; € H for each i € Sy be an arbitrary point. Let s; be the smallest element
of S; for each ¢ > 1 and for each j € S;,j # s;, choose an element g;; € GL2(Q)". A quasi-pre-special
subvariety of H" is a subvariety

N={(r1,...,m) €H" : 7y = hy,i € So,7j = 9ij(7s,), i = 1,...,k,j € Si,j # s}

for some choice of data S;, h;, g;; as indicated. If Sy is empty we will call the corresponding quasi-special
subvariety basic. The data {1,...,m} — S, g;; determine a basic quasi-special subvariety of the product
of upper half-planes in the variables indexed by {1,...,n} — Sp, and we will say that the quasi-special
subvariety N with data S;, h;, gi; is the translate by h;,i € S of the basic quasi-special subvariety Ny
(in the smaller set of coordinates) specified by {1,...,m} — So, gi;.

2. Let A be a lattice in C™ satisfying the Riemann relations, so that C™ /A is an abelian variety. A
quasi-pre-special subvariety of C™ (with respect to A) is a subvariety of the form b+ L where L is a linear
subspace of C™ (i.e. through the origin) in which L N'A is a lattice (i.e. of maximal rank 2dimg L),
and b= (by,...,by) € C™. Thus L/(LNA) is an abelian subvariety of C™ /A, and b+ L is its translate
by the (arbitrary) point b. If b+ L = L we call the corresponding quasi-pre-special subvariety basic,
and we will refer to an arbitrary quasi-pre-special subvariety b + L as the translate by b of the basic
quasi-pre-special subvariety L.

3. Let £ > 0. A quasi-pre-special subvariety in Ct (with respect to exp) is a subvariety of the form

b+ L

where L is a linear subspace defined over Q, and b € Clis arbitrary. If b+ L = L we call the corresponding
quasi-pre-special subvariety basic, and we refer to a quasi-pre-special subvariety b + L as the translate
by b of the basic quasi-pre-special subvarietyL.

4. Let n,f > 0 and A an abelian variety of dimension m > 0. Let X = Y] x ... x Y, x A X Ge,
where Y; = D;\H. A quasi-pre-special subvariety for X in H" x C™ x C* is a subvariety of the form

Nx((b+L)x(c+M)
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where N,b+ L,c+ M are quasi-pre-special subvarieties of H",C™, (with respect to A), and ct (with
respect to exp) respectively. If N is the translate by h;, i € Sy of the basic quasi-pre-special subvariety Ny
then we will refer to N x (b+ L) x (c+ M) as the translate by (h;, 1 € So, b, ¢) of the basic quasi-pre-special
subvariety Ng x L x M.

6.6. Definition. With the same conditions as in 6.5, if the translation data h;,7 € Sy in 6.5.1 (or if
Sop is empty), @ in 6.5.2, b in 6.5.3 and all these in 6.5.4 are pre-special points, we call the subvariety
pre-special. (So a basic quasi-pre-special subvariety is always pre-special.)

6.7. Definition. Let n,Z > 0 and A an abelian variety of dimension m > 0. Let X =Y; x ... x Y, X
A x G, where Y; = T \H. A special subvariety of X is the image under w : Ux — X of a pre-special
subvariety of Ux.

According to [34, 3.1], this definition of a special subvariety coincides with the one given in 1.3 when
X=C"xAxG"

If Z contains an algebraic component Y then, by I'-periodicity, it contains all its translates gY
under I'. The union UgygY is not generally algebraic as it has, generally, infinitely many components
(the exception is if Y = U) and we will refer to it as a locus. Thus the inverse image of a quasi-special
subvariety of X is a quasi-pre-special locus, and this in turn is the union of translates under I' of a
quasi-pre-special subvariety as above. (In my earlier paper [68] I called such subvarieties “quasi-special”
but here I prefer to include the “-pre-” for the objects in U corresponding to objects in X.) The preimage
in U of a special subvariety in X is a pre-special locus.

The following is our key result identifying the possible maximal algebraic components of Z.

6.8. Theorem. Let Y C Z be a mazximal complex algebraic component. Then'Y is quasi-pre-special.

The proof of this theorem is carried out over the next two sections. As it is somewhat involved in
detail, we sketch the main idea to highlight our second use of the Pila-Wilkie result (in the form of 3.6).
Suppose that Y is a complex algebraic component of Z. Since Z is I-invariant, we see that

gy C Z

for any g € I, and therefore
gYNF C Z,

though gY N'F will be empty for “most” g. Now I' is a discrete arithmetic subgroup of some real
algebraic group G and, with the normalization we have adopted, such g are integer points of a semi-
algebraic (hence definable) set G. Let Y be a maximal complex algebraic component of Z. The proof
proceeds by considering the set of g € G such that gY N Z has the full dimension of Y. (Actually we will
consider g € H for certain subsets H of G.) This is a definable set, and we show that, as a consequence of
the results on intricacy in §5, it contains “many” rational points — specifically it contains at least >> T
integer points up to height T" for some fixed § > 0 and implied constant . Therefore, by Theorem 3.6, it
contains a positive dimensional semi-algebraic subset. Such an algebraic set of translates of Y contained
in Z gives one of two possible outcomes. If Y is not invariant as a set under these translations, we get an
algebraic subset of Z containing Y but of strictly larger dimension, contradicting the assumption that
Y is maximal. Otherwise Y is invariant as a set under an algebraic family of translations in G, which
results in suitable identities being satisfied by the algebraic functions parameterizing Y. Enough such
identities entail Y being of the sought form.

In the next Section we isolate some technical results that we require to carry out the plan sketched
above. Theorem 6.8 is then proved in Section 8.

)

6.9. Remark. In [71], the corresponding result ([71, Theorem 2.1]) is also proved using o-minimality
in the form of Gabrielov’s theorem for subanalytic sets (appealed to in [71, Lemma 2.2]). In [56] and
[68], which use upper bounds on rational points from o-minimality in the same strategy of opposing then
with Galois lower bounds, o-minimality is not used in obtaining the analogous results characterizing the
algebraic part. In [68] these are obtained by elementary arguments in [68], and in [56] by monodromy. As
said in §1, 6.8 is equivalent to a suitable Ax-Lindemann-Weierstrass result which, apart from the mod-
ular curve aspects, follows from known Ax-Schanuel results [5, 20, 45|, proved by differential-algebraic
methods.
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7. The algebraic part: technicalities

Families containing maximal algebraic components

Let X =C"X Ey X ... Ep x G with U = Ux = H* x C™ x C* and G = Gx as previously defined in
4.1. Suppose V C X and Z = 7~ (V) C U, and W an irreducible algebraic set in C"*™** of dimension
w. We wish to study maximal complex algebraic components of Z. We begin with some observations.
If Y is a component of W N U then, for any g € G, gY is a component of gW NU. If Y is a complex
algebraic component of Z then, as already noted, so is gY for any g € I'. Moreover, if Y is maximal
then gY is also maximal for any g € T.

In our proof of 6.8, we will assume that Y is a maximal complex algebraic component and we will
show that a translate gY, for some g € T, lies in a semi-algebraic family of complex algebraic components
of Z. We will have need of the following result showing that a maximal algebraic component cannot be
a fibre in a non-constant family of components.

We keep all the above notation, but one may observe that 7.1 holds under the weaker assumption
that Z is a complex analytic subset of U, which need not be of the form 7=1(V) or even I'-invariant.

7.1. Proposition. Suppose that W is an irreducible closed algebraic subset of Ccrtmt of dimension

w and that 'Y is a component of WNU. Let g: (—1,1) — G be a semialgebraic map which is regular
(analytic) for t € (—1,1). Suppose that g(t)Y C Z for all t € (—1,1) and that g(0)Y is a mazimal
complex algebraic component of Z. Then g(t)Y =Y for allt € (—1,1).

Proof. Suppose P € Y. Then g(t)P € g(t)Y C Z for all t € (—1,1). The map t — ¢(t)P € U extends
to a complex algebraic map on some complex neighbourhood of 0, and since Z is analytic we have that
g(t)P € Z for such complex t. If we do not have g(t)Y = g(0)Y for all ¢ € (—1,1) then there is a
point P € Y and some t € (—1, 1) such that g(¢)P does not belong to g(0)Y, and hence (by analyticity)
g(t)P € g(0)Y for only finitely many ¢ in some complex neighbourhood of 0. We can take a suitable
complex neighbourhood of ¢ = 0 so that g(¢)P does not belong to g(0)Y except for ¢ = 0. Then for some
equation F' = 0 defining Y we have that F(g(t)P)/t? is non-zero in a complex neighbourhood of t = 0
for some positive integer p, and hence there is a neighbourhood D of P and a complex neighbourhood
of t = 0 such that, for all @ € DNY, and ¢ in the neighbourhood, ¢(¢)Q is not in g(0)Y. Therefore the
union of g(¢)(DNY’) contains a complex algebraic set of dimension w+1 contained in Z. Then Z contains
a complex algebraic component Y’ of dimension w + 1 containing Y, contradicting the hypothesis that
Y was maximal. D

7.2. Proposition. Retaining all the hypotheses of 7.1, suppose that x1,...,x, s a subset of the
variables {11, ..., Tny 21, Zm,C1,- .., e} consisting of w distinct elements, with y1, ..., Yntm+t—w the
complementary set of variables. Let us write, for t € (—1,1),

g(t) = (gl(t)7 o agw(t)a hl(t>7 SRR hn+m+€7w(t>) €d

with respect to the variables (T1,...,Tw,Y1s- -« Yntmrt—w) SO that each g;(t),h;(t) is an element of
SL2(R), R?, or R according as x;,y; is a T-variable or a z-variable, or a ¢-variable. Suppose that g(t)Y
contains the graph

y:¢($)7 .’E:($1,...,$w), y:(yla"'uyn+m+l)

given by
y; = hi(Ooi(gr (W1, 0, Waw), J=1,...,n+m+{

where ¢; are algebraic functions, for (x1,...,xy) € D, where D is the product of some open disk in each
variable. Then each of the functions

hj (t)(bj(gl (t)xla <o Gw (t)xw)
is independent of t.
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Proof. Under the hypotheses of 7.1, the set g(¢)Y = ¢g(0)Y for all t. For a given choice of z1,...,x,
there are some finite number of points (21, ..., ZTw, Y1, - -, Yntmie—w) belonging to g(0)Y, and so as ¢
varies the point (z1,...,Tw, Y1, Yntmit—w,Z) With

yi = hi(t)i(g1(t)21, -, gu(t)Tw)

varies over a finite set. Since ¢ — g¢(t) is smooth, it is continuous. Away from some lower-dimensional
set where the algebraic functions ¢; may be discontinuous, the y; are constant as ¢ varies and equal the
value they take at ¢ = 0. So the functions are locally constant near ¢ = 0 on some dense set, and hence,
being algebraic, are constant identically. O

Algebraic functions satisfying identities
Recall our convention on complex algebraic functions above 5.3.

7.3. Proposition. Let g,h € SLo(R) and suppose xg,x1 € C with g(xg) = xo and ©1 # xo. Let ¢
be an algebraic function of degree < k, with ¢(gx) = hp(x) on some non-empty connected open domain
D c C. Suppose ¢ is not branched at o, (x1),71,9(21), g*(21), ... g% (x1), and that ¢(z1) = ¢(x0).
Then either ¢ is constant or x1 is preperiodic under g (with orbit of length < k).

Proof. We can connect xg, z; by a path avoiding the branch points. By changing the domain on which
¢ is defined (introducing suitable branch cuts that avoid the path connecting ¢, z1), we can assume that
#(x) and ¢(gx) are single valued on a domain containing x¢,z1,g(x1),...,g%(x1), that ¢(zo) = ¢(z1),
and the relation ¢(gx) = h¢(z) holds. Then

P(gz1) = hp(x1) = ho(w0) = d(g9r0) = P(20),

and so inductively ¢(g"xz1) = ¢(xg) for n = 1,2,..., k. If ¢ is non-constant then it is at most k-to-one,
and so the points 1, g(z1) ..., ¢g*(x1) cannot be distinct. O

7.4. Proposition. Let ¢ be an algebraic function. Let g, h, be elements of SLa(R) forn = 1,2,...
such that ¢(gnx) = hpd(x) on some non-empty connected open domain D, C C. Suppose the g, are all
parabolic with distinct fixzed points. Then ¢ is constant or one-to-one.

Proof. Suppose that ¢ is non-constant and generically k-to-one for some k > 2. Let by,...,bx be the
branch points, including any points where ¢ is not k-to-one.

The algebraic function ¢ satisfies some irreducible algebraic relation P(x,¢(x)) = 0. Let us call
an algebraic function v satisfying the same algebraic relation as ¢ but on a possibly different domain
a re-definition of ¢. Any such ¢ will be non-constant and generically k-to-one. There are only finitely
many points in C where ¢ or any re-definition of it takes the same value as one of ¢(g'(b;)) for i =
1,...,k,j=1,..., K. If 2o is not one of those points, any point x; with ¢(x1) = ¢(x0) is also not one
of those points.

Since we have infinitely many g,, with distinct fixed points, we can find g = g,, with fixed point zg
and x; € C such that the hypotheses of Proposition 7.3 are satisfied. This leads to a contradiction as g
has no preperiodic points other than its fixed points. O

8. The algebraic part: conclusion

8.1. Proof of Theorem 6.8. Suppose that Y is maximal complex algebraic component of Z = 7=(V),
so that Y is a connected component W N U for some irreducible algebraic W C crtmtet,

The proof is in several stages, which we separate for the convenience of the reader. We choose
suitable variables to give a parameterization of Y in which the dependencies between variables of different
type occur only in specified ways. We restrict to a suitable subdomain where the parameterizing functions
are well behaved. We then produce definable subsets R of G such that the corresponding translates of
Y intersect a definable subset of Z in their full dimension (i.e. of Y'). Due to the periodicity of Z
these sets R contain “many” I'-translates . Then 3.6 gives positive dimensional semi-algebraic families
of G-translates of Y contained in Z. Since Y is maximal we derive identities for the parameterizing
functions. These identities force Y to have the required form.
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Choosing suitable variables to parameterize Y

We take variables (71, ...,7,) for H", (z1,...,2y) for C™, and ((1,...,¢) for C*. Suppose W is
w-dimensional. We can choose some w variables

(Tfiv2£.5:Crk)y i=1,...,n', j=1,....m k=1,...¢
(the subscript f stands for “free”) to parameterize Y locally by means of some algebraic functions
Tda = Pa(Tris 2£5,Crk)s  Zab = Ou(Tris 25,5, Crk)s  Cae = Ve(Tri 21,55 Crok)
(the subscript d stands for “dependent”), defined on some connected open subset of
U =H" xC™ x C’

on the “free” coordinates. I.e. the functions on W induced by these “free” variables are a transcendence
basis for the function field C(W).

The variables 7...,z...,(... play different roles with respect to the map 7 : U — X, but from the
point of view of parameterizing Y any choice of w algebraically independent variables will do. We show
that we can make a choice of independent variables such that certain dependencies are avoided.

Some of the dependant variables may be constant. We exchange some of the non-constant dependent
variables and free variables using the Steinitz exchange property (see e.g. [36, Theorem Al.1, et seq.]).
Suppose u, v, w1, ..., wg,y are elements of some field L containing C. We will say that v depends on u
over wi,...,wy if v is a nonconstant algebraic element over K(u) where K = C(wy,...,wy). In that
case, u depends on v over wy,...,wg. Further, if y is algebraic over C(wy,...,wy,u) then it will be
algebraic over C(wy, ..., wg,v). In particular if wy, ..., wg,u are a transcendence basis of L then so are
Wiy« Wi, V.

We use this property to exchange elements in our transcendence basis of C(W') given by the “free”
variables above. First, if some 74, depends on some zy ;, we interchange them. So we may assume
that any dependent variables 74, are independent of any free variables z¢ ;. Next, we do the same for
dependent 74, and free (y , and finally we do the same for dependant z4; and free (y .

After these interchanges we have Y parameterized, locally on some open region in the free variables,
by algebraic functions

Tda = $a(Tri)s  2db = O6(Ts4,285),  Cae = Ve(Tris 255, Chk)-

A suitable subregion of U’

We can analytically continue these functions (perhaps with some branching) through a subregion
U" of U’ bounded by the following loci corresponding to the boundary of U:

Lyi ={(11.0,25.5,Cr) 1 Im(7p:) =0}, Laa = {(71.i5 21,5, Cr k) : Im(7a,0) = O}

If the region U” is bounded only by loci Ly, then some 74, depends on some Tr; (l.e. “over” the
others, as before) and we can interchange them (and renumber the 7;;) to get that U” has some
nontrivial boundary in Ly ;. Some of the loci Ly, may contain Ly, and we will denote by 74, the
variables whose loci Lg o contain Lg 4, but other loci Lg , may not contain L ;, and we will denote those
variables 74 3 with corresponding loci L4 g. These Ly g intersect Ly in some lower dimensional set, and
so a suitable product of open disks in each variable inside U"” can be taken having some boundary in Ly,
while being at positive distance from all other boundary components. I.e. we can take a point P € Ly
and a product of disks centred at the coordinates of P such that if U7 1 is the open half-disk in the 77

variable lying in its upper-half-plane, and U7 ;, #1,U iU ? i are the disks in the other variables, then
_ ¢
v =[1v7. x [[Vi; x [[Uss cU”
i j k
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has a part
OUF 1 N {rpa: Im(rpa) = 0} x [TUF < [T U7, < [T Uy
i£1 j k
of its boundary that is contained in Ly 1, while all of U* is at positive distance from all the other L¢ ;, L4 3
and components of any Lq , besides Ly .
We may further assume (taking smaller discs if need be) that the algebraic functions ¢, 0y, ¥, are
all bounded and univalent on U*, and we denote the image regions

Via=0a(U"), Vipy="0U"), Vi.=1vc(U").
Let us write
U= (g, a=1,..., Oy, b=1,..., . c=1,...).
for the tuple of functions parameterizing Y, and write
Y*"={(u,¥(uw):uecU"}CY
for the graph of the parameterization on the set U*. The set Y* will play a key role.

A definable set

We can now take fundamental domains (or finite unions thereof)
1 CUR,

7.0 Ufni#1, D3;DU7,;, DS, DUS,.
We have arranged that the algebraic functions parameterizing ¥~ are bounded on U*. The 74, become
real on the part of the boundary of U* described above corresponding to Im(7f1) = 0 while no other
Tfi or Tq.3 do. So for the image domains we can choose fundamental domains (or finite unions thereof)
with
5,04 - Vd‘fow
Dy 3D Vig Di,DVi, Dy, DVs.

Then
D* = [[ D7 x [[ D7, x [[D5s x [[D7a x [[ D5 x [[ D5, < [[ D5
i j k ! 8 b ¢
is a finite union of fundamental domains for the action of I' on U, whence
7 =ZNDh*
is definable.

Definable sets of G translates of Y

The set Y is semi-algebraic, hence definable. The set U* is semi-algebraic, hence definable. Thus
Y* is definable as a graph over the region U* in which, crucially, there are infinitely many fundamental
domains for the variable 77 1. (So we restricted further to one of them to make Z* definable.)

Likewise G is definable, and the translations of Y by g € G is given by a definable subset of
G xRN, N =2(n+m+ ) (the fibre at g € G is gY). Let G’ be a definable subset of G, Y’ a definable
subset of Y, Z’ a definable subset of Z, and w’ > 0. By the properties in [30, B.10], the set

R(G)Y',Z)Y={ge G :dim(gY' NnZ")=w'}

is a definable set. Note that if Y/ C Y has dimension w, then g € R(G’,Y’, Z") implies that there is a
neighbourhood of a regular point of gY contained in Z, whence by analytic continuation we will have
gy C Z.
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While G,Y are definable in their entireties, it is convenient to work with subsets of both: on
subsets of Y* the parameterization is controlled, while restricting to different one parameter subsets of
G generates different identities.

We consider translates of Y* by certain elements g € G whose elements we denote by

9=(95.6:95.5> 951 G T 95.0)-

acting on the corresponding variables in the obvious way. Put
A
£=0%, < [TUf < [0 < 1107w
i#1 j k

Since U7, borders the real 74 1-axis, it contains infinitely many SLa(Z) translates of D} ;. If g € I' and
g€ C U* then the graph
Yye={(u,¥(gu)) :ue}CY”"

is contained in Z, and a suitable I-translate of the dependent variables will give a translate (of a part
of) Y* into D, which will then be contained in Z*.

Fix
a b
go = (C d) c SLQ(Z)

and consider

- a b+ta - . .
G<90>:{9€G39f,1:(c d—l—tc)’sometER’ gr; =1, alli#1, g}’j:g%k:L all j,k},

with no restriction on the group elements corresponding to the dependent variables.
We now consider definable sets of the form

R(G(90), Y™, Z7).

Rational points on R(G(g0),Y™*,Z*)

Suppose a/c € U, NR. For every sufficiently large positive ¢ € Z (depending on gy) we have
gf,1D§,1 C U}—,l‘

Then
(Tt 21,5 Croer Y(gr 1T Tran @ # 1245, Crte) = (Thiis 21,5, Cp) €EYC Z

and so also its translation by any element of I'. We can choose an element of T', trivial on all the free
variables, to bring some regular point of the translation into D* — in fact into the interior of the factor
of D* corresponding to any non-constant variable — and moreover by 5.3, 5.4, and 5.5 we can do so
with an element of height

<< t¢

for some positive ¢, where ¢ and the implied constant depend on the choice of go, Y™, Z*, but is inde-
pendent of t. Such a translate intersects Z* in full dimension.
Therefore, for all large T,
N(R(G(g0),Y*,Z*),T) >>T°

for some ¢ > 0 (with a constant depending on go,Y™*, Z*), indeed this holds for integer points. So,
by [70], R(G(g0),Y ™, Z*) contains semi-algebraic sets of positive dimension. Moreover, by 3.6, for any
choice of € > 0 it contains such sets that contain at least

>> 7€
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integer points, all regular. Such sets may have ¢ constant, or variable. We show that there must be such
sets with ¢ variable.

Fix € = 0/2 say. Then the semi-algebraic subsets have bounded degree independent of 7. Their
intersections with the subvariety of G with 9%1 (i.e. t) constant have bounded degree, and so the number
of singular points on them is bounded, say by B. Suppose that, for some fixed ¢, there is a positive
dimensional semi-algebraic subset of translations of the 7y 4, 24,5, (4,c that brings

{0 24,55 Coaer Y(graTs0s Tran @ # L2555 Crne) ¢ (Thiis 25,5, Crp) € E}

into D* and contains more than B integer points. Then there exists such containing an integer point as
a smooth point of a one-dimensional arc. The integer translate of Y is maximal, and since the arc gives
a family that is clearly not constant, we contradict the conclusion of 7.2.

Therefore we may assume that, for all sufficiently large ¢ (depending on go, Y™*, Z*), there is a con-
nected positive-dimensional semi-algebraic family of translations of Y* by elements of G(gg) containing
arbitrarily many regular integer points with ¢ varying. The integer (I'-) translates of Y* are maximal,
so by 7.2 the corresponding algebraic functions are constant.

Dependent variables 74,8, Zd,b,Cd,c

Consider then some 74 5. For large ¢, 9},11[)},1 - U]Z1 and so 748 = ¢3(gf,17f,1, Tf,;) remains in ]D)g,ﬁ,
and there is a fixed finite set of translations on the 74 5 variable that stay inside Dy 3- By the constancy
of the family we conclude that

b(9r 17515 Tt,i)

is constant, so that 74 g is in fact independent of 7;. The same argument shows that the 24, (4, are
independent of 7y ;.

Dependent variables 74 4

Consider now some 7q,. Write g7 1(t) = gy1. As t varies, we have some h(t) € SLy(R) varying
semialgebraically in ¢ over an interval I as described above such that

h(t)pa(gs1(t)Tr 1, Tri)

belongs to some fixed maximal algebraic component corresponding to some integer ty € I where g¢1,h
are smooth. Given a choice of 7y; there are only finitely many 74, corresponding to points of this
component. So

h(t)ba(gs1()Te1,Trs) = h(to)dalgra(to)Ts1:Tr,i)

identically for 741 € U7 (where there is no branching of the algebraic functions), and hence identically
on some subregion of the 7y 1-plane obtained by removing branch loci.
We now fix the 75;,¢ # 1, put

— ac(t — a?(t —
9=gr1(t)gra(to) " = (1—02(t(t— tsﬁ)) 1+ c(ttc(t i0350))

which is parabolic with fixed point a/c, and h = h(t)~*h(ty) and we find that ¢, satisfies

Pa(97) = hoa(T)

locally, and hence this relation holds globally by analytic continuation. We have infinitely many different
possible choices for a/c, and so we can apply Proposition 7.4 to conclude that ¢, is constant or one-to-one
(i.e. under any choice of cuts). However ¢, is not constant, therefore it is one-to-one.

Since 74,1 and 74, depend on each other, we can interchange them, and we find that ¢, ! is also
one-to-one. Then ¢, is a fractional linear transformation, and since 74, is real on the real line for 771,
we see that (having fixed the other 7y ;) ¢o € SLa(R).
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Now as the 7f,,i # 1 vary, ¢o is an element of SLy(R) that depends complex algebraically on
Tri,4 # 1. Therefore it is constant (consider e.g. the images of 0,1, co, which must be real numbers
varying algebraically in the complex parameters 7y,;,i # 1).

Therefore ¢, depends on 771 alone and is an element of SLy(R). We conclude that the 74 3 depend
on 771 alone, and by elements of SLo(R), while the 74, are independent of 7;1. We may repeat the
above arguments to show that all the dependencies among the 7-variables are of this form, and so we
may take U” = U’, and for the parameterization of ¥ we may allow each 7;; to range over its upper
half-plane.

From SLa(R) to GL2(Q)™

We can repeat our argument above for any non-constant ¢, in the neighbourhood of any point on
the real axis to show that
Gagda' =Ah, XER, heGL(Q)*

for suitable matrices g as above with integer entries: namely for any gg € SL2(Z) (i.e. with any a/c)
and for at least >> T%/2 choices of s =t —ty € Z up to T. We show elementarily that this implies that
the @q, up to scaling, are in fact in GLy(Q)™", i.e. that the ratio of any two entries of ¢, is rational.

, A B } . 1—sAC sA?
Write ¢, = (C D) ,AD—BC = 1. Takinga = 1,¢ = 0 in g we find that ( 2 1—|—sAC’>

is of the form Ak, A € R, h € GL2(Q)™ for suitable choices of s as above and so the ratio of any two entries
is rational. If C' = 0 we find that A2 € Q and then AD = 1 implies A/D € Q. Similarly A = 0 leads to
B/C € Q. Otherwise (if A,C # 0) we see that A2/C? € Q and (1 — sAC)/sC? € Q giving A/C € Q.
2
1 :SSDBQD 1 —ifBD is of the form A, A\ € R,h € GLy(Q) ™.
Now B =0 leads to A/D € Q and D = 0 leads to B/C € Q, otherwise (B, D # 0) we get B/D € Q.
Suppose C' = 0, so that A/D € Q. If B =0 then A/D € Q and ¢,, has the required form. Having
D =0 is excluded by AD— BC =1, and B, D # 0 gives B/D € Q and ¢,, is again of the required form.
Similarly, if any of A, B, D = 0 we conclude that ¢, has the required form.

Therefore we may assume A, B,C, D # 0, so that C/A=q € Q,D/B =r € Q and ¢, = (; TO;>,

Taking a = 0,c = 1 in g we find that

. . A B 1 0 1 @
up to scaling, with » # ¢. Then ¢ = (C’ D') = <—q 1) P = (0 (r—q)a) has the same

property as ¢, (i.e. Ygip=t = Ah, A € R, h € GLo(Q)* for the same matrices g), but now C’ = 0 and we
conclude as above that 1, and hence ¢,, has the required form.

This shows that the 7-variables have the required form of dependencies, and we have also shown
that the z-variables and (-variables do not depend on the 7-variables.

The zf; dependencies

Next we consider the zy ; variables, considering in particular dependencies on zy; say. Here we will
just consider the intersection of translates of Y itself (definable) with Z = Z NFx. There being no 7
dependencies, we can suppress the 7 variables. We take bounded disks

¢
Uij Usy

Jo

such that the algebraic functions parameterizing Y are univalent and bounded on the product
b _ ¢
v =117, < 11V
j k

We consider now translations of Y. Fix an element A\; of the period lattice Ay = Z @ Z7; of Fj.
So I'g, = Z®Z and let sy be element of I'g, corresponding to translation by A;. Fixing the other
free variables z¢;,7 # 1,(sx, the algebraic functions can all be defined univalently for z¢1 + At for
sufficiently large ¢t. So for large integer ¢t we have

{21 +tA1y 255, Cres Oap (21 + A1, 255, Cr)s Yae(zp1 F M, 2.5, Crn) t (250, 25,55 Crn) €U C 2
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and therefore, by the I' x- invariance of Z,
{213y Cres O (2p0 + AL 2755 M) = Adbs Yae (270 + A0, 25, Ap) = kae2mic (275, Cpr) €U} C 2
for any Agp € Agp and kg € Z. Set
G)={9€Ggj1=tsp1,97;=1J#10}.=1}
with no restriction on the group elements corresponding to the dependent variables. Put
R(G(\),Y,Z) ={g € G(\1) : dim(gY N Z) = w}.

Then R(G(M\1),Y, Z) is definable, and by 5.4 contains an integer point of size at most << t¢ for every
large integer ¢, where ¢ and the implied constant depend on Ay, U”. Therefore

N(R(G(Al)aY; Z)vT) >> Té

for some positive d, and R(G(A1),Y, Z) contains connected semi-algebraic subsets of positive dimension.
As before, if, for a fixed ¢, there is a positive-dimensional set of translations of the dependent variables
with full dimensional intersection with Z then there is one-dimensional such family with a smooth integer
point, and this contradicts the maximality of Y. So we may assume that the semi-algebraic subsets are
curves with varying ¢, and that, given € > 0, there exist such curves containing >> 7°~¢ regular integer
points for all large T'.

Consider some dependent z variable z4 ;. We then have identities of the form (suppressing the fixed
variables)

Oap(zp,1 + A1) —Oap(zp1 +tod) = Aap(t, to),

where Az (t,to) is a semi-algebraic function, valid for intervals of ¢ containing >> T°~¢ integers t, ¢, for
which Ag (¢, %) is in the period lattice. Taking derivatives with respect to zs 1, the algebraic function
with a period must be constant, so that

Oap(251) = qzp1 + b

for some ¢,b € C. Further, the existence of integer points t, ¢y for which such an identity holds implies
that, for suitable non-zero integer N, NgA; € Ag. Since we can repeat this argument with any Ay € Ay 1
we see that, for suitable non-zero integer N,

Nqu’l C Ad,b-
Now as we vary the other free variables, such ¢ cannot vary continuously, and we see that
Oan(251) = qzp1 +b(z5,5,5 # 1)

Repeating the argument with the other variables shows that

Oap(zr;) =D 255 +b
i

where b € C is independent of all the variables, and, for suitable non-zero integer N,
Njgidyj C Aap.

Such a locus is then quasi-special.
If we consider now the dependence of one of the (4 . variables on one of the z; ; variables (the others
being fixed), we find that such dependencies must also be linear, of the form

Yd,c = qzp;+b
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where ¢,b € C and
NquJ‘ C 2miZ.

for some non-zero integer N. This is however impossible for non-zero ¢, and we find that the (4. are
independent of the zy ;.

The (y,; dependencies

Finally we consider the dependence of the (44 on the (f ;. These must again, by similar arguments,
be linear and of the form

Cae =Y arCrn+Db
p

where g € Q. Thus Y is quasi-pre-special, as required. O

In fact we can prove a more general form of 6.8. This is not needed for proving 1.1 but gives a
natural extension 9.6 of 1.6 which shows that, under the hypotheses of 1.6, the functions are algebraically
independent over the underlying algebraic function field C(W). We consider varieties

X=C"xEy %X...x Ep xG™ x CF
(with the elliptic curves E; over C) uniformized by
Ux =H" x C™ x C! x C*

in which the uniformization 7 : Uy — X is trivial on the variables t1,...,#; of CF. (So FCk is trivial,

the fundamental domain IE‘(Ck = C*, and algebraic subvarieties of IE‘(Ck are definable.) A quasi-pre-special
component of Ux is now a cartesian product of quasi-pre-special components in the factors where a quasi-
pre-special component of CF is simply an irreducible algebraic subvariety. We then have the following
result, which leads to a stronger version of 1.6 stated as 9.3 below.

8.2. Theorem. With X and Ux as above, let V C X be a subvariety and Z = 7= (V) C Ux. Suppose
that Y is a mazxzimal complex algebraic component of Z. Then'Y is quasi-pre-special.

Proof. We follow the same procedure as in the proof of 6.8. We parameterize Y by means of some
algebraic functions on some choice of free variables. We can rearrange the variables so that no dependant
Ti, %i, G; depends on any free ;. The proof now shows that the ¢; are in fact independent of all the other
variables. O

9. Ax-Lindemann-Weierstrass

We deduce the equivalence of the functional algebraic independence statement Theorem 1.6 to
Theorem 6.8, and establish both in more general form. We consider now X of the more general form
required for 1.1, namely

X:le...xYanlx...xmeGe

where n,m,¢ >0,Y; =T;\H, ¢ =1,...,n are modular curves and Ej are elliptic curves defined over Q.
Let U=Ux and 7 : U — X.

9.1. Theorem. Let V C X and Z =7n~Y(V) C U. Let Y be a maximal complex algebraic component
of Z. Then'Y is geodesic.

9.2. Theorem. Let W be an irreducible algebraic subvariety of C" ™4 such that W N U # 0. If the
(locally defined) functions

7—717'"77—71—/7 717'"7711/7 57"'7(7)\
in C(W) are geodesically independent then w(W) is Zariski-dense in Y1 X ... x Y, x Ey x ... x E, x G*.

Let us first observe the equivalence of these two statements.
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9.3. Proof of 9.2 from 9.1. We prove the contrapositive statement. Suppose that W c C*TA* is
an irreducible algebraic variety with W NU # (). Suppose that w(W) is not Zariski dense in X. Then
it is contained in some algebraic subvariety V' C X, V # X, where V is defined by some equation on
the images of the indicated variables only (i.e. V is a cylinder on these variables). Then W N U is
contained in some maximal algebraic component Y of Z = 7=1(V) with Y # U. We have that Y is also
a cylinder on the indicated variables, and is quasi-pre-special by 9.1. So Y is a cylinder on a product
of quasi-pre-special subvarieties of H”, C*, (C)‘, at least one of which is proper. If the quasi-pre-special
component of H" is proper then we have either some 7; is constant, or some relation 7, = g7, holding
with a # b and g € GL2(Q)T, so that the 7; are not geodesically independent. If the quasi-pre-special
component of C* is proper then the functions z; satisfy non-trivial linear relations as in 1.5.2 and are
not geodesically independent. If the quasi-pre-special component of C* is proper then the functions ¢;
satisfy non-trivial linear relations as in 1.5.3 and are not geodescially independent . So the functions are
not geodesically independent O

9.4. Proof of 9.1 from 9.2. Suppose V C X, Z = 7~ 1(V) and Y a maximal complex algebraic
component. We show, assuming 9.2, that Y is quasi-pre-special. Let W be the Zariski closure of Y in
C™t™+ which is then an irreducible algebraic variety with a non-empty intersection with U. Take a
subset of

Tl sTny  ZlyeeesZmy  ClyevesCo

maximal with the property that the restriction of 7w to the factors corresponding to these variables is
Zariski dense in the corresponding product of modular curves, elliptic curves and linear tori. By 9.2, each
of the remaining 7 is either constant or is related by an element of GLy(Q)™ to one of the 7. Likewise,
each of the remaining z3, a are dependent on the Zp, (. respectively in the manner prescribed in 1.5. Thus
V' contains the quasi-special variety T' defined by these equations on the selected maximally algebraically
independent coordinates, and W is contained in a component of 7=1(7T"). Since Y is maximal, it coincides
with this component . O

9.5. Proof of 9.2 and 9.1. In proving 6.8 we have established 9.1 in the case where each modular curve
is C = SLy(Z)\H. By 9.3 above we conclude then 9.2 holds in such a situation, i.e. that Theorem 1.6
holds. Now we establish 9.2 in general simply by field theory, as every modular function is algebraically
dependent on j. Suppose

X:le...xYl,xElx...xEuxG’\

and W as in the hypotheses of 9.2 with the images of the coordinate functions in C(WW') geodesically
independent. Then the corresponding

](Tl)v"'aJ(Tv)a @1(Z)7"'apu(5)a eXp(Cl),...,eXp(Ck)

are algebraically independent (over C), and this set of functions has transcendence degree v + p + A
over C. However this set of functions is algebraically dependent (over C) on the coordinate functions of
7 : U — X, which must then have the same transcendence degree (the maximum possible), and since X
is irreducible, the image of W in X is Zariski dense. O

Using 8.2 in place of 6.8 we get a more general version of 1.6. With X = C"x Ey X...x E,, x Gt x C*
and Ux as in 8.2, we take tq, ..., t; for the variables in C* and 7; their images in C(W) for some irreducible
subvariety W c C"*™**  Extending Definition 1.5 we will say that

Tlyeeos Ty, 717"%%’ <17"'><x\7 tl?"';tm

(where 0 < k < k) are geodesically independent if the 7, Z;, (; are geodesically independent as previously
(i.e. as in 1.5) and, in addition, the ¢; are algebraically independent over C.

9.6. Theorem. With the notations as above (and W NUx #0), if

Tl o Tus 717”'7%7 Cla"'aC)\a tlv"-7tl€
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in C(W) are geodesically independent then the functions

](Tl)a'--7.](7-1/)7 @1(71)’---7@»(5)7 eXp(C1),...,eXp(C,\), tl)"'atn

on W NUx are algebraically independent over C.
Proof. This follows exactly the deduction of 1.6 from 6.8 in 9.1 above. O

We can take additional variables t; that are set equal to any of the 7; , z;, {; whose images in C(WW)
are algebraically independent of ¢y, ..., ¢, over C, giving (assuming geodesic independence) the algebraic
independence of the functions j(7;), pn(%), exp({.) over the algebraic function field (over C) generated
by their arguments. The corresponding statement can be proved for modular functions. Following 9.4
shows that 8.2 may also be deduced from 9.6, and so these statements are essentially equivalent.

[Note added in revision: In forthcoming work by the author the conclusion of 9.6 is strengthened to
include the algebraic independence of j'(77), ..., 5 (7)) and j”(77), ..., " (7,) in addition to the exhibited
functions. This is the natural strengthening, given that 7,7’,j” : H — C are algebraically independent
while j”" € Q(7,4',7") see [563, 11]]

10. Basic pre-special components

Here we show that, given V' C X as in 1.1, there are only a finite number of basic quasi-pre-special
loci that have a translate that is a maximal quasi-pre-special locus contained in Z. This is evidently
implied by 1.1, and though much weaker it enables an inductive proof of 1.1. As observed in [71],
for abelian varieties this follows by relatively elementary considerations given in [17, Lemma 2]. Our
argument is also quite elementary, but uses o-minimality. The most arduous part is spelling out the
required new definition. The argument hinges on the simple observation that a countable definable set
is a finite set, and hence a definable set all of whose points are rational (or even algebraic) is finite.

10.1. Definition.

1. Let n > 0and let Y7 =T4\,...,Y;, = I';,\H be modular curves. Let SpUS;U...US,, be a disjoint
partition of {1,...,n} with w > 0 and Sy only permitted to be empty. Let h; € H for each i € Sy be an
arbitrary point. Let s; be the smallest element of S; for each ¢ > 1 and for each j € S;,j # s;, choose
an element g;; € SLo(R). A linear subvariety of H" is a subvariety

Y:{(Tl,...,Tn) EHn:Ti:hi,iESQ,Tj :gij(Tsi);i:1a-~-,k;j65i7j7é5i}

for some choice of data S;, h;, g;; as indicated. The union of gY over g € I'y x ... x I',, we call a linear
locus for H" (with respect to Ty x ... x T, ) If Sy is empty we will call the corresponding linear subvariety
(locus) basic. The data {1,...,m} — Sy, g;; determine a basic linear component of the product of upper
half-planes in the variables indexed by {1,...,m} — Sy, and we will say that the linear locus with data
Si, hi, gij is the translate by h;, i € Sy of the basic linear locus (in the reduced set of coordinates) specified
by {1,...,n} — So, ¢i;. Note that, in specifying the locus, the h;, g;; are not uniquely determined.

2. Let A be a lattice in C™. A linear subvariety of C* is a subvariety of the form

a+ L

where L is a C-linear subspace of C™ (i.e. through the origin), and @ € C™. With the same conditions
we call a + L 4+ A a linear locus in C™ (with respect to A). If a + L = L + A we call the corresponding
linear locus basic, and we will refer to an arbitrary linear locus a + L 4+ A as the translate by a of the
basic linear locus L + A. (Note a is only determined up to elements of L + A.)

3. Let n > 0. A linear component in C* is (just as above) a subvariety of the form

b+ M

where M is a C-linear subspace, and b € Ctis arbitrary. With the same conditions, a linear locus in ct
(with respect to exp) is a locus of the form b+ M + 2miZ. If b+ M + 2miZ = M + 2miZ we call the
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corresponding linear locus basic, and we refer to a linear locus b + M + 27iZ as the translate by b of
the basic linear locus M + 2miZ. (So in specifying a translation b + M + 27miZ of the basic linear locus
M + 27iZ the translation b is determined only up to M + 2wiZ.)

4. Let n,£ > 0 and A an abelian variety of dimension m > 0. Let X = Y] x...x Y, x A X G* where
Y; =T;\H. A linear subvariety in Ux = H" x C™ X C* is a subvariety of the form

Yx(a+L)x((b+M)

where Y is a linear subvariety of H", a + L is a linear subvariety in C™, and b+ M is a linear subvariety
in C*. With the same conditions we call the union of g(Y x (a4 L) x (b+ M)) over g € I'x a linear
locus in X (with respect to T'x ). If the set of variables Sy in the data for Y is empty, a + L = L + A,
and b+ M + 2miZ = M + 2wiZ we call the linear locus basic. We note that the data for a locus are
not uniquely determined. We refer to an arbitrary linear locus as the translate by (h;,i € So, a,b) of the
corresponding basic linear locus. We note that the h; are not uniquely determined.

10.2. Proposition. Let X =Y; x ... x Y, x A X Gé, where n, £ > 0, Y; = T;\H are modular curves
and A is an abelian variety of dimension m > 0 defined over C. Let V. C X be a subvariety and
Z =7 Y(V). Then there are only finitely many basic quasi-pre-special loci having a translate that is a
maximal quasi-pre-special locus contained in Z.

Proof. Let Z = ZNFx. If Y is a quasi-pre-special locus contained in Z, consisting of translates of a
basic pre-special subvariety B, then it has a component subvariety that intersects Z in full dimension.
Further, Y and B are linear. Conversely, if Y is a linear locus contained in Z, a union of translates of
a basic linear subvariety B, then it has a component subvariety that intersects Z in full dimension, and
B and the components of such Y are algebraic components of Z. Therefore the set of basic pre-special
subvarieties that have a translate maximal among quasi-special subvarieties contained in Z coincides with
the set of basic linear subvarieties that have a translate maximal among linear subvarieties contained
in Z. The sets of linear subvarieties and basic linear subvarieties are semialgebraic (a product of copies
of SLy(R) and certain Grassmann varieties), hence definable, and the set M of basic linear subvarieties
that have a translate occurring maximally among linear subvarieties contained in Z is a definable subset
(there is always a translate intersecting the definable set Z in full dimension). However, these maximal
linear subvarieties are quasi-pre-special, so correspond to algebraic points (the corresponding points
in SLa(R) are in the image of GL2(Q), the points in the Grassmann varieties are rational in suitable
coordinates). Thus the definable set M consists entirely of algebraic points, and so is finite. O

10.3. Remark. 1. It follows that, for fixed X, the same conclusion holds over any definable family of
subvarieties V: there are only finitely many basic pre-special subvarieties that have translates that are
contained in Z for any variety V in the family. This is formally framed in §13.

2. Let us briefly compare the method of proof of 10.2 with the corresponding proof for abelian
varieties in [17, Lemma 2]. Both arguments use the fact that the varieties in question (basic pre-special
subvarieties/ abelian subvarieties) do not have moduli (in [17, Lemma 1]: only finitely many abelian
subvarieties up to a given degree). The argument in [17] leads to a degree bound. Our argument seems
to give no information about this (which corresponds to the height of the rational numbers), we get only
a bound for the number of them. The argument in [17] looks more likely to yield an effective version.
Effectivity would be needed for 13.5.

11. Proof of Theorem 1.1
We begin with an intermediate version of the AOMML statement that assumes that only finitely

many maximal special subvarieties of positive dimension are contained in V.

11.1. Definition. Let V C X. The special set of V, which we denote VP, is the union of special
subvarieties of positive dimension contained in V.

Special subvarieties are algebraic varieties (irreducible). If VP consists of a finite union of special
subvarieties then it is an algebraic variety (generally reducible). Otherwise it is not, as a variety cannot
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consist of infinitely many irreducible components. Special subvarieties are defined over Q. If X is defined
over a numberfield K then the conjugate over K of a special subvariety is again a special subvariety. If
X and V are defined over K then such a conjugate is again contained in V', so that V*P is defined over
K as well.

11.2. Theorem. Suppose X is as in the hypotheses of 1.1, that V is a subvariety of X defined over a
number field K that contains a field of definition for X. Suppose that V5P is a variety. Then V — V5P
contains only finitely many special points.

Proof. Let Z = 7=1(V). Then Z*# consists of ZP* = 7~ 1(V*P) together with other quasi-pre-special
loci that contain no pre-special points. Put ZP = ZPS N\ F. We have Z& = Z218 O\ F. If we let

szrespecial(vv’ T)
denote the number of pre-special points in a set W up to height T then, for all ¢ > 0 and T" > 1, we have
NPl (7 708, 7) = NEPeeinl(7 - 799 T) < Ny(Z — 2°%,T) < (2,2, 1",

where ¢(Z,2,¢€) is provided by Theorem 3.2. Suppose that Z — ZP% contains a pre-special point u of
complexity A = A(u). Then z = w(u) € V — VP ig special and has at least

[K : Q]ilcdegree (X)A1/7

conjugates ' which also lie in V' — VP, These conjugates have distinct pre-images v’ € Z — ZP%, having
complexity

and hence
H(u') < cheignt(X)A

by 5.7. Put T' = ¢special (X)A. Then (finally opposing the upper bound from o-minimality with the lower
bound from Galois conjugates) we have

—1_Cspecial(X) 17
K. Q) ' =) VT < No(Z — ZP,T) < ¢(Z,2,€)T°.
[ ] cheight (X)1/7 ( ) ( )
and, choosing € = 1/8 (say), the inequalities are untenable once T, and hence A, is sufficiently large.
Hence A(u) is bounded for a prespecial point in Z — ZP®, and the special points of V' — VP come from
a finite set. O

11.3. Proof of Theorem 1.1. There is a subvariety V C V (not necessarily irreducible), defined over
Q, that contains all the algebraic points of V. So we may assume that V is defined over Q.

We prove the Theorem by induction on dim X as a complex variety. The result clearly holds if
dim X = 1 since we have then V = X or V is a finite set of points. We can also argue directly that
it holds if dim X = 2, for then V, if proper, has dimension < 1 and can contain only finitely many
components of dimension 1, so that V*P is certainly a subvariety and the conclusion holds by 11.2.

Let then X be of dimension n > 3, and V C X. Since the conclusion holds by 11.2 if V*P is a
variety, it suffices to prove this for V' C X under the inductive assumption that Theorem 1.1 holds for
all X' of smaller dimension. So we may assume that V' is a proper subvariety of X.

Now there are just finitely many basic special subvarieties whose translates occur as maximal special
subvarieties. So it suffices to show that, given a basic special subvariety Y x B x H of positive dimension,
that there are only finitely many translates of it that occur as maximal special subvarieties of V.

Suppose B has dimension i < m. Then we can choose h of the elliptic curves, which we may assume
to be Fi, ..., Ep, such that B is the image under

C"— FEy x...x E,
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of a basic pre-special component L of the form

h
L:{(zl,...,zm):zj:Zqijzi, j=h+1,...,m}

=1

where ¢;; € C and there exist non-zero integers N;; are such that N;;q;;A; C A;. A translate of B inside

Ey x ... X E,, is the image of some L+ (a1,...,ap,apt1,.-.,am,) C C™, and if (a1,...,a.) is a torsion
point with respect to Ay @...® Ay, then ¢(as,...,an) = (a},,y,...,ay,) is torsion in C™~" with respect
to App1 @ ... @ Ay, and so the same translate is given by L 4 (0,...,0,an11 — ) yqs- -5 Gm — ay,).

Therefore: the translate of B by a torsion point of Fy X ... x E,, is equal to translate of B by a torsion
point of the form (0,...,0,ap41,...,Gm).

Similarly, suppose H has dimension p < £. We can choose p of the factors of C*, say the first p,
such that H is the image of a basic pre-special component of C! defined as in 6.5, and we see that a
translate gH can be given in the form ¢’ H where ¢’ = (1,...,1,¢") for some ¢” € G*"P, and that if g is
torsion we can take g” to be torsion.

A translate of Y is given by some element s € C#% for the Sy in the underlying partition.

The variety

X' =C# X Eppy X ... X Epy x G™F

parameterizes the possible “translations” of the basic special subvariety Y x B x H, and might be termed
the “quotient” of X by Y x B x H. The set of points

V' ={(s,a,g9) € X' : the translate of Y x B x H by (s,a,g) is contained in V'}

is an algebraic subvariety V' C X', defined over Q. The translates of Y x B x H which are maximal
special subvarieties of V' are the special points of V' — (V/)P. However, X’ has lower dimension than
X, as Y x B x H has positive dimension, and so by induction we have that V' has only finitely many
such special points.

Therefore only finitely many translates of Y x B x H occur as maximal special subvarieties of V,
and since there are only finitely many possibilities for Y x B x H we see that V*P is a subvariety. But
then the conclusion of Theorem 1.1 holds for it by 11.2, and the proof is complete. O

11.4. Remarks. 1. One may observe that Theorem 1.1 holds more generally when the factors ¥; = I';\H
are quotients by finite index subgroups I'; of SLy(Z), where a “special subvariety” means just the image
in Y; of a pre-special subvariety in H".

2. In work in progress I affirm AO unconditionally for the product of two Shimura curves associated
to indefinite quaternion algebras over Q (under GRH this is due to Yafaev [95]). In view of this one
can reasonably aspire in the first instance to replace the C factors in 1.1 and 12.1 by Shimura curves
(one need only provide the Ax-Lindemann-Weierstrass statement). One can of course seek to adapt the
present methods much more generally. However, suitable lower bounds for the degree of special points
are not presently available in general (apparently even under GRH: see [96]). A conjectural strengthening
of Theorem 3.2 for sets definable in Rey,, proposed by Wilkie (in [70]) could, if extended to an o-minimal
structure containing the j-function, enable the proofs to go through using substantially weaker lower
bounds for the degree of special points. For some discussion of this conjecture see [69]. Definability
results generalizing [64] would also be required in general (though in several interesting cases such as
non-modular Shimura curves they would not be needed).

[Note added in revision: Peterzil-Starchenko [66] have generalized their result [64] on the Weierstrass
p-function to show definability in R,y exp for theta-functions (in both sets of variables) restricted to
suitable fundamental domains.]

12. AOMM for C" x A

12.1. Theorem. Let X =Y; x ... x Y, x A where n >0, Y; = T';\H are modular curves, and A is an
abelian variety of dimension m > 0 defined over Q. Let V. C X be a subvariety. Then V contains only
a finite number of mazimal special subvarieties.
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Proof. We may assume that V is defined over Q. Let U = Ux and Z = 7~ 1(V). Repeating the start of
the proof of 6.8, we see that for a maximal algebraic component of Z the z variables are independent of
the 7 variables, and the dependencies among 7 variables are of quasi-pre-special form. By the results of
[71], the dependencies among the z variables are also of quasi-pre-special form, so Y is quasi-pre-special.

By 10.2 there are only finitely many basic quasi-special subvarieties having translates that are
maximal among translates of quasi-linear subvarieties contained in Z.

We now repeat the proof procedure of Section 11. First, if VP is a variety, the result holds by
comparing the upper and lower estimates for pre-special points in Z = Z N Fx. Finally we prove
inductively that V*®P is indeed a subvariety, as we need consider only translates of a finite number of
basic special subvarieties, for which the problem reduces to special points on a lower dimensional set
of the same form. Here the translates of a basic special subvariety (i.e. abelian subvariety) B of A are
parameterized by A/B. O

12.2. Remarks. 1. The characterization of maximal algebraic components of Z in the course of
the proof of 12.1 can also be phrased as an ALW statement relative to a suitable notion of “geodesic
independence”.

2. Peterzil and Starchenko [65] have extended a (simplification) of the method of [71] to prove
MM for semiabelian varieties S over Q, in the course of which they reprove in effect the ALW part of
Ax-Schanuel for semi-abelian varieties by o-minimal methods. It seems likely that by combining the
various approaches one can encompass both 1.1 and 12.1 in a result for varieties X =Y} x ... x Y, x S.

13. Uniformity and effectivity issues

Let X be as in Theorem 1.1. We may consider X to be embedded as a quasi-projective variety in
some projective space PV, If V is a subvariety of X, we denote by d(V) the degree of V', meaning the
degree of its Zariski closure V as a subvariety of PV, where, for a reducible projective variety W we take
d(W) to be the sum of the degrees of its irreducible components. If a subvariety V is defined over Q, let
d(V') denote the minimal degree over Q of a field of definition for V.

For definability purposes we identify PV with a subset of unit length elements in CV*!, which
is real semi-algebraic in real coordinates given by real and imaginary parts. By a definable family of
subvarieties of X we mean a definable family 'V whose fibres are relatively closed complex subvarieties
of X. We do not insist that the parameter space be complex, though in the cases of interest it will be.
Thus such V . PV x R with V = V, a subvariety of X for each y € R”. Then the subvarieties V' C X
of given degree form a definable family of subvarieties (their dimension being bounded by dim X).

13.1. Proposition. Let X =Y; x ... xY, x A X GE, where n, £ > 0, Y; = T;\H are modular curves
and A is an abelian variety of dimension m > 0 defined over C. Let 'V be a definable family subvarieties
of X. Then the set of basic pre-special subvarieties Y of X having a translate that is maximal among
quasi-pre-special subvarieties of Z = 7w~ 1(V) for some V € V s a finite set.

Proof. Since V is a definable family, the set of such Y is a definable subset of the appropriate Grass-
mannian parameterizing basic linear subvarieties of X. Asin 10.2, it consists entirely of algebraic points,
and so must be a finite set. O

Let us call a variety X as in 1.1 a variety of AOMML type. If Y is a basic special subvariety of a
variety X of AOMML type then the translates of Y in X are prameterized by another variety Xy of
AOMML type (possibly empty), and, as in 11.3, we may take Xy to be a product over some subset of
the constituent varieties of X. (The parameterization is not unique: there may be several (but finitely
many) y € Xy giving the same translate of ¥ in X.) Such an Xy will be called an AOMML subvariety
of X, and the translate of a basic Y by a point a € Xy will be denoted tr(Y,a) C X.

We may think of a special point in X as a translate of the trivial basic special subvariety, which we
denote 0, consisting of the trivial subgroup of any elliptic and multiplicative factors of X and the empty
subset of the modular variables.
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13.2. Theorem. Let X be variety as in 1.1 and V a definable family of subvarieties of X. Let § be
a positive integer. There is a finite family Y of basic special subvarieties Y of X, and for each’Y € Y
there is an AOMML subvariety Xy of X and a constant C(X,V,0,Y) with the following property. Let
V' be a variety in the family V with 6(V) < 4,Y € Y, and a € Xy a special point. Suppose that tr(Y,a)
is a maximal special subvariety of V' then

Aa) < C(X,V,6,Y), and d(tr(Y,a)) <C(X,V,4,Y).
In particular, the number of mazimal special subvarieties is uniformly bounded for V€ V with §(V') < 4.

Proof. We prove the Theorem by induction on dim X. It is evidently true if dim X = 1, in which
case a subvariety of X is X itself or a finite number of points whose number is uniformly bounded as
a consequence of the definability of the family. Suppose then that dim X > 2 and the theorem holds
for all X of smaller dimension. By 13.1 there is a finite collection ) of basic special subvarieties of X
containing all those that have a translation that is a maximal quasi-special subvariety of any V' € V.
Each Y € Y is defined over Q. By increasing § by some bounded factor depending on V we may
assume that X and all the Y € Y are defined with V over a number field K of degree < 4. Suppose
Y € Y has positive dimension. Then maxmimal translates of Y in subvarieties V' C X correspond
to maximal special subvarieties of dimension 0 (i.e special points outside the special set) of a suitable
subvariety V' of X’ = Xy as in the proof of 11.3. For V € V the subvarieties V' form a definable
family, and dim X’ < dim X, and since X’ and V' may be defined over K, we get by induction a bound
C (X', V' 5,0) for the complexity of maximal translates of the trivial basic special subvariety, i.e. the
translates of Y that occur maximally in V| and for the degree of a field of definition for them over Q.
This gives a uniform bound on the complexity and degree (over Q) of V=P for V € V. Now the proof
of 11.2 gives a uniform upper bound on the complexity of a translate of the trivial basic subvariety in
V', and thence on the complexity and degree over Q of a field of definition for all special subvarieties of
VeV.o

For MM for semi-abelian varieties (even for commutative algebraic groups) defined over a number
field, explicit uniform bounds are given by Hrushovski [43]. Explicit uniform bounds for the number of
special subvarieties in ML for an abelian variety (over Q) are given by Rémond [78]. For explicit bounds
for ML in G* see Evertse [37].

13.3. Aside. Let V c PV defined over C. Then V has a maximal subvariety V defined over Q whose
total degree (sum of degrees of components) is bounded in terms of d(V') and N. This can be phrased as
an analogue of AO/MM: if we call irreducible subvarieties defined over Q special, then V contains finitely
many maximal special subvarieties, whose number and complexity (=degree) are uniformly bounded in
terms of d(V) and the ambient space PV. If V is in a definable family, then V also lies in a definable
family, and the conclusion of 13.2 holds for all V € V with § = §(V).

Let us finally make some comments on effectivity. The question arises whether the ineffective lower
bound for class numbers is the only ineffective element in the proof. The upper bound for rational
points, which comes via the reparameterization in [70], would seem to be effective if one has effective
o-minimality of the structure involved, as defined in Berarducci-Servi [7]. It seems an interesting — by no
means trivial — problem to establish effective o-minimality for the structure R; generated by the graph
of the modular invariant j on its fundamental domain considered as a subset of R*. Note that Rexp CR;
by a result of Miller [57]. The result of Peterzil-Starchenko establishes the o-minimality of this structure
by showing it is contained in R,y exp, but the latter is too big to expect any reasonable form of effectivity.
In R, the definable sets lie in countably many families that are definable without parameters, and one
would try to bound the number of connected components of a set X in such a family (or the somewhat
finer invariant v(X) of [7]) by an effective function of the defining formula.

Siegel’s lower bound for class numbers can be made effective if one admits one possible exceptional
quadratic field (Tatuzawa [87] see e.g. [39]): if € > 0, there is an effective constant ¢(e) > 0 such that
h(D) = e(e)|D|"/?~

for all negative discriminants D except possibly those corresponding to orders in one imaginary quadratic
field. (I thank a referee for the suggestion to explore the consequences of this result.)
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13.4. Definition. For € > 0, an e-restricted special point in a product of modular curves Y7 x ... x Y,
will mean a special point such that each pre-special coordinate is not in the quadratic field that is
exceptional for € in a bound as above. An e-restricted special subvariety is a special subvariety such that
all the special points in the defining data are e-special.

Equivalently, an e-restricted special subvariety is a subvariety that contains at least one (equivalently
a Zariski-dense set of) e-restricted special points.

If we now assume that 3.6 (for R;) and 13.1 (for X =Y; x ... xY,) can be made effective, then we
get an (unconditional and) effective version of 13.2 for e-restricted special points.

13.5. Proposition. Suppose an effective version of 3.6 for sets definable in R;, and an effective version
of 13.1 for algebraic families of subvarieties of products of modular curves. Let X be a product of modular
curves, V C X defined over Q, and € > 0. Then there is an effective upper bound on the number (and
complezity) of maximal e-restricted special subvarieties of V.. Moreover, this bound depends only on
X,e,d(V),6(V). O

For special points and subvarieties corresponding to any fixed given quadratic field, one has effective
lower bounds for the class number of orders, and the result would also be effective under the assumptions
of 13.5. Note that in this case the results of Edixhoven [34] are unconditional and surely effective as
well. Under GRH, the uniformity in the conclusion for curves of fixed degree was observed in [32], and
this was shown to be effective and extended to curves in C™ by Breuer [19].
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