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Note on Carlson’s theorem

Jonathan Pila

Abstract. Carlson’s well known theorem gives conditions under which a func-
tion, holomorphic in the right half plane and of exponential type, is uniquely
determined by its value sequence on N. This note gives a variant in which the
function is permitted (slightly) faster than exponential growth on the positive
real axis.
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Carlson’s well known theorem [2] may be stated as follows. Suppose that a function f(z),
holomorphic in Re(z) ≥ 0, is of exponential type and has type < π on the imaginary axis.
If f(n) = 0 for n ∈ N = {0, 1, 2 . . .} then f(z) vanishes identically (see e.g. [1, 9.2.1],
or a slightly weakened version in [6, 5.81]). Thus a function satsifying the stated growth
conditions is uniquely determined by its value sequence on N.

This note is concerned with the following question: suppose a function f(z), holomor-
phic in Re(z) ≥ 0, has exponential growth of type < π on the imaginary axis. Can the
growth of f(z) on the real axis be permitted to be somewhat faster than exponential type
and still preserve the property of unique determination by the value sequence on N?

It turns out there is a simple observation that can be made. Namely, by means of the
Gamma function Γ(z), growth of type exp(α|z|π/2) on the imaginary axis, where α ∈ R,
may be exchanged for growth of type exp(α|z| log |z|) on the real axis. After stating and
proving the result I say a little more about the context in which this question arose. The
case c = 0 is a slight strengthening of Carlson’s theorem, while the case c = 1/2 has been
given by Yoshino [8] under somewhat more stringent hypotheses.

Theorem. Let c, γ, δ ∈ R with c + γ < 1 and δ > 0. Write z = x + iy. Suppose f(z) is
holomorphic in the region x ≥ 0 and satisfies

lim sup
|y|→∞

log |f(iy)|
π|y| ≤ γ, lim sup

x→∞

log |f(x)|
2x log x

≤ c

and that, throughout x ≥ 0, as |z| → ∞ (i.e. uniformly in the argument of z),

log |f(z)| = O(|z|2−δ).

Suppose f(n) = 0 for all n ∈ N. Then f(z) vanishes identically.
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Remarks.
1. The conclusion may fail if c+γ = 1, or if δ = 0. As witnesses for the former failure,

the functions sinπz, for which γ = 1, c = 0, δ = 1 (the usual example showing Carlson’s
theorem is sharp), Γ(z + 1)/Γ(−z), for which γ = 0, c = 1, 0 < δ < 1; indeed, taking any
t ∈ R,

1
Γ(−z)Γ(z + 1)2t−1

(see the start of the proof for the definition of powers of Γ(z + 1)) gives an example for
which γ = 1 − t, c = t, 0 < δ < 1. As witness for the latter failure: the function

exp(2π(ze−iπ/4)2) − 1

for which c = γ = δ = 0.
2. Note that γ, c are permitted to be negative. The motivating problem discussed

below involves a function T that is bounded on vertical lines (so that γ = 0), and c = 1/2.
The class of functions regular in x ≥ 0 with γ = 0, c < 1 seems to be an interesting class of
functions that enjoy unique determination by their values on N. Classes with γ < 0 might
also be of interest in certain problems related to entire arithmetic functions (since e.g.
Γ(z + 1) is in the class with γ = −1/2, c = 1/2) but I do not know of specific applications.
Classes with c < 0 would seem to be less interesting in this regard since, if such functions
are integer valued on N, they are forced to vanish on all but finitely many points of N.

Proof. To prove the theorem, one could proceed using Phragmén-Lindelöf directly, follow-
ing the lines of Carlson’s original demonstration. However, it is easier simply to transport
the problem into Carlson’s setup, by an initial application of Phragmén-Lindelöf.

Let us first remark that the function Γ(z + 1) is regular and never zero in x ≥ 0. So
log Γ(z + 1) can be defined in a regular manner there, and thence the function Γ(z + 1)α

for any α ∈ C. The principal value of the logarithm will be taken. By Stirling’s formula
(see [7, 13.6]),

log Γ(z + 1) =
(
z +

1
2
)
log z − z +

1
2

log(2π) + O(z−
1
2 )

as z → ∞, uniformly in x ≥ 0.
Let c′ > c with γ + c′ < 1. Then the function

g(z) = f(z)/Γ(z + 1)2c′

is regular in x ≥ 0, bounded on the real axis and satisfies

lim sup
|y|→∞

log |g(iy)|
|y| ≤ γπ +

2c′π

2
< π.

Further, for any δ′ < δ,
|g(z)| = O(exp(|z|2−δ′

))

as |z| → ∞ for x ≥ 0, uniformly in the argument of z.
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Now consider the function

h(z) = g(z) exp(−
√

2πze−πi/4)

in the first quadrant. This function is bounded on the lines x = 0, y = 0, and satisfies, for
any δ′′ < δ′,

|g(z)| = O(exp(|z|2−δ′′
))

as |z| → ∞ in the quandrant, uniformly in the argument of z.
By Phragmén-Lindelöf (see e.g. [6, 5.61]), h(z) is bounded in the first quadrant, and

so g(z) is of exponential type there. By a similar argument g(z) is of exponential type in
the fourth quadrant, and thus g(z) is of exponential type throughout x ≥ 0.

So g(z) satisfies the hypotheses of Carlson’s theorem, and since g vanishes on N it
must vanish identically. Hence f(z) vanishes identically, proving the result.

Let me say a little more about the context in which this question arose. Let k ∈ N. In
[4] I consider entire functions f(z) whose value sequence on N has the following property:
On every subset of N consisting of ≤ k+1 points, the values of f(z) may be interpolated by
an element of Z[x]. This generalizes the “integer valued entire function” (k = 0) case that
is the subject of Pólya’s paper [5]. I prove that if the exponential type of such a function
is below a certain type (depending on k) on the real axis, and < π on the imaginary axis,
then the function reduces to a polynomial. However, I am not able to exhibit a “smallest”
entire function with the requisite property, as does Pólya, for k = 0, with the function 2z.

The “k = ∞” property can also be considered: namely, consider entire functions that
admit interpolation by an element of Z[x] on every finite subset of N. By [4, Theorem 1.4],
a (near) “smallest” transcendental entire function having this property but not able to be
interpolated by a polynomial on all N is provided by

T (z) =
∫ ∞

0

(1 + t)ze−tdt.

Note that T (z) = eΓ(z + 1, 1), where Γ(z, w) is the so-called complementary incomplete
Gamma function (see e.g. [3, Ch.2 §5]).

Repeated integration by parts verifies that T (z) interpolates the following series, which
is convergent only for z ∈ N (when it reduces to a finite sum):

T (z) = 1 + z + z(z − 1) + z(z − 1)(z − 2) + . . . .

The value sequence on N of this series, and hence of T (z), is in some sense (see [4])
canonical for the “k = ∞” property. While T (z) is not of exponential type on the real axis
(it grows like eΓ(x+1)), it is bounded (even slowly decaying) on vertical lines. The question
arose: Within which class(es) of functions does T (z) provide the unique interpolation of
its values on N? The Theorem and the above observations show that the class of functions
satisfying the growth hypotheses of the Theorem with (c, γ, δ), where γ + c < 1, δ > 0, is
such a class if 1/2 ≤ c < 1.
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The question considered here can also be considered for functions holomorphic in the
whole plane, i.e. entire functions. Thus an entire function of exponential type that is of
type < π on the imaginary axis is determined by its value sequence on Z, being already
determined by its value sequence on N. Suppose an entire function has exponential growth
of type < π on the imaginary axis. How fast can it grow on the real axis while preserving
its unique determination by its values on Z?

Since the Gamma function is not entire, the observation made in the present note
does not extend to the entire function situation. This question seems to be interesting
in itself, but it is also relevant to the corresponding problem of entire functions with the
abovedescribed arithmetic conditions holding on all Z.
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