
2003.IX.19

Integer points on the dilation of a subanalytic surface

Jonathan Pila

Abstract

Let Ω ⊂ R
n be a compact subanalytic set of dimension 2 and t ≥ 1. This paper gives an upper

bound as t → ∞ for the number of integer points on the homothetic dilation tΩ of Ω that do not
reside on any connected semialgebraic subset of tΩ of positive dimension. Implications for the
density of rational points on Ω are also elaborated.
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1. Introduction

For a set of points Ω ⊂ R
n let Ω(Z) denote the subset consisting of points with integer coordinates

and Ω(Q) the subset of points with rational coordinates. For H ≥ 1 let Ω(Q, H) denote the subset of Ω(Q)
of rational points P of height H(P ) ≤ H , where, if P = (a1/b, . . . , an/b) with aj , b ∈ Z, b > 0 and

gcd(a1, . . . , an, b) = 1, H(P ) = max{|aj |, b}. The homothetic dilation tΩ of Ω by t is defined by

tΩ = {(tx1, . . . , txn) : (x1, . . . , xn) ∈ Ω}.

It will always be assumed that t ≥ 1. The cardinality of a set S will be denoted #S.

When Ω is an algebraic variety, an elaborate complex of results and conjectures asserts that the geometry

of Ω exerts significant control on the structure of Ω(Z) and Ω(Q), and on the behaviour of #Ω(Q, H) as

H → ∞. See for example [9] or [6, §F.5] (“Geometry Governs Arithmetic”) and the references therein. In

particular, the conjectures of Lang [9, I §3] assert that a variety has only finitely many rational points outside

its special set.

Suppose that Ω is a subanalytic set (a definition of subanalytic sets, and statements of the key properties

to be used, are set out in §2, following [2]). If the dimension of Ω (see §2) is ≥ 2 then Ω may contain subsets

of positive dimension that are semialgebraic even if Ω itself is not semialgebraic. Let Ωalg denote the union

of all connected subanalytic subsets of Ω of positive dimension that are semialgebraic (defined over R). The

distribution of integer and rational points on Ωalg will be governed by the geometry of its semialgebraic

constituents (in general Ωalg will not itself be semialgebraic, or even subanalytic (see below)).

This paper is concerned with the complementary subset Ωtrans = Ω−Ωalg. Note that (tΩ)alg = t(Ωalg),
and so likewise (tΩ)trans = t(Ωtrans). By analogy with the philosophy of the special set, it might be expected

that strong paucity properties should hold for the rational and integral points of Ωtrans . It seems natural to

make the following conjectures. Note that these conjectures are trivial for semialgebraic Ω.
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Conjecture 1.1. For compact subanalytic Ω ⊂ R
n and ε > 0 there is a constant c1(Ω, ε) such that

#tΩtrans(Z) ≤ c1(Ω, ε) tε.

Conjecture 1.2. For compact subanalytic Ω ⊂ R
n and ε > 0 there is a constant c2(Ω, ε) such that

#Ωtrans(Q, H) ≤ c2(Ω, ε) Hε.

A subanalytic set Ω ⊂ R
n will be called a subanalytic curve if it has dimension 1, and a subanalytic

surface if it has dimension 2. For compact subanalytic curves that are graphs of functions in R
2, Conjecture

1.1 is proved in [3] and Conjecture 1.2 is proved in [10] (see also [4]). It is not difficult to extend these

results to general compact subanalytic curves in R
n; proofs are included here (in §7) as the more general

formulation of 1.1 is needed for the present purposes. The main result of this paper is to establish Conjecture

1.1 for compact subanalytic surfaces.

Theorem 1.3. Let Ω ⊂ R
n be a compact subanalytic surface and ε > 0. There is a constant c3(Ω, ε) such

that

# t Ωtrans(Z) ≤ c3(Ω, ε)tε.

While the primary focus in this paper will be the number of integer points on homothetic dilations, results

about tΩ(Z) give information about Ω(Q, H): For any set Ω ⊂ R
n, if P ∈ Ω(Q, H) then bP ∈ bΩ(Z),

where P = (a1/b, . . . , an/b) as above. Thus

#Ω(Q, H) ≤
H∑

h=1

#h Ω(Z).

Corollary 1.4. For Ω as in the Theorem and ε > 0 there is a constant c4(Ω, ε) such that

#Ωtrans(Q, H) ≤ c4(Ω, ε)H1+ε.

Let Ω ⊂ R
n be subanalytic. The example Ω = {(x, y, z) ∈ R

3, z = exp(y log(x + 1)), (x, y) ∈
[0, 1]2} shows that Ωalg is not in general subanalytic: in this case Ωalg is the subset with y rational, and

consists of a dense set of curves of unbounded degree (see §2: a relatively compact subanalytic set has only

finitely many connected components). It is easy to construct examples where Ωalg consists of all but finitely

many points of Ω (e.g. the surface of revolution of a transcendental curve); at the other extreme, Ω may

have the property that its intersection with every algebraic space curve consists of a finite number of points,

so that Ωalg is empty. An intermediate possibility, for subanalytic surfaces, is that Ωalg is semianalytic of

dimension 1 (and hence semialgebraic). The following result can be deduced by appealing to results of [3]

to control the points on Ωalg.

Theorem 1.5. Let Ω ⊂ R
n be a compact analytic submanifold of R

n of dimension 2. Suppose that Ωalg is

semialgebraic of dimension 1. Let ε > 0. There is a constant c5(Ω, ε) such that

# t Ω(Z) ≤ c5(Ω, ε) tε.
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Corollary 1.6. For Ω as in the Theorem and ε > 0 there is a constant c6(Ω, ε) such that

#Ω(Q, H) ≤ c6(Ω, ε)H1+ε.

To contextualize these results consider first the trivial bounds available for these quantities. If Ω ⊂ R
n

is a compact subanalytic set of dimension k it is straightforward to show that

# t Ω(Z) ≤ c7(Ω)tk, #Ω(Q, H) ≤ c8(Ω)Hk+1.

The results of [3, 10] for planar Ω of dimension one can be used to obtain results in higher dimensions

by slicing. In this case the presence of embedded semialgebraic sets is immaterial, however it is necessary to

assume, in addition to the hypotheses of 1.3, that the selected family of slices are almost all transcendental:

Let K be a compact convex subanalytic subset of R
2 and Ω = {(x, y, z) : (x, y) ∈ K, z = f(x, y)} where

f is real analytic on K. Suppose that, for all but finitely many y such that the set {x : (x, y) ∈ K} is

an interval of positive length, the function f(x, y) is a transcendental function of x. Let ε > 0. There are

constants c9(Ω, ε), c10(Ω, ε) such that

#tΩ(Z) ≤ c9(Ω, ε) t1+ε, #Ω(Q, H) ≤ c10(Ω, ε) H2+ε.

The proof of these statements requires Gabrielov’s Theorem (2.4) to accommodate the finitely many excep-

tional slices. The exponents in both estimates are optimal since the hypotheses do not preclude Ω containing

a line segment.

Various upper estimates for the integer points on (hyper)surfaces have been given under hypotheses of a

differential-geometric nature (that are thus more accessible than hypotheses controlling Ωalg, or hypotheses

that slices are transcendental). Andrews [1] considers the integer points on the surface Ω of a strictly convex

closed body in R
n, n > 1. If S(Ω) denotes the surface content of Ω, Andrews shows that

#Ω(Z) ≤ c11(n)S(Ω)n/(n+1).

For surfaces in R
3, S(tΩ) = t2S(Ω), leading to an estimate with exponent 3/2; note that the constant c11(n)

is independent of Ω. For a strictly convex arc Ω = {(x, y), y = f(x)} ⊂ R
2 such an estimate

#Ω(Z) ≤ 3(4π)−1/3S(Ω)2/3 + O(S(Ω)1/3),

in which the constant is best possible, is due to Jarnik [7]. Results for surfaces (and hypersurfaces of higher

dimension) are obtained by Schmidt [11, 12]. For example it is shown that, for a surface Ω ⊂ R
3 that is

sufficiently smooth and not a cylinder (see [11, Theorem 2] for the precise formulation) in a box of side

t ≥ 1, #Ω(Z) ≤ c12 t3/2 where c12 is absolute.

The present paper adapts the methods of [3], showing in the first instance, in §3 and §4, that the points

of tΩ(Z) lie on very few algebraic hypersurfaces. Motivation for this adaptation was provided by the recent

work of Heath-Brown [5], wherein a generalization of this same main tool of [3] to higher dimensions is

effected by rather different means in the algebraic setting. This step can be carried out for any Ω ⊂ R
n that

is compact subanalytic of dimension < n, and for rational points as well as dilation-integer points (see 4.3,

4.4 and 4.5).

3



In §5 and §6, Gabrielov’s Theorem (2.4) on subanalytic sets is used to gain uniform control over certain

numerical quanta of such hypersurface intersections with tΩ. In §7, Conjectures 1.1 and 1.2 are established

for compact subanalytic curves. The proofs of the main theorems are then given in §8. Essential use is made

there of a result implicit in [3] that gives a uniform upper estimate for the number of integer points on a

sufficiently smooth plane curve for certain classes of curves. This result is recalled in §8. The absence of an

analogous result for rational points of bounded height is the obstruction to establishing Conjecture 1.2 for

compact subanalytic surfaces. Some further remarks are made at the end of §8, including a discussion of

the effectivity of the constants in the main results.

The problems considered here arose from a conversation in which it was asked whether better bounds

would be expected for #tΩ(Z), for compact Ω of dimension > 1, when Ω was not semialgebraic. (For Ω
of dimension 1 this question is answered affirmatively by the results of [3].) This prompted the conjectures

formulated here without any particular applications in view. The results obtained here show similar behaviour

in dimension 2 to dimension 1, namely that #tΩ(Z) can only have growth that is a positive power of t as

t → ∞ if Ω contains semialgebraic subsets of positive dimension.
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2. Subanalytic sets

The following characterization of subanalytic sets, and statements of the key properties of subanalytic

sets to be used in the sequel, are taken from [2]. Let M be a real analytic manifold.

Definition 2.1. ([2, §3.13 (3)]) A subset X ⊂ M is subanalytic if each point P of M has a neighbourhood

U such that X ∩ U belongs to the class of subsets of U obtained using finite intersection, finite union and

complement, from the family of closed subsets of U of the form f(A), where A is a closed analytic subset

of a real analytic manifold N , f : N → U is real analytic, and f |A is proper.

Definition 2.2. ([2, §3.3, §3.5, §7.1]) Let X be a subanalytic subset of M and P ∈ X . Then P is a

smooth point of X (of dimension k) if, in some neighbourhood of P in M , X is an analytic submanifold (of

dimension k). The dimension of X is the highest dimension of its smooth points. The singular set of X ,

denoted sing(X), is the complement in X of the smooth points of highest dimension. A subanalytic set X

is smooth if every point of X is smooth, i.e., if X is an analytic submanifold of M .

Uniformization Theorem 2.3. ([2, §0.1]) Let X be a closed subanalytic subset of M . Then there is real

analytic manifold N of the same dimension as X and a proper real analytic mapping ψ : N → M with

ψ(N) = X .
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If X is a subanalytic set then the number of connected components of X is locally finite ([2, §3]), and

hence is finite if X is relatively compact. The number of connected components of a (relatively compact)

subanalytic set X will be denoted cc(X).

Gabrielov’s Theorem 2.4. ([2, §3.14]) Let N, Y be real analytic manifolds and p : N × Y → Y the

projection on the second factor. Let X ⊂ N × Y be relatively compact and subanalytic. There exists a

constant c13(N, Y, X) such that cc
(
X ∩ p−1(y)

)
≤ c13 for every y ∈ Y .

Tamm’s Theorem 2.5. ([2, §7.2]) Let X ⊂ M be subanalytic. For each k ∈ N = {0, 1, 2, . . .}, the set of

smooth points of X of dimension k is subanalytic. In particular, sing(X) is subanalytic.

3. A consequence of Taylor’s Formula

The setup below follows that given in [8, Chapter 2]. Let k ∈ N and µ = (µ1, µ2, . . . , µk) ∈ N
k. Set

|µ| = µ1 +µ2 + . . .+µk, µ! = µ1!µ2! . . . µk! and, when x = (x1, x2, . . . , xk), write xµ for xµ1
1 xµ2

2 . . . xµk

k .

Thus, for d ∈ N, monomials of exact degree d in k variables are indexed by elements of

Λk(d) = {µ ∈ N
k, |µ| = d}.

Let Lk(d) = #Λk(d). Monomials of degree ≤ d in k variables are indexed by elements of

∆k(d) = {µ ∈ N
k, |µ| ≤ d} =

d⋃
δ=0

Λk(δ).

Set Dk(d) = #∆k(d). For variables x = (x1, x2 . . . , xk) put

∂µ

∂xµ
=

∂µ1

∂xµ1
1

∂µ2

∂xµ2
2

. . .
∂µk

∂xµk

k

.

For z = (z1, z2, . . . , zk), y = (y1, y2, . . . , yk) ∈ R
k write z − y for (z1 − y1, z2 − y2, . . . , zk − yk).

With this notation, suppose φ : R
k → R is defined and has b + 1 continuous derivatives at each point

of the line segment joining y, z ∈ R
k. According to Taylor’s Formula ([8, Theorem 2.2.5]) there is a point

ξ on this line segment such that

φ(z) =
∑

µ∈∆k(b)

1
µ!

∂µ

∂xµ
φ(y)(z − y)µ +

∑
µ∈Λk(b+1)

1
µ!

∂µ

∂xµ
φ(ξ)(z − y)µ.

The quantities Lk(d), Dk(d) satisfy the relations

Dk(d) =
d∑

δ=0

Lk(δ), Lk+1(d) = Dk(d).

Note that Lk(d) =
(
k−1+d

k−1

)
, from which it follows that, for fixed k, Lk(d) ∈ Q[d] with degree k − 1 and

leading coefficient 1/(k − 1)!, while Dk(d) ∈ Q[d] with degree k and leading coefficient 1/k!.
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Let k, n, d ∈ N. There is a unique b = b(k, n, d) such that Dk(b) ≤ Dn(d) < Dk(b + 1). Set

B(k, n, d) =
b∑

β=0

Lk(β)β +
(

Dn(d) −
b∑

β=0

Lk(β)
)

(b + 1).

Lemma 3.1. Let k, n, d ∈ N and put D = Dn(d). Suppose φ1, . . . , φD : R
k → R are functions

possessing continuous derivatives up to order b(k, n, d) + 1 on a compact convex set J . There is a constant

c14(J, φ1, . . . , φD) with the following property. Let U ⊂ R
n be a disk of radius r ≤ 1 and z(1), . . . , z(D) ∈

J ∩ U . Then

|det(φi(z(j)))| ≤ c14(J, φ1, . . . , φD) rB(k,n,d).

Proof. The intersection J ∩ U is a convex set, and there is a point z(0) of J ∩ U such that every other

point of X ∩ U is at a distance ≤ r (take a point of J ∩ U nearest to the center of U ). Write each entry

of det(φi(z(j))) using Taylor’s Formula with remainder term of order b + 1 about z(0). In expanding the

determinant, consider the terms corresponding to a particular specification of the number of terms of each

order of derivative.

Consider a minor of size h×h of det (φi(z(j)) ) comprising the expansion terms of degree β ≤ b only.

That is, select h of the points ζ(j) from among the z(j), and h functions ψi from among the φi and consider

det
( ∑

µ∈Λk(β)

1
µ!

∂µ

∂xµ
ψi(ζ(0))(ζ(j) − z(0))µ

)
.

If h > Lk(β) then the columns are dependent, and the minor vanishes.

Thus if, for a particular such specification of orders, there are more than Lk(β) terms of degree β to

be taken for some β, then the totality of terms corresponding to this choice vanishes. Therefore the order of

the lowest order nonvanishing term is B(k, n, d), and so

|det(φi(z(j)))| ≤ c14 rB(k,n,d)

where c14 is a certain function of the maximum sizes of the derivatives of the φi (up to order b(k, n, d) + 1)

on J ∩ U , and powers of r. Since r ≤ 1, c14 can be taken to depend only on the other quantities.

4. Exploring with algebraic hypersurfaces

The first step in the proof of Theorem 1.3 is to show that the integer points of tΩ lie on very few

algebraic hypersurfaces in R
n. This is essentially a higher dimensional version of the “Main Lemma” of

[3]. A result of this nature (but proved rather differently) has been given by Heath-Brown [5, Theorem 14]

in the algebraic case. This step does not require analyticity of Ω, only that it is the union of finitely many

images in R
n of C∞ maps of convex compact subsets of R

k.
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It is convenient to work within Ω rather than its dilations tΩ, so set

Ω(Z, t) = {Q ∈ Ω : tQ ∈ tΩ(Z)}.

Let k, n, d ∈ N. Set B = B(k, n, d) as previously and put

V = V (k, n, d) =
d∑

β=0

Ln(β)β, ε(k, n, d) =
kV

B
.

It follows from the observations in §3 that, k, n being fixed and d → ∞,

b(k, n, d) =
(

k!dn

n!

)1/k

(1+o(1)), B(k, n, d) =
1

(k + 1)(k − 1)!

(
k!
n!

)(k+1)/k

dn(k+1)/k(1+o(1))

while

V (k, n, d) =
1

(n + 1)(n − 1)!
dn+1(1 + o(1)),

whence, if k < n, ε(k, n, d) → 0.

Proposition 4.1. Let J ⊂ R
k be a convex compact set, d ∈ N, and φ = (φ1, . . . , φn) : J → R

n where the

functions φj : J → R have b(k, n, d) + 1 continuous derivatives. Let Ω ⊂ R
n be the image of J under φ

and t ≥ 1. There is a constant c15(J, φ, d) such that Ω(Z, t) is contained in the union of at most

c15(J, φ, d) tε(k,n,d)

algebraic hypersurfaces (possibly reducible) of degree ≤ d.

Proof. Let U be a disk in R
k of radius r ≤ 1 and consider points Qj ∈ J ∩U ∩Ω(Z, t), j = 1, . . . , Dn(d).

Applying Lemma 3.1 with the functions

φµ = (φ1(x1, . . . , xk), . . . , φn(x1, . . . , xk))µ,

µ ∈ ∆n(d) there is a constant c14(J, φ, d) such that

|det(φµ(Qj)| ≤ c14(J, φ, d)rB(k,n,d).

However, the assumption that the points Qi ∈ Ω(Z, t) implies that

tV (k,n,d) det
(
φµ(Qj)

)
∈ Z.

Thus if r < (c14t
V )−1/B then det

(
φµ(Qj)

)
= 0 for any selection of Qj ∈ J ∩U for which Qj ∈ Ω(Z, t).

Then by the argument of [3, Lemma 1], all these points lie on a single hypersurface of degree ≤ d. Now J

may be covered by at most c15(J, φ, d, c14) tkV/B closed disks of radius ≤ (1/2)(c14t
V )−1/B .
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For k, n, d ∈ N set ε′(k, n, d) = kdDn(d)/B(k, n, d). Observe that, k, n being fixed with k < n,

ε′(k, n, d) → 0 as d → ∞.

Proposition 4.2. Let J ⊂ R
k be a convex compact set, d ∈ N, and φ = (φ1, . . . , φn) : J → R

n where the

functions φj : J → R have b(k, n, d) + 1 continuous derivatives. Let Ω ⊂ R
n be the image of J under φ

and t ≥ 1. There is a constant c16(J, φ, d) such that Ω(Q, H) is contained in union of at most

c16(J, φ, d) Hε′(k,n,d)

algebraic hypersurfaces (possibly reducible) of degree ≤ d.

Proof. The proof proceeds exactly as that for 4.1. Let U be a disk in R
k of radius r ≤ 1 and consider points

Qj ∈ J ∩ U ∩ Ω(Q, H), j = 1, . . . , Dn(d). Suppose bjφ(Qj) ∈ bjΩ(Z) where |bj | ≤ H . Then

Dn(d)∏
j=1

bd
j det(φµ(Qj) ∈ Z.

Now
∏

j bd
j ≤ HdDn(d) and so all such points Qj in a disk of radius r <

(
c14H

−dDn(d)
)−1/B

in R
k lie on

a single hypersurface of degree ≤ d. Now J may be covered by at most c16(J, φ, d, c14) HkdDn(d)/B closed

disks of radius ≤ (1/2)(c14t
Dn(d))−1/B .

Lemma 4.3. Let Ω ⊂ R
n be a compact subanalytic set of dimension k < n, and ε > 0. There are constants

c17(Ω, ε) and d1(k, n, ε) such that tΩ(Z) is contained in the intersection of tΩ with at most

c17(Ω, ε)tε

algebraic hypersurfaces in R
n of degree ≤ d1(k, n, ε).

Proof. Let d ∈ N. By the Uniformization Theorem there is a real analytic manifold N of dimension k, and

a proper analytic mapping ψ = (ψ1, . . . , ψn) : N → R
n with ψ(N) = Ω. Since ψ is proper, N is compact.

Now N is contained in the union of finitely many subsets homeomorphic to the closed unit ball in R
k, the

homeomorphism analytic in an open neighbourhood of the ball. Applying 4.1. to the map from each such

ball into R
n finds the points of Ω(Z, t), and hence those of tΩ(Z), contained in the union of at most

c15(Ω, d)tε(k,n,d)

hypersurfaces of degree ≤ d. The observation that ε(k, n, d) → 0 as d → ∞ completes the proof.

Lemma 4.4. Let Ω ⊂ R
n be a compact subanalytic set of dimension k < n, and ε > 0. There are constants

c18(Ω, ε) and d2(k, n, ε) such that Ω(Q, H) is contained in the intersection of Ω with at most

c18(Ω, ε)Hε

algebraic hypersurfaces in R
n of degree ≤ d2(k, n, ε).
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Proof. Let d ∈ N. Apply the Uniformization Theorem as in the proof of 4.3, and apply 4.2 to find the points

of Ω(Q, H) contained in the union of at most

c16(Ω, d)Hε′(k,n,d)

hypersurfaces of degree ≤ d. But ε′(k, n, d) → 0 as d → ∞.

Remark 4.5. In fact the same conclusion obtains (with different constants c19(Ω, ε), d3(k, n, ε)) if, instead

of the height H induced from the embedding of R
n in P

n, the height H∗ corresponding to its embedding

in (P1)n is used. Namely, if P = (a1/b1, . . . , an/bn) ∈ Q
n with aj , bj ∈ Z, bj > 0 and gcd(aj , bj) = 1

for each j, then H∗(P ) = max{|aj |, bj}. To prove this, proceed as in the proofs of 4.3 and 4.4 but with

ε′′(k, n, d) = nkdDn(d)/B.

5. Algebraic hypersurface intersections

Let Ω ⊂ R
n be a closed subanalytic surface. By the Uniformization Theorem (2.3), Ω admits a

uniformization ψ = (ψ1, ψ2, . . . , ψn) : N → R
n, ψ(N) = Ω by a proper analytic map ψ, where N is a real

analytic manifold of dimension 2. In this section assume additionally that N is connected.

Let Υ be an algebraic hypersurface in R
n and put Ψ = Ω ∩ Υ. Then Ψ is a subanalytic set. Let

V = {x ∈ N : ψ(x) ∈ Υ}. If Υ is the zeroset of H ∈ R[x1, x2, . . . , xn], H �= 0, then V is the zeroset in N

of H(ψ1, . . . , ψn), and is thus an analytic subset of N . The set V admits a decomposition into subanalytic

subsets (in fact into semianalytic subsets: see [2]) as described below. This decomposition will be essential

in the proof of the main results.

Let P ∈ V . It may be assumed that P = (0, 0) in some local coordinate system (ξ, η) on N . The

defining equation H of Υ gives an equation

K(ξ, η) = H(ψ1(ξ, η), . . . , ψn(ξ, η)) = 0

defining V in the local coordinates. Define Vs locally as the set of points (ξ, η) with

Kξ(ξ, η) = Kη(ξ, η) = 0.

Then Vs is a subanalytic set (in fact analytic).

If V has dimension 2 then this means K(ξ, η) vanishes on some open set in N and so, as N is connected,

K vanishes identically on N . So Vs = V completes the decomposition in this case.

Otherwise, V has dimension ≤ 1 and it may be assumed (after a possible rotation of coordinates) that

K(ξ, 0) is not identically zero. Then by the Weierstrass Preparation Theorem (see [8, Theorem 6.3.1]) it is

possible to write

K = QU

where U does not vanish in a neighbourhood of P and Q is a distinguished polynomial, that is, of the form

Q(ξ, η) = ξm + A1(η)ξm−1 + . . . + Am(η)
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where Ai(η) are analytic in a neighbourhood of P and vanish at P . The set Vs of singular points of V , i.e.

the points where m ≥ 2.

The set Vns = V − Vs of nonsingular points of V is subanalytic. It admits the following further

decomposition into subanalytic subsets depending on a finite set Π of coordinatized planes in R
n and a

positive integer M .

Let Π ⊂ R
n be a plane with coordinates (u, v) and let π : R

n → Π be the orthogonal projection of R
n

onto Π. Composing ψ with π gives a map (u(ξ, η), v(ξ, η)) from N to Π locally at P .

Suppose P ∈ Vns. Then, writing as above K = QU with U nonvanishing in a neighbourhood of P

and (m = 1 and so) Q(ξ, η) = ξ + A(η), V is locally parametrized by ξ = −A(σ), η = σ. Let Vu denote

the subset of Vns of points P at which du/dσ = 0 and dv/dσ = 0. Note that

du/dσ = 0 ⇐⇒ uξAσ − uη = 0 ⇐⇒ uξKη − uηKξ = 0,

dv/dσ = 0 ⇐⇒ vξAσ − vη = 0 ⇐⇒ vξKη − vηKξ = 0

so that Vu is subanalytic.

At points of Vns − Vu, the slope du/dv is well defined (possibly infinite). Let Va be the set of

P ∈ Vns − Vu at which the slope du/dv belongs to {0,±1,∞}. In the local coordinates, these points

correspond to the vanishing of

det
(

uξ uη

Kξ Kη

)
, det

(
vξ vη

Kξ Kη

)
, det

(
uξ − vξ uη − vη

Kξ Kη

)
, det

(
uξ + vξ uη + vη

Kξ Kη

)

for slope 0,∞, 1,−1, respectively. The set Va is subanalytic.

At points of Vns − Vu − Va, the image of V in Π is locally a graph with respect to both u and v axes.

Write u = f(v), v = g(u), where f, g are real analytic functions. Repeated implicit differentiation yields

expressions for the derivatives of f, g to any order in the local coordinates ξ, η at P . Explicit expressions may

be obtained essentially following [3, Proof of Lemma 5]. Specifically, the dependence v = v(ξ(σ), η(σ))
may be inverted locally to obtain, for suitable F, G,

u = u(F (v), G(v)), v = v(F (v), G(v)), K(F (v), G(v)) = 0.

The successive derivatives of the second and third relations may be used to successively solve for and

eliminate F (n), G(n). Write these equations, for n ≥ 1, in the form

KξF
(n) + KηG(n) = Pn(K, v), vξF

(n) + vηG(n) = Qn(K, v),

where Pn, Qn are the appropriate differential rational functions. The the determinant of the system is

Kξvη − Kηvξ at every stage. Differentiating the relation for u and substituting finds

(Kξvη − Kηvξ)2n−1 dnu

dvn
= Rn(u, v, K), (Kξvη − Kηvξ)2n−1 dnv

dun
= Sn(u, v, K)

for suitable differential polynomials Rn, Sn.
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Thus (and here enters the parameter M ) the set of points P ∈ Vns − Vu − Va at which

dMu

dvM
(π(ψ(P ))) .

dMv

dvM
(π(ψ(P ))) = 0

is a subanalytic set Vb. Finally the residual set Vc = Vns − Vu − Va − Vb is subanalytic.

Now suppose Π is a finite collection of coordinatized planes in R
n and M ∈ N. For each Π ∈ Π the

set Vns admits a decomposition into subsets V Π
u , V Π

a , V Π
b , V Π

c . For θ : Π → {u, a, b, c} let

Vθ =
⋂

Π∈Π

V Π
θ(Π).

Then each Vθ is subanalytic, and the collection of sets Vθ over all θ provides a decomposition of Vns with

respect to Π and M . This is the required decomposition.

The discussion above may be summarized as follows, together with one further observation.

Lemma 5.1. Let Ω ⊂ R
n be a closed subanalytic surface. Let N be a real analytic manifold of dimension

2, with ψ : N → R
n a proper real analytic map such that ψ(N) = Ω. Suppose that N is connected. Let Π

be a finite collection of coordinatized planes in R
n, and M ∈ N. Let Υ ⊂ R

n be an algebraic hypersurface

and V = {P ∈ N, ψ(P ) ∈ Υ}.

Suppose V is of dimension 2. Then Vs = V , so that Vns = V − Vs is empty.

Suppose V is of dimension ≤ 1. Then Vs is the set of singular points of V . The complementary set Vns

may be decomposed into subanalytic subsets Vθ with respect to Π and M as described above.

Suppose Π ∈ Π, with π : R
n → Π the orthogonal projection, and that γ ⊂ Π is an algebraic curve.

Let Γ = π−1(γ) be the right cylinder in R
n over γ ⊂ Π. Put W = ψ−1(Γ). Then the intersections Vθ ∩W

are subanalytic.

6. Application of Gabrielov’s Theorem

If Ω is compact and uniformized by N then the sets V, Vs, Vns and the various subsets Vθ under

consideration are all relatively compact subanalytic sets. So they have finitely many connected components

(see §2). However it will be necessary to have bounds for the number of connected components that depend

only on Ω and the degrees of the algebraic surfaces Υ,Γ involved (and the parameter M where relevant), but

that are otherwise independent of the particular algebraic surfaces. Since the relevant spaces of algebraic

surfaces are compact, such bounds may be obtained by appealing to Gabrielov’s Theorem (2.4).

Proposition 6.1. Let Ω ⊂ R
n be a compact subanalytic surface. Let N be a connected real analytic

manifold of dimension 2, and ψ : N → R
n a proper real analytic map with ψ(N) = Ω. Let Π be a finite

collection of coordinatized planes in R
n. Let d, M, δ ∈ N. There exist constants

c20(Ω, d), c21(Ω, d,Π, M), c22(Ω, d,Π, M, δ)

with the following property.
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Let Υ ⊂ R
n be an algebraic hypersurface of degree ≤ d. Let V = ψ−1(Υ). Let Vs be as described

in §5 and let {Vθ, θ : Π → {u, a, b, c}} be the decomposition of Vns = V − Vs corresponding to Π, M

as described §5. Let further Π ∈ Π, Γ the right cylinder over an algebraic curve γ ⊂ Π of degree ≤ δ,

W = ψ−1(Γ) and θ : Π → {u, a, b, c}. Then

cc(Vs) ≤ c20(Ω, d), cc(Vθ) ≤ c21(Ω, d,Π, M), cc(Vθ ∩ W ) ≤ c22(Ω, d,Π, M, δ).

Proof. The hypersurfaces Υ correspond to elements H ∈ R[x1, x2, . . . , xn] of degree ≤ d modulo multi-

plication by elements of R − {0}, and are thus the points of a projective space Y = P
Dn(d)(R). Observe

that Y is a compact real analytic manifold. Let p : N × Y → Y be projection. Let X = {(P, H) ∈
N × Y, H(ψ(P )) = 0}. If P has local coordinates (ξ, η) then X is described locally in N by

K(ξ, η) = H(ψ1(ξ, η), ψ2(ξ, η), . . . , ψn(ξ, η)) = 0.

Thus X is compact and analytic, and the fibre XH = p−1(H) is the set V = ψ−1(Υ) associated to the

hypersurface Υ defined by H = 0. Let Xs ⊂ X be the set of points P at which, in the local coordinates,

Kξ(ξ, η) = 0, Kη(ξ, η) = 0.

Then Xs is compact analytic and the fibre (Xs)H = Vs. The application of Gabrielov’s Theorem (2.4) to

Xs ⊂ N × Y yields the constant c20(Ω, d) = c13(N, Y, Xs).
Let Xns = X −Xs. Thus Xns is subanalytic in fact semianalytic). For Π ∈ Π with coordinates (u, v)

let XΠ
u be the subset of Xns at which

uξKη − uηKξ = 0, vξKη − vηKξ = 0.

Then Xu is relatively compact subanalytic and the fibre (XΠ
u )H = V Π

u . Next set, for each Π ∈ Π,

XΠ
a ⊂ Xns − XΠ

u the points at which

det
(

vξ vη

Kξ Kη

)
.det

(
uξ uη

Kξ Kη

)
.det

(
uξ − vξ uη − vη

Kξ Kη

)
. det

(
uξ + vξ uη + vη

Kξ Kη

)
= 0

Then XΠ
a is a relatively compact subanalytic subset of N × Y and the fiber (XΠ

a )H = V Π
a . Set now

XΠ
b ⊂ Xns − XΠ

u − XΠ
a to be the points at which

RM (u, v, K).RM (v, u, K) = 0.

Then XΠ
b is a relatively compact subanalytic subset of N × Y and the fiber (XΠ

b )H = V Π
b . Finally set

XΠ
c = Xns − XΠ

u − XΠ
a − XΠ

b , relatively compact subanalytic with fiber (XΠ
c )H = V Π

c .

Now for θ : Π → {u, a, b, c} put

Xθ =
⋂

Π∈Π

XΠ
θ(Π).

Then Xθ ⊂ N × Y is relatively compact subanalytic and (Xθ)H = Vθ. The application of Gabrielov’s

Theorem to the sets Xθ for all θ yields the constant c21(Ω, d,Π, M).
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To deal with the cylinder Γ it is necessary to bring the space T = P
D2(δ)(R) of plane curves of degree

δ in Π ∈ Π into the picture. So let Z ⊂ N × Y × T be the set of (P, H, G) with (P, H) ∈ X as above and

having no dependence on the defining equation G of γ ⊂ Π. Define Zθ, for θ : Π → {u, a, b, c} as above

with no dependence on G. Now define Zq to be the subset of Zc for which (P, H, G) lies in the cylinder Γ
corresponding to G. The fibre over (H, G) is Vθ ∩W . Applying Gabrielov’s Theorem to these fibres (over

all Π ∈ Π) yields the constant c22(Ω, d,Π, M, δ).

7. Subanalytic curves

The following simple observation will be used at several junctures in this and the subsequent section to

control the relations between a subanalytic set Ω and semialagebraic sets; both in the case that Ω contains

semialgebraic sets, and the case that Ω is contained in semialgebraic sets.

Let Ω ⊂ R
n be a subanalytic set. Suppose {x1, x2, . . . , xn} is a coordinate system on R

n. For a subset

σ ⊂ {1, 2, . . . , n} let Πσ denote the linear coordinate subspace of R
n whose coordinates are {xi, i ∈ σ},

and let πσ be the orthogonal projection of R
n onto Πσ .

Definition 7.1. Let Ω ⊂ R
n be a subanalytic set. Define κ(Ω) to be the largest h ∈ N such that there exists

σ ⊂ {1, 2, . . . , n} with #σ = h and such that the projection πσ(Ω) has the property that it is not contained

in any algebraic hypersurface (defined over R) in Πσ .

Observe that κ(Ω) is the maximal size of a set {xj , j ∈ σ} that is “algebraically independent” on Ω;

Thus Ω is contained in a closed algebraic subset of R
n of dimension κ(Ω). So if Ω has dimension k then

κ(Ω) ≥ k.

Proposition 7.2. Let Ω ⊂ R
n be a subanalytic set of dimension k. If κ(Ω) = k then there is a subanalytic

B ⊂ Ω of dimension ≤ k − 1 such that if P is a smooth point of Ω of dimension k with P /∈ B then

P ∈ Ωalg.

Proof. Let A be a closed algebraic subset of R
n of dimension κ(Ω) = k with Ω ⊂ A. The set sing(A) of

singular points of A has dimension ≤ k− 1. Put B = Ω− sing(A), so that B has dimension ≤ k− 1. Now

suppose P ∈ Ω − B is a smooth point of Ω of dimension k. Then P is also a smooth point of dimension k

of A, and in a neighbourhood of P the sets Ω and A are real analytic manifolds of the same dimension with

Ω ⊂ A. So locally they coincide, whence P ∈ Ωalg.

Remark 7.3. The quantity κ(Ω) suffices for the purposes of this paper. However, a more refined quantity is

κ′(Ω) defined as follows. If Ω is connected and smooth, set κ′(Ω) = κ(Ω). Otherwise set κ′ = maxZ κ(Z)
where Z is a connected component of the smooth points of Ω of highest dimension. Proposition 7.2 holds

with κ′(Ω) in place of κ(Ω).

Proof of Conjecture 1.1 and 1.2 for subanalytic curves. The connected components of Ω − sing(Ω) are

subanalytic of dimension 1, while sing(Ω) has dimension ≤ 0. It thus suffices to prove the conclusion for

connected nonsemialgebraic Ω of dimension 1 that are the closure of their smooth points of dimension 1. If

n = 1 then Ω is an interval, whence semialgebraic (in any case in this situation Ωtrans is empty).
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Now suppose n > 2. Consider the images of Ω under the projections πσ for σ ⊂ {1, 2, . . . , n}, #σ = 2.

If these images are all semialgebraic then Ω is semialgebraic by 7.1, so it may be assumed that at least one

such projection has a transcendental image. Then the restriction πσ : Ω → πσ(Ω) has finite fibres, uniformly

bounded by compactness (or Gabrielov’s Theorem).

So it suffices to prove the result for n = 2. Let ε > 0 be given. According to Lemma 4.3, the

points in question in Conjecture 1.1 (respectively Lemma 4.4 for Conjecture 1.2) lie on ≤ c17(Ω, ε)tε

algebraic hypersurfaces of degree ≤ d1(1, n, ε) (respectively ≤ c18(Ω, ε)Hε algebraic hypersurfaces of

degree ≤ d2(1, n, ε)). The intersection of Ω with a hypersurface consists of finitely many points, and by

compactness (or Gabrielov’s Theorem) there is a uniform bound on the number of intersection points over

all hypersurfaces of degree d1(1, n, ε) (respectively d2(1, n, ε)).

Remark 7.4. The following strengthening of 1.2 can be proved pursuing Remark 4.5: Let Ω ⊂ R
n be a

compact subanalytic curve and ε > 0. Then

#{P ∈ Ωtrans(Q), H∗(P ) ≤ H} ≤ c23(Ω, ε)Hε.

In fact this is proved in [10] for graphs Ω ⊂ R
2. It seems natural to conjecture a similar strengthening for

any compact subanalytic Ω ⊂ R
n.

The following examples, worked out in discussion with E. Bombieri, elaborate a remark made in [3].

The first shows that the assertion of 1.1 cannot be improved in general for curves, and thus also in higher

dimensions. The second example shows that the assertion of 1.1 can fail for the graph of a function that is

analytic on an interval that is bounded but open at one end (i.e., for a set that fails to be subanalytic “at just

one point”).

Example 7.5. Let ε(t) : [1,∞) → R be a strictly decreasing function with ε(t) → 0 as t → ∞. Define a

sequence {Nj , j ∈ N}of positive integers inductively as follows. Set N0 = 1. Supposing N0, N1, . . . , Nk−1

defined, let Nk be defined so that Nk ≥ k, Nk−1|Nk and

ε
(
N

Nk−1
k 2k−1

)
≤ 1

2Nk−1
.

Set now tk = N
Nk−1
k 2k−1, Xk = {i/Nk : i ∈ Z, 0 ≤ i ≤ Nk} for k ∈ N and define, for x ∈ [0, 1],

f(x) =
∞∑

k=0

2−k
∏

z∈Xk

(x − z).

Then f is analytic on [0, 1]. Let Ω = {(x, f(x), x ∈ [0, 1]}. If x ∈ Xk then Nkx ∈ Z and tkf(x) ∈ Z so

that

#tkΩ(Z) ≥ Nk ≥ exp
( log tk
2Nk−1

)
= t

1/(2Nk−1)
k ≥ t

ε(tk)
k .

Example 7.6. Let again ε(t) : [1,∞) → R be a strictly decreasing function with ε(t) → 0 as t →
∞. Define a sequence {tj , j ∈ N} of positive integers inductively as follows. Set t0 − 1. Supposing
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t0, t1, . . . , tk−1 defined, let tk be defined so that tk−1|tk and ε(tk) ≤ 2−k−1. Construct a function f(x),
transcendental analytic on (0, 1], such that, in each interval (2−k−1, 2−k], if tkx ∈ Z then tkf(x) ∈ Z. Let

Ω = {(x, f(x)), x ∈ (0, 1]}. Then

#tkΩ(Z) ≥
k∑

j=0

tj
2j+1

≥ tk
2k+1

≤ ε(tk)tk.

Note that this example is essentially optimal for functions analytic on a bounded semiopen interval: Consider

a function g analytic on (0, 1]. For any ε > 0 the interval [ε, 1] is compact, so that if Ωε is the graph of g on

[ε, 1] then #tΩε(Z) ≤ c1(Ωε, ε)tε, while over the dilation of (0, 1) there can be at most εt integer points.

8. Subanalytic surfaces

The following result, implicit in the proof of [3, Theorem 8], is the final ingredient required in the proof

of Theorem 1.3.

Proposition 8.1. Let δ ∈ N, δ ≥ 4 and set M = D2(δ). There is a constant c24(δ) with the following

property. Let N ≥ 1 and I ⊂ R a closed interval of length ≤ N . Let φ be a function possessing M

continuous derivatives on I , with |φ′| ≤ 1 and φ(M) �= 0 on I . Let α be the graph of φ. Then the points of

α(Z) lie on the union of at most c24(δ)N8/(3δ+9) algebraic curves of degree at most δ.

Proof of Theorem 1.3. Suppose Ω ⊂ R
n. The Uniformization Theorem (2.3) provides a proper real analytic

map ψ : N → R
n, where N is a real analytic manifold of dimension 2 and ψ(N) = Ω). Since Ω is compact

and ψ is proper, N is compact.

If Ω = A∪B then Aalg ∪Balg ⊂ Ωalg. Thus if the assertion of the Theorem holds for A and B it also

holds for Ω (this remark applies in any dimension). Now N consists of finitely many connected components,

so it suffices to consider the case in which N is connected.

Since Ω has dimension 2, clearly n ≥ 2. If n = 2 then, at its smooth points, Ω is locally a subset

of R
2. So the smooth points of Ω are contained in Ωalg. Thus Ωtrans is not only contained in the singular

set sing(Ω), but in (sing(Ω))trans. However, sing(Ω) has dimension ≤ 1 and is subanalytic by Tamm’s

Theorem (2.5). The conclusion holds since Conjecture 1.1 holds for compact subanalytic curves. So it may

be assumed that n ≥ 3.

Suppose κ(Ω) ≤ 2. Then by 7.1, Ωtrans is contained in a subanalytic set B of dimension ≤ 1, and

hence indeed in Btrans. The conclusion of the theorem again follows since Conjecture 1.1 holds for compact

subanalytic curves. So it may be assumed that κ(Ω) ≥ 3.

Choose σ ⊂ {1, 2, . . . , n}with #σ ≥ 3 such that the projection πσ(Ω) is not contained in any algebraic

hypersurface in Πσ . Let ε be given and choose d, δ such that

ε(2, n, d) + 8/(3δ + 9) ≤ ε.

Here d will be the degree of hypersurfaces used to apply 4.3, while δ will be the degree of plane algebraic

curves used in an application of 8.1.
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By the proof of Lemma 4.3, (πσ(Ω))(Z, t) is contained in the union of at most c17(πσ(Ω), d)tε(2,n,d)

sets of the form πσ(Ω) ∩ Υσ where Υσ is an algebraic hypersurface of degree ≤ d in the subspace Πσ .

Suppose Υσ is the zeroset of a polynomial H in the variables corresponding to Πσ . Then, in R
n, the equation

H = 0 determines a hypersurface Υ = π−1
σ (Υσ) of degree d, and Ω(Z, t) is contained in the union of the

sets Ω ∩ Υ. Moreover, the definition of κ(Ω) ensures that none of these intersections is all of Ω, and thus

the corresponding subset V = ψ−1(Υ) ⊂ N is not all of N . Since N is a connected real analytic manifold,

such V may not contain a neighbourhood of any point of N , and thus has dimension ≤ 1.

Let Ψ = Ω∩Υ be one of these sets and V be the corresponding subset of N . To prove the Theorem it

suffices to show that, for a suitable constant c25(Ω, d, δ),

#Ψtrans(Z, t) ≤ c25(Ω, d, δ)t8/(3δ+9).

Let now S = {τ ⊂ {1, 2, . . . , n},#τ = 2}. Let Π = {Πτ , τ ∈ S}. Put M = D2(δ). With respect to

Π and M , Vns admits a decomposition into subanalytic sets Vθ as described in §5. The number of subsets

Vθ is #{θ} = 4#S = 4(n
2). By 6.1, V has at most c20(Ω, d) singular points (i.e. the number of connected

components of Vs) while each set Vθ has at most c21(Ω, d,Π, M) connected components. At most c21 such

components reduce to a single point in Ω, as this is only possible if θ(Πτ ) = u for every τ ∈ S. Therefore,

all but at most c20 + c21 points of Ψ lie on a connected subanalytic curve β that is the image under ψ of a

connected component of one of the sets Vθ.

Consider such a set β ⊂ Vθ. Let τ ∈ S. If θ(Πτ ) = u then β lies in the inverse image under πτ of a

point in Πτ . If θ(Πτ ) = a then β lies in the inverse image under πτ of lines in Πτ , and if θ(Πτ ) = b then

β lies in the inverse image under πτ of a polynomial of degree ≤ M with respect to one of the coordinate

axes of Πτ . So in all these cases, Πτ (β) is contained in an algebraic hypersurface in Πτ . If this is the case

for every τ ∈ S then β must itself be algebraic by 7.1. Since β is connected of dimension 1, the points of β

would then belong to Ψalg ⊂ Ωalg.

Therefore, if P ∈ Ψ does not belong to Ωalg then it lies in a set β as above with the property that, for

some τ ∈ S, θ(Πτ ) = c and the image of β in Πτ is not semialgebraic. Fix such β, τ . The image α of β

under πτ is a graph with respect to both coordinate axes of xi, xj of Πτ . Thus

α = {(xi, xj) : xi = f(xj)} = {(xi, xj) : xj = g(xi)}

for appropriate functions f, g on appropriate domains. Since θ(Πτ ) = c, f (M), g(M) are nonvanishing.

Further, one of these functions, say h ∈ {f, g}, has the property that |h′| < 1 on its domain. The domain of

h is an interval of length at most c26(Ω), where c26(Ω) is the maximum diameter of πτ (Ω) over τ ∈ S. The

domain of h may not be closed, but for each t there is a closed subinterval on which the graph includes all

the points of α(Z, t). Now by 8.1, the integer points of tα lie on the union of at most

c24(δ)
(
c26(Ω)t

)8/(3δ+9)

algebraic curves of degree ≤ δ.
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Let γ ⊂ Πτ be an algebraic curve of degree ≤ δ, and W the preimage of γ in N . The number of

connected components of Vθ ∩ W is bounded by c22(Ω, d,Π, M, δ). Now α is the graph of a real analytic

function and is nonsemialgebraic, and so α ∩ γ consists of point components only. Thus #α ∩ γ ≤ c22.

Therefore

#Ψtrans(Z, t) ≤ c20 + c21 + 4n−1c21c22c24

(
c26t

)8/(3δ+9)

and putting c25 = c20 + c21 + 4n−1c21c22c24c
8/(3δ+9)
26 (recall t ≥ 1 always) completes the proof.

Proof of Theorem 1.5. Under the assumptions Ω can be covered by a finite number of subsets that are

graphs over convex compact semianalytic plane domains ([8, Theorem 2.7.3]). So an estimate of the desired

form holds for Ωtrans. Now Ωalg is contained in a finite union of algebraic space curves. Let Γ be one such

curve. Then Ω∩Γ comprises a finite number of compact connected components of Γ, whose images γ under

projection onto a plane Π are compact. Such γ cannot admit a rational parametrization by polynomials, and

for such curves the bound #tγ(Z) ≤ c27(γ, ε)tε is established in [3, Theorem 2].

Final Remarks 8.2.

1. Some comments on the effectivity of the constants in the main results. The initial argument,

showing that the points in question reside on rather few hypersurface intersection, is completely effective.

The constants in 4.3 and 4.4 depend explicitly on suitable norms of the functions uniformizing the surface.

Likewise the last part of the argument, 8.1, is completely explicit. The application of Gabrielov’s Theorem,

however, introduces constants of a more subtle nature. In general not much can be said about them. Even

in the one-dimensional situation, where Gabrielov’s Theorem may be replaced by simple compactness, the

examples given in §7 show that there is little control over the resulting constants. However, additional

information about the surface (e.g. that the uniformizing functions solve algebraic differential equations, or

that certain Wronskian determinants do not vanish) can be used to gain effective control over the requisite

constants. See similar considerations in [10] and the related discussion in [13].

2. Consider subanalytic Ω ⊂ R
n of dimension n. Define, for each d ∈ N, the subset Ωalg

d ⊂ Ω
consisting of all semialgebraic subsets of pure positive dimension that are contained in some algebraic

hypersurface of degree ≤ d. The example of §1 shows that Ωalg
d is not in general semianalytic. However the

assumption that Ωalg
d is semialgebraic for all d suffices in Theorem 1.5.

3. Theorem 1.3 may also be used to give results in higher dimensions by slicing. Suppose Ω ⊂ R
n

is compact subanalytic of dimension k. If Γ ⊂ Ω then Γalg ⊂ Ωalg. Slicing Ω into subanalytic surfaces

using coordinate linear subspaces of dimension n− k + 2 from a compact set K, and applying Gabrielov’s

Theorem over the K fibres shows that, for ε > 0 and suitable c28(Ω, ε),

#tΩtrans(Z) ≤ c28(Ω, ε) tk−2+ε.

The constant c28(Ω, ε) evidently depends on the choice of slices.
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