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Scattering of waves by impurities in precompressed granular chains
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We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear
scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients
for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we
show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated
(such that the transmission coefficient vanishes as the wavenumber k → ±π ), whereas low-frequency waves
are well-transmitted through the impurity. For double-impurity chains, we identify a resonance—enabling full
transmission at a particular frequency—in a manner that is analogous to the Ramsauer–Townsend (RT) resonance
from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in
the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally,
and we directly observe almost complete transmission for frequencies close to the RT resonance frequency.
Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains
(including disordered ones) with multiple double impurities.
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I. INTRODUCTION

One-dimensional (1D) granular crystals (i.e., granular
chains) consist of closely packed chains of elastically colliding
particles. They have been used as a testbed for the investigation
of wave phenomena in chains of strongly nonlinear oscillators,
and the interplay between nonlinearity and discreteness in
granular chains has inspired the exploration of a diverse set
of coherent structures, including traveling waves, breathers,
and dispersive shock waves [1–3]. Granular crystals can be
constructed from a wide variety of materials of different types
and sizes, so their properties are very tunable, and they thus
provide a versatile type of metamaterial for both fundamental
physical phenomena and applications [1,2,4,5].

Granular crystals have been used for investigating the
effects of a diverse variety of structural and material hetero-
geneities on nonlinear wave dynamics. This includes the role
of defects [6–9] (including in experimental settings [10,11]);
scattering from interfaces between two different types of par-
ticles [12–14]; wave propagation in decorated and/or tapered
chains [15,16], chains of diatomic and triatomic units [17–24],
and quasiperiodic and random configurations [25–31]; and
much more. One can model strongly compressed granular
chains as a type of Fermi–Pasta–Ulam (FPU) lattice, and
granular chains have been employed in studies of phenomena
such as equipartition (see, e.g., Refs. [32,33]).

Granular chains also provide prototypes for numerous
potential engineering applications [34]. A few examples
include shock and energy absorbing layers [13,27,35], sound-
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focusing devices and delay lines [36], actuators [37], vibration
absorption layers [19], sound scramblers [12,38], and acoustic
switches and logic gates [39].

The study of disordered granular crystals is also becoming
increasingly popular. Important themes in such studies have
been transport properties of wave packets and solitary waves
and the interplay between disorder (especially in the con-
text of Anderson localization), discreteness, and nonlinearity
[28–31]. These themes are also relevant for a wide variety of
other nonlinear lattice models [40,41].

To get a handle on disordered granular chains, it is
useful to start with a simpler setting in which one or a
few defects occur within an otherwise homogeneous (“host”)
lattice [9]. In this context, scattering due to inhomogenities is
a fundamental consideration when studying wave propagation
in complex media [42,43]. This is especially important when
the scales of the waves and those of the inhomogeneities (i.e.,
impurities or defects) are comparable, as interactions in such
situations can lead to very rich dynamics. Pertinent phenomena
include the formation of localized modes [44,45], Fano reso-
nances [46,47], cloaking [48,49], and many other examples of
broad interest across numerous branches of physics.

In the present paper, we use theory, numerical computa-
tions, and experiments in the linearized and weakly nonlinear
regimes to explore the scattering of a plane wave from a single
impurity and a double impurity in a granular chain. A key find-
ing is that an analog of the well-known Ramsauer–Townsend
(RT) effect can occur in granular chains. An RT resonance is
a prototypical mechanism that enables scattering transparency
(i.e., complete transmission) in quantum mechanics [50]. In
its most recognizable form, it consists of the presence of
a sharp minimum in the electron-scattering cross-section at
low energies for scattering with rare gases. The RT effect has
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been observed experimentally in many scenarios involving
quantum tunneling, including e−–Ar scattering [51], positron–
Ar scattering [52], e−–methane scattering [53], and others. In
the context of mechanical systems, the implications of the
RT effect are equally significant. One possible application is
embedding foreign objects, such as sensors, in systems so that
they induce minimal interference with the existing structures.
This has the potential to be very useful for applications in
structural health monitoring.

The remainder of our paper is organized as follows. In
Sec. II, we introduce the fundamental equations that govern the
dynamics of driven granular crystals. In Sec. III, we solve, in
closed form, the linear scattering problems of a single impurity
and a double impurity embedded in a homogeneous (“host”)
granular chain. For double impurities, we demonstrate that an
effect analogous to an RT resonance occurs in a specific region
of parameter space. We use both numerical simulations and
laboratory experiments to corroborate our theoretical results.
In Sec. IV, we discuss and compare the results from our
theory, computations, and experiments. In Sec. V, we use
numerical simulations to explore disordered granular chains,
which include a large number of impurities. We demonstrate
numerically that strongly precompressed chains with multiple
impurities can admit solutions that consist of reflectionless
modes (i.e., generalizations of the RT resonances). Finally, in
Sec VI, we conclude and offer some directions for future work.

II. DRIVEN GRANULAR CRYSTALS

One can describe a 1D crystal of 2N + 1 spherical particles
as a chain of nonlinearly coupled oscillators with Hertzian
interactions between each pair of particles [1–3]. The system
is thus modeled using the following equations of motion:

ün = An

mn

[�n + un−1 − un]3/2
+

− An+1

mn

[�n+1 + un − un+1]3/2
+ , (1)

where mn is the mass of the nth particle (n ∈ {−N, − N + 1,

. . . ,N}), un is the displacement of the nth particle measured
from its equilibrium position, the pairwise interaction param-
eter An depends on the geometry and elasticity of particles in
the nth and (n − 1)th positions [1],

�n =
(

F0

An

)2/3

(2)

is the change in displacement between centers of neighboring
particles due to the static load F0, and the bracket [·]+ is defined
as

[x]+ =
{
x , if x > 0
0 , if x � 0 . (3)

We consider a chain that is compressed initially by two
plates placed at the boundaries. This yields the following
boundary conditions:

u−(N+1) = ψl(t),

uN+1 = ψr (t). (4)

We focus on a situation in which the chain is driven periodically
from one side and the other side is at rest. That is, ψr (t) = 0
and ψl(t) = d sin(2πf t), where d and f , respectively, are the
amplitude and frequency of the external driving.

We are interested in chains that are homogeneous except
for a few particles (i.e., impurities) in the bulk. We consider
two cases: (i) a single impurity and (ii) a double impurity (in
which the impurities are adjacent particles). The interaction
parameter An can take one of four possible values (depending
on the type of spheres that are in contact). These values are

An =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11 ≡ E1(2r1)1/2

3
(

1−ν2
1

) , (type-1, type-1)

A12 ≡ 4E1E2

(
r1r2

r1+r2

)1/2

3
[
E1

(
1−ν2

2

)
+E2

(
1−ν2

1

)] , (type-1, type-2)

A22 ≡ E2(2r2)1/2

3
(

1−ν2
2

) , (type-2, type-2)

A1w ≡ 2E1r
1/2
1

3
(

1−ν2
1

) , (type-1, wall)

, (5)

where E1,2, ν1,2, and r1,2 are, respectively, the elastic modulus,
the Poisson ratio, and the radii of the type-1 and type-2
particles. The particle masses are m1 and m2. We assume that
the mechanical properties of the elastic plates at the boundaries
are the same as for type-1 particles. The radius of an impurity
particle is r2 = αr1, where α > 0 is the ratio between the radii
of the two types of spheres. If we assume that type-1 and
type-2 particles have identical densities (i.e., ρ1 = ρ2), then
α < 1 implies that the impurities are lighter than the particles
in the host homogeneous chain, whereas α > 1 implies that
the impurities are heavier.

III. SCATTERING BETWEEN LINEAR
WAVES AND IMPURITIES

Depending on the relative magnitudes of �n and |un −
un+1|, the effective nonlinearity in Eq. (1) can be either
strong or weak. In particular, for sufficiently strong static
precompression or sufficiently small-amplitude vibrations in
the crystal, �n � |un−1 − un|, so the nonlinearity is very
weak. If one ignores the nonlinearity entirely, there is a
harmonic interaction between the particles, so the dynamics
can be described by the equation

mnün = Bnun−1 + Bn+1un+1 − (Bn + Bn+1)un, (6)

which corresponds to Eq. (1) linearized about the equilibrium
state. Consequently,

Bn = 3
2An�

1/2
n = 3

2A2/3
n F

1/3
0 . (7)

One can express solutions of Eq. (6) in terms of a complete
set of eigenfunctions of the form un = vne

iωt , where ω is the
eigenfrequency. It is well-known that without impurities (i.e.,
for a completely homogeneous crystal, for which mn = m and
Bn = B) that vn = eikn, so there is a single acoustic branch of
solutions with eigenfrequency

ω =
√

2B

m
[1 − cos(k)] ∈ [0,	], (8)
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FIG. 1. Schematic of a homogeneous granular chain with (a) one
impurity and (b) two contiguous impurities (i.e., a double impurity).
The incident wave is characterized by I , the reflected wave is
characterized by R, and the transmitted wave is characterized by
T . We label the identities of the particles with integers. We calculate
the parameters Bij = 3

2 A
2/3
ij F

1/3
0 from the static precompression and

the interactions between consecutive particles.

where m is the mass, k is the wave number, and 	 =
√

4B
m

.
When impurities are introduced into a host chain, local-
ized or resonant linear modes can arise (depending on the
characteristics of the impurities [9]). For light impurities
(i.e., α < 1), one expects localized modes whose frequencies
are larger than the upper bound 	 of the linear spectrum.
For heavy impurities (i.e., α > 1), by contrast, one expects
impurity modes with frequencies in the linear spectrum,
and one thus expects resonant modes with extended linear
eigenmodes.

A. Theory

We are interested in studying scattering processes between
a plane wave ei(kn−ωt) and both single impurities and double
impurities in the linear regime. In Fig. 1, we show schematics
for chains with single and double impurities. We treat an
impurity particle as a perturbation of a host particle: an
impurity particle has radius r2 = αr1, where r1 is the radius
of a host particle in the chain. We focus on α ∈ (0,2]. The
value of the parameter α determines the mass of an impurity
and the values of the interaction coefficients An between
neighboring particles. For double impurities, we only consider
the “symmetric” case in which both impurities are the same
type of particle (and hence have the same radius).

To solve the scattering problem in the linear regime, it is
convenient to use complex quantities rather than real ones. We
write [43]

un =
{
ei(kn−ωt) + Re−i(kn+ωt), if n � 0
T ei(kn−ωt), if n > 0

, (9)

which represents an incident plane wave producing reflected
and transmitted waves due to the interaction with the impurity.
We thereby define a transmission coefficient |T |2 and a
reflection coefficient |R|2. Note that |R|2 + |T |2 need not equal
1 because both |T |2 and |R|2 are based on the norm of the dis-
placement, which is not a conserved quantity of either Eq. (1)
or Eq. (6). Intuitively, |T |2 and |R|2 are still “complementary”
quantities, as a decrease in one is accompanied by an increase
in the other (and vice versa). To have |R|2 + |T |2 = 1 for
all parameter values, one would need to instead define |R|2
and |T |2 in terms of the energy density. The total energy is
conserved by the dynamics, though it is much harder to mea-
sure experimentally than other quantities (e.g., velocity). Given
Eq. (9), the velocity is u̇n = −ωun. Therefore, if we defined
|T |2 and |R|2 in terms of u̇n rather than un, we would obtain
the same results because u̇n and un differ only by the constant
factor −ω. We therefore define reflection and transmission
coefficients in terms of displacement, which allows us to
compare analytical results directly with not only computations
but also laboratory experiments, for which we compute the
coefficients in terms of velocity (see Secs. III B and III C).

We substitute Eq. (9) into Eq. (6) near the impurities and
do a straightforward calculation to obtain the following linear
system of equations for T and R:(

β(i),(ii) δ(i),(ii)

η(i),(ii) γ(i),(ii)

)(
T(i),(ii)

R(i),(ii)

)
=

(
ε(i),(ii)

ζ(i),(ii)

)
, (10)

where the subscripts (i) and (ii), respectively, indicate chains
with single and double impurities.

For a single-impurity chain, the parameters in Eq. (10) are

β(i) = 	̄ + B12(2 − eik),

δ(i) = B12e
−ik,

η(i) = B12,

γ(i) = −B12e
ik,

ε(i) = B11e
2ik − (B11 + B12 + 	̄)eik,

ζ(i) = −B11e
−2ik + (B11 + B12 + 	̄)e−ik,

where 	̄ = − 2B11m2
m1

[1 − cos(k)]. Solving Eq. (10) yields the reflection and transmission coefficients

|R(i)|2 =
∣∣∣∣ B11(B11 − B12)m2 − (2B11 − B12)(B11m2 − B12m1)eik + B11(B11m2 − B12m1)e2ik

B2
11m2eik + (B11 − B12)(B11m2 − B12m1)e3ik − B11(2B11m2 − 2B12m1 − B12m2)e2ik

∣∣∣∣
2

,

|T(i)|2 =
∣∣∣∣ B11B12m1(1 + eik)

B2
11m2 + (B11 − B12)(B11m2 − B12m1)e2ik − B11(2B11m2 − 2B12m1 − B12m2)eik

∣∣∣∣
2

. (11)

For a double-impurity chain, we follow the same procedure and use the parameters

β(ii) = 	̄ + B12(1 − eik) + B22, δ(ii) = B22e
−ik, η(ii) = B22, γ(ii) = −B22e

ik,

ε(ii) = B12e
2ik − (B12 + B22 + 	̄)eik, ζ(ii) = −B12e

−2ik + (B12 + B22 + 	̄)e−ik
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in Eq. (10). Note that 	̄ has exactly the same expression as before. We obtain

|R(ii)|2 =
∣∣∣∣4

(
B12(B12 + B22)m2

1 − 2B11(B12 + B22)m1m2 + 2B2
11m

2
2 + 2B11m2(B12m1 − B11m2) cos(k)

)
sin2(k/2)e−2ik

(B12m1(eik − 1) + 2B11m2 − 2B11m2 cos(k))(B12m1(eik − 1) − 2B22m1 + 2B11m2 − 2B11m2 cos(k))

∣∣∣∣
2

,

|T(ii)|2 =
∣∣∣∣ B12B22m

2
1(1 − e−2ik)

(B12m1(eik − 1) + 2B11m2 − 2B11m2 cos(k))(B12m1(eik − 1) − 2B22m1 + 2B11m2 − 2B11m2 cos(k))

∣∣∣∣
2

. (12)

In Fig. 2, we show the reflection and transmission coeffi-
cients as functions of k and α. Observe in Figs. 2(b) and 2(d)
that there is a black region of reflectionless modes that can
traverse either a single impurity or a double impurity almost
without modification. For single impurities, the reflection
coefficient |R|2 vanishes only when either α = 1 or k = 0. By
contrast, for a double impurity, |R|2 vanishes not only when
α = 1 and k = 0 but also when k = ±kr �= 0 for α larger
than some critical value αc. At these resonant values, a wave
can be transmitted completely through the impurities (i.e.,
there is no scattering), and it experiences only a phase shift.
Granular crystals thereby admit an analog of the well-known
Ramsauer–Townsend (RT) effect [50], which in its traditional
form consists of the presence of a sharp minimum in the
electron scattering cross-section at low energies for scattering
with rare gases (such as Xe, Kr, and Ar). Hereafter, we use the
term “RT resonance” to describe the resonance at k = ±kr . In
our case, one can explicitly write kr in terms of the physical
parameters of the system as

kr = arccos(φ), (13)

(a) Transmission (single impurity) (b) Reflection (single impurity) 

(c) Transmission (double impurity) (d) Reflection (double impurity) 

(  
 )

(  
 )

(  
 )

(   )

(   ) (   )

(   )

(  
 )

FIG. 2. (Left) Transmission and (right) reflection coefficients for
the scattering of a plane wave in a chain with impurities as a function
of the wave number k and the radius ratio α. We show examples
for (top) a single impurity and (bottom) a double impurity. We
describe the physical parameters of the particles in the chain in Table I
(see Sec. IV).

where

φ = B12B22m
2
1 − 2B11B22m1m2

2B11m2[B11m2 − B12m1]
+ B11

[
m2

1 − 2m1m2 + 2m2
2

]
2m2[B11m2 − B12m1]

.

In Fig. 3, we show kr and the other relevant values of the
reflection coefficient for a double impurity in terms of the
parameter α. To ensure that kr ∈ R, we need φ ∈ [−1,1]. In
terms of α, this implies that the resonant wave number kr exists
when αc � α < ∞. An interesting feature of kr is that it can
be tuned as a function of α to any value in the interval [0,π ].
In particular, we find that kr = π at α = αc and kr → 0 as
α → ∞. Consequently, one can tune the frequency of the RT
resonance to any value in the transmission band [0,	] of the
host granular chain.

In the following subsections, we discuss our computational
and experimental results on transmission, and we compare
them with our analytical predictions (obtained using a linear
approximation, as we discussed above) for transmission from
Fig. 2.

FIG. 3. Reflection coefficient |R(ii)|2 for the double impurity.
The red dashed curves indicate the points at which the reflection
coefficient is exactly 0. The resonant wave number kr is given by
Eq. (13). The blue dashed line highlights the critical value αc; the
system has a Ramsauer–Townsend (RT) resonance at wave number
k = ±kr for α > αc.
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FIG. 4. (a) Space-time contour plot of particle velocity profiles in a host 63-particle chain in which a double impurity has been inserted
between particles −2 and +1. We use α = 1.5 and the parameters in Table I for this numerical simulation. Arrows (1) and (2) indicate the
regions that we consider for the calculation of the transmission coefficient. These regions are not affected by the plane waves that reflect from
the left or right walls. We also show velocity profiles for particles (b) n = −27 and (c) n = +3. The dots indicate the maximum and minimum
peaks of oscillatory velocity profiles, and the domains of (1) and (2) correspond to the temporal regions marked with (1) and (2) in panel (a).

B. Numerical simulations

For our numerical computations, we solve Eq. (1) directly
via a Runge–Kutta method (using the ODE45 function in
MATLAB). To quantify the transmission efficiency of the
impurity-bearing chains, we analyze velocity profiles of
propagating waves under harmonic excitations, as discussed
earlier. In Fig. 4(a), we show a space-time contour plot of
particle velocities from numerical simulations. In this case,
we consider a double impurity (with α = 1.5) embedded
between particles −2 and +1 [see Fig. 1(b)] of a 63-particle
chain.

The sinusoidal perturbation that we apply to the left end of
the chain has a frequency of 4 kHz and an amplitude of 0.35 N.
In this scenario, we calculate the magnitude of the particles’
maximum displacements to be less than 4.59×10−8 m. The
associated oscillations are two orders-of-magnitude smaller
than the static precompression �n ≈ 1.02×10−6 from F0 =
10 N, so it is reasonable to assume that the system is operating
near the linear regime.

To quantify transmission efficiency, we measure the veloc-
ity profiles at specific particles: n = −27 for incident waves
and n = +3 for transmitted waves. We choose these particle
locations to allow a sufficiently long spatial interval between
the two positions in Fig. 4(a). The two-sided arrows (1) and (2)
indicate regions over which the motion is not affected by the
presence of reflections from the chain boundaries. In Fig. 4(b),
we show the velocity profiles of particles n = −27 (top panel)
and n = +3 (bottom panel). The arrows (1) and (2) again
correspond to the temporal domains without interference from
wave reflection.

In the temporal plots of velocity profiles, we denote
the maxima by vmax,i and the minima by vmin,i , where

i ∈ {1,2, . . . } is the index of the wave peaks in the oscillation.
As indicated by the dots in Fig. 4(b), the values of these
peaks are not constant even in the designated region before the
arrival of the reflected waves. Therefore, we need to extract
the steady-state component from the propagating plane waves.
To do this, we calculate the relative error between a pair of
adjacent peaks:

Errori = vmax,i+1 − vmax,i

vmax,i+1
. (14)

We identify the steady-state component of the waves by finding
a wave packet with a minimal error. The amplitude Ãi of the
steady-state velocity component is then

Ãi = vmax,i − vmin,i . (15)

By calculating Ãi for each peak i, we measure the
incident wave amplitude Ainput and transmitted wave amplitude
Aoutput [see Fig. 4(b)]. Finally, we quantify the transmission
coefficient by calculating the ratio of the transmitted wave’s
velocity amplitude to that of the incident wave:

T̄(i),(ii) = Aoutput; (i),(ii)

Ainput; (i),(ii)
, (16)

where (as mentioned in Sec. III A) the subscripts (i) and (ii),
respectively, indicate cases with a single impurity and a double
impurity. The transmission coefficient T̄ , which is written
in terms of velocity amplitudes, should be equivalent to the
displacement ratios introduced in Eq. (9) in the ideal situation
of harmonic responses of the particles. In the next subsection,
we will present our numerical and experimental calculations
of T̄(i),(ii).
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FIG. 5. Schematic of the experimental setup for a granular chain
with a single impurity. In the inset, we show an image of the
experimental setup.

C. Experimental setup and diagnostics

We now discuss the results of experiments in granular
chains with a single impurity and a double impurity. In Fig. 5,
we show a schematic to illustrate our experimental setup.
We consider a granular chain with 65 spheres: there are
64 type-1 spheres and one impurity in the single-impurity
chain, and there are 63 type-1 spheres and 2 impurities in the
double-impurity chain. Because of availability limitations, we
use distinct materials for type-1 and type-2 particles. However,
their material properties are sufficiently similar (see Table I
in Sec. IV) so that it is permissible to treat them as identical
materials. As we show in the inset of Fig. 5, we align the type-1
particles by using four stainless steel rods, and the impurity
particle is held in place by an external holder that ensures that
its center is aligned with the centers of the other particles in
the chain.

To excite the granular chain, we position a piezoelectric
actuator on the left side of the chain in direct contact with
particle n = −32. To generate plane waves in the granular
system, we use harmonic excitations with a frequency range
from 1.0 to 7.0 kHz with a 200 Hz increment. The right
end of the chain is compressed by the wall with a static
precompression of F0 using a spring and linear-stage system.
We visualize the propagation of stress waves by measuring the
velocity profiles of particles via a noncontact laser Doppler
vibrometer (Polytec, OFV-534). See Refs. [54,55] for the
details of this full-field visualization technique.

Similar to our numerical approach, we measure the
transmission coefficient by estimating the amplitude of the

TABLE I. Properties of type-1 and type-2 particles.

Type-1 Type-2 (impurity)

Material 440 C AISI 52100
Elastic modulus E1 = 204 GPa E2 = 210 GPa
Poisson ratio ν1 = 0.28 ν2 = 0.30
Density ρ1 = 7.80 g/cm3 ρ2 = 7.81 g/cm3

Radius r1 = 9.525 mm r2 = αr1

incident (Ainput) and transmitted (Aoutput) waves. Unlike our
numerical simulations, however, the experimental results are
susceptible to noticeable attenuation because of dissipation
and slight particle misalignment. Therefore, we calibrate our
experimental results by normalizing them with respect to the
measurement results obtained from a homogeneous particle
chain. The calibrated transmission coefficient is

T̄ cal
(i),(ii) = T̄(i),(ii)

T̄α=1
= Aoutput; (i),(ii)

Aoutput; α=1
, (17)

where T̄(i),(ii) is the transmission coefficient for single-impurity
and double-impurity chains based on Eq. (16), and T̄α=1

is the transmission coefficient for a homogeneous chain
(i.e., for α = 1).

IV. COMPARISON BETWEEN ANALYTICAL,
NUMERICAL, AND EXPERIMENTAL RESULTS

We now compare our analytical results with numerical
simulations and experimental data for the radius ratios α = 0.7
and α = 1.5. In Figs. 6(a) and 6(b), we show our results for
the transmission coefficients for a single-impurity chain. In
Figs. 6(c) and 6(d), we present our results for a double-impurity
chain. In these plots, black solid curves indicate the analytical
predictions from Eqs. (11) and (12), blue dots indicate the
results of simulations obtained by solving Eq. (1), and red
squares give the experimental results after calibration using
Eq. (17).

For a single-impurity chain, the transmission coefficient
has a decreasing trend as we increase the excitation frequency.
This supports our prediction from Fig. 2(a). The slope of
the decrease depends on the mass ratio. When α = 0.7, the
decreasing trend is slow at first, but there is a rapid drop near
the cutoff frequency of 7.25 kHz that we obtained analytically

from the formula 	 =
√

4B
m

. For α = 1.5, the decrease has
a near-linear trend throughout the frequency pass band. In
Figs. 6(a) and 6(b), we observe these trends in both numerics
and experiments. However, as we will discuss shortly, there
are some differences in the experiments as compared to the
simulations and theoretical predictions.

For a double-impurity chain, we obtain more interesting
behavior. When α = 0.7, we observe, broadly speaking, a
decrease of transmission efficiency as the frequency increases;
this is reminiscent of the single-impurity chain. However, for
the mass ratio α = 1.5, the transmission coefficient has a
pronounced double-peak shape in the frequency pass band.
In particular, our analytical results for transmission predict a
resonant mode at an excitation frequency of about 3.0 kHz.
This leads to complete transmission of plane waves despite
the existence of impeding double impurities. This “cloaking”
mode is notable, and we observe it in both experiments and
numerical simulations [see Fig. 6(d)]. However, we again
note that quantitative differences exist despite the numerical
corroboration and the accurate qualitative description of the
experiments.

As we have just discussed, our analytical predictions match
reasonably well with the results of our numerical simulations
and experimental findings, especially for frequencies between
1.0 and 4.0 kHz. By comparing analytical predictions and
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(a) = 0.7(single impurity) (single impurity)

(double impurity) (double impurity)(c) = 0.7

(b) = 1.5

(d) = 1.5

RT resonance

cal

FIG. 6. Transmission of plane waves in a granular chain with impurities. The ratio of the impurity radius to the host-particle radius is (left)
α = 0.7 and (right) α = 1.5. We show results for chains with (top) a single impurity and (bottom) a double impurity.

experimental results around 3.0 and 4.0 kHz, however, we
observe some discrepancies that are not noticeable when com-
paring analytical and numerical calculations. They probably
stem from experimental errors, such as a potential slight
misalignment of the external holder and, perhaps more notably,
an intrinsic frequency response of a piezo actuator.

For higher frequencies, especially between 6.0 and 7.0
kHz, we observe an especially noticeable discrepancy when
comparing the theoretical predictions to the numerical and
experimental results. [For example, see Figs. 6(b) and 6(c).]
We believe that this arises due to transient waveforms—and
specifically due to wave localization—in the vicinity of the
excitation particle (i.e., at the left end of the chain). If one
excites a granular chain from a stationary state, the propagating
waves include a wide range of frequencies near the excitation
frequency. If the excitation frequency is close to the cutoff
frequency, then incident waves whose frequencies are larger
than the cutoff frequency do not propagate; instead, they
localize at the excitation particle in the form of evanescent
waves. This, in turn, affects the calculation of transmission
coefficients in numerical simulations and experiments. In both
cases, we examine the dynamics in subsets of the chains for
small propagation times to avoid the effects of reflection from
the right boundary. See the Appendix for further details.

V. MULTIPLE IMPURITIES

An interesting application of the RT resonance, which
we discussed in Sec. III A for scattering with a double
impurity, is its extension to systems with multiple double
impurities. In particular, it is interesting to examine systems in
which multiple impurities are either periodically or randomly

distributed within a host homogeneous chain. A fascinating
question arises: can reflectionless modes still occur?

When considering multiple impurities in a host granular
chain, the formalism of transfer matrices provides a useful
framework to study transmission of waves through the entire
system [56]. Following recent work by Zakeri et al. [57], we
assume stationary plane waves un(t) = wne

iωt as in Sec. III A.
Equation (6) then leads to

wn+1 = [(Bn + Bn+1) − mnω
2]

Bn+1
wn − Bn

Bn+1
wn−1, (18)

which generates the modes given a seed value for
{w−N,w−N+1}. For ω = 0, Eq. (18) reduces to

wn+1 = Bn

Bn+1
(wn − wn−1) + wn. (19)

Thus, for any distribution of particles in the chain, the seed
w−N = w−N+1 implies that wn = w−N for all n. This explains

FIG. 7. Schematic of a host homogeneous granular chain with
multiple double impurities. The incident wave is (I ), the reflected
wave is (R), and the transmitted wave is (T ). We highlight impurities
in solid turquoise boxes, and we indicate the scattering region with
the dashed box.
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FIG. 8. (a) Space-time contour plot of the normalized velocity for a homogeneous chain with N = 200 particles and an excitation frequency
of 3.0 kHz. (b) The same plot as in panel (a), but with five double impurities located at positions n = 50, n = 72, n = 90, n = 96, and n = 118.
The radius ratio is α = 1.5, and arrows indicate the position of the impurities. Panels (c)–(e) show the velocity at particle n = 130 for excitation
frequencies of (c) 2.0 kHz, (d) 3.0 kHz, and (e) 3.8 kHz. The black (large-amplitude) curves are associated with the homogeneous chain [panel
(a)], and the red (smaller-amplitude) curves are associated with the chain with the impurities [panel (b)].

why the reflection coefficients are exactly 0 at ω = k = 0 for
both single and double impurities (see Fig. 2).

In the absence of impurities, Eq. (18) generates propagating
waves for any ω ∈ (0,	] when the domain is infinite; for a
finite domain, only the wave numbers that conform to the
specific boundary conditions and the associated frequencies
get selected. Once we add impurities, the iterative process
to generate such propagating waves is the same until we
reach what we call a “scattering region” (see Fig. 7). In
this region, multiple scatterings occur because the presence
of impurities has broken discrete translation symmetry, and
successive interferences can lead to complicated dynamics that
depend on the distribution of impurities. A particular example
of this phenomenon was investigated recently in the context
of disordered granular chains [29]. When the distribution of
impurities is such that impurities are well-separated from
each other, one can reformulate the transmission problem
[given by Eq. (18)] through the entire scattering region as a
sequence of transfer problems from each segment of a granular
chain through an impurity to the next segment. Thus, an
incident plane wave wn = Ieikrn with wave number k = kr and

amplitude I transforms into T (1)eikrn after a scattering event
because no reflected waves are generated during the scattering
at k = kr . By considering each impurity, we obtain the
sequence Ieikrn → T (1)eikrn → T (2)eikrn → · · · → T (L)eikrn,
where arrows denote the transmission of the wave through
the impurities and T (j ), with j ∈ {1,2, . . . ,L}, denotes the
transmitted-wave amplitudes, which (with rescaling so that
I = 1) are given by Eq. (12). Consequently, reflectionless
modes can be supported by the chain in the form

wn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ieikrn, if n � n1

T (1)eikrn, if n1 < n � n2
...
T (L)eikrn, if nL < n

, (20)

where nj (with j ∈ {1,2, . . . ,L}) represents the position (of
the first particle) of the j th impurity in the host homogeneous
chain. For other modes, transmission through the scattering
region depends on the frequency ω. Based on our analysis
in Sec. II, we expect that transmission decays rapidly as one
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approaches the upper band edge 	. By contrast, plane waves
slowly attenuate for frequencies near 0.

To corroborate that these effects arise in strongly precom-
pressed granular crystals, we numerically integrate Eq. (1)
using the same parameters as in Sec. III B, but this time we
randomly place double impurities within a scattering region
near the middle of a chain.1 One can calculate the frequency
of the RT resonance using Eq. (13), which in this case gives
fr ≈ 3.0 kHz. As we predicted, when the system is driven
at this frequency, waves experience a phase shift due to
the scattering, but the amplitude is consistently transmitted
almost without modification through the scattering region of
the random chains. However, when we move away from the
frequency of the RT resonance, the transmission decays. We
observe this directly by measuring the velocity of a particle
located just after the scattering region. To illustrate this,
we compare (see Fig. 8) the temporal evolution of particle
velocities in a homogeneous chain to that in a chain with five
randomly-distributed double impurities. In Figs. 8(c) and 8(e),
we observe attenuation in the magnitude of the velocity due
to the presence of impurities in the chain. In Fig. 8(d), when
the system is driven at 3.0 kHz, the wave is clearly delayed
in the perturbed chain compared with the homogeneous one,
although the magnitude of the velocity is about the same for
both chains. As predicted, we observe the RT resonance even
in granular chains with multiple double impurities.

VI. CONCLUSIONS

In the present work, we examined the scattering of waves by
single impurities and double impurities in granular chains. We
started by exploring the linear scattering problem motivated
by the context of strongly precompressed granular chains with
either a single impurity or a double impurity. We derived
analytical formulas to show that the scattering is markedly
different in the two scenarios. For single-impurity chains, we
showed that the transmission coefficient |T |2 decays monoton-
ically with k (and hence with the frequency ω). We also found
that |T |2 → 0 as one approaches the band-edge frequency
of the host homogeneous chain. By contrast, for a double-
impurity chain, we showed that an effect analogous to the
Ramsauer–Townsend resonance takes place at k = kr ∈ [0,π ]
in a specific region of parameter space. We demonstrated that
one can tune the frequency of this RT resonance to any value
within the transmission band of the host homogeneous chain.

We compared our analytical results to numerical computa-
tions and laboratory experiments, and we obtained good agree-
ment. In our experiments, we used noncontact laser Doppler
vibrometry to obtain a full-field visualization of plane waves
propagating in a granular chain. This allowed us to observe
the RT resonance for double impurities in a granular chain by
directly measuring a transmission coefficient associated with

1Specifically, we set the radii of each pair of consecutive particles
within the scattering region to be r1 with probability 1/2 and r2 with
probability 1/2 (i.e., using a type of random dimer model [29]). We
consider a chain with N = 200 particles, and we define the scattering
region to be between particles n = 50 and n = 120. We set the radius
ratio to be α = 1.5, and we generate 103 random chains.

the scattering. We also discussed how this RT resonance can
be responsible for the emergence of reflectionless modes in
systems with multiple (either ordered or disordered) double
impurities. We demonstrated this reflectionless transmission
using numerical simulations.

Our study paves the way for a systematic study of the
properties of Ramsauer–Townsend resonances in granular
crystals. It is worthwhile to study such resonances when there
are more impurities and for various (ordered or disordered)
distributions of impurities. One possible application of
RT resonances in granular crystals is embedding foreign
objects, such as sensors, in systems so that they induce
minimal interference with existing structures. It is also of
considerable interest to explore disordered granular crystals,
rather than merely placing a disordered segment in otherwise
homogeneous chains. In 1D disordered granular crystals, the
recent numerical predictions of superdiffusive transport and
other features [29,30] are especially interesting to explore
further. Such efforts are currently in progress.
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APPENDIX: EXPERIMENTAL VERIFICATIONS
OF WAVE LOCALIZATION

To examine the wave localization that we mentioned
in Sec. IV, we perform experiments to visualize full-field
velocity profiles of all particles in a chain. In Fig. 9, we
show space-time contour plots of velocity profiles for (top
row) a single-impurity chain with α = 1.5 and (bottom row)
a double-impurity chain with α = 0.7. We use excitation
frequencies of (left panel) 2.0 kHz and (right panel) 6.0 kHz.
The experimental results in Fig. 9 require measurements of the
motion of individual particles followed by synchronization
of all measured data, because the laser Doppler vibrometer
scopes only a single particle’s motion at a time. In each case,
after we collect all data, we normalize the measured values
of particles’ velocities with respect to the maximum velocity
component.

As we indicate with the arrows in the right panels of
Fig. 9, we observe localization in our single-impurity and
double-impurity experiments when the excitation frequency
is 6.0 kHz. We do not find such a distinctive localization for
the 2.0 kHz excitation [see Figs. 9(a) and 9(c)]. Again, as
explained in Sec. IV, this is due to the inevitable perturbation
of “beyond-cutoff frequency” components of stress waves
in experiments when we excite the system near the cutoff
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(d) 6 kHz

(a) 2 kHz (b) 6 kHz

Double impurity
 ( = 0.7)

(c) 2 kHz

Single impurity
 ( = 1.5)α

α

FIG. 9. Space-time contour plot of normalized velocity for experiments with (top) a single-impurity chain with α = 1.5 and (bottom)
a double-impurity chain with α = 0.7. In each case, we normalize the measured velocities with respect to the maximum velocity. We use
excitation frequencies of (left) 2 kHz and (right) 6 kHz. The arrows point to incidents of wave localization.

frequency. Incident waves whose frequencies are close to the
cutoff frequency cause this perturbation even when the static
load F0 is large enough or the excitation amplitude is small
enough to remain near the linear regime of the granular chain.
This wave localization contributes to the discrepancy between

experiment and theory near 6.0 kHz in Fig. 6. In our numerical
simulations, we also observe wave localization at the edge of
the chain, and we thereby obtain a dip in our transmission data
near 6.0 kHz that appears systematically for different values
of α and different chain lengths.
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