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1. INTRODUCTION. The Bowl Championship Series (BCS) agreement was cre-
ated in 1998 to match the top two NCAA Division I-A college football teams in a
National Championship game at the end of each season. As part of the agreement,
the official BCS Standings are used to pick which two teams most deserve to play in
the championship game and which teams should play in the other major bowl games.
The BCS Standings have significant financial ramifications, as the National Champi-
onship Game and major bowl games yield financial payouts to the conferences of the
appearing teams projected to be $14-$17 million per team in 2007 [1]. In addition to
this direct financial benefit, BCS bowl appearances likely generate indirect gains from
increases in both alumni contributions and student applications. Before the BCS, the
matchups in many bowl games were determined according to conference traditions,
so matches between the #1 and #2 teams in the nation rarely occurred. At times, this
yielded multiple undefeated teams and co-National Champions (most recently, Ne-
braska and Michigan in 1997). On other occasions, a single team with an arguably
easy schedule could go undefeated and be declared National Champion by polls with-
out ever having played a “major” opponent (e.g., BYU in 1984).

The BCS system endeavors to address these problems while maintaining the tra-
dition of finishing the season with bowl games. Prior to 2004, BCS Standings were
determined by a combination of two polls (coaches and sportswriters), selected algo-
rithmic rankings, strength of schedule, losses, and bonus points awarded for defeating
highly-ranked teams. This system double-counted key contributions, because reason-
able polls and rankings already took losses and strength of schedule into account (see,
for example, [4]). In 2004, the BCS instituted a formula that simply averages polls and
computer rankings, but the system continues to vary from year to year as specific polls
and computer systems are added and removed.

The fundamental difficulty in accurately ranking or even agreeing on a ranking
methodology for college football lies in two factors—the dearth of games played by
each team and the large disparities in types and difficulties of individual schedules.
For instance, should an undefeated team from a purportedly weaker conference with
few tough nonconference opponents be ranked ahead of a “major conference” team
that lost a game or two while playing difficult opposition both in its conference and in
its nonconference matchups? While each game outcome is an imperfect paired com-
parison between two teams, the schedule of 10-13 regular season games (including
conference championships) played by each of the 119 Division I-A football teams
severely limits the quantity of information relative to, for example, college and profes-
sional basketball and baseball schedules. Moreover, most of the Division I-A football
teams play the majority of their games within their conferences, and there are signifi-
cant variations in the level of play across different conferences that further complicate
attempts to select the top two teams from the available information. To make matters
worse, it is not even clear what the phrase “top two” should mean: does it refer to the
two teams with the best overall seasons or the two playing the best at the end of the
season?
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Despite the obvious difficulties, many systems for ranking college football teams
have been promoted by mathematically and computationally inclined fans (see, for
example, those listed by Massey [15]). Many of these schemes are relatively com-
plicated mathematically, making it virtually impossible for the lay sports enthusiast
to understand the ranking methodology and its underlying assumptions. Worse still,
essential details of many of the algorithms currently used by the BCS are not even
openly declared (the only one completely declared in the public domain is the system
by Colley [6], though some others are at least partially explained). Of those that are
at least partially public, some include seemingly arbitrary parameters whose effects
are difficult to interpret, and others are tweaked periodically to obtain the purportedly
most reasonable ranking based on previous results.

In this article, we demonstrate that a simply-explained algorithm constructed by
crudely mimicking the behavior of voters can provide reasonable rankings. We define
a collection of voting automatons (random walkers) each of which declares its prefer-
ence for a single team. Each automaton repeatedly selects a game at random from its
preferred team’s schedule and decides whether to change its preference to the oppo-
nent as biased by the game outcome, preferring but not absolutely certain to go with
the winner, repeating this process indefinitely. In the simplest implementation of this
process, the probability p of choosing the winner is kept constant across voters and
games played, with p > 1/2 because on average the winner should be recognized as
the better team and p < 1 to allow a given voter to argue that the losing team is still
the better team (moreover, the p = 1 limit can be mathematically more complicated in
certain scenarios, as discussed in section 3). The voting automatons are nothing more
than independent, biased random walkers on a graph connecting the teams (vertices)
by their head-to-head games (edges). These “voters” thereby obey idealized behavioral
rules dictated by one of the most natural arguments relating the relative ranking of two
teams: “my team beat your team.” Indeed, the statistics of such biased random walkers
can be presented as nothing more than the logical extension of this argument repeated
ad infinitum.

This algorithm is easy to explain in terms of the “microscopic” behavior of indi-
vidual walkers who randomly change their opinion about which team is best (biased
by the outcomes of individual games). Of course, this behavior is grossly simplis-
tic compared with real-world poll voters. In fact, under the specified range of p, a
single walker will never reach a definitive conclusion about which team is the best;
rather, it will forever change its allegiance from one team to another, ultimately travers-
ing the entire graph. However, the “macroscopic” total number of votes cast for each
team by an aggregate of random-walking voters quickly reaches a statistically-steady
ranking.

The advantage of the algorithm discussed here is that it can be easily understood in
terms of single-voter behavior. Additionally, it has a single explicit, precisely-defined
parameter with a meaningful interpretation at the single-voter level. We do not claim
that this ranking is superior to other algorithms, nor do we review the vast number
of ranking systems available, as numerous reviews are already available (see, for ex-
ample, [11], [20], [7], [14] for reviews of different ranking methodologies and the list
of algorithms and “Bibliography on College Football Ranking Systems” maintained
by [22]). We do not even claim that this ranking algorithm is wholly novel; indeed,
the resulting linear algebra problem is in the class of “direct methods” discussed by
Keener [11] and has many similarities to the linear algebra problem solved by Colley
[6]. Rather, we propose this random-walker ranking on the strength of its simple in-
terpretation: our intent is to show that this simply-defined ranking yields reasonable
results.
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The remainder of this article is organized as follows: In section 2, we give the math-
ematical definition of the ranking algorithm and examine its statistical properties. In
section 3, we investigate the algorithm’s asymptotic behavior for extreme values of the
probability p. In section 4, we present results for special cases involving round-robin
tournaments. We then examine recent historical outcomes from real NCAA Division
I-A seasons in section 5. In section 6, we discuss properties of the graphs defined by
the games played in a given year according to real NCAA Division I-A schedules, pay-
ing special attention to hierarchical structure and the interplay between that structure
and random-walker rankings. We conclude in section 7 by discussing some possible
generalizations of this ranking algorithm.

2. RANKING WITH RANDOM WALKERS. For each team i we denote the num-
ber of games it played by n;, its wins by w;, and its losses by /;. A tie, which was
possible prior to the current NCAA overtime format, is treated as half a win and half
a loss, so n; = w; + [; always holds. The number of random walkers declaring their
preference for team i is denoted v;, and the condition that the total number of voters
remain constant is given by > . v; = Q.

If team i beats team j, then the average rate at which a walker voting for team j
changes its allegiance to team i is proportional to p, and the rate at which a walker
already voting for team i switches to team j is proportional to 1 — p. For simplicity,
we ignore the dates of games, selecting each of the n; games played by team i with
equal probability. To avoid rewarding teams for playing more games, the rate at which
a given voter considers a given game is taken to be independent of n;. Under this selec-
tion of rates, we find it more natural to express the independent random-walker dynam-
ics using ordinary differential equations (ODEs) instead of Markov chains, though our
entire discussion can certainly be recast in terms of Markov chains, in which case the
approach has some similarities with the PageRank citation ranking [3] underlying the
Google search engine (see [13]). Formulating the present problem in terms of ODEs
has the added advantage of avoiding complications due to cycles of different lengths
(such cycles could alternatively be removed through explicit time-averaging).

The expected rate of change of the number of votes cast for each team in this random
walk is quantified by a homogeneous system of linear differential equations,

v = Dv, (D

where v is the T-element vector of the number v; of votes cast for each of the T teams,
and the elements of the square matrix D are

Dj; = —pl; — (1 — pw;,

1 2p-1) ) .
D;; = EN,“ + TAU @ #J), (2)
in which N;; is the number of games played between teams i and j and A;; is the
number of times team i beats team j minus the number of times i loses to j. That is,

if N;; belongs to {0, 1}, then

+1 if team i beat team J,
Aj; =4 —1 ifteami lost to team j, 3)
0 if team i tied or did not play team ;.

When two teams play each other multiple times, we obtain A;; as summed over those
games. Because 1/2 < p < 1, the off-diagonal elements D;; are nonnegative and van-
ish if and only if N;; = 0.
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Ideally, one would consider the giant connected component in the college football
schedule network, including Division I-A as a subgraph, but it was easier to analyze
the data (obtained from [9] and [23]) when the information was selectively restricted to
the graph of Division I-A teams. Because many Division I-A teams play some non-I-A
opponents, we represent all of these connected non-I-A teams collectively as a single
node. These teams usually do not fare well against Division I-A competition, so this
new “team” achieves a low ranking and does not significantly affect the random walker
populations, except to penalize the Division I-A teams they defeat and to maintain the
constraint that the total number of votes Q remain constant (i.e., voters do not leave
the graph).

Equilibrium. The matrix D encompasses all the connections and win-loss outcomes
between teams. The steady-state equilibrium of (1,2) satisfies

Dv=0 “4)

and gives the expected populations v of the random walkers voting for each team. This
information can then be used directly to rank the teams. Despite the simplistic behavior
of an individual random walker, the behavior of an aggregate of voters (or equivalently,
because of the independence assumption, the long-time average of a single voter) ap-
pears to yield reasonably robust orderings of the top teams. Unsurprisingly, the number
of votes cast for a given team varies substantially for different values of p; neverthe-
less, the relative ranking of the top few teams can remain similar across a wide range
of p, as we discuss for recent historical examples in section 5.

The equilibrium point v lies in the null-space of Dj; that is, it is an eigenvector
associated with a zero eigenvalue. We stress that this equilibrium does not require a
no-net-flow detailed balance along each edge; rather, we only require zero net flow
out of each node. For instance, a schedule of three teams (i, j, and k) in which each
plays only two games such that i beats j, j beats k, and k beats i leads to a cyclic flow
of votes around the triangle with a statistical equilibrium that arises when each team
receives an equal number of votes.

An important property of these random walkers is that the matrix D yields a single
attracting equilibrium v for a given p in [1/2, 1), provided the underlying graph repre-
senting games played between teams consists of a single connected component. This
can be proved by recasting (1)—(4) as an eigenvalue problem and applying the Perron-
Frobenius theorem, as described by [11], provided the graph consists of a single con-
nected component and p < 1. In the absence of these conditions, the Perron-Frobenius
theorem cannot be applied because the resulting matrices are no longer irreducible.
Alternatively, given the random-walker interpretation built into the rate matrices we
define, one can easily demonstrate that the expected populations achieve a unique at-
tracting state:

1. The column sums of D vanish because the sum of the populations remains con-
stant: 0= Q" =3, vi = >, > Dyjv; = > ;(3; Dij)v; for all v, requiring
that the inner sum vanishes (i.e., the dynamics confine v; to a hyperplane of
codimension 1).

2. The off-diagonal elements of D are nonnegative and—once the graph consists of
a single connected component—it can be shown that all off-diagonal elements
of the dth power of the short-time approximate mapping matrix (I + tD)¢ are
positive for sufficiently small nonzero ¢, where I is the identity and d is the
diameter of the graph. Because of this property, any vertices with v; = 0 have
growing populations. In other words, given nonnegative v; with positive total
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population Q, all average flows along the v; = 0 faces enter the hyperquadrant
in which v; > O forall j.

3. Finally, because (1) is a linear, constant coefficient system, it can be shown that
the only possibility consistent with the foregoing observations is that the null-
space of D is one-dimensional (there is a single eigendirection associated with
eigenvalue zero), and that there is a unique attracting sink v in the constant-
population hyperplane at the point of its transverse intersection with the null
eigenvector.

This argument breaks down if either the graph is not connected or p = 1, because
subgraphs with zero walker population can remain so in such situations.

Statistics. Any initial voter distribution eventually randomizes completely, so the
steady-state distribution of the number of votes v; cast for the ith team is binomial
(for Q trials) with probability v;/Q, mean v;, and variance v;(1 — v;/ Q). The joint
probability density function of two vertices is not perfectly independent, as the sum
over all vertices equals the number of random walkers Q. However, it is still obtained
from a binomial distribution of Q random trials across the vertices. (The two of inter-
est have probabilities r; = v;/Q and r; = v;/Q.) We can exploit this fact to measure
the confidence in the relative ranking of two teams in terms of the minimum number
of voters Q i, required to ensure that the expected difference between the number of
votes cast for each team is larger than the standard deviation of that difference:

r,ﬂ—l—rj—(ri—r_,«)z . r,-—l—rj

(’”i—f’j)2 B (Vi—rj)2

Because the statistical properties of the random walkers follow directly from the linear
algebra problem (1)—(4), there is no need to simulate independent random walkers to
obtain rankings. This simplicity disappears if interactions between random walkers are
included, as considered briefly in section 7.

Qmin = - 1L (5)

3. ASYMPTOTICS AT LARGE AND SMALL p. For a given probability p the
expected populations depend in a complex manner on the details of game schedules
and outcomes. In an attempt to clarify the effects of selecting a given p, it is instructive
to investigate analytically the limiting behaviors near p = 1/2 and p = 1. We demon-
strate, in particular, that the main contributions near p = 1/2 include a measurement
of schedule strength, whereas behavior near p = 1 is dominated by undefeated teams
and by subgraphs of teams that go undefeated against teams outside the subgraph.

On any given Saturday. Consider p = 1/2 4 ¢, where ¢ < 1. The rate matrix (2)
becomes

1 ~
D;; = EAL/‘ +¢D;;,
where A is the graph Laplacian: A;; =1 (i # j) if nodes i and j are connected (the

two teams played each other) and A;; = —n;. By (2), D has the same elements as A off

the diagonal and the values w; — [; on the diagonal. A power series of the equilibrium

probabilities, v; = ﬁ;o) + 81_)51) + 821_);»2) + - -+, then satisfies

1 > 1 ~
o= Lo 356 [Lave v o
k=1
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subject to the normalization condition ) ; ﬁ;k) = Q6o for Q voters (§xo = 1 when
k = 0, otherwise ;9 = 0).
The O(&°) contribution requires v = Q/T for each J» distributing the Q votes

equally across the T nodes of the graph. With D,«.,- vj =2(w; —1;,)Q/T, the O(e")
condition becomes

Z Ao = e — (i 1), (7)

That is, the first correction v ) at p near 1/2 is a potential that satisfies a discrete

Poisson equation (subject to the constraint Z v(l) = 0) with charges proportional

to the win-loss record of each team. It thus 1nc0rp0rates the record of the jth team
and is also heavily influenced by the records of the nearest neighbors and other close
teams in the graph. In other words, the first correction is strongly influenced by a

“strength of schedule” notion. Furthermore, it is only with the second-order term v(z)
that information pertaining to specific games won or lost by a given team begins to be
incorporated, as v( ) includes only net records in (7).

Winner takes all. The asymptotic behavior for p = 1 — ¢ (¢ <« 1) is more compli-
cated because the limiting state depends on the number of undefeated teams and other
schedule details. The single-equilibrium argument of section 2 breaks down at p = 1
because off-diagonal elements of (I + tD)¢ are not necessarily positive. There can then
be multiple equilibrium states, but only one of these states is achieved in the limit as
p— L

The simplest situation to consider asymptotically occurs when a single undefeated
team garners all random walker votes for p = 1 — ¢ as ¢ — 0. This condition requires
both that there be only a single undefeated and untied team and that there be no sub-
graphs of other teams in the network that collectively win all of their games against
teams outside that subgraph. The transition rates are then written D;; = D(O) sD, s
and we again expand

S =0 =) 2-0)
v =v;" +ev; +ev; + .

Here, D© agrees with (N + A)/2 off the diagonal but has the negation of the number
of losses by the corresponding teams on the diagonal (recall that a tie counts as half a
win and half a loss), and D remains as defined earlier in the perturbation around p =
1/2. The limiting state ﬁ;o) = 04, casts all Q votes for the single undefeated team
(“u”). Calculation of the first-order correction then requires solution of D@y = b,
where b; = QDj,,, which offers neither simplification nor intuition beyond the original
rate equations (1)—(4).

4. ROUND-ROBIN EXAMPLES. The asymptotic analyses of the previous section
were necessarily limited by the generality of possible schedule topologies. As a means
of developing further intuition, we consider the special cases of round-robin tourna-
ments in which every team plays every other team exactly once.

On any given Saturday (revisited). Returning to the case p = 1/2 4 ¢, consider a
round-robin tournament of 7' teams, each of which plays exactly 7 — 1 games, one
against each of the available opponents. Then the graph Laplacian is the matrix with
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Is off the diagonal and — (7 — 1) for each diagonal entry. Subject to the constraint

>, 01 =0 (k > 0), we immediately obtain }_; Ay} = =T/, s0 (6) yields

The zero-sum constraint is maintained because the column sums of D are identically
zero by definition. This simple iterative relation for ﬁfkﬂ) can then be summed when

e < 1/2 (i.e., p < 1) to arrive at
2¢ 17!
5= [1 - —GD} 50,
T

We make special note of the first-order correction. In section 3, we saw that strength
of schedule and the direct win-loss record both appear at O (¢). Hence, one expects the
win-loss record of an individual team to determine its O (¢) contribution fully in the
round-robin case, where everyone playing everyone else removes schedule inequities.
Indeed, equation (7) gives

50— 40

;= F(wi — 1) ®)
when applied to round-robin tournaments. Stated differently, the asymptotic rankings
near p = 1/2 in a round-robin tournament are linear, and the slopes are set by the
win-loss records.

Perfectly ordered teams. Because the asymptotic expansion for p = 1 — € is com-
plicated by the difficult determination of the base state (¢ = 0), we consider this
expansion only for the round-robin case of 7' “perfectly ordered” teams, which we
define as the special case where team i beats team j whenever i < j. In this situa-
tion, the D® matrix of section 3 is upper triangular, with 1s above the diagonal and
D;; = —I; = —(i — 1). Because there are no cycles here, it is clear that the single un-
defeated team garners all votes in the limit as ¢ — 0, so Dl.(o) = (4;. We can then
show that

o | =T =1  ifi=1,
DT T+ D] fi > L

Mixed ordering. Finally, it is worth asking whether round-robin tournaments can give
any indication about useful values of the bias parameter p. Specifically, it is reasonable
to expect that teams in a round-robin schedule should be ranked in a manner consistent
with their win-loss records, as their schedules contain no inequities. A 6-5 team in a
12-team round robin should presumably be ranked higher than a 5-6 team, even if
only marginally so. As we already saw from (8), the O(¢) term in an expansion with
p = 1/2 + ¢ for a round-robin competition does indeed agree with the rank ordering
given by win-loss records.

Do the terms that are higher order in ¢ continue to respect the win-loss ordering in
a round-robin setting? Equivalently, what happens for values of p further from 1/2?
One might reasonably ask whether this win-loss ordering is generically preserved for
all p in the range 1/2 < p < 1 (itis not). It is then natural to ask whether the win-loss
ordering is always preserved up to “crossing” values bounded away from 1/2. That

November 2007] RANDOM WALKER RANKING 767



is, for a given round-robin outcome, we define p,. to be the minimum p (> 1/2) such
that the random-walker ordering crosses from consistent to inconsistent with win-loss
records. We then ask whether p,. is bounded from below.

However, it seems clear from examples of specific outcomes that there is no lower
bound for p. except for p = 1/2 (where, by definition, all teams are ranked equally).
We obtain p, arbitrarily close to 1/2 through a simple modification to the perfectly-
ordered tournament. Starting from a win-loss matrix of 7 teams where team i beats
j ifi < j, we modify only the games played by the team with the best losing record.
To be precise, for even 7" we change only games played by team k = (T /2) + 1, with
(T/2) — 1 wins and T /2 losses. We now swap the win-loss outcome of every game
played by team k except for the game between k and k — 1, which we maintain as
a win for team k — 1. These outcome switches modify the win-loss record of every
team except for teams k and k — 1; in particular, the latter still has a better record than
the former. Nevertheless, we observe numerically that (p. — 1/2) ~ T~! for these
explicitly-constructed mixed-ordered round-robin events, with team k ranked above
team k — 1 above p..

The realization that there is no lower bound for p. away from 1/2 indicates an ob-
vious limitation to this simply-constructed ranking system. Specifically, because the
random walkers inherently represent first-place votes, rank-ordered crossings involv-
ing teams ranked #7'/2 and #(7/2) + 1 are not very surprising. The number of votes
cast for each team in the statistical equilibrium is of course important, in that the few
votes cast for the lowest-ranked teams by design impact the number of votes cast for
each team they play, ensuring that strength of schedule is inherently incorporated.
However, the emphasis on highly-ranked teams means that a team can improve its
ranking by beating a highly-ranked team more than it might be penalized for losing to
a lower-ranked team. These round-robin examples then clearly call into question the
accuracy of the precise rankings of those middle teams and thus lead to questions about
the scheme as a whole. A system based only on first-place votes should presumably
be strongest in its ranking of the top teams, though we have no mathematical proof
that these walkers do so in any “optimal” sense. This motivates us to consider how the
random-walker rankings fare in comparison with the historical record.

5. RECENT HISTORY. The utility of a ranking algorithm lies in its performance in
the face of real data. Accordingly, we investigated college football rankings for each
season from 1970 to 2005, restricting our discussion here to 2001 and 2002, as these
seasons represent recent extreme situations in attempting to pick the top two teams
(see, for example, [1]). The 2003, 2004, and 2005 seasons are discussed on our web
page [16], where rankings for future seasons will also be maintained.

The only certainty in the 2001 pre-bowl rankings was that Miami belonged in the
National Championship Game, because it was the only undefeated team in Division
I-A. Indeed, both polls and all eight algorithms used by the BCS that year picked
Miami #1 going into the bowl games. That season’s controversy concerned Nebraska’s
selection as the #2 BCS team, narrowly surpassing BCS #3 Colorado despite Col-
orado’s late-season rout of Nebraska. The fact that BCS #4 Oregon had been ranked #2
in both polls was also mentioned on occasion. After the bowl games, in which Miami
defeated Nebraska and Oregon defeated Colorado, it was Oregon’s absence from the
championship game that became the centerpiece of national controversy. The random
walkers select Oregon #2 for p > .5 up to p =~ .62, above which Nebraska takes #2
in a narrow range up to p &~ .68. Above that value, the random walkers defy conven-
tional wisdom by selecting BCS #6 Tennessee as #2. In fact, they choose Tennessee
as #2 over the widest range of probabilities (see Figure 1a). This ranking is explained
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2001 pre-bowl 2002 pre-bowl
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(a) (b)
Figure 1. Pre-bowl rank orderings of teams by the expected populations of random walkers at different values
of the probability p of voting for the winner of a given game for (a) 2001 and (b) 2002.

in part by the fact that the simplest random-walking voter algorithm presented here
does not distinguish games based on the date played. Tennessee had been the most
likely team to be picked to face Miami until they lost the Southeastern Conference
(SEC) championship game on the final day before the BCS selections. Even with the
loss (because the date of that loss does not affect things here), the random walkers
congregate near Tennessee, in part because the SEC as a whole is highly ranked that
season. Indeed, in the limit as p — 1, Florida is ranked #3 and LSU is ranked #4, with
Oregon falling to #5 and both Nebraska and Colorado falling completely out of the
top ten. This SEC near-dominance is generated by a number of nearly-undefeated sub-
graphs: Tennessee (10-2) lost to Georgia and lost to LSU the second time they played
(in the SEC championship), Florida (9-2) lost to Auburn and Tennessee, and LSU (9-
3) lost to Mississippi, Florida, and to Tennessee in their first meeting. Not counting
games against each other, this trio of closely-linked teams had a collective 24-3 record
prior to the bowl games, with all three losses against SEC conference opponents, two
of whom were played multiple times by this group (Florida beat Georgia and LSU
beat Auburn). Those three losses came against teams who also had all but one of their
losses in the SEC (Auburn lost to Syracuse). Florida falls to #8 at smaller values of p
(closer to 1/2), and LSU is not even in the top ten for p below &~ .77. Nevertheless,
they continue to help Tennessee’s ranking.

In contrast, the BCS system worked virtually without controversy in selecting teams
for the National Championship Game at the end of the 2002 season, as there were pre-
cisely two undefeated teams, both from major conferences. Both polls picked Miami
and Ohio State as the top two teams, in agreement with six of the seven ranking algo-
rithms used that year. The only nonconformist was the New York Times ranking system,
which picked Miami and USC as the top two teams—the latter presumably in part due
to its difficult schedule. For p ~ 1/2, the random walkers also rank USC in the top
two based on the strength of its schedule (see Figure 1b), but they agree across most
values of p that the top two teams are Miami and Ohio State.

One can explore the differences between the 2001 and 2002 pre-bowl results further
by exploiting the statistical properties of expected vote totals to express a measure of
confidence in the resulting rankings. The Q.;, required to distinguish successfully
between the top rank-ordered pairs of teams, defined by (5) in section 2, is plotted
for the 2001 and 2002 pre-bowl rankings in Figure 2. In particular, we note that the
relative numbers of voters required to distinguish #1 from #2 in 2001 and #2 from #3 in
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Figure 2. Degree of confidence in the ordering of pairs of teams in the (a) 2001 and (b) 2002 pre-bowl
rankings, as quantified by 1/Qmin, Where Qi denotes the minimum number of independent random walkers
necessary to ensure that the standard deviation of the difference between the expected populations of two teams
is smaller than the expected difference (see equation (5)).

2002 are significantly smaller (indicating a higher degree of confidence in the chosen
ordering) than, in particular, the distinctions between #2 and #3 in 2001 or #1 and
#2 in 2002. One should, of course, be careful in applying this measure of confidence
too broadly, because the percentage of total votes that remain available to distinguish
#4 from #5 will in general be smaller than those available to distinguish #1 from #2.
Accordingly, direct comparisons of the same rank distinction across different years
are more reasonable. For example, observe the typically lower degree of confidence in
distinguishing #3 from #4 and #4 from #5 in 2001 (when Nebraska, Colorado, Oregon,
and Tennessee were all trying to lay claim to the #2 spot) compared with the situation
in 2002.
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Figure 3. Winning and losing teams plotted according to the 2001 pre-bowl rankings of each team at p = 0.8,
given by the expected fraction of random walkers populating (“voting for”) each team.

After seeing these results, we should discuss at least briefly which values of p might
yield good rankings. Perhaps neither the dominance of strength of schedule near p =
1/2 (as illustrated, for example, by USC in 2001) nor the emphasis on undefeated
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seasons near p = 1 (e.g., BYU in 1984) are appropriate. Rather, we might naively
argue that a balanced value of p is preferred.

Alternatively, we could consider various objectives for optimizing p. For instance,
Figure 3 shows the organization of the win-loss outcome of every game in the 2001
pre-bowl schedule according to the random walker populations determined with p =
0.8. The votes are not (of course) strictly ordered according to the winner and loser of
each individual game, but the winners have more votes on average. Instances where a
higher-ranked team has lost to a lower-ranked team are frequently referred to as “rank-
ing violations” and can be used to construct one measure of the quality of different
ranking systems (see the comparisons page maintained by Massey [15]). Additionally,
the goal of minimizing the number of such violations and determining rank order-
ings from the multitude of such nonunique minimizations can itself be used to define
ranking algorithms [5], [18]. An obvious optimization procedure here is to select p
to minimize the number of ranking violations. While we observe that this optimal p
varies from year to year, it frequently takes a value near the center of the allowed
interval. Other measures of the quality of the ranking may be naturally inspired by
Figure 3; for example, we might minimize the violations in another norm, such as one
giving their distance from nonviolation. Another approach based on logistic regres-
sion of a generalized version of the present ranking system has been implemented by
Kvam and Sokol [12] for college basketball, where the best p transition probabilities
include information about point spread and home-court advantage. Finally, we might
wonder whether some optimization would connect this class of “direct methods” [11]
to the more statistically-sophisticated maximum likelihood methods originally used
for paired comparisons in the pioneering works of Zermelo [24] or Bradley and Terry
[2]. Rather than continuing these lines of inquiry here, we instead focus our remaining
attention on trying to understand the connections between our biased random walkers
and the properties of the underlying networks.

6. NETWORK STRUCTURE. The voting automatons randomly walk on a graph
consisting of the Division I-A football teams (vertices) connected by the games played
between the teams (edges). We note that this is not the only ranking system motivated
by direct interest in the underlying network; indeed, while the random walkers here
provide rankings through their dynamics on the network, Park and Newman [19] have
developed a ranking system determined completely by the directed graph defined by
wins. Because the random walkers propagate in a strongly heterogeneous network
topology, it is important to try to understand how that topology affects the walkers’
behavior and the resulting rankings.

Each NCAA Division I-A football season consists of 650—-750 games between about
115 teams (119 in 2005). In every season since 1990, this graph becomes a single
connected component by the third or fourth week of the season (without counting faux
connections via the single “non-I-A” node that we include for simplicity). The relative
quickness in achieving a single connected component (after only about two hundred
games) results in part because schools typically play many of their nonconference
games at the beginning of a season. The degree of each vertex—that is, the number of
games played by each team—varies in a narrow range. Each vertex has between ten
and thirteen edges prior to the bowl games and between ten and fourteen connections
after the bowl games. The diameter of the graph, determined by counting the number
of edges along the longest geodesic path, is 4 in every post-bowl graph since 1970. We
also considered the local clustering coefficient C; for the ith team in the network (see
[21], [17]), given by
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number of triangles connected to vertex i

€))

number of triples centered on vertex i

Unsurprisingly, clustering coefficients provide one means of identifying the strong
heterogeneity of the network. Each conference typically has a different average local
clustering coefficient, which also varies from the coefficients computed for indepen-
dent teams such as Notre Dame and Navy.

Several other network properties can also be calculated (including average path
lengths and various notions of centrality and connectedness; see, for example, [17]),
but such computations do not necessarily help explain the random-walker statistics. An
important exception is the graph’s “community structure” [8], which indicates the hier-
archies present in the network and is useful for understanding the nature of the confer-
ence scheduling and the resulting effect on the random-walker statistics. We computed
community structure using the notion of “edge betweenness,” defined as the number
of geodesics that traverse each edge, using the algorithm given by [8]. Briefly, the edge
with the highest betweenness is removed from the graph, and the betweenness is re-
calculated for this modified graph to determine the next edge to remove; the process
is then repeated until no edges remain. The removal of some of these edges breaks a
connected component of the graph into two parts, grouping the network into a hierar-
chy of communities as the algorithm is iterated. Girvan and Newman [8] demonstrated
that their algorithm closely reproduced the predefined conference structure of the 2000
football schedule, and we found similar results for other years.

Using the 2001 season as an example, Figure 4 portrays the college football com-
munity structure. The conferences and their subdivisions are reasonably reconstructed
based on their relative strengths of community, and the tree (“dendrogram”) in the
figure indicates the relative closeness of different conferences and of the independent
teams. Note, for example, the close connections between Notre Dame, Navy, and the
Big East (from Virginia Tech counterclockwise to Miami (Florida)).

This community structure is intimately linked to the dynamics of the random-
walking voters, as the specific pairings of interconference games and the outcomes of
those games strongly influence the flow of voters into and out of the given conferences
and more general structures such as the divisions inside large conferences and larger
hierarchical groups of conferences. The 2001 pre-bowl community structure in Figure
4 is gray-scaled according to the average number of voters per team at each level of
the hierarchy (for p = 0.7). Such a plot indicates the relatively high vote counts given
to the SEC, Pacific-10 (Pac-10), and Big 12; it also shows the significantly smaller
average vote counts for Big East teams, despite Miami’s first-place standing.

We further quantify the importance of the relationships between conferences by di-
rectly measuring the effect of reversing the outcomes of individual games. Keeping
the games in the order in which their respective edges were removed in developing
the community structure, we measure the difference between the original voter pop-
ulations and the new populations calculated with the win-loss outcome of that single
game reversed. The dominant effect of such reversals is to change the rankings of the
two teams involved in that game, so we calculate the change to the global distribu-
tion of votes with the quantity ), 2k Vi |2, where the edge removed corresponds to
a game between teams j and k. Plotting this quantity (see Figure 5) versus the order
of the edge removed reveals a sharp transition in average magnitude between the first
approximately two hundred edges and those that follow. This corresponds roughly to
the number of edges removed in the community structure determination at which the
hierarchy breaks up into the different conferences; these first roughly two hundred
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Figure 4. Graphical depiction of the community structure of the 2001 pre-bowl network, with gray-scale
coding of the average votes per team for each community at p = 0.7.

edges removed are predominantly interconference games, whereas those that follow
are intraconference games.

7. DISCUSSION. We have developed a simply-defined ranking algorithm in which
random walkers adjust their “votes” for the best team on the network of teams con-
nected by their head-to-head games, with a single explicit parameter describing the
preference towards selecting the winner of a given game. We investigated the asymp-
totic behavior of this algorithm in the two extremes of the probability parameter, pay-
ing special attention to round-robin tournaments, and explored the results of the 2001
and 2002 NCAA Division I-A college football seasons in detail. More recent seasons
are discussed on our website [16]. Finally, we have connected the rankings to the un-
derlying network of games played by Division I-A teams, quantitatively demonstrating
the importance of interconference game outcomes and the relation to the community
structure of the graph.

Of course, many generalizations of the random-walker ranking algorithm described
here are possible, ranging from trivial redefinitions of the rate matrix D to fundamental

November 2007] RANDOM WALKER RANKING 773



10

10

Effect of reversal

-7 .
0 200 400 600

Order of edge removal

10

Figure 5. The effect of reversing the outcome of a single game played between teams j and k, quantified
by Zi#_k |v;> (for p = 0.7) and plotted versus the order of that game according to edge removal in the
community structure determination.

changes in the mathematical tools required to investigate the random-walking voters.
The simplest generalizations are those that modify the rate matrix D without changing
the independence of the random walkers themselves. For instance, one can readily
incorporate margin of victory, home-field advantage, and game date into the definition
of D by replacing the constant probability p of voting for the winner with a function
that includes these components (see, for example, [12]). The resulting transition rates
of walking each direction on a single edge are still defined by the outcome of the game
represented by that edge, and the associated linear algebra problem determines the
probability distribution of each state. It would be natural to make the probability of
going towards the winner along a given edge higher for a larger margin of victory or
for a game won on the road. However, incorporating any such qualitative assertions
into quantitative variations in the transition rates requires adding more parameters to
the ranking algorithm and determining reasonable values of those parameters, in stark
contrast to the minimalist philosophy espoused here.

Alternatively, each random walker can be assigned two votes instead of one. This
change is particularly sensible if the point is to select the two teams to play head-to-
head in the National Championship Game. We considered such rankings generated
from random walkers, each of which holds two equal votes (as opposed to a #1 vote
and a separate #2 vote), using the same probability parameter p, subject to the addi-
tional constraint that a given voter must cast the votes for two different teams. This
two-vote constrained random walk is most easily understood in terms of independent
random walks on the (significantly larger!) network in which each vertex represents a
possible pair of votes and the edges between vertices include games played between
teams representing one of the two votes, with the other vote held fixed. This again
immediately reduces to a linear algebra problem for the expected percentage of votes
garnered by each team, although it has much higher rank: 7(7T — 1)/2 for T teams.
Clearly, further increases in the number of votes given to each random walker would
quickly make the state space so large that solving the exact linear algebra problem
would no longer be computationally feasible.

As examples, we considered this two-vote generalization for pre-bowl rankings for
both 2001 and 2002. Our results were unremarkably similar to our single-vote rank-
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ings. In particular, in comparison with the single-vote 2001 case, Miami can (of course)
obtain only half the votes in the limit as p — 1 because of the constraint that each
walker casts the two votes for two different teams, leaving fifty percent of the votes
available to select a #2 team. That fifty percent becomes widely divided among the
available candidates, with Tennessee and Oregon getting the largest shares at roughly
five percent each. Meanwhile, this major change in the expected populations causes
only relatively small changes in the rank orderings, except at extreme values of p,
where Tennessee and the rest of the SEC do not fare quite as well here near p = 1 as
they do in the single-vote scheme (though Tennessee still maintains the #2 spot at most
values of p). At p = 0.75, the single-vote and two-vote systems agree on the same top
sixty teams in the 2001 pre-bowl rankings, save for swaps in the orderings of #19-20
and #48-49; at p = 0.9, the top twenty-five are identical; at p = 0.95, however, there
are switches in the orderings of #3-4, #5-6, and #9-10 (SEC teams Florida, LSU, and
Georgia all do better in the single-vote algorithm), while the rest of the top twenty-five
remains identical. Not unexpectedly, the 2002 two-vote rankings are very similar to
the single-vote values, with Miami and Ohio State splitting the votes in the limit as
p — 1. Even at p = 0.95, the top eighteen teams are identical except for a reversal in
the ordering of #6-7.

One can also consider generalizations that destroy the independence of individ-
ual random walkers. For example, voter decisions could be influenced by the number
of other walkers voting for each team in a head-to-head game. Whether they are in-
clined to follow the crowd or to try to be nonconformist, such dependence between
the random walkers makes the calculation of their aggregate behavior nonlinear and
removes most of our knowledge about the probability distributions of votes per team.
Another interesting generalization would be to weigh more strongly the effects of up-
sets by increasing the flow of votes towards a lower-ranked team that beats a team with
more votes. Of course, this flow increase might reverse the ordering of the two teams,
thereby removing the upset character and reducing the flow towards the winning team
of that game, so there may not even be a statistically-steady ordering of the two teams.
A similar complication occurs if one breaks the independence of the walkers by adding
a bonus for beating a team ranked in (for example) the top ten that reduces the prob-
ability of voting for the loser. This reduced flow towards the losing team could then
knock them out of the top ten, thereby causing the bonus to disappear, and allowing
the team to rise back into the top ten, and so on. Obviously, the study of any of these
interacting random walkers is significantly more difficult than the independent walkers
considered in this article.

As a last consideration, we return to our discussion in section 4 of crossing proba-
bilities p. for round-robin competition and the observation that p. can be very close
to 1/2 when a team with a worse record won its games against quality opponents,
such as the specific mixed ordering we considered. The random walkers then reward
a team more for its high-quality wins than they penalize it for its low-quality losses.
This issue can be easily corrected by introducing a new ranking according to the dif-
ference of expected vote populations obtained with parameter p (“first-place votes”
rewarding high-quality wins) and those obtained with 1 — p (“last-place votes” pe-
nalizing low-quality losses). For the specific mixed ordering considered in section 4
this “first-last” generalization gives p. 2 .77 for large T, while Monte Carlo searches
preliminarily suggest that p. may indeed be bounded away from 1/2 for these first-
last random walker rankings for round-robin tournaments. While this improvement is
mathematically more satisfying than the situation for the original “first-only” rankings,
the first-only and first-last rankings nevertheless generally agree on the top teams for
real football seasons. For instance, in the recently-concluded 2005 season these two
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pre-bowl rankings at p = 0.75 agree on the ordering of the top twelve teams except
for a #10-11 swap, with the revised (“first-last”) system giving a slightly smaller num-
ber of ranking violations than the first-only system (complete rankings are available
from [16]).

After eight seasons, the Bowl Championship Series remains as controversial as ever.
Even when the system yields an uncontroversial National Championship Game be-
cause two teams clearly separate themselves from the field (as in 2002 and 2005), the
BCS is still unable to escape controversy. The treatment of the so-called mid-major
(or “non-BCS”) conferences remains an important issue (see, for example, [4]), lead-
ing to a December 2005 Congressional hearing in a House Energy and Commerce
subcommittee [10]. We remain committed to the proposition that the use of algorith-
mic rankings for determining the college football postseason will only become widely
accepted when those rankings have been reasonably explained to the public. In that
context, the random walker rankings (and their first-last generalization) provide rea-
sonable ways to rank teams algorithmically with methods that can be easily explained
and broadly understood.
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