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Abstract

We investigate the application of mesoscopic response functions (MRFs) to characterise a large
set of networks of fungi and slime moulds grown under a wide variety of di↵erent experimental
treatments, including inter-species competition and attack by fungivores. We construct “structural
networks” by estimating cord conductances (which yield edge weights) from the experimental data,
and we construct “functional networks” by calculating edge weights based on how much nutrient
tra�c is predicted to occur on each edge. Both types of networks have the same topology, and
we compute MRFs for both families of networks to illustrate two di↵erent ways of constructing
taxonomies to group the biological networks into related clusters. Although both network taxonomies
generate intuitively sensible groupings of networks across species, treatments, and laboratories, we
find that clustering using the functional-network measure appears to give more parsimonious groups.
We argue that MRFs provide a useful quantitative measures of network behaviour that can help to
summarise an expanding set of increasingly complex experimental biological networks and to present
the information in an accessible form.
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Fungi are unusual multi-cellular macroscopic organisms: their entire growth form is
a living network of interconnected microscopic tubular cells (termed “hyphae”) that can
branch, fuse, or aggregate to form larger, visible structures (termed “cords”). The resulting
mycelial network has to transport nutrients from sites of acquisition to the growing tips to
fuel further exploration for new resources that exist with an unknown distribution in a fluc-
tuating, patchy, and competitive environment (Heaton et al., 2012). Additionally, mycelial
networks provide food for small grazing invertebrates, and they thus su↵er continuous
attack and damage (Crowther et al., 2012). Although most growth is out of sight in the soil
and leaf litter, this belies the essential role that fungi play in critical ecosystem services,
such as decomposition of organic matter and mineral nutrient recycling. Furthermore, the
influence of climate change, seasonal temperature shifts, and anthropogenic inputs are all
likely to have an impact on network organisation, foraging success, and outcome of multi-
species competitive interactions (A’Bear et al., 2013a; A’Bear et al., 2013b; Boddy et al.,
2014).

Because fungi do not have a centralised system to coordinate development, one can
posit from the diversity of recognisable network patterns that each fungal species uses a
(slightly) di↵erent set of local rules to continuously balance investment in growth, transport
e�ciency, and resilience that collectively maximise the long-term global success of the
organism. However, unlike most species, fungi have a highly plastic morphology with
few quantifiable traits. Thus, to date, most descriptions of fungal behaviour have relied on
relatively simple growth measures, coupled with qualitative descriptors, with no detailed
evaluation of subtle changes in growth form and network organisation. Constructing tax-
onomies of fungal networks thus has the potential to provide insights into adaptive fungal
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behaviour and to help elucidate the similarities and di↵erences among the underlying rules
that govern behaviour. As a fungus is essentially a living network, we describe the change
in fungal network architecture as network behaviour.

It is also relevant to compare fungal networks to the acellular slime mould, Physarum
polycephalum, which is a second type of network-forming organism and which is taxo-
nomically very distinct from fungi. The acellular slime mould is essentially a single giant
multi-nucleate animal cell. One can grow fungi and slime moulds in laboratories, and
it is consequently possible to expose them to a wide variety of experimental conditions
and species interactions, in multiple replicates, to generate a rich collection of networks
for analysis. Therefore, investigating such adaptive, self-organised networks — which are
honed by evolution — provides a fascinating opportunity to uncover underlying principles
of network organisation in a biological context, evaluate the relevance of network descrip-
tors that have been developed in related disciplines to evolved network behaviour, and
explore how much utility biologically-inspired algorithms have in other domains (Fricker
et al., 2009; Tero et al., 2010; Kunita et al., 2013).

In Fig. 1, we show time series of fungal growth for one species (Resinicium bicolor)
that tends to grow as a relatively sparse network [panel (A)] and a second species (Phane-
rochaete velutina) that forms more cross-links. For the latter, we illustrate the impact of
increasingly complex microcosms for which the level and positioning of resources are
both varied [panels (B) and (C)], resources become depleted and the networks shrink, in
both the presence and the absence of attack by mycophagous insects [panels (D) and (E)],
and networks are grown in competition with another species (Hypholoma fasciculare) both
with and without predation [panels (F) and (G)]. The variety of examples in Fig. 1 gives a
visual indication of the challenges facing biologists when trying to describe the variation
in network organisation, as the structural changes in these di↵erent scenarios can be rather
subtle.

We have just discussed network architecture, but we are also interested in the function of
the network in long-distance nutrient transport from sources (wood blocks) to sinks (grow-
ing hyphae at the foraging margin). In Fig. 2, we show a network formed by Phanerochaete
velutina growing from five wood-block inocula that are placed in a pentagonal arrangement
on a compressed black-sand substrate, in a similar arrangement to Fig. 1(C). The network
emerges [panel (A)] as cords fuse and are strengthened, or are recycled and disappear.
One can map functional flows in the network using radiotracers [panel (B)] to provide a
snapshot of nutrient transport [panel (C)]. One can extract the network architecture using
image analysis and determine edge weights according to conductance (Onnela et al., 2012;
Bebber et al., 2007; Heaton et al., 2012) to give a “structural network” [panel (D)] or
according to “path score” (PS) that indicates edge importance (Lee et al., 2014) to estimate
a “functional network” [panel (E)]. (See Sec. S1 in the Supplementary Text and Table for
the detailed definitions of the two types of networks.) Using either of the networks, one
generate three mesoscopic response functions [MRFs; panel (F)] (Onnela et al., 2012) to
examine network “community structure” at multiple scales. In Fig. 3, we show the resulting
taxonomy for 270 fungal networks based on structure [panel (A)] and function [panel (B)].
For more details on data and analyses, see the Supplementary Text and Table. We also
include the data for all networks as Supplementary Material.
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In both the structural and functional networks, the complexity of the wide range of exper-
imental conditions is reduced to a set of intuitively sensible clusters. We also observe that
the “functional” PS measure provides more harmonious groupings, which are clustered by
species, substrate, resource level, grazing, and interaction. We also observe that networks
that arise from some treatments are spread across the taxonomy. In particular, as large
networks of Phanerochaete velutina deplete their resources, they move from clusters with
well cross-linked networks to very sparse networks, similar to the normal growth pattern
of Resinicium bicolor.

Supplementary Material

We provide detailed descriptions of data, methodology, and results as Supplementary Text
and Table. We include the entire set of 270 networks as additional Supplementary Material
in the file fungal networks MATLAB.zip, which includes the sparse adjacency ma-
trices (denoted as A) and the coordinate matrices (the first and second columns represent
horizontal and vertical coordinates, respectively) of the node (denoted as coordinates)
in Matlab format. We use the codes in Table S1 in the Supplementary Text and Table to
name the files, and the folders Conductance and PathScore, respectively, contain the
conductance-based and PS-based edge weights. We also provide the complete list of fun-
gal networks as a spreadsheet file (list of fungal networks.xlsx) in Microsoft
Excel format.
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Fig. 1. (A) Growth of Resinicium bicolor on soil as a relatively sparse network. (B)

Growth of Phanerochaete velutina on black sand with an additional set of four wood-
block resources. (C) Network formation in Phanerochaete velutina over 30 days on a
compressed black-sand substrate from a pentagonal arrangement of wood-block inocula.
(D) Large microcosm (57 mm ⇥ 57 mm) of Phanerochaete velutina supplemented with
four additional resources. The network begins to regress as it consumes the resources.
(E) Similar experimental microscosm to (D), except that grazing insects were added on
day 49. (F) Phanerochaete velutina growing in competition with Hypholoma fasciculare.
(G) Phanerochaete velutina growing in competition with Hypholoma fasciculare in the
presence of grazing insects. [Each scale bar (see the left panels) represents 50 mm, and the
upper right corner of each panel gives the amount of time in days.]
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Fig. 2. (A) One of the fungal networks formed by Phanerochaete velutina after 30 days of
growth across a compressed black-sand substrate from a pentagonal arrangement of wood-
block inocula. (B) Path of radiolabeled nutrient (14C-amino-isobutyrate) added at 30 days
and imaged using photon-counting scintillation imaging for 12 hours. (C) Merged overlay
of panels (A) and (B) to highlight the path that is followed by the radiolabel. (D) We colour
the edges of the manually-digitised network according to the logarithm of the conductance
values. Edge thickness represents cord thickness. (E) We colour the edges according to the
path score (PS) values of the fungal network. (F) MRF curves for conductance-based and
PS-based weights. We show MRF curves for e↵ective energy He↵ , e↵ective entropy S e↵ ,
and e↵ective number of communities ⌘e↵ . See (Onnela et al., 2012) for details on MRFs,
and note that the energy is proportional to the negative of optimised modularity. For the
MRF analysis, we remove nodes with degree k = 2, and we adjust the weights of the edges
that connect the remaining nodes to include the values for each k = 2 segment. [The edges
in panels (D) and (E) include nodes with degree 2, as they are needed to trace the curvature
of the cords.]
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Fig. 3. Taxonomies of 270 fungal (and slime-mould) networks determined using (A)

conductance G and (B) (next page) PS values (Lee et al., 2014) as the edge weights. We
produced the dendrogram that represents this taxonomy using an MRF analysis (Onnela
et al., 2012), where we applied average linkage clustering (Newman, 2010) to the MRF-
distance from principal component analysis of the three di↵erent MRFs (e↵ective energy,
e↵ective energy, and e↵ective number of communities) (Onnela et al., 2012). We used the
same methodology (including the determination of community structure using modularity
optimisation with a resolution parameter) as in (Onnela et al., 2012). See Table S1 in
the Supplementary Text and Table for the species abbreviations; the levels of substrate,
resources, and grazing; and a discussion of the numbered branching points. At the bottom
of the taxonomies, we also show the logarithms of number of nodes N, number of edges
M, and the edge density ⇢ = 2M/[N(N � 1)]. We label the main branch points in each
dendrogram in parentheses. (Note that “branches” in a fungal network are di↵erent from
“branches” in a taxonomy. It is standard to use such terminology in both contexts.)
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S1. DATA AND METHODS

To make progress in the study of fungal networks, it is im-
portant to develop tools to characterise their structure, their
function, and how they develop over time and using di↵er-
ent treatments. There is a long history of qualitative descrip-
tion of fungal networks that dates back to the seminal work
of Buller in the 1930s (see, e.g., [3]). More recently, network
characterisations have been based on translating a mycelial
image to a planar, weighted, undirected graph [1, 6, 8]. In
such characterisations, the nodes are located at hyphal tips,
branch points, and anastomoses (i.e., hyphal fusions). The
edges represent cords, and their weights are determined from
the Euclidean length (L) and radius (r) of each cord combined
either as (1) the cylindrical volume V = ⇡r2L to represent the
biological “cost” of the cord or (2) the predicted conductance
G = r2/L. The conductance assumes that the cords are bun-
dles of equally-sized vessels, so that the aggregate conduc-
tance scales with the cross-sectional area of the whole cord
(rather than a single vessel, in which case the conductance
would scale with r4 for Pouiseille flow).1

In the present paper, we refer to the above network repre-
sentations as structural networks. Simple network measures,
such as notions of meshedness (for planar networks), cluster-
ing coe�cients, and betweenness centrality, have been calcu-
lated from graph representations of fungal networks [1]. How-
ever, the computation of simple diagnostics has not been able
to capture the subtle di↵erences in spatial structure between
species or in the same species when they are responding to
di↵erent experimental conditions [8]. Although such features
are hard to describe quantitatively, human observers can see
them qualitatively.

Detailed measurements and modelling have been used to
experimentally define development of network architecture
over time, predict the flow of water and nutrients through the
resulting empirical network using an advection and di↵usion
model, and compare model output with experimentally mea-
sured radiolabel distributions used to track the actual nutrient
movement [7, 8]. Although such an approach has revealed
good correlations between growth-induced fluid flows and nu-

1 Note that [15] used the cylindrical volume V = ⇡r2L for the edge weights
in fungal networks, although the authors of that paper mistakenly wrote
that they used conductance.

trient transport, and one can even see hints of the local rules
that optimise behaviour, it is too technically demanding and
costly to be used as a routine analysis of network behaviour
across multiple data sets. Other approaches are thus neces-
sary to compare the structures and function of a large set of
fungal species or the same species over time and in di↵erent
experimental conditions.

In a recent paper [15], two of us (and our coauthors) il-
lustrated that examining community structure of fungal net-
works using a mesoscopic response function (MRF) provides
biologically-sensible clusterings of di↵erent species and de-
velopmental stages for a particular species. In the present
paper, we explore the utility of such community-based clas-
sification using a much larger set of fungal networks that in-
cludes a wide variety of di↵erent developmental stages, nu-
trient regimes, growth substrates, competition, and levels of
predation. We also examine the di↵erence in classification
based on a structural view of such networks that uses only the
predicted conductance G of each cord to one that is based on
a predicted functional view of the importance of each cord for
transport. For the latter, we calculate the weight of each cord
using a “path score”, which is a diagnostic (see the definition
below) that measures the importance of an edge for transport
of nutrients in a network in a way that is more nuanced than
standard measures of betweenness centrality [12].

The computation of path scores also highlights core-
periphery structures in fungal networks that are based on
transport properties rather than on the usual density-based no-
tions of such structures [4]. In a fungal (or slime-mould)
network, we expect core cords to highlight the dense parts
of the network near the inoculum (i.e., source material for a
new culture) or in parts that connect to additional resources,
whereas the periphery could correspond to the foraging mar-
gin. Transport-based measures of core-periphery structure for
both nodes and edges in networks were recently investigated
in a wide variety of networks and using di↵erent transporta-
tion strategies (e.g., both geodesics and random walks) [12].
(See [13] for related theoretical work.) Because one of the pri-
mary predicted functions of fungal networks is nutrient trans-
port, it is more appropriate to examine core versus peripheral
edges (i.e., cords) rather than nodes.

As discussed in [12], we quantify a transport-based mea-
sure of “coreness” called the path score (PS) for each edge by
examining which cords appear most often on “backup paths”
if any particular cord is broken. This measure thereby incor-
porates elements of both betweenness centrality and network
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resilience. We expect that core edges in a network should
occur more frequently than peripheral edges in short backup
paths. One can define path scores for both directed and undi-
rected networks and for both weighted and unweighted net-
works. We treat the networks that we construct from our fun-
gal systems as weighted and undirected.

We denote the set of edges by E = {( j, k)| node j is adjacent
to node k} and the number of edges by M = |E|. The PS for
edge e is defined by

PS(e) =
1
M

X

( j,k)2E

X

{p jk}
� jek[E \ ( j, k)] , (S1)

where � jek[E \ ( j, k)] = 1/|{p jk}| if edge e is in the set {p jk}
that consists of “optimal backup paths” from node j to node k
(where we stress that the edge ( j, k) is removed from E) and
� jek[E \ ( j, k)] = 0 otherwise. Note that a notion of core-
ness based on the response to node removal was used in [19]
in the context of closeness centrality rather than betweenness
centrality.

To determine an optimal path between nodes i and j, we
find the backup path pb(i j) that consists of the set of con-
nected edges between i and j that minimises the sum of the
resistances,

P
(k,l)2pb(i j) Rkl, for all edges (k, l) of the network

in which the edge ei j := (i, j) has been removed. The resis-
tance of edge (k, l) is Rkl = 1/Gkl, where the conductance is
Gkl = r2/L, the quantity r is the radius of a cord, and L is
the length of edge (k, l). We set Rkl = 0 (instead of Rkl = 1)
when an edge is removed because the edge simply does not ex-
ist. To capture a functional view of the fungal networks (i.e.,
to obtain so-called functional networks), we also construct
weighted networks in which we preserve topology but use PS
values instead of conductance values as the edge weights.

In Fig. 2 of the main text, we show a network formed by
Phanerochaete velutina growing from five wood-block inoc-
ula that are placed in a pentagonal arrangement on a com-
pressed black-sand substrate. The fungal network that forms
has a relatively densely interconnected core and relatively
tree-like foraging branches on the periphery. Adding a ra-
diolabel to one of the wood blocks and subsequently doing
photon-counting scintillation imaging (PCSI) provides a snap-
shot of how nutrients are transported at that particular instant
through some of the core cords to a second wood block and
then outwards to part of the network periphery. The PS val-
ues on the edges of a fungal network reflect the actual move-
ment path in the region of the colony in which radiolabel was
translocated, suggesting that the PS values capture some as-
pects of real nutrient movement in fungal networks. However,
there is not a simple correspondence between PS values and
observed nutrient transport, as there are cords with high PS
values that could have been utilised to reach the neighbour-
ing wood block on the left even though there is no detectable
radiolabel translocation over the 12-hour time period of the
measurement.

S2. RESULTS AND DISCUSSION

To compare the properties of the various structural and
functional networks, we produce a taxonomy of the fungal
networks from MRFs of each network [15] that highlight
mesoscale “community structure” [5, 16]. In network terms,
communities are densely connected internally, and there are
sparse connections between communities relative to a null
model. To identify community structure, we optimise a multi-
resolution version of the modularity quality function. We use
the Newman–Girvan null model augmented by a resolution
parameter and examine communities of di↵erent size scales
by tuning that parameter [14, 17]. For each network, we ob-
tain curves for several scaled quantities (number of communi-
ties, modularity, and entropy) as a function of the resolution
parameter. These diagnostics yield a mesoscale fingerprint
for each network. Two networks are close to each other in
the taxonomy if their MRF curves have similar shapes to each
other. (See [15] for details.) We thereby construct two tax-
onomies — one for the structural networks and another for
the functional networks — that give a pair of “family trees”
that describe how closely the various networks are related in
the form of a dendrogram.

In Fig. 3 of the main text, we show the resulting dendro-
grams for 270 fungal networks based on structure and func-
tion. (We include the data for all networks as Supplementary
Material.) Recall that the structural and functional networks
have the same topologies, but their edge weights are di↵erent:
the weights are given by estimated conductance values for the
structural networks and by PS values for the functional net-
works. For both the structural and functional fungal networks,
the simplest network measures for each leaf (e.g., number of
nodes, number of edges, and node density) only reveal a lim-
ited correlation with the major branches in the dendrogram.
This suggests that the classification is not trivially dominated
by the size of each network and also that it is necessary to go
beyond the computation of only such simple measures to pro-
duce a reasonable taxonomy. When we code leaves accord-
ing to the values of the major attributes in each experiment
(species, substrate, time point, resource level, and grazing in-
tensity), we observe that groups with similar attributes begin
to emerge and are visible as substantial contiguous blocks in
the dendrograms. Nevertheless, we also observe that each
attribute is not uniquely associated with one group, which
suggests that the classifications are again not a trivial sepa-
ration by any one of these attributes (e.g., species) alone. This
suggests, in particular, that they also reflect similarity in the
topologies and weights (i.e., geometries) of the networks.

The Pearson correlation coe�cient between the MRF dis-
tance values (see Appendix B 2 of [15]) for the structural and
functional network sets is 0.418. (The p-value is less than
10�308, which is the minimum value of floating-point variables
in Python.) In contrast, the mean correlation coe�cient from
100 uniform-at-random permutations of the MRF distance
values is 2.12 ⇥ 10�5, with a standard deviation 3.67 ⇥ 10�3.
We infer that there is some degree of correlation between the
weights in the structural and functional networks, although
they clearly capture di↵erent properties of the fungi.
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Supplementary Table S1: Species and experimental conditions used in Fig. 3 of the main text.

Attribute Code/Level (Colour) Descriptions
Species Pp Physarum polycephalum: an acellular slime mould that forms

networks but is taxonomically distinct from fungi
Pv Phanerochaete velutina: a foraging saprotrophic woodland fungus

that forms reasonably dense networks
Ag Agrocybe gibberosa: a foraging saprotrophic fungus that is isolated

from garden compost and forms dense networks
Pi Phallus impudicus: forms regular, highly cross-linked networks

but grows relatively slowly
Rb Resinicium bicolor: forages rapidly with a sparse network

that is not very cross-linked
Sc Strophularia caerulea: a foraging saprotrophic woodland fungus

that is isolated from birch woodland and forms dense networks
resources I/min (blue) Inoculum only

I+R/level 1 Initial colonised wood block (inoculum, I) plus a single additional
wood-block resource (R)

I+4 ⇥ R/level 2 Inoculum plus four additional wood-block resources
(positioned as a cross)

I+4 ⇥ R/level 2 Inoculum plus four wood-block resources placed together
5 ⇥ I/level 3 Five inocula placed in a pentagonal arrangement
Tokyo/level 4 Pattern of oat flakes placed to match the major cities around Tokyo
UK/max (red) Pattern of oat flakes placed to match the major cities in the UK

grazing U/min (blue) Ungrazed
Fc/level 1 Folsomia candida: a small soil arthropod that grazes on fungal

networks with low density (10 per microcosm) [18]
Fc or Fc-M/level 2 Fc with medium density (20 per microcosm)
Fc-H/max (red) Fc with high density (40 per microcosm)

substrate A/blue Agar: used as a growth medium (substrate) for
Physarum polycephalum

B/white Black sand: a nutrient-free substrate used for radiolabel-imaging
experiments

S/red Compressed, non-sterile soil that closely represents the natural
growth environment for the fungi

interaction N/blue no interaction: fungal species grown on its own
Hf/red competition with Hypholoma fasciculare

A key challenge is to try to interpret the taxonomic group-
ings from a biological perspective to obtain insights that can-
not be captured from qualitative descriptions of each network,
particularly when making comparisons between di↵erent ex-
periments from di↵erent laboratories over an extended time
period. To do this, we follow the major branch points of the
dendrograms in a top-down analysis of each taxonomy. We
label branches in the dendrograms in the order in which they
occur in the taxonomic hierarchies. In the conductance-based
classification [see Fig. 3(A) of the main text], a small group
splits o↵ at a high level (1, 2). This group then separates into
two parts: one contains Resinicium bicolor (Rb) with some
grazing (5), and the other has Phanerochaete velutina (Pv)
grown on black sand (4). The other main branch splits to
give two clusters (3), but the underlying rationale is not im-
mediately obvious, as both parts include a mixture of di↵erent
conditions of the attributes (see Table S1). The clearest sub-
sequent groupings emerge as clusters of Rb with grazing at
earlier time points (6, 9) and Pv on black sand with high re-
sources (10).

Following the same top-down approach on the PS-based
taxonomy [see Fig. 3(B) of the main text] provides groupings

that are easier to interpret than the ones from the conductance-
based taxonomy. The first set of high-level branch points (1,
2, 5, and 6) all separate clades of Rb, where subsequent divi-
sions reflect the level of grazing. Branch point (4) separates
a group of Pv on black sand with relatively high levels of re-
source, and branch point (7) yields a single Pv network from
one of the large, shrinking network sequences. Interestingly,
these networks are interspersed across the whole dendrogram.
(See the isolated pink and red bars in the “ln(time)” bar.) Dur-
ing development, these large networks initially cluster with
other well-connected networks, but they progressively shift
towards clustering better with sparser networks as the network
regresses until they eventually group with the Rb networks.
The other arm of branch point (7) leads to a large grouping
containing a set of well defined clusters. Branch point (8)
splits o↵ a small group with both Rb and Pv represented, but
there is no clear common linkage. Conversely, branch point
(9) yields a large group that is composed predominantly of Pv
on black sand (with subgroups based on resource levels) and
a few interspersed large networks, followed by a well-defined
set of groups lying under branch point (10). The first clus-
ter contains most of the Pi and Pp networks (although a few
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such networks are located in the adjacent clusters), and the
second cluster has sequential groups of Pv with high levels
of resource but little grazing, a group with both grazing and
species interaction, and a group with just species interaction.

It is not surprising that the structural and functional tax-
onomies both contain fine-grained complexity in their termi-
nal groups, as several of the attributes have opposing e↵ects
that depend on the developmental age of each species and the
combination of treatments. For example, as a fungal network
grows, it tends to change from a branching tree to a more
highly cross-linked network through hyphal and cord fusions
that connect to each other. The core parts of a fungal net-
work subsequently start to thin out as it explores further until
resources run out; the network progressively recycles more
cords and again becomes a very sparse network [1, 2].

Some of the clearest clusters in the PS-based taxonomy cor-
relate with substrate, as there are distinct branches in the tax-
onomy that consist predominantly of Pv grown on black sand.
Thus, even though Pv is well-represented in the dendrogram,
there is a distinguishable e↵ect of substrate on network archi-
tecture that is not immediately obvious to a human observer.
Likewise, it is surprising that clear signatures are recovered in
the PS dendrogram that correlate with resource level, grazing,
and interactions with other species. Such observations under-
score the fact that taxonomical groupings of fungal networks
that are derived through network analysis can be of consid-
erable assistance to biologists in their attempts to capture the
impact of treatment combinations on network behaviour. The
construction and analysis of network taxonomies also allow
objective groupings of networks across species, treatments,
and laboratory settings.

Constructing structural and functional taxonomies has the
potential to be crucial for the development of increased under-
standing of subtle behavioural traits in biological networks.

This type of approach should become more important as more
networks are included in a classification — particularly if
at least some have associated experimentally validated func-
tional attributes [7–9]. Recently developed sophisticated net-
work extraction algorithms [11] can dramatically improve the
speed, accuracy, and level of detail of fungal networks. They
also facilitate automated, high-throughput analysis of fungal
network images, which can in turn be used to construct a
richly detailed set of networks that are ripe for study via struc-
tural and functional network taxonomies.

S3. CONCLUSIONS

We calculated MRFs for a large set of networks of fungi
and slime moulds. We considered two types of networks:
(1) “structural” networks in which we calculate edge weights
based on conductance values and (2) “functional” networks
in which we calculate edge weights based on an estimate of
how important edges are for the transport of nutrients. Cal-
culating MRFs for the fungal and slime-mould networks in
each of these two situations makes it possible to construct tax-
onomies and thereby compare large sets of fungal networks to
each other. We illustrated that network taxonomies allow ob-
jective groupings of networks across species, treatments, and
laboratories. The classification provides fine-grained structure
that recovers the subtle interplay between species, substrate,
resource level, grazing pressure, and inter-species competi-
tion. We also observed that networks undergoing major tran-
sitions, such as regressing from a fully connected meshwork
to a sparse tree as resources run out, are dispersed across the
tree. This reflects the shift in their functional behaviour amidst
such transitions.
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