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Limit order books (LOBs) match buyers and sellers in more than half of the world’s financial markets.
This survey highlights the insights that have emerged from the wealth of empirical and theoretical
studies of LOBs. We examine the findings reported by statistical analyses of historical LOB data
and discuss how several LOB models provide insight into certain aspects of the mechanism. We
also illustrate that many such models poorly resemble real LOBs and that several well-established
empirical facts have yet to be reproduced satisfactorily. Finally, we identify several key unresolved
questions about LOBs.
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1. Introduction

More than half of the markets in today’s highly competitive and
relentlessly fast-paced financial world now use a limit order
book (LOB) mechanism to facilitate trade (Roşu 2009). The
Helsinki, Hong Kong, Shenzhen, Swiss, Tokyo, Toronto, and
Vancouver Stock Exchanges, together with Euronext and the
Australian Securities Exchange, all now operate as pure LOBs
(Luckock 2001, Gu et al. 2008b); the New York Stock Ex-
change (NYSE), NASDAQ, and the London Stock Exchange
(LSE) (Cont et al. 2010) all operate a bespoke hybrid LOB
system. Thanks to technological advances, traders worldwide
have real-time access to the current LOB, providing buyers
and sellers alike ‘the ultimate microscopic level of description’
(Bouchaud et al. 2002).

In an LOB, complicated global phenomena emerge as a
result of the local interactions between many heterogeneous
agents when the system throughput becomes sufficiently large.
This makes an LOB an example of a complex system (Mitchell
2009). The unusually rich, detailed, and high-quality historic
data from LOBs provides a suitable testing ground for theo-
ries about well-established statistical regularities common to
a wide range of markets (Cont 2001, Farmer and Lillo 2004,
Bouchaud et al. 2009), as well as for popular ideas in the
complex systems literature such as universality, scaling, and
emergence.

The many practical advantages to understanding LOB
dynamics include: gaining clearer insight into how best to
act in given market situations (Harris and Hasbrouck 1996);
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optimal order execution strategies (Obizhaeva and Wang 2013);
market impact minimization (Eisler et al. 2012); designing bet-
ter electronic trading algorithms (Engle et al. 2006); and as-
sessing market stability (Kirilenko et al. 2011). In this survey,
we discuss some of the key ideas that have emerged from
the analysis and modelling of LOBs in recent years, and we
highlight the strengths and limitations of existing LOB models.

Investigations of LOBs have taken a variety of starting points,
drawing on ideas from economics, physics, mathematics, statis-
tics, and psychology. Unsurprisingly, there is no clear con-
sensus on the best approach. This point is exemplified by the
contrast between the approach normally taken in the economics
literature, in which models focus on the behaviour of individual
traders and present LOBs as sequential games (Parlour 1998,
Foucault 1999, Roşu 2009), with the approach normally taken
in the physics literature, in which order flows are treated as
random and techniques from statistical mechanics are used
to explore the resulting dynamics (Challet and Stinchcombe
2001, Smith et al. 2003, Cont et al. 2010). In the present paper,
we discuss developments in both the economics and physics
literatures, and we emphasize aspects of LOBs that are most
relevant to practitioners.

Several other survey articles focus on particular aspects
of LOBs. Friedman (2005) reviewed early studies of dou-
ble auction style trading, of which LOBs are an example.
Parlour and Seppi (2008) addressed the economic and theoret-
ical aspects of LOB trading. Bouchaud et al. (2009) assessed
the current understanding of price formation in LOBs.
Chakraborti et al. (2011a, 2011b) examined the role of econo-
physics in understanding LOB behaviour. In the present survey,

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [t

he
 B

od
le

ia
n 

Li
br

ar
ie

s o
f t

he
 U

ni
ve

rs
ity

 o
f O

xf
or

d]
 a

t 1
6:

00
 1

7 
D

ec
em

be
r 2

01
3 



1710 M. D. Gould et al.

we note the similarities and differences between several em-
pirical studies of historical LOB data, discuss LOB models
from both the physics and economics literatures, highlight
several modelling assumptions that are not well-supported by
the empirical findings, and identify several key unresolved
questions.

The remainder of the survey is organized as follows. In
Section 2, we give formal definitions related to LOBs and for-
mulate a mathematically precise description of LOB trading.
In Section 3, we discuss some practical aspects of trading via
LOBs and examine the difficulties that arise in quantifying
them. In Section 4, we examine the important role of empirical
studies of LOBs, highlighting both consensus and disagree-
ment within the literature. We examine a selection of models
in Section 5. In Section 6, we discuss key unresolved problems
related to LOBs. We conclude in Section 7.

2. A mathematical description of an LOB

In this section, we formulate a precise description of trading
that is common to most LOB markets. Of course, some individ-
ual exchanges and trading platforms operate slight variations of
these core principles. Harris (2003) provided a comprehensive
review of specific details governing particular exchanges.

2.1. Preliminaries

Before LOBs grew in popularity, most financial trades took
place in quote-driven marketplaces, in which a handful of large
market makers centralize buy and sell orders by publishing the
prices at which they are willing to buy and sell the traded
asset. The market makers set their sell price higher than their
buy price in order to earn a profit in exchange for providing
liquidity† to the market, for taking on the risk of acquiring
an undesirable inventory position, and for being exposed to
possible adverse selection (i.e. encountering other traders who
have better information about the value of the asset and who can
therefore make a profit by buying or selling, often repeatedly,
with the market maker (Parlour and Seppi 2008)). The only
prices available to other traders who want to buy or sell the
asset are those made public by the market makers, and the only
action available to such traders is to buy or sell at one of the
market makers’ prices. Ticket touts exemplify a quote-driven
market in action.

An LOB is much more flexible because every trader has the
option of posting buy (respectively, sell) orders.

Definition An order x = (px ,ωx , tx ) submitted at time tx
with price px and size ωx > 0 (respectively, ωx < 0) is a
commitment to sell (respectively, buy) up to |ωx | units of the
traded asset at a price no less than (respectively, no greater
than) px .

We introduce the vector notation x = (px ,ωx , tx ) because
it allows explicit calculation of the priority (see Section 3.4)
of any order at any time.

†Liquidity is difficult to define formally. Kyle (1985) identified the
three key properties of a liquid market to be tightness (‘the cost of
turning around a position over a short period of time’), depth (‘the
size of an order-flow innovation required to change prices a given
amount’), and resiliency (‘the speed with which prices recover from
a random, uninformative shock’).

For a given LOB, the units of order size and price are set as
follows.

Definition The lot size σ of an LOB is the smallest amount of
the asset that can be traded within it. All orders‡ must arrive
with a size ωx ∈ {±kσ |k = 1, 2, . . .}.
Definition The tick size π of an LOB is the smallest per-
missible price interval between different orders within it. All
orders must arrive with a price that is specified to the accuracy
of π .

For example, if π = $0.00001, then the largest permissible
order price that is strictly less than $1.00 is $0.99999, and all
orders must be submitted at a price with exactly five decimal
places.

Definition The lot size σ and tick size π of an LOB are
collectively called its resolution parameters.

When a buy (respectively, sell) order x is submitted, an
LOB’s trade-matching algorithm checks whether it is possible
to match x to some other previously submitted sell (respec-
tively, buy) order. If so, the matching occurs immediately.
If not, x becomes active, and it remains active until either
it becomes matched to an incoming sell (respectively, buy)
order or it is cancelled. Cancellation usually occurs because
the owner of an order no longer wishes to offer a trade at the
stated price, but rules governing a market can also lead to the
cancellation of active orders. For example, on the electronic
trading platform Hotspot FX, all active orders are cancelled at
5pm EST each day to prevent an overly large accumulation of
active orders over time (Knight-Hotspot 2013).

It is precisely the active orders in a market that make up an
LOB:

Definition An LOB L(t) is the set of all active orders in a
market at time t.

The evolution of an LOB L(t) is a càdlàg process, i.e. for a
limit order x = (px ,ωx , tx ) that becomes active upon arrival,
it holds that x ∈ L(tx ), x /∈ limt ′↑tx L(t ′). The active orders
in an LOB L(t) can be partitioned into the set of active buy
orders B(t), for which ωx < 0, and the set of active sell orders
A(t), for which ωx > 0. An LOB can then be considered as
a set of queues, each of which consists of active buy or sell
orders at a specified price.

Definition The bid-side depth available at price p and at time
t is

nb(p, t) :=
∑

{x∈B(t)|px =p}
ωx . (1)

The ask-side depth available at price p and at time t , denoted
na(p, t), is defined similarly using A(t).

The depth available is often stated in multiples of the lot size.
Because ωx < 0 for buy orders and ωx > 0 for sell orders, it
follows that nb(p, t) ≤ 0 and na(p, t) ≥ 0 for all prices p.

‡In some markets, there are two lot-size parameters: a minimum size
σ and an increment ε. In such markets, all orders must arrive with
a size ωx ∈ {±(σ + kε)|k = 0, 1, 2, . . .}. For simplicity, we assume
σ = ε.
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Limit order books 1711

Definition The bid-side depth profile at time t is the set of all
ordered pairs

(
p, nb (p, t)

)
. The ask-side depth profile at time

t is the set of all ordered pairs (p, na (p, t)).

Definition The mean bid-side depth available at price p
between times t1 and t2 is

nb(p, t1, t2) := 1
t2 − t1

∫ t2

t1
nb(p, t)dt. (2)

The mean ask-side depth available at price p between times
t1 and t2, denoted na(p, t1, t2), is defined similarly using the
ask-side depth available.

The terms bid price, ask price, mid price, and bid-ask spread
are common to much of the finance literature and can be made
specific in the context of an LOB.

Definition The bid price at time t is the highest stated price
among active buy orders at time t,

b(t) := max
x∈B(t)

px . (3)

The ask price at time t is the lowest stated price among active
sell orders at time t,

a(t) := min
x∈A(t)

px . (4)

Definition The bid-ask spread at time t is s(t) := a(t)−b(t).

Definition The mid price at time t is m(t) := [a(t)+b(t)] /2.

In an LOB, b(t) is the highest price at which it is immediately
possible to sell at least the lot size of the traded asset at time t ,
and a(t) is the lowest price at which it is immediately possible
to buy at least the lot size of the traded asset at time t . It is
sometimes helpful to consider prices relative to b(t) and a(t).†

Definition For a given price p, the bid-relative price is
δb(p) := b(t) − p and the ask-relative price is δa(p) :=
p − a(t).

Observe the difference in signs between the two definitions:
δb(p) measures how much smaller p is than b(t) and δa(p)

measures how much larger p is than a(t).
It is often desirable to compare orders on the bid side and

the ask side of an LOB. In these cases, the concept of a single
relative price of an order is useful.

Definition For a given order x = (px ,ωx , tx ), the relative
price of the order is

δx :=
{

δb(px ), if the order is a buy order,
δa(px ), if the order is a sell order.

(5)

Because b(t) and a(t) vary, it is rarely illuminating to con-
sider the depth available at a specific price over time. However,
relative pricing provides a useful alternative.

Definition The bid-side depth available at relative price p
and at time t is

N b(p, t) :=
∑

{x∈B(t)|δx =p}
ωx . (6)

†Many different naming and sign conventions are used by different
authors to describe slightly different definitions of relative price.
We introduce an explicit distinction between bid-relative price and
ask-relative price to avoid potential confusion.

The ask-side depth available at relative price p and at time t ,
denoted N a(p, t), is defined similarly using A(t).

Definition The bid-side relative depth profile at time t is
the set of all ordered pairs

(
p, N b (p, t)

)
. The ask-side rel-

ative depth profile at time t is the set of all ordered pairs
(p, N a (p, t)).

Definition The mean bid-side depth available at relative price
p between times t1 and t2 is

N
b
(p, t1, t2) := 1

t2 − t1

∫ t2

t1
N b(p, t)dt. (7)

The mean ask-side depth available at relative price p between
times t1 and t2, denoted N

a
(p, t1, t2), is defined similarly using

the ask-side relative depth available.

Definition The mean bid-side relative depth profile between
times t1 and t2 is the set of all ordered pairs (p, N

b
(p, t1, t2)).

The mean ask-side relative depth profile between times t1 and
t2 is the set of all ordered pairs (p, N

a
(p, t1, t2)).

Most traders assess the state of L(t) via the relative depth
profile, and several studies have concluded that order
arrival rates depend on relative prices rather than actual
prices (see, e.g. Biais et al. (1995), Bouchaud et al. (2002),
Potters and Bouchaud (2003) and Zovko and Farmer (2002)).
However, relative depth profiles provide no information about
the absolute prices at which trades occur. Additionally, they do
not contain information about the bid-ask spread or mid price,
so it is common to consider the relative depth profiles and b(t)
and a(t) simultaneously to obtain a complete picture of the
temporal evolution of an LOB.

Figure 1 shows a schematic of an LOB at some instant in
time, illustrating the definitions in this section. The horizontal
lines within the blocks at each price level denote how the depth
available at that price is composed of different active orders.

Time series of prices arise often during the study of LOBs.
As discussed in Section 4.7, it is a recurring theme that the
behaviour of such a time series depends significantly on how it

Figure 1. Schematic of an LOB.
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1712 M. D. Gould et al.

Figure 2. An example LOB.

is sampled. For example, consider the time series m(t1), . . . ,
m(tk), for some times t1, . . . , tk .

• When the ti are spaced regularly in time, with τ seconds
between successive samplings, such a time series is said
to be sampled on a τ -second timescale.

• When the ti are chosen to correspond to arrivals of
orders, the ti may be spaced irregularly in time. Such a
time series is said to be sampled on an event-by-event
timescale.

• When the ti are chosen to correspond to trades (i.e.
matchings in an LOB), the ti may also be spaced irreg-
ularly in time. Such a time series is said to be sampled
on a trade-by-trade timescale.

2.2. Orders: the building blocks of an LOB

The actions of traders in an LOB can be expressed solely in
terms of submissions or cancellations of orders of the lot size.
For example, a trader who immediately sells 4σ units of the
traded asset in the LOB displayed in figure 2 can be considered
as submitting 2 sell orders of size σ at the price $1.50, 1 sell
order of size σ at the price $1.49, and 1 sell order of size σ

at the price $1.48. Similarly, a trader who posts a sell order of
size 4σ at the price $1.55 can be considered as submitting 4
sell orders of size σ at a price of $1.55 each.

Almost all of the published literature on LOBs adopts the fol-
lowing terminology. Orders that result in an immediate match-
ing upon submission are known as market orders. Orders that
do not, instead becoming active orders, are known as limit
orders.† However, it is important to recognize that this termi-
nology is used only to emphasize whether an incoming order
triggers an immediate matching or not.

Some trading platforms allow traders to specify that they
wish to submit a buy (respectively, sell) market order without
explicitly specifying a price. Instead, such a trader specifies
only a size, and the trade-matching algorithm sets the price of
the order appropriately to initiate the required matching.

2.3. Price changes in LOBs

In LOBs, the rules that govern matchings dictate how prices
evolve through time. Consider a buy (respectively, sell) order
x = (px ,ωx , tx ) that arrives immediately after time t .

†Some practitioners use the terms aggressive orders and resting
orders, respectively, but this terminology is far less common in the
published literature.

• If px ≤ b(t) (respectively, px ≥ a(t)), then x is a limit
order that becomes active upon arrival. It does not cause
b(t) or a(t) to change.

• If b(t) < px < a(t), then x is a limit order that be-
comes active upon arrival. Upon arrival, b(tx ) = px
(respectively, a(tx ) = px ).

• If px ≥ a(t) (respectively, px ≤ b(t)), then x is a mar-
ket order that immediately matches to one or more ac-
tive sell (respectively, buy) orders upon arrival. When-
ever such a matching occurs, it does so at the price of the
active order, which is not necessarily equal to the price
of the incoming order. Whether or not such a matching
causes a(t) (respectively, b(t)) to change at time tx
depends on na(a(t), t) (respectively, nb(b(t), t)) and
ωx . In particular, the new bid price b(tx ) upon arrival
of a sell market order x is

max(px , q), where q = arg max
k′

b(t)∑

k=k′

∣∣∣nb(k, t)
∣∣∣ > ωx .

Similarly, the new ask price a(tx ) upon arrival of a buy
market order x is

min(px , q), where q =arg min
k′

k′∑

k=a(t)

na(k, t) > |ωx | .

Put another way, the incoming order x matches to the highest
priority active order y of opposite type. If |ωx | >

∣∣ωy
∣∣, then

any residue size of x is considered for matching to the next
highest priority active order of opposite type, and so on until
either there are no further active orders with prices that make
them eligible for matching, in which case the residue of x
becomes active at the price px , or x is fully matched. The new
bid (respectively, ask) price is then equal to the price of the
highest priority active buy (respectively, sell) order after the
matching occurs.

Table 1 lists several possible market events that could occur
to the LOB displayed in figure 2 and the resulting values of
b(tx ), a(tx ), m(tx ), and s(tx ) that they would cause.

In the financial literature, price changes are commonly stud-
ied via returns.

Definition The bid-price return between times t1 and t2 is
Rb(t1, t2) := (b(t2) − b(t1))/b(t1). The ask-price return be-
tween times t1 and t2, denoted Ra(t1, t2), and the mid-price
return between times t1 and t2, denoted Rm(t1, t2), are defined
similarly.

Definition The bid-price logarithmic return between times t1
and t2 is rb(t1, t2) := log (b(t2)/b(t1)). The ask-price logarith-
mic return between times t1 and t2, denoted ra(t1, t2), and the
mid-price logarithmic return between times t1 and t2, denoted
rm(t1, t2), are defined similarly.

2.4. The economic benefits of LOBs

In an LOB, traders are able to choose between submitting
limit orders and submitting market orders. Limit orders stand
a chance of matching at better prices than do market orders,
but they also run the risk of never being matched. Conversely,
market orders never match at prices better than b(t) and a(t),
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Limit order books 1713

Table 1. How each order arrival would affect prices in the LOB displayed in figure 2.

Arriving order x Values after arrival (USD)

b(tx ) a(tx ) m(tx ) s(tx )

Initial values 1.50 1.53 1.515 0.03
($1.48,−3σ, tx ) 1.50 1.53 1.515 0.03
($1.51,−3σ, tx ) 1.51 1.53 1.52 0.02
($1.55,−3σ, tx ) 1.50 1.54 1.52 0.04
($1.55,−5σ, tx ) 1.50 1.55 1.525 0.05
($1.54, 4σ, tx ) 1.50 1.53 1.515 0.03
($1.52, 4σ, tx ) 1.50 1.52 1.51 0.02
($1.47, 4σ, tx ) 1.48 1.53 1.505 0.05
($1.50, 4σ, tx ) 1.49 1.50 1.495 0.01

but they do not face the inherent uncertainty associated with
limit orders. An LOB’s bid-ask spread s(t) can be considered
as a measure of how highly the market values the immediacy
and certainty associated with market orders versus the waiting
and uncertainty associated with limit orders. Foucault et al.
(2005) argued that the popularity of LOBs was due in part to
their ability to allow some traders to demand immediacy, while
simultaneously allowing others to supply it to those who later
require it. He conjectured that arbitrageurs, technical traders,
and indexers were most likely to place market orders (due to
the fast-paced nature of their work) and that portfolio managers
were most likely to place limit orders (because their strategies
are generally more focused on the long term). In reality, most
traders use a combination of both limit orders and market
orders; they select their actions for each situation based on
their individual needs at that time (Anand et al. 2005).

Glosten (1994) argued that LOBs are an effective way for
patient traders to provide liquidity to less patient traders, even
when liquidity is scarce. Luckock (2003) concluded that the
volume traded in an LOB would always exceed that of a Wal-
rasian market,† given the same underlying supply and demand.

Copeland and Galai (1983) noted that a limit order can be
considered as a derivative contract written to the whole market,
via which the order’s owner offers to buy or sell the specified
quantity of the asset at the specified price to any trader wishing
to accept. For example, a trader who submits a sell limit order
x = (px ,ωx , tx ) is offering the entire market a call option to
buy ωx units of the asset at price px for as long as the order
remains active. Traders offer such derivative contracts— i.e.
submit limit orders—in the hope that they will be able to trade
at better prices than if they simply submitted market orders.
However, whether or not such a contract will be accepted by
another trader (i.e. whether or not the limit order will eventually
become matched) is uncertain.

3. Challenges of studying LOBs

In this section, we discuss some of the challenges that LOBs
present researchers. In particular, we discuss technical issues
associated with the study of empirical LOB data and present
several challenges inherent in modelling LOBs.

†AWalrasian market is a market in which all traders send their desired
buy or sell orders to a specialist, who then determines the market value
of the asset by selecting the price that maximizes the volume of trade.

3.1. Perfect rationality versus zero intelligence

Constructing a useful model of an LOB entails making
several assumptions. One such assumption concerns the rea-
son that order flows exist at all. Much of the economics lit-
erature assumes that orders are submitted because perfectly
rational traders attempt to maximize their ‘utility’ by making
trades in markets driven by ‘information’ (Parlour and Seppi
2008). However, this assumption has come under scrutiny be-
cause utility maximization is often inconsistent with direct
observations of individual behaviour (Gode and Sunder 1993,
Kahneman and Tversky 2000, Lux and Westerhoff 2009).

At the other extreme lies a zero-intelligence approach, in
which aggregated order flows are assumed to be governed by
specified stochastic processes whose rate parameters are con-
ditional on other variables such as L(t) (Daniels et al. 2003,
Smith et al. 2003, Cont et al. 2010). In this way, order flow
can be regarded as a consequence of traders blindly follow-
ing a set of rules without strategic considerations. Much like
perfect rationality, zero-intelligence assumptions are extreme
simplifications that are inconsistent with empirical observa-
tions. However, a zero-intelligence framework has the appeal
of leading to models that can yield quantifiable and falsifiable
predictions without the need for auxiliary assumptions. It is,
therefore, a useful starting point for building models.‡

Between the two extremes of perfect rationality and zero
intelligence lies a broad range of other approaches that make
weaker assumptions about traders’ behaviour and order flows,
at the cost of resulting in models that are more difficult to study.
Many such models rely exclusively on Monte Carlo simulation
to produce output. Although such simulations still motivate
interesting observations, it is often difficult to trace exactly how
specific model outputs are affected by input parameters. Such
Monte Carlo approaches are also computationally expensive,
so they are of little use to traders who assess L(t) in real time.

3.2. State-space complexity

It is a well-established empirical fact that current order flows
depend on both L(t) and on recent order flows (Biais et al.
1995, Sandås 2001, Ellul et al. 2003, Hollifield et al. 2004,

‡In Section 5, we explore how some authors have attempted to
quantify perfect rationality for modelling purposes and discuss the
often highly unrealistic assumptions that such formulations require
to be tested empirically. A detailed treatment can be found in
Foucault et al. (2005).
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1714 M. D. Gould et al.

Hall and Hautsch 2006, Lo and Sapp 2010). From a perfect-
rationality perspective, this can be regarded as traders reacting
to the changing state of a market; from a zero-intelligence
perspective, it can be considered as order-flow rates depending
on L(t) and on their recent history. Either way, a key task is
to uncover the structure of such conditional behaviour, either
to understand what information traders evaluate when making
decisions or to quantify the conditional structure of order flows.

A problem with studying conditional behaviour is that the
state space of an LOB is huge: if there are P different choices
for price in a given LOB, then the state space of the current
depth profile alone, expressed in units of the lot size σ , is ZP .
Therefore, a key modelling task is to find a way to simplify
the evolving, high-dimensional state space, while retaining an
LOB’s important features. Some authors have proposed ways
to reduce dimensionality (see, e.g. Cont and de Larrard (2011),
Eliezer and Kogan (1998) and Smith et al. (2003)), but there
is no consensus about a simplified state space upon which very
general LOB models can be constructed.

3.3. Feedback and coupling

In addition to traders’ actions depending on L(t), the state
of L(t) also clearly depends on traders’ actions. These mu-
tual dependences induce feedback between L(t) and trader
behaviour. Also, as described in Section 2.2, b(t) determines
the boundary condition for sell limit order placement because
any sell order placed at or below b(t) at least partially matches
immediately. A similar role is played by a(t) for buy orders.
Therefore, order flow creates a strong coupling between b(t)
and a(t). Smith et al. (2003) observed how such coupling
makes LOB modelling a difficult problem.

3.4. Priority

As shown in figure 1, several active orders can have the same
price at a given time. Much like priority is given to active
orders with the best (i.e. highest buy or lowest sell) price, LOBs
also employ a priority system for active orders within each
individual price level.

By far, the most common priority mechanism currently used
is price-time. That is, for active buy (respectively, sell) or-
ders, priority is given to the active orders with the highest
(respectively, lowest) price, and ties are broken by selecting
the active order with the earliest submission time tx . Price-time
priority is an effective way to encourage traders to place limit
orders (Parlour 1998). Without a priority mechanism based on
time, there is no incentive for traders to show their hand by
submitting limit orders earlier than is absolutely necessary.

Another priority mechanism, commonly used in futures mar-
kets, is pro-rata (Field and Large 2008). Under this mecha-
nism, when a tie occurs at a given price, each relevant active
order receives a share of the matching proportional to the
fraction of the depth available that it represents at that price.
For example, if a buy market order with size 3σ arrived at
the LOB displayed in figure 3, then σ of it would match to
active order x1 and 2σ of it would match to active order x2,
because they correspond, respectively, to 1/3 and 2/3 of the

Figure 3. An LOB with pro-rata priority.

depth available at a(t). Traders in pro-rata priority LOBs are
faced with the substantial difficulty of selecting optimal limit
order sizes, because posting limit orders with larger sizes than
the quantity that is really desired for trade becomes a viable
strategy to gain priority.

Another alternative priority mechanism is price-size, in
which ties are broken by selecting the active order of largest
size among those at the best price. Until recently, no major
exchanges used this priority mechanism. However, in October
2010, the first price-size trading platform, NASDAQ OMX
PSX, was launched (NADSAQ 2010). Some exchanges also al-
low traders to specify a minimum match size when submitting
orders. Orders with a size smaller than this are not considered
for matching to such orders. This is similar to a price-size
priority mechanism: small active orders are often bypassed,
effectively giving higher priority to larger orders.

Different priority mechanisms encourage traders to behave
in different ways. Price-time priority encourages traders to sub-
mit limit orders early; price-size and pro-rata priority reward
traders for placing large limit orders and thus for providing
greater liquidity to the market. Traders’ behaviour is closely
related to the priority mechanism used, so LOB models need
to take priority mechanisms into account when considering
order flow. Furthermore, priority plays a pivotal role in models
that attempt to track specific orders.

3.5. Incomplete sampling and hidden liquidity

An LOB L(t) reflects only the subset of trading intentions that
traders have announced up to time t . However, the fact that no
traders have submitted a limit order at a given price does not
imply that none of them want to trade at this price, because they
could be keeping their intentions private by submitting orders
only when absolutely necessary (Tóth et al. 2011). Bouchaud
et al. (2009) noted that a typical snapshot of L(t) at a given
time is often very sparse, containing few active orders.†

3.5.1. Hidden orders. Many exchanges allow traders to
conceal the extent of their intentions to trade, often at the

†Arbitrageurs provide an example of traders who behave in this way,
because their strategies depend on simultaneously buying and selling
in an attempt to make instant profit. Limit orders are of little use to
them because it is uncertain when (if ever) they will be matched.
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cost of paying some penalty in terms of priority or price.
For example, many exchanges allow traders to submit iceberg
orders (also known as hidden-size orders), a type of limit order
that specifies not only a total size and price but also a visible
size. Other traders only see the visible size. Rules regarding
the treatment of the hidden quantity vary greatly from one
exchange to another. In some cases, once a quantity of at least
the visible size matches to an incoming market order, another
quantity equal to the visible size becomes visible. This quantity
has priority equal to that of a standard limit order placed at this
price at this time. This sort of iceberg order is similar to a
trader first submitting a limit order, then watching the market
carefully and submitting a new limit order at the same price and
size at the exact moment that the previous limit order matches
to an incoming market order. A trader acting in this way is
sometimes deemed to be constructing a synthetic iceberg order.

Some exchanges have an alternative structure for iceberg
orders. Whenever a quantity equal to at least the visible size
of an iceberg order is matched by an incoming market order,
the rest of the order (i.e. the portion of the hidden component
that is not matched by the same incoming market order) is
cancelled. Iceberg orders can thereby match larger incoming
market orders than is apparent, but otherwise they behave like
any other order. This is the system currently used by the Reuters
trading platform (Thomson-Reuters 2011).

Some other trading platforms allow entirely hidden limit
orders. These orders are given priority behind both entirely
visible active orders at their price and the visible portion of
iceberg orders at their price, but they give traders the ability to
submit limit orders without revealing any information whatso-
ever to the market.

3.5.2. Displayed liquidity. Even in LOBs with no hidden
liquidity, traders are not always able to view the set of all active
orders in real time. Many exchanges display only active orders
that lie within a certain range of relative prices. Furthermore,
some electronic trading platforms only transmit updates to L(t)
at a specific frequency, so all activity that has taken place since
the most recent refresh signal is invisible to traders.

3.5.3. Dark pools. Recently, there has been an increase in
the popularity of so-called dark pools (see, e.g. Carrie (2006)
and Hendershott and Jones (2005)). The matching rules gov-
erning trade in dark pools vary greatly from one exchange to
another (Mittal 2008). Some dark pools are essentially LOBs
in which all active orders are entirely hidden. Other dark pools
do not allow traders to specify prices for their orders. Instead,
traders submit orders describing their desired quantity and
whether they wish to buy or sell, and the dark pool holds all
such requests in an entirely hidden, time-priority queue until
they are matched to orders of the opposite type. Upon matching,
trades occur either at the mid-price m(t) of another specified
standard (i.e. non-dark) LOB for the same asset or at a price
that is later negotiated by the two traders involved.

3.6. Volatility

Loosely speaking, volatility is a measure of the variability
of returns of a traded asset (Barndorff-Nielsen and Shephard
2010). The volatility of an asset provides some indication of

how risky it is.All else held equal, an asset with higher volatility
is expected to undergo larger price changes over a given time
interval than an asset with lower volatility. For traders who
wish to manage their risk exposure, volatility is an important
consideration when choosing the assets in which to invest, and,
therefore, often forms the basis of optimal portfolio construc-
tion (Rebonato 2004).

Many different measures of volatility exist, and the exact
form of volatility studied in a given situation depends on both
the data available and the purpose of the calculation (Shephard
2005). Even when estimated on the same data, different mea-
sures of volatility sometimes exhibit different properties. For
example, different measures of volatility follow different intra-
day patterns in a wide range of different markets (see Cont et al.
(2011) and references therein).Therefore, many empirical stud-
ies report results using several different measures of volatility.

In an LOB, traders have access to far more information than
just b(t) and a(t). In particular, information such as nb(b(t), t)
and na(a(t), t) is useful to predict how prices are likely to
change (Biais et al. 1995, Ellul et al. 2003, Bortoli et al. 2006,
Hall and Hautsch 2006, Lo and Sapp 2010). As discussed in
Section 4.5, several empirical studies from a wide range of
LOBs have reported links between volatility and other LOB
properties. However, to our knowledge, there does not yet exist
an estimate of volatility that takes into account the full state
of L(t). Instead, most estimates of volatility consider only
changes in price series such as b(t), a(t), and m(t). For further
discussion of practical issues regarding volatility estimation,
see Liu et al. (1999).

3.6.1. Model-free estimates of volatility. There is an exten-
sive literature on the use of price-series data to perform direct,
model-free estimates of volatility (see, e.g. Aït-Sahalia et al.
(2011), Andersen and Todorov (2010), Bandi and Russell
(2006) and Zhou (1996)). In this section, we discuss three
methods for performing such estimates.

Definition Given the bid-price logarithmic return series
rb(t1, t2), rb(t2, t3), . . . , rb(tk−1, tk) sampled at regularly
spaced times, the bid-price realized volatility is

vb(t1, . . . , tk) := st. dev.
({

rb(ti , ti+1) | i = 1, . . . , k − 1
})

.

The ask-price realized volatility, denotedva(t1, t2, . . . , tk), and
the mid-price realized volatility, denoted vm(t1, t2, . . . , tk), are
defined similarly.

Realized volatility depends on the frequency at which price
series are sampled. It is a useful measure for comparing the
variability of return series sampled with the same frequency,
but it is not appropriate to compare the realized volatility of
a once-daily price series for one stock to a once-hourly price
series for another.

Definition Given the bid-price logarithmic return series
rb(t1, t2), rb(t2, t3), . . . , rb(tk−1, tk) sampled at the times at
which k consecutive sell market orders arrive, the bid-price
realized volatility per trade is

V b(t1, . . . , tk) := st. dev.
({

rb(ti , ti+1) | i = 1, . . . , k − 1
})

.

The ask-price realized volatility per trade, denoted V a(t1,
t2, . . . , tk), is defined similarly using k consecutive buy market
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order arrival times. The mid-price realized volatility per trade,
denoted V m(t1, t2, . . . , tk), is defined similarly using k consec-
utive market order arrival times (irrespective of whether they
are buy or sell market orders).

Realized volatility per trade is useful for comparing how
prices vary on a trade-by-trade basis.

Definition Given the bid-price series b(t) over an entire
trading day D, the bid-price intra-day volatility is ρb(D) :=
log (maxt∈D b(t)/ mint∈D b(t)). The ask-price intra-day volatil-
ity, denoted ρa(D), and the mid-price intra-day volatility, de-
noted ρm(D), are defined similarly.

Intra-day volatility is useful for estimating the probability
of very large price changes in a given day. It is particularly
important for day traders, who unwind their trading positions
before the end of each trading day.

3.6.2. Model-based estimates of volatility. Adifficulty that
arises when estimating any measure of volatility in an LOB is
that many traders submit then immediately cancel limit orders.
This can occur for a variety of reasons, but it is often the
result of electronic trading algorithms searching for hidden
liquidity. Such behaviour can cause b(t) and a(t) to fluctuate
rapidly without any trades occurring, and it can be considered
as microstructure noise rather than a meaningful change in
price. One way to address this problem is to assume that the
observed data is governed by a model from which an estimate
of volatility that is absent of microstructure noise can be de-
rived. The parameters of the model are then estimated from the
data, and the volatility estimate is derived explicitly from the
model. However, a drawback of this method is that it depends
heavily on the model, and models that poorly mimic important
aspects of the trading process may, therefore, give misleading
estimates of volatility.

3.7. Resolution parameters

Values of σ and π vary greatly between different trading plat-
forms. Expensive stocks are often traded with σ = 1 share;
cheaper shares are often traded with σ ≫ 1 share. In foreign
exchange (FX) markets, some trading platforms use values as
large as σ = 1 million units of the base currency, whereas oth-
ers use values as small as σ = 0.01 units of the base currency.†
A given currency pair is often traded with different values of π

on different trading platforms. For example, π = $0.00001
for the GBP/USD LOB and π = 0.001 for the USD/JPY
LOB on the electronic trading platform Hotspot FX, whereas
π = $0.00005 for the GBP/USD LOB and π = 0.005 for the
USD/JPY LOB on the electronic trading platform EBS (EBS,
2012; Hotspot, 2013). In equity markets, π is often 0.01%
of the stock’s mid price m(t), rounded to the nearest power
of 10. For example, m(t) for Apple Inc. fluctuated between

†In FX markets, an XXX/YYY LOB matches exchanges of the base
currency XXX to the counter currency YYY.Aprice in an XXX/YYY
LOB denotes how many units of currency YYY are exchanged for
a single unit of currency XXX. For example, a trade at the price
$1.52342 in a GBP/USD market corresponds to 1 pound sterling being
exchanged for 1.52342 US dollars.

approximately $400 and approximately $700 in 2012, during
which time it traded with π = $0.01.

It is a recurring theme in the literature (see, e.g. Biais et al.
(1995), Foucault et al. (2005), Seppi (1997) and Smith et al.
(2003)) that an LOB’s resolution parameters σ and π greatly
affect trade within it. An LOB’s lot size σ dictates the smallest
permissible order size, so any trader who wishes to trade in
quantities smaller than σ is unable to do so. Furthermore, as
we discuss in Section 4.6, traders who wish to submit large
market orders often break them into smaller chunks to mini-
mize their market impact. The size of σ controls the smallest
permissible size of such chunks and therefore directly affects
traders who implement such a strategy. An LOB’s tick size
π dictates how much more expensive it is for a trader to
gain the priority (see Section 3.4) associated with choosing
a higher (respectively, lower) price for a buy (respectively,
sell) order (Parlour and Seppi 2008). In markets where π is
extremely small, there is little reason for a trader to submit a
buy (respectively, sell) limit order at a price p where there are
already other active orders. Instead, he/she can gain priority
over such active orders very cheaply, by choosing the price
p + π (respectively, p − π ) for the limit order. Such a set-
up leads to LOBs that undergo extremely frequent changes in
b(t) and a(t) due to the small depths available. This makes it
difficult for other traders to monitor the state of the market
in real time. In September 2012, the electronic FX trading
platform EBS increased the size of π for most of its currency
pairs’ LOBs. Their reason for doing so was ‘to help thicken
top of book price points, increase the cost of top of book price
discovery, and improve matching execution in terms of percent
fill amounts’ (EBS 2012).

3.8. Bilateral trade agreements

On some exchanges, each trader maintains a block-list of other
traders with whom he/she is unwilling to trade.Atrade can only
occur between traders θi and θ j if θi does not appears on θ j ’s
block-list and vice-versa. The exchange shows each trader θi a
personalized LOB that contains only the active orders owned
by traders with whom it is possible for θi to trade. When a trader
submits a market order, it can only match to active orders in
their personalized LOB, bypassing any higher priority active
orders from traders on their block-list.

On exchanges that use such bilateral trade agreements, it is
possible for a buy (respectively, sell) market order to bypass
all active orders at the globally lowest (respectively, highest)
price available in L(t) and to match to an active order with a
strictly higher (respectively, lower) price. Furthermore, given
two traders θi and θ j who do not have a bilateral trade agree-
ment, it is possible for L(t) to simultaneously contain both an
active buy order x = (px ,ωx , tx )owned by θi and an active sell
order y = (py,ωy, ty) owned by θ j , with py ≤ px , without a
matching occurring. Therefore, it is possible for such markets
to have a negative bid-ask spread.

These factors make modelling of specific matchings and
of the evolution of L(t) a very difficult task in LOBs that
operate with bilateral trade agreements. Gould et al. (2013a)
presents a full discussion of these issues, so we do not consider
such LOBs further.
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3.9. Opening and closing auctions

Many exchanges suspend standard limit order trading at the
beginning and end of the trading day and instead use an auction
system to match orders. For example, the LSE’s flagship order
book SETS (SETS 2011) has three distinct trading phases in
each trading day. Between 08:00 and 16:30, the standard LOB
mechanism is used in a period known as continuous trading.
Between 07:50 and 08:00, a 10-min opening auction takes
place. Between 16:30 and 16:35, a 5-min closing auction takes
place. During both auctions, all traders can view and place
orders as usual, but no orders are matched. Due to the absence
of matchings, the highest price among buy orders can exceed
the lowest price among sell orders. All orders are stored until
the opening auction ends.At this time, for each price p at which
there is non-zero depth available, the trade-matching algorithm
calculates the total volume C p of trades that could occur by
matching buy orders with a price greater than or equal to p to
sell orders with a price less than or equal to p. It then calculates
the uncrossing price

p̂ = arg max
p

C p. (8)

In contrast to standard LOB trading, all trades take place at the
same uncrossing price p̂. Given p̂, if there is a smaller depth
available for sale than there is for purchase (or vice versa), ties
are broken using time priority.

Throughout the opening auction, all traders can see what
the value of p̂ would be if the auction were to end at that
moment. This allows all traders to observe the discovery of the
price without any matchings taking place until the process is
complete.†

3.10. Statistical issues

As we discuss in Section 4, many authors have reported sta-
tistical regularities in LOB data from a wide variety of dif-
ferent markets. However, such statistical analysis is fraught
with difficulties because assumptions such as independence
and stationarity, which are often required to ensure consis-
tency of estimation, are rarely satisfied by LOB data (Cont
2005, Mantegna and Stanley 1999). Furthermore, suboptimal
estimators have been employed commonly in the literature,
and have often produced estimates with large variance or bias.
For example, there are questions about the validity of many re-
ported power laws throughout the scientific literature
(Clauset et al. 2009, Stumpf and Porter 2012). Many authors
use ordinary least-squares regression on a log–log plot to esti-
mate power-law exponents from LOB data, yet Clauset et al.
(2009) showed that this method produces significant system-
atic estimation errors. They also showed that it is inappropriate
to use power-law estimators designed for continuous data on
discrete data (or vice versa), yet many LOB studies do precisely
this.

†Biais et al. (1999) performed a formal hypothesis test on price-
discovery data from the Paris Bourse. Working at the 2.5% level, they
did not reject the null hypothesis that traders’conditional expectations
of asset price approached the market value of the asset during the
final 9 min of the price-discovery process. However, they reported
that traders’ actions were not significantly different from noise during
the early part of the price-discovery process.

In this section, we list some of the pitfalls of statistical
estimation using LOB data and suggest some useful estimators
for data analysis. However, these techniques are not ‘one-size-
fits-all’ approaches, and it is important to verify the neces-
sary assumptions before implementing them on a given data
set.

3.10.1. Power laws. Several LOB properties are reported to
have power-law tails:

Definition A random variable Z with distribution function
FZ is said to have a power-law tail with exponent α if there
exists some α > 0 such that FZ (z) ∼ O

(
z−α

)
as z →

∞.

If there exists a zmin > 0 such that FZ (z) is proportional to
z−α for all z ≥ zmin, then clearly Z has a power-law tail.‡ When
attempting to fit power-law tails to empirical observations, it
is often assumed that such a zmin exists (and resides within
the range of the data), because the existence of such a zmin al-
lows simple, closed-form expressions to be derived. Under this
assumption, Clauset et al. (2009) provided a comprehensive
algorithm for consistent estimation of α and zmin via maximum
likelihood techniques, as well as for testing the hypothesis
that the data really does follow a power law for z ≥ zmin.
Several other consistent estimation procedures also exist (see,
e.g. Hill (1975) and Mu et al. (2009)), but no single estimator
has emerged as the best to adopt in all situations. Therefore,
some empirical studies report results using several different
estimators and then draw inference based on the whole set of
results. However, as Mu et al. (2009) highlighted, different es-
timators often produce vastly different estimates of α, making
such inference difficult.

3.10.2. Long-memory processes. As we discuss in Section
4.7, several time series related to LOBs have been reported to
exhibit long memory. Intuitively, a time series has long memory
if values from the present are correlated with values in the
distant future. The study of long-memory processes involves
considerable challenges, and caution is needed when apply-
ing standard statistical techniques to data with long memory
(Beran 1994). For example, the effective sample size of a
long-memory process is significantly smaller than the number
of data points, so statistical estimators often converge at an
extremely slow rate (Farmer and Lillo 2004). Furthermore, the
correlation structure can cause such estimators to converge to
arbitrary values (Beran 1994).

In this section, we discuss several practical challenges of es-
timating long memory. We denote by X a real-valued,
second-order stationary§ time series of length k, X = X (t1),
X (t2), . . . , X (tk).

One way to define long memory is via the asymptotic beha-
viour of the autocorrelation function.

‡This is not the only probability density function that has a power-law
tail, but it is the most common in the literature.
§A time series is second-order stationary if its first and second
moments are finite and do not vary with time. For a discussion of
issues regarding stationarity in financial time series, see Taylor (2008).
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Definition The autocorrelation function A of a time series X
is given by

AX (l) := 1
k − l

k−l∑

i=1

(X (ti ) − ⟨X⟩) (X (ti+l) − ⟨X⟩) , (9)

where ⟨X⟩ = 1
k

∑k
i=1 X (ti ) is the mean of the series.

Definition A time series X is said to exhibit long memory if

lim
n→∞

n∑

l=0

|AX (l)| = ∞. (10)

One way that this can occur is if there exists some α ∈ (0, 1)

such that AX decays like a power law:

AX (l) ∼ O
(
l−α

)
, as l → ∞. (11)

The exponent α describes the strength of the long memory: the
smaller the value of α, the stronger the long-range autocorre-
lations (Lillo and Farmer 2004). Because of the slow decay of
the autocorrelation function in a long-memory process, present
values of the series can have a significant effect on its values
in the distant future. It is a recurring mistake in the literature
that if X has long memory, its unconditional distribution must
exhibit heavy tails. However, Preis et al. (2006, 2007) showed
that such an implication does not hold in general.

A key difficulty when using equation (11) to assess whether
a given series has long memory is that it deals only with
asymptotic behaviour. To study the large-l behaviour, it is
necessary to observe more than l values of X , but clearly any
empirically observed time series is finite. Also, the values of
the function AX (l) can be small, making estimation of the
functional form of A very difficult. Therefore, direct estimation
of α from the autocorrelation function often produces very poor
results (Lillo and Farmer 2004).

An alternative way to characterize long memory is via the
diffusion properties (Beran 1994, Lillo and Farmer 2004) of
the integrated series Y :

Y (l) =
l∑

i=1

X (ti ). (12)

Let

V (l) = Var ({Y (ti+1), Y (ti+2), . . . , Y (ti+l)}) (13)

for some i ∈ {0, 1, . . . , k − l}. In the limit l → ∞, if X is
a short-memory process, thenV (l) scales as O(l), whereas if
X is a long-memory process, then V (l) scales as O(l2H ), for
some H ∈ (1/2, 1) (Beran 1994, Lillo and Farmer 2004). The
exponent H is called the Hurst exponent. For long-memory
processes, H is related to α in equation (11) by

H = 1 − α

2
. (14)

Short-memory processes have a Hurst exponent of H = 1/2
(Lillo and Farmer 2004).

Under some assumptions, there are several asymptotically
unbiased estimators of H that are more robust to noise in X
than is direct estimation of α from the autocorrelation func-
tion (Taqqu et al. 1995). However, the performance of such
estimators on empirical data, which might not conform to the
estimators’ assumptions, varies considerably (Xu et al. 2005,

Rea et al. 2009). Different disciplines tend to favour different
estimators, although the choices are often based on historical
reasons, not performance. Some of the most commonly used
are:

• the R/S statistic and modified R/S statistic (Lo 1989,
Teverovsky et al. 1999);

• log-periodogram regression (Geweke and Porter-Hudak
1983); and

• order-m detrended fluctuation analysis (DFAm) (Peng
et al. 1994, Kantelhardt et al. 2001, La Spada and Lillo
2011).

As with the estimation of power laws discussed in Section
3.10.1, no single estimator has emerged as the best in all sit-
uations. Some empirical studies report results using several
different estimators and then draw inference based on them all
(Taqqu et al. 1995).

4. Empirical observations in LOBs

The empirical literature on LOBs is very large, yet differ-
ent studies often present conflicting conclusions. Reasons for
this include different trade-matching algorithms operating dif-
ferently, different asset classes being traded on different ex-
changes, differing levels of liquidity in different markets, and
different researchers having access to data of differing quality.
Furthermore, as traders’ strategies have evolved over time, so
too have the statistical properties of the order flow they gen-
erate. This has become a particularly important consideration
because competition and trading volumes have increased with
the widespread uptake of electronic trading algorithms.

To aid comparisons, we present in Appendix A a description
of the aims, date range, data source, and data type of each of
the empirical studies of LOBs that we discuss in this survey.
We now discuss the main findings of these empirical studies
in more detail, including a selection of stylized facts that have
consistently emerged from several different markets. However,
we note in Section 6 that there have been few recent data
analyses, despite the many recent changes in markets.

4.1. Order size

Given the heterogeneous motivations for trading within a sin-
gle market, it is unsurprising that incoming order sizes vary
substantially. Nevertheless, several regularities occur in em-
pirical data.

For equities traded on the Paris Bourse, Bouchaud et al.
(2002) reported that the distribution of log(|ωx |) was approxi-
mately uniform for incoming limit orders with |ωx | ∈
(10, 50000). For two stocks traded on NASDAQ, Maslov and
Mills (2001) reported power-law and log-normal distributions
to fit the distribution of incoming limit order sizes |ωx |. The
mean power-law exponent was 1 ± 0.3 (i.e. with standard
deviation 0.3). However, the quality of the power-law fits was
deemed to be weak, and the log-normal fits were deemed to
be applicable over a wider range of limit order sizes than the
power-law fits (although the authors stated no precise range
of applicability for either). For four stocks on the Island ECN,
Challet and Stinchcombe (2001) reported that incoming limit
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order sizes |ωx | clustered strongly at round-number amounts
such as 10, 100, and 1000. Mu et al. (2009) reported a similar
round-number preference for market orders on the Shenzhen
Stock Exchange. Mu et al. (2009) also studied the distribution
of total trade sizes when aggregated over a variety of time
windows and found it to exhibit a power-law tail. Different
power-law exponent estimators produced different estimates
of the tail exponent, but the authors judged the tail exponent to
be larger than two. Maslov and Mills (2001) reported similar
power-law fits on NASDAQ. Studying five days of data cov-
ering three equities, they reported a mean power-law exponent
of 1.4 ± 0.1. Although they did not state a range of sizes over
which their reported power-law distributions applied, figure 1
in Maslov and Mills (2001) suggests an approximate range of
200–5000. In a study of the 1000 largest equities in the USA,
Gopikrishnan et al. (2000) also reported power-law fits for the
distribution of trade sizes. The mean power-law exponent was
1.53 ± 0.07. However, Bouchaud et al. (2009) noted that the
data studied by Gopikrishnan et al. contains information about
trades that were privately arranged to occur off-book. They
conjectured that this caused Gopikrishnan et al. to overestimate
the arrival frequency of very large orders.

In a study of the Stockholm Stock Exchange, Hollifield et al.
(2004), reported that buy (respectively, sell) market orders
that walked up the book—i.e. buy market orders with a size
|ωx | > na(a(t), t) (respectively, sell market orders with a size
ωx >

∣∣nb(b(t), t)
∣∣)—accounted for only 0.1% of submitted

market orders. Therefore, the vast majority of submitted buy
(respectively, sell) market orders matched only to active orders
at a(t) (respectively, b(t)), rather than at other prices.

4.2. Relative price

As discussed in Section 2.1, regularities in price series are
best investigated via the use of relative pricing, as b(t) and
a(t) themselves evolve through time. Several authors have
reported power-law behaviour in the distribution of relative
prices (Bouchaud et al. 2002, Zovko and Farmer 2002, Potters
and Bouchaud 2003, Maskawa 2007, Mike and Farmer 2008,
Gu et al. 2008b). One possible reason for this behaviour is
that some traders place limit orders deep into LOBs, under the
optimistic belief that large price swings could occur (Bouchaud
et al. 2002).

The distributions of relative prices of orders that arrived with
a non-negative relative price on the Paris Bourse (Bouchaud
et al. 2002), NASDAQ (Potters and Bouchaud 2003), the LSE
(Zovko and Farmer 2002, Maskawa 2007), and the Shenzhen
Stock Exchange (Gu et al. 2008b) were all reported to follow
such a power law, with different values of the exponent for the
different markets. On the Paris Bourse, for buy and sell orders
alike, the power-law exponent for relative prices from π to over
100π (even up to 1000π for some stocks) was approximately
0.6. On NASDAQ, the ranges of relative prices over which
the distributions followed a power law and the power-law
exponents themselves both varied from stock to stock. On the
LSE, the value of the power-law exponent was approximately
1.5 for relative prices between 10π and 2000π for both buy
and sell orders. In aggregated data describing 23 stocks on the
Shenzhen Stock Exchange, the power-law exponent for the

distribution of non-negative relative prices† was 1.72 ± 0.03
for buy orders and 1.15 ± 0.02 for sell orders, and the power-
law exponent for the distribution of negative relative prices was
1.66±0.07 for buy orders and 1.80±0.07 for sell orders. This
asymmetry between buy orders and sell orders contrasts to the
other markets that were studied, but the exact matching rules
on the Shenzhen Stock Exchange prevent large price changes
from occurring within a single day (which could account for
this effect).

The maximum arrival rate of incoming orders was reported
to occur at a relative price of 0 on the LSE (Mike and Farmer,
2008), the Shenzhen Stock Exchange (Gu et al. 2008b), the
Paris Bourse (Biais et al. 1995, Bouchaud et al. 2002) and NAS-
DAQ (Challet and Stinchcombe 2001). However, the maxi-
mum arrival rate on the Tokyo Stock Exchange was reported
to occur inside the spread (Cont et al. 2010).

4.3. Order cancellations

Several empirical studies covering a wide range of different
markets have concluded that the vast majority of active orders
ended in cancellation rather than matching. The percentage of
orders that were cancelled ranged from approximately 70% to
more than 80% on the Island ECN (Challet and Stinchcombe
2001, Hasbrouck and Saar 2002), an exchange-traded fund that
tracked the NASDAQ 100 (Potters and Bouchaud 2003), S&P
500 futures contracts (Baron et al. 2012), and in FX markets
(Gereben and Kiss 2010, Lo and Sapp 2010). Therefore, can-
cellations played a major role in the evolution of L(t) in all of
these markets.

In recent years, electronic trading algorithms have surged in
popularity across all markets, and such algorithms often submit
and cancel vast numbers of limit orders over short periods as
part of their trading strategies (Harris 2002, Hendershott et al.
2011). The widespread use of such trading algorithms seems
to have further increased the percentage of orders that are
cancelled in recent data. In particular, a study of recent FX
data found that more than 99.9% of active orders ended in
cancellation rather than matching (Gould et al. 2013b).

4.4. Mean relative depth profile

Despite their different resolution parameters (see Section 2.1)
and the different prices at which trades occur in them, several
qualitative regularities are common to the mean relative depth
profiles in a wide range of markets.

No significant difference was detected between the mean
bid-side and the mean ask-side relative depth profiles on the
Paris Bourse (Biais et al. 1995, Bouchaud et al. 2002),
NASDAQ (Potters and Bouchaud 2003) and Standard and
Poor’s Depositary Receipts (SPY)‡ (Potters and Bouchaud
2003). By contrast, Gu et al. (2008c) reported asymmetry
between the mean bid-side and the mean ask-side relative depth

†Observe that the notation used by Gu et al. (2008b) assigns the
opposite signs when measuring relative price than those that we
employ.
‡SPY is an exchange-traded fund that allows traders to effectively
buy and sell shares in all of the 500 largest stocks traded in the USA.
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1720 M. D. Gould et al.

profiles on the Shenzhen Stock Exchange, but this is unsurpris-
ing considering that this market has additional rules restricting
price movements each day that essentially impose asymmetric
restrictions on the range of relative prices over which traders
can submit orders.

Mean relative depth profiles have been reported to exhibit
a hump shape† in a wide range of markets, including the
Paris Bourse (Bouchaud et al. 2002), NASDAQ (Potters and
Bouchaud 2003), the Stockholm Stock Exchange (Hollifield et
al. 2004), and the Shenzhen Stock Exchange (Gu et al. 2008c).
The location of the hump varied across markets. However, it
is difficult to perform direct comparisons between different
markets because differences in their tick sizes π affect both
the granularity of the price axis and the ways in which traders
behave (see Section 3.7). There may also be strategic reasons
that the hump occurs in different locations in different markets.
For example, traders are more likely to submit limit orders with
larger relative prices in markets in which large price changes
are relatively common than they are in markets in which such
price changes are rare. This increases the relative price at which
the hump resides. Roşu (2009) conjectured that a hump would
exist in all markets in which large market orders are sufficiently
likely; this represents a trade-off between the optimism that a
limit order placed away from b(t) or a(t) might eventually
match (at a significant profit) and the pessimism that limit
orders that are placed too far away from b(t) and a(t) might
never match.

4.5. Conditional frequencies of events

The properties that we have discussed thus far in this section
have all been calculated unconditionally (i.e. without reference
to other events or variables). However, several factors influence
how traders interact with LOBs, so it is reasonable to study
not only unconditional frequencies, but also the frequencies
of those events given that some other condition was satisfied.
However, the study of such conditional event frequencies in
LOBs is difficult for two main reasons:

(i) The state space is very large. Deciding which of the
enormous number of possible events or LOB states on
which to condition is very difficult (see Section 3).

(ii) There is a small latency between the time that a trader
sends an instruction to submit or cancel an order and the
time that the exchange server receives the instruction.
Furthermore, some exchanges only send refresh signals
at fixed time intervals, so traders cannot be certain that
LOBs that they observe via their trading platform are
perfect representations of the actual LOBs at that instant
in time. Therefore, conditioning on the ‘most recent’
event is problematic, as the most recent event recorded
by the exchange (and thus appearing in the market data)
may not be the most recent event that a given trader
observed via the trading platform.

Nevertheless, several empirical studies of conditional event
frequencies in LOBs have identified interesting behaviour. In

†More precisely, the absolute value of the mean depth available
increased over the first few relative prices, and it subsequently
decreased.

this section, we review the key findings from several such
publications, highlighting both the similarities and differences
that have emerged across different markets.

It is important to note that most studies of conditional de-
pendence in LOBs have used data that dates back 10 or more
years. Although this alleviates the aforementioned difficulties
with latency (as the volume of order flows in LOBs was much
smaller in the past than it is today, so the mean inter-arrival
times between successive events were substantially longer than
the latency times), it also inevitably raises the question of how
representative such findings are of today’s LOBs. We return to
this issue in Section 6.

4.5.1. Order size. A simple example of conditional struc-
ture is the relationship reported between the size |ωx | and the
relative price δx of orders on the Paris Bourse (Bouchaud et al.,
2002). For the stocks studied, the distribution of |ωx | varied
substantially according to the relative price of the correspond-
ing orders. In particular, orders with a larger relative price had a
smaller absolute size |ωx | on average. Maslov and Mills (2001)
made a similar observation for limit orders on NASDAQ.

4.5.2. Relative price. Biais et al. (1995) noticed on the Paris
Bourse that traders placed more orders with a relative price δx

satisfying −s(t) < δx < 0 (i.e. limit orders that arrived inside
of the bid-ask spread) at times when s(t) was larger than its
median value. Hall and Hautsch (2006) and Cao et al. (2008)
made similar observations using data from theAustralian Stock
Exchange. Similarly, on the NYSE (Ellul et al. 2003), the per-
centage of incoming orders that arrived with a relative price
δx > −s(t) (i.e. were limit orders) increased as s(t) increased
and decreased when s(t) decreased. Biais et al. (1995) argued
that when s(t) is small, it is less expensive for traders to demand
immediate liquidity, so market orders become more attractive.
However, it is also possible to explain such an observation via
a zero-intelligence approach: if limit order prices are chosen
uniformly at random, then it is more likely that an incoming
limit order price resides in the interval (b(t), a(t)) when the
interval is wider.

Biais et al. (1995) reported on the Paris Bourse that the
percentage of buy (respectively, sell) limit orders that arrived
with relative price δx satisfying −s(t) < δx < 0 was higher at
times when

∣∣nb(b(t), t)
∣∣ (respectively, na(a(t), t)) was larger.

They conjectured that this was caused by traders competing
for higher priority than the active orders in the (already long)
queue by submitting an order with a better price. Furthermore,
Ellul et al. (2003) reported on the NYSE that the arrival rate
of buy (respectively, sell) limit orders with a relative price δx

satisfying −s(t) < δx < 0 tended to increase as the total size
of active buy (respectively, sell) orders increased. They also
reported a similar result for the arrival of buy (respectively,
sell) market orders. In studies of theAustralian Stock exchange,
Hall and Hautsch (2006) calculated that the percentage of buy
(respectively, sell) orders that were limit orders decreased as
the total size of active buy (respectively, sell) orders increased,
and Cao et al. (2008) reported that the proportion of arriving
orders that were market orders increased when

∣∣nb(b(t), t)
∣∣ and

na(a(t), t) were larger. In a study of the LSE, Maskawa (2007)
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Limit order books 1721

concluded that traders favoured placing their limit orders at
relative prices similar to those where there was already a large
number of active orders.

However, such conditional structure has not been found in
all markets. Mike and Farmer (2008) reported for the LSE that
the distribution of relative prices was independent of s(t). In
a study of the Shenzhen Stock Exchange, Gu et al. (2008b)
reported that the distribution of relative prices was independent
of both s(t) and volatility. Biais et al. (1995) concluded that∣∣nb(b(t), t)

∣∣ (respectively, na(a(t), t)) had little impact on the
rate of incoming sell (respectively, buy) market orders on the
Paris Bourse.

In a study of the Swiss Stock Exchange, Ranaldo (2004)
reported that order flow depended on several factors, including
volatility, recent order flow, and the state of L(t). Traders
submitted more limit orders and fewer market orders during
periods when s(t) or volatility were high. The proportion of
orders that arrived with negative relative price decreased as
the inter-arrival time between recent orders increased. Traders
submitted higher-priced buy orders (respectively, lower-priced
sell orders) when the total size of active buy (respectively,
sell) orders was greater. Ranaldo (2004) noted that buy order
submission seemed to depend on both the sell side and the
ask side of L(t), whereas sell order submission seemed to
depend only on the sell side of L(t). He also noted, however,
that market performance during the sample period might have
caused such asymmetry, because the percentage change in m(t)
was positive for all but one of the stocks studied and exceeded
10% for four of them.

In a study of the LSE, Zovko and Farmer (2002) reported
that the relative prices of incoming limit orders were condi-
tional on the bid-price realized volatility per trade. They con-
structed two time series by calculating the mean relative price
of arriving buy limit orders and the bid-price realized volatility
per trade over 10 min windows, and then calculated their cross
correlation. They rejected (at the 2.5% level) the hypothesis
that the two series were uncorrelated and observed that changes
in bid-price realized volatility immediately preceded changes
in mean relative price for buy limit orders.† They also observed
similar behaviour when comparing the time series of ask-price
realized volatility and the time series of mean relative price for
sell limit orders.

Lo and Sapp (2010) reported that traders in FX markets
submitted orders with higher relative prices during periods of
high mid-price realized volatility.

4.5.3. Order flows. In a study of the Stockholm Stock Ex-
change, Sandås (2001) reported that order flows at time t were
conditional on both L(t) and on previous order flows. In their
study of FX markets, Lo and Sapp (2010) reported that order
flows at time t were conditional on several variables includ-
ing s(t), nb(b(t), t), na(a(t), t), depth available behind the

†Zovko and Farmer (2002) noted that it was not clear from the cross-
correlation function alone whether traders explicitly considered bid-
price realized volatility when choosing the prices for their buy limit
orders, or whether some other external factor first affected bid-price
realized volatility and then affected traders’ actions. If the former
could be demonstrated, it would support the widely held belief that
many traders consider realized volatility to be an important factor in
deciding when to place a limit order (Zovko and Farmer 2002).

best prices, time of day, and recent order flows. However,
the precise structure of the conditional dependences varied
between currency pairs. In a study of the NYSE, Ellul et al.
(2003) reported that the rate of buy (respectively, sell) limit
order arrivals increased after periods of positive (respectively,
negative) mid-price returns and that the rate of limit order
arrivals also increased late in the trading day.

On theAustralian Stock Exchange (Hall and Hautsch 2006),
the arrival rates of all market events were reported to increase
and decrease together. The authors suggested that other exoge-
nous factors (which they did not measure) might have influ-
enced aggregate LOB activity. In a more recent study of the
Australian Stock Exchange, Cao et al. (2008) reported that the
arrival rates of market events at time t were conditional onL(t),
but not on the state of L(t) at earlier times. They concluded
that traders evaluated only an LOB’s most recent state—and
not a longer history—when they made order placement and
cancellation decisions. Cao et al. (2008) found no evidence
that mid-price returns had a significant impact on order arrival
or cancellation rates.

Using several different financial instruments traded in elec-
tronic LOBs, Toke (2011) reported that both buy limit order
and sell limit order arrival rates increased following the arrival
of a market order, but they found no evidence that market order
arrival rates increased following the arrival of a limit order.

4.5.4. Event clustering. Using data from 40 stocks on the
Paris Bourse, Biais et al. (1995) observed strong clustering
through time when studying the ‘action classes’ (such as ‘ar-
rival of buy market order’, ‘arrival of buy limit order within
the spread’, and ‘cancellation of active sell order’) of market
events. For all action classes, the conditional frequency with
which a market event belonged to the specified action class,
given that the previous market event also belonged to the same
action class, was higher than the corresponding unconditional
frequency. The authors offered numerous possible explana-
tions for this phenomenon: traders might have strategically
split large orders into smaller chunks to avoid revealing their
full trading intentions or to minimize market impact (see Sec-
tion 4.6); different traders might have mimicked each other;
different traders might have reacted independently to new in-
formation; or different traders might have tried to undercut
each other (i.e. cancelled active buy (respectively, sell) orders
and resubmitted them at a slightly higher (respectively, lower)
price solely to gain price priority). Bursts of small, frequent
changes in b(t) and a(t) occurred more often when s(t) was
large, and they argued that this provided evidence of under-
cutting. However, Bouchaud et al. (2009) concluded that the
phenomenon was driven primarily by strategic order splitting
and found no evidence that different traders mimicked each
other.

In a study of the NYSE, Ellul et al. (2003) reported that pe-
riods with above-average order arrival rates clustered together
in time, as did periods with below-average order arrival rates.
They also reported a similar clustering of market events by
action classes to that observed by Biais et al. (1995) on the
Paris Bourse. However, Ellul et al. (2003) reported that the
number of occurrences of market events from a specific action
class in a given 5-min window and the corresponding number
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1722 M. D. Gould et al.

of occurrences of market events in the previous 5-min window
were negatively correlated. Furthermore, they concluded that
the arrival rate of market events from a given action class
was more heavily conditional on the action class of the single
most recent market event than it was on L(t), whereas the
distribution of the number of occurrences of market events
from a given action class in a given 5-min window was more
heavily conditional on L(t) during the previous 5-min window
than it was on the number of occurrences of market events from
any specific action class in the same window.

4.5.5. Cancellations. Biais et al. (1995) reported that can-
cellations of buy (respectively, sell) active orders on the Paris
Bourse occurred more frequently after the arrival of a buy
(respectively, sell) market order. They conjectured that this
was evidence that traders submitted large orders in the hope
of finding hidden liquidity and then cancelled any unmatched
portions.

In a study of theAustralian Stock Exchange, Cao et al. (2008)
concluded that priority considerations played a key role for
traders when deciding whether or not to cancel their active
orders. The cancellation rate for active buy (respectively, sell)
orders increased when new, higher-priority buy (respectively,
sell) limit orders arrived. In addition, the cancellation rate of
active buy (respectively, sell) orders at prices p < b(t) (respec-
tively, p > a(t)) increased when nb(p − π, t) (respectively,
na(p + π, t)) became zero. The authors proposed that this oc-
curred because traders with active orders at price p could, with-
out substantial loss of priority, cancel and then resubmit them at
price p−π (respectively, p+π ), to possibly gain a better price
if the order eventually matched. No similar increase occurred
when nb(p + π, t) (respectively, na(p − π, t)) became zero.

4.5.6. Price movements. In a study of the Paris Bourse,
Biais et al. (1995) reported that a(t) decreased more frequently
(respectively, b(t) increased more frequently) immediately af-
ter the arrival of a market order that caused b(t) to decrease
(respectively, a(t) to increase). They suggested that such be-
haviour could have been caused by traders reacting to informa-
tion, either because external sources of news led to a revalua-
tion of the underlying asset or because traders interpreted the
downward movement of b(t) (respectively, upward movement
of a(t)) itself as news. Indeed, Potters and Bouchaud (2003)
found evidence on NASDAQ that each new trade was inter-
preted by traders as new information that directly affected the
flow of incoming orders.

4.5.7. Volatility. For Canadian stocks, Hollifield et al.
(2006) reported that several different volatility measures
were correlated with order flow rates. Furthermore, on Eu-
ronext (Chakraborti et al. 2011b) and for German Index Fu-
tures (Kempf and Korn 1999), mid-price realized volatility in-
creased with the number of arriving market orders. Jones et al.
(1994) reported a similar finding in a study of the NYSE;
however, Ellul et al. (2003) later reported a positive correlation
between higher mid-price realized volatility and the percentage
of arriving orders that were limit orders.

In a study of the Australian Stock Exchange, Hall and
Hautsch (2006) reported that the number of arrivals and can-
cellations of large limit orders (i.e. those whose size was in the

upper quartile of the unconditional empirical distribution of or-
der sizes) in any given 5-min window was positively correlated
with mid-price realized volatility during both that window and
the previous 5-min window. However, in a more recent study,
Cao et al. (2008) concluded that mid-price realized volatility
per trade had only a minimal effect on order flows.

A weak but positive correlation between s(t) and realized
mid-price volatility has been observed in a wide range of mar-
kets (see Wyart et al. (2008) and references therein). However,
a much stronger positive correlation between s(t) and mid-
price volatility was observed at the trade-by-trade timescale
on the Paris Bourse (Bouchaud et al. 2004), the FTSE 100
(Zumbach 2004), and the NYSE (Wyart et al. 2008). In a recent
study of stocks traded on the NYSE, Hendershott et al. (2011)
reported that the once-daily time series of bid-price realized
volatility was positively correlated with the daily mean spread.
Stocks with a lower mid price had higher bid-price realized
volatilty on average. Lo and Sapp (2010) reported that the vari-
ance of the depth available at any given price in FX markets
increased during periods of high mid-price realized volatility.
Hasbrouck and Saar (2002) investigated links between volatil-
ity and various aspects of the depth profile on the Island ECN,
but they found only weak relationships.

As discussed in Section 3.1, Bortoli et al. (2006) reported
that mid-price intra-day volatility on the Sydney Futures
Exchange varied according to how much information about
the depth profile traders could view in real time.

4.6. Market impact and price impact

A key consideration for a trader who wishes to buy or sell a
large quantity of an asset is how his/her actions might affect the
asset’s LOB (Almgren and Chriss 2001, Bouchaud et al. 2009,
Cont et al. 2011, Eisler et al. 2012, Obizhaeva and Wang 2013).
For example, if trader θi wishes to buy 20σ shares using the
LOB displayed in figure 4, then submitting a single market
order of size ωx = −20σ would result in purchasing 2σ shares
at $1.5438, 5σ shares at $1.5439, 6σ shares at $1.5440, and
7σ shares at $1.5441. However, if θi were initially to submit
only a market order of size ωx = −2σ , then it is possible
that other traders might submit new limit orders, because by
purchasing the 2σ shares with highest priority in the LOB, θi
would have made it more attractive for other participants to
submit new sell limit orders than it was immediately before
such a purchase. If this occurs, then θi could submit a market
order that matches to these newly submitted limit orders and
then repeat this process until all 20σ shares are purchased.
Empirical observations suggest that such order splitting is very
common in a wide range of different markets (Bouchaud et al.
2009). Of course, there is no guarantee that the initial market
order of size 2σ would stimulate such submissions of limit
orders from other traders. Indeed, it could even cause other
traders to cancel their existing limit orders or to submit buy
market orders, further increasing a(t) and thereby ultimately
causing θi to pay a higher price for the total purchase of 20σ

shares.
The change in b(t) and a(t) caused by a trader’s actions is

called the price impact of the actions. The necessity for traders
to monitor and control price impact predates the widespread
adoption of LOBs. In a quote-driven market, for example, any
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Limit order books 1723

Figure 4. An example LOB to illustrate price impact and market
impact.

single market maker only has access to a finite inventory, so
there is a limit on the size that is available for trade at the quoted
prices. Furthermore, purchasing or selling large quantities of
the asset in such a market could cause market makers to adjust
their quoted prices. Both of these outcomes are examples of
price impact.

In an LOB, it is also possible to consider the impact of
an action on the entire state of L(t). This more general type
of impact is called market impact. To date, the terms ‘price
impact’and ‘market impact’have often been used interchange-
ably to refer only to changes in b(t) or a(t), but recent work
(Hautsch and Huang 2011) has shed light on how traders’ ac-
tions can affect the depths available at other prices, suggesting
that it is appropriate to separate the two notions.

Bouchaud et al. (2009) provided a detailed review of studies
of both price impact and market impact. Both are difficult to
quantify formally, as they each consist of two components:

• instantaneous (or immediate) impact, which consists of
the immediate effects of a specified action and

• permanent impact, which consists of the long-term im-
pact due to a specified action causing other traders to
behave differently in the future.

For example, the instantaneous price impact of a buy market
order of size 2σ in the LOB in figure 4 is a change in a(t) from
$1.5438 to $1.5439. An example of permanent market impact
of this buy market order might be another trader deciding to
submit a new sell limit order at the price $1.5442. The various
forms of impact are defined as follows.

Definition The instantaneous bid-price impact of a market
event at time t ′ is

b(t ′) − lim
t↑t ′

b(t). (15)

Definition The instantaneous bid-price logarithmic return im-
pact of a market event at time t ′ is

log b(t ′) − lim
t↑t ′

[log b(t)] . (16)

Definition The instantaneous bid-price impact function
φb(ωx ) outputs the mean instantaneous bid-price impact for a
buy market order of size ωx .

Definition The instantaneous bid-price logarithmic return
impact function +b(ωx ) outputs the mean instantaneous
bid-price logarithmic return impact for a buy market order
of size ωx .

Definitions for the ask price, using sell market orders of size
ωx (respectively, mid price, using both buy and sell market
orders of size |ωx |) are similar.

Definition The instantaneous market impact of a market event
at time t ′ is

L(t ′) \ lim
t↑t ′

L(t), (17)

where \ denotes the difference of the two sets.

Instantaneous impact exists because the arrival or cancella-
tion of any order affects L(t) directly. Bouchaud et al. (2009)
described three reasons that permanent impact might exist.
First, trades themselves might convey information to other
traders.† Second, traders might successfully forecast short-
term price movements and choose their actions accordingly.‡
Third, purely random fluctuations in supply and demand might
lead to permanent impact.

It is not possible to quantify precisely the permanent price
or market impact of an action, because doing so would involve
calculating the differences between scenarios in which the
action did occur and those in which it did not occur. Clearly,
all actions either occur or do not occur, so such comparisons
are impossible in practice.

4.6.1. Instantaneous price impact. To date, instantaneous
price impact for individual market orders has been studied
primarily via instantaneous price impact and instantaneous log-
arithmic return impact functions. In a study of the NYSE and
American Stock Exchange, Hasbrouck (1991) found φm to be
a concave function of |ωx |. This implies that the instantaneous
price impact of a single market order of size |ωx | was, on
average, larger than the sum of the instantaneous price impacts
of two market orders x1 and x2 of sizes

∣∣ωx1

∣∣ and
∣∣ωx2

∣∣, with∣∣ωx1

∣∣ +
∣∣ωx2

∣∣ = |ωx |.
Lillo et al. (2003) studied the stocks of 1000 different com-

panies traded on the NYSE and sorted them into 20 groups
according to their market capitalization (i.e. according to the
total value of all of a given company’s shares). Within each
group, they then merged their data and fitted a single curve to
+m(|ωx |). For all 20 groups, they concluded that +m followed
a power law +m(|ωx |) ≈ |ωx |α , with an exponent α that
depended on the group and varied between approximately 0.2
and 0.5. However, the authors did not present goodness-of-fit
tests with their results, and it is not clear how well the fits
performed for individual stocks. After the change of variables

ω′
x := ωx

Cη
, p′ := pCγ , (18)

†Grossman and Stiglitz (1980) introduced this idea for a general
market, and it has since been discussed extensively in an LOB
context (see, e.g.Almgren and Chriss (2001), Bouchaud et al. (2009),
Hasbrouck (1991), and Potters and Bouchaud (2003)).
‡This explanation suggests that it is not traders’ actions that cause the
value of an asset to rise or fall. Instead, such changes in valuation
happen exogenously and traders align their actions with them to
maximize profits. Bouchaud et al. (2009) did not find evidence that
this was a good reflection of reality.
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1724 M. D. Gould et al.

where C denotes the mean market capitalization for stocks
in the group and η and γ are fitted constants, the +m′ (∣∣ω′

x

∣∣)

curves for each of the 20 groups collapsed onto a single curve.
Farmer et al. (2005) reported a similar collapse of +m onto

a single power-law curve +m′ (∣∣ω′
x

∣∣) ≈
∣∣ω′

x

∣∣0.25 for 11 stocks
traded on the LSE after using the change of variables

ω′
x := ωxα

µ
, p′ := pλ

µ
, (19)

where µ, λ, and ν denote the mean arrival rate of market orders,
the mean arrival rate of limit orders, and the mean cancellation
rate of active orders per unit size σ , respectively.

Using data from the Shenzhen Stock Exchange, Zhou (2012)
partitioned incoming orders according to whether or not they
received an immediate full matching† of size ωx at time tx .
The resulting functional form of +m(ωx ) was different in the
two cases.

• For incoming orders that only partially matched upon
arrival, +m(|ωx |) was constant for all |ωx | < 10000
shares; it then increased for larger values of |ωx |.

• For incoming orders that fully matched upon arrival,
+m(|ωx |) followed the power law+m(|ωx |) ≈ A |ωx |α ,
where A is a stock-specific constant.Among buy orders,
the mean value of α was 0.66 ± 0.05; among sell orders,
the mean value of α was 0.69 ± 0.06.

After applying the change of variables

+′m(|ωx |) := +m(|ωx |)
⟨+m⟩ , ω′

x := ωx

⟨|ωx |⟩
, (20)

where the angle brackets ⟨·⟩ denote the mean value taken across
all incoming market orders in the data, Zhou concluded that the
+′m(ω′

x ) curves for all stocks that they studied collapsed onto a
single curve for incoming orders that were fully matched upon
arrival and onto a different single curve for incoming orders
that were only partially matched upon arrival. The asymmetry
between the bid side and the ask side was no longer present
after the rescaling.

In a study of the Paris Bourse and NASDAQ, Potters and
Bouchaud (2003) reported that a logarithmic functional form
provided a better fit to φm than did a power-law relationship.
Furthermore, Farmer and Lillo (2004) concluded that
power-law relationships overestimated the mean instantaneous
mid-price impact of very large market orders on both the LSE
and the NYSE.

4.6.2. Permanent price impact. As discussed above, it is
impossible to quantify exactly the permanent price impact of
a market event. However, to gain some insight into the longer
term effects of market events, several empirical studies have
compared changes in b(t) and a(t) over specified time intervals
with measures of trade imbalance.

Definition The trade imbalance count during time interval
T = [t1, t2], denoted 0c(T ), is the difference between the
total number of incoming buy market orders and the total

†Incoming orders that are fully matched upon arrival always have a
strictly smaller instantaneous mid-price impact than orders that are
not.

number of incoming sell market orders that arrive during time
interval T .

Definition The trade imbalance size during time interval T =
[t1, t2], denoted 0ω(T ), is the difference between the total
absolute size of all incoming buy market orders and the total
size of all incoming sell market orders that arrive during time
interval T .

Evans and Lyons (2002) reported a statistically significant,
positive, linear relationship between the daily trade imbalance
count and the ask-price logarithmic return for successive trad-
ing days in FX markets. For German Stock Index futures,
Kempf and Korn (1999) reported that the mean mid-price log-
arithmic return in a 5-min window was a concave function of
the trade imbalance count during that window. For the largest
100 stocks on the NYSE, Gabaix et al. (2006) reported that the
mean mid-price logarithmic return followed the relationship
0ω(T )0.5 for time intervals of length T = 15 min. Using a
variety of different time interval lengths for the 116 most liquid
stocks in the US in 1994–1995, Plerou et al. (2002) reported
that the mean change in mid-price over the interval was a
concave function of 0ω(T ). Furthermore, for small values of
0ω(T ), the mean change in mid-price over the interval was
well-approximated by 0ω(T )α , where the value of α depended
on the length of T . The values of α ranged from α ≈ 1/3
for intervals of length 5 min to α ≈ 1 for intervals of length
195 min. Similarly, Bouchaud et al. (2009) reported that as the
length of T increased, the mean mid-price logarithmic return
of the AstraZeneca stock on the LSE was approximated more
closely by a linear function of the length T .

Cont et al. (2011) recently proposed that price impact in
LOBs should be studied as a function of the difference between
aggregate order flow on the bid and ask sides, rather than
of 0ω(T ). They thereby acknowledged that cancellations can
also have price impact. Using data for 50 stocks traded on the
NYSE, they performed (separately for each stock) an ordinary
least-squares regression of the mean change in mid price over
a time window of length 10 s onto the order flow imbalance
over the same time window. For 43 of the stocks studied, the
slope of the regression line was significantly different from 0 at
the 95% level and was larger on average for those stocks with
smaller mean values of

∣∣nb(b(t), t)
∣∣ and na(a(t), t). Cont et al.

(2011) noted that their ordinary least-squares regressions pro-
vided a strong fit across all stocks, despite the nuances of how
the individual stocks were traded. Regressions using 0ω(T )

rather than order flow imbalance as the independent variable
produced significantly worse fits to the data. Cont et al. (2011)
conjectured that any observable relationship between price
impact and 0ω(T ) was actually a byproduct of the correlation
between 0ω(T ) and order flow imbalance.

4.6.3. Market impact. In contrast to the wealth of empir-
ical studies on price impact, almost no publications address
market impact. To our knowledge, the sole exception is the
study of how order arrivals affected the state of the LOBs
L(t) for 30 stocks on Euronext by Hautsch and Huang (2011).
Limit orders placed with negative relative price had a signif-
icant market impact, and limit orders placed with price p ≤
b(t) (respectively, p ≥ a(t)) caused a significant permanent
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Limit order books 1725

increase in b(t) (respectively, decrease in a(t)). On average,
the market impact of a market order was about four times
greater than that of a limit order of the same size, and limit
orders with relative prices of π or 2π affected b(t) and a(t)
about 20% less than limit orders placed at b(t) and a(t). Limit
orders that arrived with non-negative relative price had no
immediate market impact but significant permanent market
impact. This impact materialized more quickly for limit orders
that arrived at b(t) and a(t) than it did for limit orders that
arrived with positive relative prices. By contrast, the market
impact of limit orders placed inside of the bid-ask spread was
largely instantaneous,† with little permanent impact.

Hautsch and Huang (2011) reported similar results for all
stocks studied, but they reported asymmetries between the
bid side and the ask side of L(t), much like Kempf and Korn
(1999) reported for price impact. Hautsch and Huang (2011)
conjectured that the impact that they observed was due partly
to arriving orders triggering an instantaneous imbalance in sup-
ply and demand and partly to other traders interpreting order
arrivals as containing information, which thereby caused them
to adjust their own future actions and led to permanent market
impact. This observation provides a possible explanation as to
why so many traders choose to place iceberg orders: placing an
iceberg order is an effective way to hide the true size of limit
orders from the market and thus to minimize market impact.
They also reported that traders interpreted the arrivals of market
orders as particularly strong information signals.

4.7. Stylized facts

Several nontrivial statistical regularities exist in empirical data
from a wide range of different markets. Such regularities are
known as the stylized facts of markets (Buchanan 2011), and
they can provide interesting insights into the behaviour of
traders (Cont 2001) and the structure of markets themselves
(Bouchaud et al. 2009). Stylized facts are also useful from a
modelling perspective, because a model’s inability to repro-
duce one or more stylized facts can be used as an indicator
for how it needs to be improved or as a reason to rule it out
altogether. For example, the existence of volatility clustering
eliminates the simple random walk as a model for the temporal
evolution of the mid price m(t), as the existence of volatility
clustering in real mid-price time series implies that large price
variations are more likely to follow large price variations than
they are to occur unconditionally (Lo and MacKinlay 2001).

Reproduction of stylized facts remains a serious challenge
for LOB models (Chakraborti et al. 2011a, Chakraborti et al.
2011b, Chen et al. 2012). This is particularly true for those
based on zero-intelligence assumptions, which have tended to
produce more volatile price series than empirical observations
suggest is appropriate (Chakraborti et al. 2011a). This may
imply that the strategic behaviour of real traders somehow
stabilizes prices and is therefore an important ingredient in
real LOB trading.

Cont (2001) and Chen et al. (2012) both reviewed a wide
range of stylized facts; we will survey a small subset that we
consider to be the most relevant from an LOB perspective.

†A buy (respectively, sell) limit order placed inside the bid-ask spread
necessarily affects b(t) (respectively, a(t)) immediately.

These stylized facts are of particular theoretical interest as they
suggest that non-equilibrium behaviour plays an important role
in LOBs. A result from statistical mechanics is that systems
in equilibrium yield distributions from the exponential fam-
ily (Mike and Farmer 2008), whereas distributions describing
several aspects of LOB behaviour have been reported to exhibit
power-law tails, which highlights the possibility that LOBs
might always be in a transient state.

4.7.1. Heavy-tailed return distributions. Over all times-
cales ranging from seconds to days, unconditional
distributions of mid-price returns have been reported to display
tails that are heavier than a normal distribution (i.e. they have
positive excess kurtosis). Understanding heavy tails is central
to risk management of investment strategies, because large
price movements are more likely than they would be if returns
were normally distributed. Heavy tails have been observed on
Euronext (Chakraborti et al. 2011b), the Paris Bourse (Plerou
and Stanley 2008), the S&P 500 index (Gallant et al. 1992,
Gopikrishnan et al. 1999, Cont 2001), FX markets
(Guillaume et al. 1997), the NYSE (Gopikrishnan et al. 1998),
the American Stock Exchange (Gopikrishnan et al. 1998,
Plerou and Stanley 2008), NASDAQ (Gopikrishnan et al.
1998), the LSE (Plerou and Stanley 2008), and the Shenzhen
Stock Exchange (Gu et al. 2008a). However, the exact form of
the distribution varied with the timescale used. Across a wide
range of different markets (see, e.g. Gopikrishnan et al. (1998)
and Gu et al. (2008a)), the tails of the distribution at the shortest
timescales were reported to be well-approximated by a power
law with exponent α ≈ 3, thereby earning the monicker ‘the
inverse cubic law of returns’. Stanley et al. (2008) conjectured
that such a universal tail might be a consequence of power-
law tails in both the distribution of market order sizes and the
instantaneous mid-price logarithmic return impact function.
However, Mu and Zhou (2010) reported that this relationship
did not hold in emerging markets. Drożdż et al. (2007) reported
that the tails were less heavy (i.e. α > 3) in high-frequency
market data for German, American, and Polish indices from
2004 to 2006, highlighting that the quantitative form of stylized
facts might themselves have changed over time as trading
styles evolved. Several authors have reported that at longer
timescales, distributions of returns became increasingly well-
approximated by a normal distribution. This behaviour is often
called aggregational Gaussianity (Gopikrishnan et al. 1999,
Cont 2001, Zhao 2010).

4.7.2. Volatility clustering. Time series of absolute or
square mid-price returns have been reported to display long
memory (see Section 3.10.2) over timescales of weeks or even
months (Liu et al. 1997, Cont 2001, Stanley et al. 2008). For
example, the square mid-price returns for S&P 500 index fu-
tures (Cont 2001), the NYSE (Cont 2005), the USD/JPY cur-
rency pair (Cont et al. 1997), and crude oil futures (Zhao 2010)
have all been reported to exhibit long memory at intra-day
timescales, as have absolute mid-price returns on the Paris
Bourse (Chakraborti et al. 2011b) and the Shenzhen Stock Ex-
change (Gu and Zhou 2009a). The values of the Hurst ex-
ponent H varied from H ≈ 0.8 on the Paris Bourse and
H ≈ 0.815 for the USD/JPY currency pair to H ≈ 0.58 on
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1726 M. D. Gould et al.

the Shenzhen Stock Exchange. The long memory of absolute
or square mid-price returns is often called volatility clustering
because it indicates that large price changes tend to follow other
large price changes. There are several possible explanations
for volatility clustering, including the arrival of external news
and the strategic splitting of orders by traders (Bouchaud et al.
2009).

4.7.3. Long memory in order flow. Using data from the
LSE, Lillo and Farmer (2004) reported that the time series
nb(b(t), t) and na(a(t), t) exhibited long memory, and
Zovko and Farmer (2002) reported that the time series of rel-
ative prices of limit orders exhibited long memory with Hurst
exponent H ≈ 0.8. Gu and Zhou (2009a) reported similar long
memory in the relative prices of limit orders on the Shenzhen
Stock Exchange, with H ≈ 0.78. The time series constructed
by assigning the value +1 to incoming buy orders and −1 to
incoming sell orders has been reported to exhibit long mem-
ory on the Paris Bourse (Bouchaud et al. 2004), the NYSE
(Lillo and Farmer 2004) and the Shenzhen Stock Exchange
(Gu and Zhou 2009a). In studies of the LSE, Bouchaud et al.
(2009), Lillo and Farmer (2004), and Mike and Farmer (2008)
reported that similar results held for market order arrivals,
limit order arrivals, and active order cancellations, with statis-
tically significant differences between the estimated values of
H for different stocks. However,Axioglou and Skouras (2011)
also studied the series of arriving market orders on the LSE
and concluded that the apparent long memory reported by
Lillo and Farmer (2004) was actually an artifact caused by
market participants changing trading strategies once per day.†

4.7.4. Autocorrelation and long memory of returns. Sev-
eral studies have reported that return series lacked
significant autocorrelation, except for weakly negative auto-
correlation on very short timescales (Cont 2005, Stanley et al.
2008, Chakraborti et al. 2011b). This well-established empir-
ical fact has been observed in a very large number of mar-
kets, including the NYSE (Cont 2005, Aït-Sahalia et al. 2011),
Euronext (Chakraborti et al. 2011b), FX markets (Cont et al.
1997, Bouchaud and Potters 2003), the S&P500 index (Gopikr-
ishnan et al. 1999, Bouchaud and Potters 2003), German inter-
est rates futures contracts (Bouchaud and Potters 2003), and
crude oil futures (Zhao 2010). The absence of autocorrelation
in returns can be explained using perfect-rationality arguments
(Cont 2001). If returns were indeed autocorrelated, rational
traders would employ simple strategies that used this fact to
generate positive expected earnings. Such actions would them-
selves reduce the level of autocorrelation, so autocorrelation
would not persist.

It appears that the negative autocorrelation present on the
shortest timescales disappears more quickly in more recent
market data than it does in older data, which indicates that the
exact quantitative details of this stylized fact may have changed
over time. Using data from the S&P 500 index, Gopikrishnan
et al. (1999) reported negative autocorrelation in mid-price

†Stochastic processes that undergo regime switching are known to
cause several estimators to report a Hurst exponent H ̸= 1

2 even in
the absence of long memory.

returns on timescales of up to about 20 min during 1984–
1996 but only on timescales of up to 10 min during 1991–
2001. During 1991–1995, Bouchaud and Potters (2003)
reported that negative autocorrelation persisted up to timescales
of 20–30 min for the GBP/USD currency pair and for German
interest rate futures contracts, but did not persist for timescales
longer than 30 min. On the NYSE, Cont (2005) reported that
negative autocorrelation persisted on 5-min timescales but not
on 10-min timescales, but did not report an exact date of when
the data itself were collected. Using data from Euronext dur-
ing 2007–2008, Chakraborti et al. (2011b) found no signif-
icant autocorrelation over time windows of 1 min. Further-
more, using NYSE data from 2010, Cont et al. (2011) found
no significant autocorrelation over any timescales of 20 s or
longer. For crude oil futures contracts traded in 2005, Zhao
(2010) reported that negative autocorrelation persisted for only
10–15 s.

The various forms of long memory in order flow (see Section
4.7.3) might be expected to lead to long memory in return
series. However, studies of the Hurst exponent for return se-
ries on the LSE (Lillo and Farmer 2004), the Paris Bourse
(Bouchaud et al. 2004), the Deutsche Bourse (Carbone et al.
2004), and in FX markets (Gould et al. 2013c) have all re-
ported H ≈ 0.5 (i.e. no long memory) on all but the shortest
timescales.‡ Bouchaud et al. (2004) conjectured that this was
because the long memory in price changes caused by the long
memory in the arrival of market orders was negatively cor-
related to the long memory in price changes caused by the
long memory in the arrival and cancellation of limit orders.
However, Lillo and Farmer (2004) found no evidence to sup-
port this hypothesis using data from the LSE. Instead, they
concluded that the long memory in the arrival of market orders
was offset by the long memory in nb(b(t), t) and na(a(t), t).
When predictability of market order arrivals was high, the
probability that a buy (respectively, sell) market order caused a
change in m(t) was low, because

∣∣nb(b(t), t)
∣∣ and na(a(t), t)

were large. Therefore, the long memory in the arrival of market
orders did not cause long memory in price changes.

5. Modelling LOBs

In recent years, the economics and physics communities have
both made substantial progress with LOB modelling
(Parlour and Seppi 2008, Chakraborti et al. 2011a). However,
work by the two communities has remained largely indepen-
dent (Farmer et al. 2005). Economists have tended to be trader-
centric, using perfect-rationality frameworks to derive optimal
trading strategies given certain market conditions. The LOB
models produced by economists have generally treated order
flow as static. By contrast, models from physicists have tended
to be conceptual toy models of the evolution of L(t). By relat-
ing changes in order flow to properties of L(t), these models
treat order flow as dynamic (Farmer et al. 2005). The two

‡There is no clear agreement about the long-memory properties of
return series at the shortest timescales. This is unsurprising, however,
because microstructure effects (which vary greatly from market to
market) play a prominent role in the statistical properties of return
series at the shortest timescales, and estimation of H is extremely
sensitive to such differences in data.
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Limit order books 1727

approaches have different strengths: an understanding of trad-
ing strategies is crucial for traders and regulators (Seppi 1997,
Almgren and Chriss 2001, Sandås 2001, Evans and Lyons
2002, Foucault et al. 2005, Goettler et al. 2006, Hall and
Hautsch 2006, Hollifield et al. 2006, Cao et al. 2008,
Wyart et al. 2008, Alfonsi et al. 2010, Gatheral 2010, Roşu
2010); an understanding of the state of L(t) and order flow pro-
vides insight into the origins of statistical regularities, includ-
ing whether they are a consequence of market microstructure or
of traders’strategic behaviour (Smith et al. 2003, Farmer et al.
2005, Mike and Farmer 2008, Bouchaud et al. 2009, Gu and
Zhou 2009a).

In this section, we assess existing LOB models in terms of
their ability to accurately mimic the trading mechanism and
to reproduce empirical facts (see Section 4). We also highlight
the main modelling difficulties that are yet to be resolved.

5.1. Perfect-rationality approaches

In the traditional economics approach, rational investors faced
with straightforward buy or sell possibilities choose portfolio
strategies of holdings to maximize personal utility, subject to
budget constraints (Parlour and Seppi 2008). However, LOBs
provide a substantially more complicated scenario. Rather than
submitting orders for exact quantities at exact prices, an in-
vestor may attempt to construct an ideal portfolio using both
limit orders and market orders. The inherent uncertainty of
execution of limit orders thereby creates uncertainty about the
state of the portfolio at a given time. When deciding whether
to submit a given limit order, a trader must estimate its fill
probability, which depends endogenously on both L(t) and
future order flow.

5.1.1. Cut-off strategies. Many early perfect-rationality
models aimed to address traders’ decision-making via the use
of a cut-off strategy.

Definition When choosing between decision D1 and deci-
sion D2 at time t, an individual employing a cut-off strategy
compares the value of a statistic Z(t) with a cut-off point z and
makes the decision

D1, if Z ≤ z,
D2, otherwise.

(21)

A cut-off strategy is analogous to a hypothesis test in statis-
tical inference. The statistic Z(t) can be any statistic related to
L(t), current or recent order flow, the actions of other traders,
and so on. For example, a trader who wishes to place a buy
order at time t might decide to submit a buy market order if
s(t) is smaller than 5π or to submit a buy limit order oth-
erwise. Cut-off strategies often appear in perfect-rationality
models because they drastically reduce the dimensionality of
the decision space available to traders. This is very appealing
from the standpoint of tractability.

To our knowledge, the first model that addressed endogenous
decision-making between limit orders and market orders in a
setting that resembles an LOB was the single-period model of
Chakravarty and Holden (1995). First, a market maker arrives
and set quotes. All other traders then arrive simultaneously
and choose between submitting limit or market orders using

a cut-off strategy based on the difference between their pri-
vate valuations of the asset and the quotes set by the market
maker. Finally, all trades occur simultaneously using pro-rata
priority.† This model demonstrated that optimal strategies for
informed traders can involve submitting either limit orders or
market orders, depending on how the market maker acts. In
turn, this highlighted endogenous order choice for traders as
a crucial feature of a successful LOB model. However, the
inclusion of the designated market maker and the assumption
that the market operates for only a single time period poorly
reflects trading in real LOBs.

Foucault (1999) extended the work of Chakravarty and
Holden (1995) by modelling LOB trading as a multi-step game
in which traders arrive sequentially. Limit orders remain active
for only one period; if the next arriving trader does not submit
a market order to match to an existing limit order, then it
expires. Upon arrival, each trader chooses between placing a
limit order or a market order and then leaves the market forever.
After each such departure, the game ends with some fixed
probability; otherwise, a new trader arrives and the process
repeats. Foucault showed that each trader’s optimal strategy in
this game is a cut-off strategy based on his/her private valuation
of the asset and the price of the existing limit order (if one
exists).

Foucault’s model highlighted that an active order’s proba-
bility of matching depends explicitly on future traders’ actions
(which themselves are endogenous) and that traders must ac-
tively consider other traders’ strategies. However, Foucault’s
model contains several assumptions that poorly mimic impor-
tant aspects of real LOBs—e.g. that limit orders remain active
for only a single period and that a random, exogenous stopping
time governs trading. These assumptions restrict the model’s
ability to make realistic predictions about order flow dynamics
and how traders estimate order fill probabilities.

Parlour (1998) studied a multi-step game in an LOB that only
allows limit orders to be submitted at a single, specific price.
Traders arrive sequentially and choose between submitting a
limit order at this price or submitting a market order. Unlike
in the model proposed by Foucault (1999), limit orders do not
expire. Parlour (1998) identified explicit links between traders’
strategies and L(t). In particular, she demonstrated that the
optimal decision between submitting a limit order or a market
order should be made by employing a cut-off strategy that
assesses both sides of L(t) to estimate the fill probability for
a limit order. If the estimated fill probability is sufficiently
high, then the trader should submit a limit order; otherwise,
he/she should submit a market order. Parlour argued that limit
orders become less attractive later in a trading day due to their
lower fill probabilities before the end of trading. However, by
disallowing cancellations of active orders and by restricting
the pricing grid to a single value, Parlour’s model is an over
simplification of the decision-making process facing traders in
real LOBs (Hollifield et al. 2006).

Hollifield et al. (2004) tested the hypothesis that cut-off
strategies such as those discussed above could explain the
actions of traders trading the Ericsson stock on the Stockholm
Stock Exchange. Working at the 1% level, they accepted their
hypothesis for the bid side or the ask side of L(t) in isolation but

†There is no concept of time priority in a single-period framework.

D
ow

nl
oa

de
d 

by
 [t

he
 B

od
le

ia
n 

Li
br

ar
ie

s o
f t

he
 U

ni
ve

rs
ity

 o
f O

xf
or

d]
 a

t 1
6:

00
 1

7 
D

ec
em

be
r 2

01
3 
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rejected it when they considered both sides of L(t) together due
to the existence of several limit orders with extremely low fill
probabilities and insufficiently high payoffs. Hollifield et al.
(2004) concluded that cancellations, which are absent from
the models discussed above, must play an important role in
real LOBs.

Hollifield et al. (2006) studied a model in which cancella-
tions are endogenous (i.e. traders can choose when to cancel
their orders). By comparing predictions made by the model
to data from the Vancouver Stock Exchange, they concluded
that real traders do not make decisions using a common cut-off
strategy.

5.1.2. Fundamental values and informed traders. Some
perfect-rationality models centre around the idea that a subset
of traders are informed traders who know the ‘fundamen-
tal’ or ‘true’ value of the traded asset, whereas everyone else
is uninformed and does not know this true value (see, e.g.
Copeland and Galai (1983); Glosten and Milgrom (1985);
Glosten (1994); Kyle (1985)). Bouchaud et al. (2009) noted
that many researchers now reject the idea that assets have
fundamental values, but such models can still provide insight
into price formation in markets with asymmetric information.

In the classic Kyle (1985) model, uninformed traders place
limit orders and market orders in an LOB. At the same time,
informed traders observe this LOB and, if an uninformed trader
posts a buy limit order with a price above (respectively, sell
limit order with a price below) the fundamental value, then
an informed trader submits a market order that matches to
the mispriced limit order and thereby makes a profit. How-
ever, more recent models (Chakravarty and Holden 1995, Roşu
2010) have noted several reasons that informed traders should
sometimes choose to submit limit orders rather than market
orders—e.g. to avoid detection by other traders who would
mimic their actions if they believed that they were informed
(Roşu 2010).

Goettler et al. (2006) studied a model in which traders ar-
rive at an LOB following a Poisson process. Upon arrival,
a trader submits any desired orders, choosing freely among
prices. He/she then leaves the market and rearrives following
an independent Poisson process. Upon rearrival, a trader can
cancel or modify his/her active orders. When a trader performs
a trade, he/she leaves the market forever. Additionally, any
trader can, at any time, pay a fee to become informed about the
fundamental value of the asset. Such traders remain informed
until they eventually trade and leave the market. Goettler et al.
concluded that a trader’s willingness to purchase the informa-
tion should decrease as his/her desire to trade increases. They
concluded that speculators, who trade purely for profit, should
buy the information most often, that the value of the informa-
tion increases with volatility, and that the optimal strategy for
an informed trader includes submissions of both limit orders
and market orders. However, as Parlour and Seppi (2008) dis-
cussed, Goettler et al.’s step forward in realism comes at the
cost of discarding analytical tractability and relying solely on
numerical computations.

Roşu (2010) also investigated how informed traders should
choose between limit orders and market orders in a model that
allows cancellations. He showed that if an informed trader

observes a mispricing that is sufficiently beneficial, then he/she
should submit a market order to capitalize on the opportunity
before anyone else. If the mispricing is below some threshold
(but still in the informed trader’s favour), then he/she should
instead submit a limit order, to gain a better price for the trade
if it matches. Roşu also concluded that the price impact of a
single informed trader’s order submissions are insufficient to
reset b(t) and a(t) to their fundamental levels, so subsequent
informed traders who arrive at the market with the same infor-
mation are able to perform similar actions to make a profit. He
argued that this is a possible explanation for the empirically
observed phenomenon of event clustering (see Section 4.5.3).

Roşu (2009) replaced the idea that traders who select dif-
ferent prices for their orders must do so because of asymmet-
ric information (Glosten and Milgrom 1985, Kyle 1985) with
the notion that different traders might select different prices
for their orders because of differences in how they value the
immediacy of trading. For example, in real markets, some
traders need to trade immediately and therefore submit market
orders; others do not and can submit limit orders in the hope of
eventually trading at a better price. In Roşu’s model, traders can
modify and cancel their active orders in real time, making it the
first perfect-rationality LOB model to reflect the full range of
actions that are available in real LOBs. Roşu demonstrated
that limit order cancellations simplify the decision-making
problem. He proved the existence of a unique Markov-perfect
equilibrium in the game and derived the optimal strategy for
a newly arriving trader. He also showed that a hump-shaped
depth profile emerges in an LOB that is populated by traders
who follow such a strategy, in agreement with empirical find-
ings from several different markets (see Section 4.4).

5.1.3. Minimizing market impact. As discussed in Section
4.6, determining how to minimize the market impact of an order
is a key consideration for traders. Several perfect-rationality
models have suggested that the event clustering found in em-
pirical data (see Section 4.5.3) may be a signature of traders
attempting to minimize their market impact when executing
large orders (Bouchaud et al. 2009). Lillo et al. (2005) showed
that the power-law decaying autocorrelation function exhibited
by order flows in empirical data can be reproduced by a model
in which traders who wish to buy or sell large quantities of
an asset do so by submitting a collection of smaller orders
sequentially through time.

Using a discrete-time framework, Bertsimas and Lo (1998)
derived an optimal trading strategy for a trader who seeks
to minimize expected trading costs, including those due to
market impact, when processing a very large order that has
to be completed in the next k time steps. They showed that
if prices follow an arithmetic random walk, then the trader
should split the original order into k equal blocks and submit
the blocks uniformly through time. They also showed that if
prices include the effects of exogenous information, then the
optimal strategy involves dynamically adjusting trade quan-
tities at each step. Almgren and Chriss (2001) derived a sim-
ilar strategy for traders who maximize the utility of trading
revenues (including a penalty for uncertainty) when execut-
ing a large order. However, both assumptions about the
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Figure 5. An LOB and its corresponding representation as a system of particles on a one-dimensional pricing lattice.

behaviour of prices in these models poorly mimic the structure
of empirically observed price series (Lo and MacKinlay 2001).

Obizhaeva and Wang (2013) considered the above optimal-
execution problem in continuous time. In a continuous-time
set-up, it is also necessary to choose optimal times, in addi-
tion to optimal sizes, at which to submit orders. The authors
showed that considering the limit k → ∞ of a k-period,
discrete-time model does not provide a valid solution to the
problem, as it leads to a degenerate situation in which execu-
tion costs are strategy-independent. By making several strong
assumptions—including that, after the arrival of a market order,
the depth profile undergoes exponential recovery in time† to a
neutral uniform state—Obizhaeva and Wang derived explicit
optimal execution strategies and concluded that the theoretical
optimum requires the submission of uncountably many orders
during a finite time period. Alfonsi et al. (2010) developed
the model further by removing the assumption that the neu-
tral state of the depth profile must be uniform, although they
still assumed that recovery to the neutral state is exponential.
They showed that in continuous time, the optimal execution
strategy involves initially submitting a large market order to
stimulate new limit order submissions, then submitting small,
equal-sized market orders at a fixed rate, and finally submitting
another large market order at the end.

5.2. Zero-intelligence approaches

As noted above, most perfect-rationality models rely on a series
of auxiliary assumptions to quantify unobservable parame-
ters. Such assumptions often make it difficult to relate perfect-
rationality models to real LOBs. By contrast, zero-intelligence
models assume that order arrivals and cancellations are di-
rectly governed by stochastic processes. The parameters of
such stochastic processes can be estimated directly from his-
torical data, and the statistical properties of the models’outputs
can be compared to those of real data. In this way, falsifiable
hypotheses can be formulated and tested empirically. Further-
more, the predictive power of models can be measured by
training them on a subset of available data in-sample and then
evaluating them out-of-sample.

5.2.1. Model framework. Most zero-intelligence LOB
models use the framework introduced by Bak et al. (1997) to

†Discussion about such recovery of the depth profile, often known as
its resiliency, has appeared in both the empirical (Biais et al. 1995,
Potters and Bouchaud 2003, Bouchaud et al. 2004) and modelling
literatures (Foucault et al. 2005, Roşu 2009).

model the evolution of L(t). Orders are modelled as particles
on a one-dimensional lattice whose locations correspond to
price. Sell orders are represented as a particle of type A and
buy orders are represented as a particle of type B (see figure 5).
Each particle corresponds to an order of size σ , so an order of
size kσ is represented by k separate particles. When two orders
of opposite type occupy the same point on the pricing grid, an
annihilation A + B → ∅ occurs.

5.2.2. Diffusion models. Bak et al. (1997) introduced the
earliest class of zero-intelligence LOB models involving par-
ticles diffusing along a price lattice. Given an initial LOB
state with all A particles to the right of all B particles, they
modelled the movement of each particle along the price lattice
using a random walk. Several authors studied such models
analytically and via Monte Carlo simulation (Bak et al. 1997,
Eliezer and Kogan 1998,Tang and Tian 1999, Chan et al. 2001).
Such work produced several possible explanations for empir-
ical regularities observed in real LOB data, such as the hump-
shaped depth profile (see Section 4.4). However, the Bak et al.
(1997) model has since been rejected because the diffusion of
active orders across different prices is not observed in empir-
ical data (Challet and Stinchcombe 2001, Farmer et al. 2005,
Chakraborti et al. 2011a). Nonetheless, these models sparked
the idea that empirical regularities in LOB data that were pre-
viously thought to be a direct consequence of traders’ strate-
gic actions could be reproduced in a zero-intelligence frame-
work. This has subsequently become a central theme of zero-
intelligence models throughout the literature (see, e.g.
Bouchaud et al. (2009), Farmer et al. (2005), Farmer and Foley
(2009), Smith et al. (2003)).

5.2.3. Discrete-time models. Maslov (2000) introduced a
model that bears a stronger resemblance to real LOBs than the
price diffusion models discussed above. In Maslov’s model, a
single trader arrives at each discrete time step. With probability
1/2, this trader is a buyer; otherwise, he/she is a seller. Inde-
pendently, with probability 1 − r , the trader submits a market
order; otherwise, he/she submits a limit order x = (px , σ, tx )
with

px =
{

p′ − K , if the trader is a buyer,
p′ + K , if the trader is a seller,

(22)

where p′ is the most recent price at which a matching
occurred and K is a random variable with a specified distri-
bution. The model disallows cancellations and modifications
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to active orders. Even with only 1000 iterations and in very
simple set-ups (such as r = 1/2 and K = 1 with probability
1; or r = 1/2 and K ∼ Uniform {1, 2, 3, 4}), the return series
generated by the model exhibits heavy tails and negative auto-
correlation at low lags on event-by-event timescales. Slanina
(2001) implemented a mean-field approximation to replace the
tracking of prices of individual limit orders with a mean value
that increases when a limit order arrives and decreases when
a market order arrives. Under this approximation, the return
distribution is still heavy-tailed and the autocorrelation is still
negative at low lags. However, this model generates mid-price
returns with a Hurst exponent of H ≈ 0.25 on all timescales.
By contrast, as discussed in Section 4.7, LOB data exhibits no
long memory (i.e. H ≈ 0.5) in mid-price returns on all but the
shortest timescales (Lillo and Farmer 2004).

Challet and Stinchcombe (2001) refined Maslov’s model by
allowing multiple particles to be deposited on the pricing grid
during a single time step. They also allowed existing particles
to evaporate, corresponding to the cancellation of an active
order, although they assumed that such evaporations occur
exogenously and independently for each particle. Challet and
Stinchcombe’s model exhibits a heavy-tailed return distribu-
tion and volatility clustering, and the Hurst exponent of the
mid-price return series at large timescales is H ≈ 0.5. The
authors conjectured that the evaporations in their model (which
are absent in the model of Maslov (2000)) ensure that the Hurst
exponent at large timescales matches that of empirical data.

5.2.4. Continuous-time models. The first zero-intelligence
model in continuous time was introduced by Daniels et al.
(2003), who produced a master equation for L(t) under the
assumptions that market order arrivals, limit order arrivals,
and cancellations are all governed by independent Poisson
processes, and that incoming limit orders arrive at the same rate
at each relative price in the semi-infinite interval (−s(t),∞).
Smith et al. (2003) solved the master equation in the limit of
infinitesimal tick sizeπ → 0 using a mean-field approximation
that the depths available at neighbouring prices are indepen-
dent. Guided by dimensional analysis, they constructed simple,
closed-form estimators for a variety of LOB properties—such
as the mean spread, mean depth available at a given price, and
mid-price diffusion—in terms of only the lot size σ and the
Poisson processes’arrival rates. Their Monte Carlo simulations
produced similar results. Their model also provides possible
explanations for why some empirical properties of LOBs vary
between different markets (see Section 4). In particular, the
lot size σ appears explicitly in many of their closed-form
estimators, and there are phase transitions between different
types of market behaviour as σ is varied.

Many of the assumptions made by Daniels et al. (2003) and
Smith et al. (2003) to maintain analytical tractability provide
poor resemblance to some aspects of real LOBs. For example,
in the limit π → 0, the only possible numbers of limit orders
that can reside at a given price p are 0 and 1. This destroys
the notion of limit orders queueing at given prices and thereby
removes a primary consideration for traders: when to submit
an order at the back of an existing priority queue versus when
to start a new queue at a worse price (see Section 3.7). Despite
the simplifications in the above model, Farmer et al. (2005)

reported that it performed well when tested against some as-
pects of empirical data. In particular, they made predictions of
the mean spread and a measure of price diffusion† for 11 stocks
traded on the LSE by calibrating the model’s parameters using
historical data and then compared these predictions to the real
data using an ordinary least-squares regression:

Zemp(i) = zZmod(i) + c, (23)

where Zemp(i) and Zmod(i) are the mean empirical and model
output values of statistic Z for stock i . Using this set-up, z = 1
and c = 0 correspond to a perfect fit of the model to the data.
For the mean spread, the ordinary least-squares estimates of
the parameters were z ≈ 0.99 ± 0.10 and c ≈ 0.06 ± 0.29.
For the price diffusion, the ordinary least-squares estimates of
the parameters were z ≈ 1.33 ± 0.25 and c ≈ 2.43 ± 1.75.
Farmer et al. (2005) used bootstrap resampling to estimate the
standard errors of the regression coefficients, because serial
correlations within the data invalidate the assumptions required
to use the standard estimators (see Section 3.10.2). However,
the distribution of mid-price returns generated by the model
does not exhibit heavy tails, and Tóth et al. (2011) reported
that time series of logarithmic mid-price returns generated by
the model have a Hurst exponent of H < 1

2 when the model’s
parameters are chosen to mimic realistic market conditions.
Both of these facts are contrary to findings in empirical data
(see Section 4.7).

Cont et al. (2010) recently introduced a variant of the
Daniels et al. (2003) and Smith et al. (2003) model to under-
stand how the occurrence frequency of certain events is con-
ditional on L(t). The model does not assume that π → 0 and
thereby ensures that priority queues form at discrete points on
the price lattice. Cont et al. (2010) also removed the assump-
tion of Daniels et al. (2003) and Smith et al. (2003) that the
relative prices of limit orders are drawn from a uniform distri-
bution, and replaced it with a power–law distribution to fit ob-
servations from empirical data more closely (Bouchaud et al.
2002, Zovko and Farmer 2002, Potters and Bouchaud 2003,
Cont et al. 2010). Simulations of the Cont et al. (2010) model
exhibit the hump-shaped depth profile that is commonly
reported in empirical data (see Section 4). Using Laplace trans-
forms, the authors computed conditional probability distribu-
tions for the matching of limit orders in particular situations.

Zhao (2010) and Toke (2011) recently extended the
Cont et al. (2010) model by revising the assumed arrival struc-
ture of market events. Based on an empirical study of crude
oil futures traded at the International Petroleum Exchange,
Zhao (2010) rejected the assumption that the inter-arrival times
of market events are independent draws from an exponential
distribution and thereby rejected the use of independent Pois-
son processes to model market event arrivals. Zhao replaced
the independent Poisson processes with a Hawkes process‡

†Farmer et al. (2005) studied price diffusion by calculating the
variance vτ of the set {(m(ti + τ ) − m(ti )) | i = 1, . . . , k} for various
values of τ , where {ti | i = 1, . . . , k} is the set of times at which the
mid-price changed. They then performed an ordinary least-squares
regression to estimate d in the expression vτ = dτ .
‡A Hawkes process is a point process with time-varying intensity
parameter λ(t) = λ0(t)+∑

ti <t
∑

j C j e−D j (t−ti ), where ti denotes

the time of the i th previous arrival and C j and D j are parameters that
control the intensity of arrivals.
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(Bauwens and Hautsch 2009) that describes the arrival rate of
all market events as a function of recent order arrival rates and
the number of recent order arrivals. When an arrival occurs,
its type (e.g. market order arrival, limit order cancellation,
etc.) is determined exogenously. This produces order flows
in which periods of high arrival rates cluster in time and in
which periods of low arrival rates cluster in time. This agrees
with empirical data (Ellul et al. 2003, Hall and Hautsch 2006).
Zhao demonstrated that this improves the fit of the model
output to the empirically observed mean relative depth profile.
Toke (2011) similarly replaced the Poisson processes in the
Cont et al. (2010) model with Hawkes processes. Unlike Zhao,
however, Toke used multiple mutually exciting Hawkes pro-
cesses (one for each type of market event). By studying empiri-
cal data from several different asset classes, Toke observed that
when a market order arrived, the mean time until the next limit
order arrival was less than the corresponding unconditional
mean time. Their simulated order flow and spread dynamics
matched their empirical observations more closely than those
produced by a Poisson-process model.

Cont and de Larrard (2011) recently introduced a model that
tracks only nb(b(t), t) and na(a(t), t) rather than the whole
depth profile. When either becomes zero, the model assumes
that the depth available at the next best price is a random
variable drawn from a distribution f . The state space of this
model is N2 rather than ZP (which is used in most other recent
LOB models). The authors’ justification for such a simplified
set-up was that many traders can only view the depths available
at the best prices and not the entire depth profile (although this
is becoming increasingly less common as electronic trading
platforms deliver ever more up-to-date information in real time
(Boehmer et al. 2005, Bortoli et al. 2006)). Independent Pois-
son processes govern market order arrivals, limit order arrivals,
and limit order cancellations. Using only the Poisson processes’
rate parameters and the distribution f , the authors derived
analytical estimates for several market properties—including
volatility, the distribution of time until the next change in m(t),
the distribution and autocorrelation of price changes, and the
conditional probability that m(t) moves in a specified direction
given nb(b(t), t) and na(a(t), t). Different levels of autocor-
relation of the mid-price series emerge at different sampling
frequencies, in agreement with empirical observations (Zhou
1996, Cont 2001).

5.2.5. Beyond zero intelligence. Tóth et al. (2011) extended
the Daniels et al. (2003) and Smith et al. (2003) model by us-
ing a long-memory process to determine whether arriving or-
ders are buy or sell orders. They also introduced an extra
parameter to relate the size of arriving buy (respectively, sell)
market orders to na(a(t), t) (respectively, nb(b(t), t)). This
extra parameter makes it possible to control the strength of long
memory in the logarithmic mid-price return series generated
by the model, thereby addressing an issue with the original
model.

Based on an empirical study of data from the LSE,
Mike and Farmer (2008) incorporated the empirically observed
long memory of order flow (see Section 4.7.3) into their model
of the evolution of L(t). They used a Student’s t distribution to
model the relative prices of incoming orders, and they closely

matched cancellation rates for active orders to empirical data.
For stocks with small tick size and low volatility, they found
that their model exhibits negative autocorrelation of logarith-
mic mid-price returns on short timescales, in agreement with
empirical data. Furthermore, they found that it makes good
predictions of the distribution of mid-price returns (including
heavy tails) and the distribution of s(t). However, it is less
successful for stocks other than those with both small tick size
and low volatility.

Gu and Zhou (2009a) simulated the Mike and Farmer (2008)
model and performed a DFAm (see Section 3.10.2) on the
output mid-price return and volatility series. They found that
neither the mid-price return series nor the volatility series ex-
hibits long memory. The former agrees with empirical data,
whereas the latter disagrees with the widely observed stylized
fact of volatility clustering (see Section 4.7). Gu and Zhou
then proposed an extension to the model in which the relative
prices of orders are not drawn independently, but instead are
simulated with an imposed long memory. This modification
causes long memory to emerge in the volatility series and
preserves all of the model’s other results.

Gu and Zhou (2009b) replaced several of the stochastic pro-
cesses governing order flow in the Mike and Farmer (2008)
model with other distributions to examine how this affects the
output. They concluded that a power-law tail in the mid-price
return distribution only appears in the model’s output when
the distribution from which positive relative prices are drawn
has heavy tails, irrespective of whether the distribution from
which negative relative prices are drawn has heavy tails.

AlthoughTóth et al. (2011) and Mike and Farmer (2008) did
not directly assume that traders are rational, the conditional
structure of random variables in their models can be construed
as consequences of rational decision-making. For example, the
dependence of market order sizes on na(a(t), t) and nb(b(t), t)
in the Tóth et al. (2011) model can be interpreted as traders
attempting to minimize their market impact, and the lower
rate of cancellation among active orders with larger relative
prices in the Mike and Farmer (2008) model can be construed
to reflect how traders would not submit such orders unless they
were willing to wait for them to be matched in the future.

5.3. Agent-based models

An agent-based model (ABM) is a model in which a large
number of possibly heterogeneous agents interact in a spec-
ified way (Gilbert 2007). A key advantage of ABMs is the
ability to incorporate heterogeneity between different traders
(Buchanan 2008, Chakraborti et al. 2011a). Such models can
provide insight into both the performance of individual agents
and the aggregate effect of all agents’ interactions. By allowing
each individual agent’s behaviour to be specified without any
explicit requirements regarding rationality, ABMs lie between
the two extremes of zero-intelligence and perfect-rationality
models. However, ABMs of LOBs also have significant draw-
backs. Due to the large number of interacting components
in an LOB, it is difficult to track explicitly how a specified
input parameter affects the output of an ABM. It is also very
difficult to encode a quantitative set of rules to describe traders’
complex and interacting strategies, and finding a set of agent
rules that produces a specific behaviour from anABM provides
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no guarantee that such a set of rules is the only one to do
so (Preis et al. 2007). Abergel and Jedidi (2011) attempted to
address these issues by studying systems of stochastic differ-
ential equations that describe price dynamics in terms of some
ABMs’ input parameters, thereby deriving exact links between
the two approaches. For example, they demonstrated that a
very simple ABM can result in Gaussian process dynamics,
with a diffusion coefficient that depends on the model’s input
parameters.

Early ABMs of LOBs assumed that agents arrive sequen-
tially (Foucault 1999) and that LOBs empty at the end of each
time step. Such set-ups fail to acknowledge an LOB’s key
function of storing supply and demand for later consumption by
other traders (Smith et al. 2003). However, more recent ABMs
have more closely mimicked real LOBs and have successfully
reproduced a wide range of empirical features present in empir-
ical data (Cont and Bouchaud 2000, Chiarella and Iori 2002,
Challet and Stinchcombe 2003, Preis et al. 2006).

Cont and Bouchaud (2000) showed that when agents in a
simple market imitate each other, the resulting output exhibits
a heavy-tailed return distribution, clustered volatility, and ag-
gregational Gaussianity (see Section 4.7).

Chiarella and Iori (2002) studied anABM in which all agents
share a common valuation for the asset traded in a given LOB.
They noted that the realized volatility produced by their model
is too low compared to empirical data and that there is no
volatility clustering. They thereby argued that substantial het-
erogeneity must exist between traders in real LOBs for the
highly nontrivial properties of volatility to emerge (see Section
3.6). Cont (2005) noted that differences in agents’ levels of im-
patience can be a source of such heterogeneity in real markets.

Preis et al. (2006) reproduced the main findings of
Smith et al. (2003) using an ABM rather than independent
Poisson processes. By fine-tuning agents’ trading strategies,
their model reproduces the heavy-tailed distribution of mid-
price returns, the diffusivity of mid-price returns over long
timescales, and the negative autocorrelation of m(t) on an
event-by-event timescale, Preis et al. (2007) studied the per-
formance of individual agents in the model. They found that the
Hurst exponent H of the mid-price return series depends on the
number of agents in the model, and that the best fit of H against
values calculated from empirical data occurred with 150 to 500
liquidity-provider (i.e. limit order placing) agents and 150 to
500 liquidity-taker (i.e. market order placing) agents.

Challet and Stinchcombe (2003) studied how allowing the
parameters of a simple ABM of an LOB to vary in time affects
traded price series. They concluded that such time-dependence
results in the emergence of a heavy-tailed distribution of mid-
price changes, autocorrelated mid-price returns, and volatility
clustering. They noted that many LOB models assume that
parameter values remain constant in time, and they conjectured
that several stylized facts (see Section 4.7) might be caused by
real traders changing their actions over time.

Lillo (2007) showed how an ABM can explain the empir-
ically observed power-law distribution of relative prices of
incoming orders (see Section 4.2). In particular, he solved a
utility maximization problem to show that if mid-price move-
ments are assumed to follow a Brownian motion, then each
perfectly rational agent should choose the relative price of
his/her submitted orders to be

δx ∗ =
√

2T g−1(α)V, (24)

where g(α) describes the agent’s risk aversion, T is the agent’s
maximum time horizon (i.e. the maximum length of time that
the agent is willing to wait before performing the trade), and
V is the market volatility. He then studied how empirically ob-
served homogeneity in g and T and fluctuations in V affect the
price choices of interacting agents with different risk aversions
g and different maximum time horizons T . He concluded that
heterogeneity in T is the most likely source of the power-law
tails in the distribution of δx ∗ and that the homogeneity in g
and fluctuations in V that have been observed empirically in a
wide range of markets are unlikely to lead to a power-law tail
in the distribution of δx ∗.

6. Key unresolved problems

In this section, we discuss key unresolved problems currently
facing researchers of LOBs.

• Understanding statistical regularities: As discussed
in Section 4, several empirical regularities appear in
data from a wide range of different markets. Some such
statistical regularities describe features of order flow
or LOB state; others describe stylized facts relevant to
price formation and market stability. Many authors (see,
e.g. Gu and Zhou (2009a), Lillo (2007), Stanley et al.
(2008) and Tóth et al. (2011)) agree that one of the main
challenges facing researchers of LOBs is to gain a better
understanding the origins of these statistical regulari-
ties. LOB models can help to achieve this, and some
progress has been made. However, no single model has
yet been capable of simultaneously reproducing all of
the statistical regularities, and there is no clear picture
about how the stylized facts emerge as a consequence
of the actions of many heterogeneous traders.

• Understanding recent data: A great deal of effort has
been invested in empirical study of LOB data. Figure 6
shows the approximate number of days’ data per year
that studies discussed in this article have examined.
Although the breadth of such empirical work is sub-
stantial, the overwhelming picture painted by figure 6
is that the data studied is old. It is also often of poor
quality, so extensive auxiliary assumptions are required
before any statistical analysis can even begin. Strong
assertions have been made by empirical studies based
on single stocks over very short time periods. Many
LOB models are built upon statistical regularities ob-
served in old data, but traders’ strategies and the rules
governing trade change over time, so empirical obser-
vations from more than a decade ago may not accu-
rately describe current LOB activity. However, recent
advances in computational and storage capabilities have
made it feasible to record data detailing all order flows
at all prices, and tools have been developed to assist
researchers with reconstructing the full LOB in certain
markets (Huang and Polak 2011). By studying recent,
high-quality data, researchers will be able to assess
whether the existing foundations for LOB modelling
accurately reflect today’s markets.
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Figure 6. Approximate total number of days’ data per year that has
been examined by empirical studies discussed in this article.

• Non-stationary behaviour: Although precisely what
is meant by ‘equilibrium’ depends upon context, al-
most all LOB models to date have focused on some
form of equilibrium, such as a Markov-perfect equilib-
rium in sequential-game models or a state-space equi-
librium in reaction-diffusion models. However, empir-
ical evidence strongly suggests that LOBs are subject
to frequent shocks in order flow that cause them to dis-
play non-stationary behaviour, so they may never settle
into equilibrium (Buchanan 2009). Preliminary work on
non-equilibrium models has hinted at promising results,
such as quantitative replication of some of the stylized
facts (Challet and Stinchcombe 2003), but there is very
little progress in this direction.

• Volatility: Price changes and volatility are among the
most hotly debated topics in the literature (Hasbrouck
1991, Almgren and Chriss 2001, Potters and Bouchaud
2003, Bouchaud et al. 2009, Tóth et al. 2011). How can
estimates of volatility be designed to incorporate in-
formation about the entire state of L(t)? What causes
volatility to vary over time? Why should periods of high
activity cluster together? Why should price fluctuations
be so frequent and so large on intra-day timescales,
given that external news events occur so rarely (Maslov
2000)? It is not even agreed whether the number of
market orders (Jones et al. 1994), the size of market
orders (Gallant et al. 1992), or the fluctuation of liquid-
ity (Bouchaud et al. 2009) plays the dominant role in
determining volatility. It seems likely that the answers
to such questions will not be found in isolation, but
rather that there is an intricate interplay between the
many pieces of the volatility puzzle. Recent work has
attempted to tie together some of these ideas. For ex-
ample, Bouchaud et al. (2009) and Wyart et al. (2008)
conjectured that volatility might be understood better
by considering the need for traders to minimize their
market impact.

• Algorithmic trading: Electronic trading algorithms are
able to process vast quantities of LOB data to interpret
market conditions and submit or cancel orders in a
small fraction of the time that it would take a human
to perform the same task. The use of electronic trading
algorithms has increased rapidly in recent years, but
empirical research in this area is extremely difficult
due to a lack of data in which algorithmic trades are
identified (Chaboud et al. 2011). To date, the published

literature on algorithmic trading consists of only a hand-
ful of empirical studies and models, yet there is fierce
debate about whether such algorithms are beneficial or
detrimental to markets. Different studies have drawn
contradictory conclusions. Chaboud et al. (2011) and
Hendershott et al. (2011) reported that electronic trad-
ing algorithms narrow spreads, reduce adverse selec-
tion, speed up price discovery, increase liquidity, and
improve the informativeness of b(t) and a(t). How-
ever, Biais et al. (2011) and Kirilenko et al. (2011) re-
ported that electronic trading algorithms increase ad-
verse selection, create an unfair advantage for wealth-
ier traders, decrease liquidity, and exacerbate volatility
during stressed market scenarios. From a regulatory
standpoint, it is crucial to understand how electronic
trading algorithms affect market stability, yet almost
nothing concrete is currently known.

• Liquidity fragmentation: In recent years, it has be-
come increasingly common for assets to be traded on
several different electronic trading platforms simulta-
neously (Bennett and Wei 2006). The resulting compe-
tition between exchanges has stimulated technological
innovation and driven down the fees incurred by traders,
but it has also caused a fragmentation of liquidity be-
cause limit orders for a given asset are now spread
between several different LOBs. This poses a problem
for empirical research, as the study of any individual
LOB in isolation no longer provides a snapshot of the
whole market for an asset. Furthermore, differences
between different trading platforms’matching rules and
transaction costs complicate comparisons between dif-
ferent LOBs for the same asset. Cont et al. (2011) re-
ported similarities between different LOBs that traded
the same asset simultaneously, but there is no reason that
this must hold in general. The development of robust
methods for assimilating data across multiple platforms
will be of paramount importance to understand the im-
plications of liquidity fragmentation on market stability
and price formation.

7. Conclusion

The literature on LOBs has grown rapidly, and both empiri-
cal and theoretical work has deepened understanding of the
LOB trading process. LOBs are a rich and exciting testing
ground for theories, and have provided new insight into long-
standing economic questions regarding market efficiency, price
formation, and the rationality of traders. However, despite
the progress made on specific aspects of limit order trading,
it remains unclear how the various pieces of the puzzle fit
together. For example, models that capture the dynamics of
event-by-event price changes poorly reproduce price dynam-
ics on longer timescales. Similarly, models that explain price
dynamics on inter-day timescales offer little understanding of
how they emerge as the aggregate effect of individual trades.

There are substantial challenges associated with studying
historical LOB data, and several empirical studies contain sys-
tematic errors in their calculations. Moreover, performing quan-
titative comparisons between different empirical studies is very
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difficult for two reasons. First, it is unclear whether differ-
ences in the findings of such studies are caused by differences
in different markets, or are simply a result of differences in
methodology. Sampling frequency, choice of asset class, LOB
resolution parameters, specific trade-matching nuances, and
many other factors all influence empirical findings, but so too
do the choice of statistical estimators and the details of their
implementation. This makes it difficult to assess the influence
of specific LOB factors on trade. Second, LOB platforms, LOB
rules, and trading strategies have all changed over time, so the
date range over which data was collected may itself play a role
in the values of the statistics reported. This issue is particularly
important given the recent surge in popularity of electronic
trading algorithms. Studies of recent, high-quality LOB data
that are conducted with stringent awareness of potential statis-
tical pitfalls are needed to understand better the LOBs of today.

It is clear from empirical studies how poorly the data sup-
ports the very strong assumptions made by many LOB models.
Although every model must make assumptions to facilitate
computation, many LOB models depend on elaborate and in-
accurate assumptions that make it almost impossible to re-
late their output to real markets. ABMs appear to offer some
compromise between the extremes of zero-intelligence and
perfect-rationality models; they also provide an explicit way
to remove the inherent homogeneity associated with many ex-
isting approaches (Lux and Westerhoff 2009, Zhao 2010, Toke
2011). Furthermore, the level of game-theoretic considerations
involved in agents’decision-making can be controlled by spec-
ifying how strongly agents react to each other and forecast each
other’s actions. Therefore, ABMs have the potential to pro-
vide a rich toolbox for investigating LOBs without requiring
extreme modelling assumptions. However, it remains unclear
whether theABMs studied to date offer a deeper understanding
of market dynamics or merely amount to curve-fitting exer-
cises in which parameters are varied until some form of non-
trivial behaviour emerges. Recently, statistical techniques from
econometrics have enabled consistent estimation of ABMs’
parameters from market data (Chen et al. 2012). It will be
interesting to see whether the use of such techniques in an
LOB context paves the way for new, quantitative explanations
of LOB phenomena.

Price impact and market impact also continue to be active
areas of research. A deeper understanding of these notions is
very desirable, as they form a conceptual bridge between the
microeconomic mechanics of order matchings and the macroe-
conomic concepts of price formation. Considerations about
price impact and market impact could also help to explain
the actions of traders in certain situations. However, despite
the striking regularities that have been observed in empirical
studies, little is understood about why price impact functions
have the forms that they do and almost nothing is understood
about market impact.

LOBs have revolutionized trading by providing traders the
freedom to evaluate their own need for immediate liquidity.
Their study has hitherto been hampered by their inherent com-
plexity, with all the associated technical difficulties, and above
all by wholly inadequate empirical data. However, our growth
in understanding allied to massive improvements in data and in

computational power suggest that answers to many important
open questions will not be long in coming.
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Roşu, I., A dynamic model of the limit order book. Rev. Financ. Stud.,
2009, 22, 4601–4641.
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