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The spherical quantum billiard with a time-varying radius,a(t), is considered. It is proved that only
superposition states with components of common rotational symmetry give rise to chaos. Examples
of both nonchaotic and chaotic states are described. In both cases, a Hamiltonian is derived in which
a and P are canonical coordinate and momentum, respectively. For the chaotic case, working in
Bloch variables~x,y,z!, equations describing the motion are derived. A potential function is
introduced which gives bounded motion ofa(t). Poincare´ maps of~a,P! at x50 and the Bloch
sphere projected onto the~x,y! plane atP50 both reveal chaotic characteristics. ©2000 American
Institute of Physics.@S1054-1500~00!00602-9#
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Quantum billiards describe the motion of a point particle
undergoing perfectly elastic collisions inside a domain
with a closed boundary. In the present paper, we con-
sider the spherical quantum billiard with a radially vi-
brating surface. Quantum chaos can occur in this case if
one considers the superposition of at least two eigen
states. The manifestation of this behavior depends on the
relative quantum numbers of the two superposed eigen-
states. These results are of both theoretical and practica
interest. On the theoretical side, they motivate the defini-
tion of the degree-of-vibration of a quantum billiard with
a time-dependent boundary and set the stage for a new
class of quantum chaos. On the practical side, the radi-
ally vibrating spherical quantum billiard can be consid-
ered as a model for particle behavior in the nucleus as
well as a model of the quantum-dot microdevice compo-
nent.

I. INTRODUCTION

Quantum chaos has been studied extensively in the
cent past.1–5 Quantum chaotic properties of a particle co
fined to a one-dimensional box with vibrating walls is we
established.6 In the present work, we consider the spheric
quantum billiard with a time-varying boundary which is in
superposition state of two eigenstates of the system. A th
rem is derived that only superposition states with com
nents of common rotational symmetry give rise to chaos.
example of the nonchaotic case is given in terms of a su
position state of the two azimuthally symmetric eigenfun
tions of lowest energy. The theorem is then proved for
arbitrary superposition state. In this proof, nonchaotic beh
ior is established by showing that equations reduce to
tonomous equations in two dimensions, whose noncha
properties are well known.7 An example is then presented o
a chaotic two-component superposition state, in which Blo
variables are brought into play.8–10 A Hamiltonian is derived
in which a and P are canonical coordinate and momentu
respectively. A potential function is introduced which im
plies bounded motion of the spherical radiusa(t). Poincare´
3661054-1500/2000/10(2)/366/5/$17.00
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maps of~a,P! at a fixed value of one of the Bloch variable
and the projection of the Bloch sphere onto the~x,y! plane at
P50 both reveal chaotic characteristics. Corresponding
slight change in initial conditions, structure in related plo
indicates that for this new initial data, not all invariant to
are destroyed in the configuration in accord with KA
theory. A discussion is included on the corresponding c
otic behavior of the vibrating spherical classical billiard. It
noted that the radially vibrating quantum billiard has app
cation as a model for intradynamics of the nucleus11 and the
‘‘quantum dot.’’12 At low temperature this latter microde
vice component experiences vibrations due to zero-point
tions. At higher temperatures, it exhibits vibrations due
natural fluctuations. Additionally, the ‘‘liquid drop’’ and
‘‘collective’’ models of the nucleus include boundary vibra
tions. A degree of vibration of a system is characterized b
time-dependent displacement parameter of the system.
example, a rectangle in the plane with moveable bounda
has two degrees of vibration.

II. NONCHAOTIC CONFIGURATION

The spherical quantum billiard refers to the quantum d
namics of a particle of massm confined to the interior of a
spherical cavity of massM@m, with smooth walls of radius
a. In the present configuration,a5a(t). A two-component
superposition state of this quantum billiard is given by

uc~r ,u,f,t !&5A1~ t !u lnm,t&1A2~ t !u l 8n8m8,t&, ~1a!

whereA1(t) and A1(t) are complex amplitudes. The num
bers (l ,n,m) are orbital, principal, and azimuthal quantu
numbers, respectively, and eigenstates are products
spherical Bessel functions and spherical harmonics.13 In the
coordinate representation,

^r u lnm,t&5c lnm~r ,u,f,t !5A 2

a3~ t !S 1

j l 11~xln! D
3 j l S rxln

a~ t ! DYlm~u,f!, ~1b!

j l~xln!50. ~1c!
© 2000 American Institute of Physics
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 This a
It is shown that the condition of common rotational symm
try of the two eigenstates in~1a!,

l 5 l 8, m5m8, ~1d!

is necessary for chaotic behavior of this superposition st
The explicit time dependence of eigenstates is in their n
malization factors as well as in arguments of spherical Be
function components@see~1b!#. First, we present an examp
to motivate the preceding theorem. In the following secti
the theorem is proved for an arbitrary superposition state.
example is then given of a superposition state that exhi
chaotic behavior.

The time-dependent Schro¨dinger equation for the system
at hand is given by

i\
]c~r ,u,f,t !

]t
52

\2

2m
¹2c~r ,u,f,t ! ~1e!

for r ,a(t). Taking expectations of this equation in the s
perposition state~1a! gives

K cUS 2
\2

2m
¹2Dc L 5

1

a2 @«1uA1u21«2uA2u2#

[K~A1 ,A2 ,a!, ~2a!

i\ K cU]c

]t L 5Ȧ1A1* 1Ȧ2A2* 1muA1u21suA2u21gA1A2*

1lA2A1* ~2b!

«1[
\2xln

2

2m
, «2[

\2xl 8n8
2

2m
. ~2c!

The diagonal form of the expectation of the Laplacian f
lows from spherical Bessel-function orthogonality. This o
thogonality does not carry over to the expectation of the ti
derivative, as this operation causesr-dependent terms to ap
pear in the integrand due to differentiation ofa(t) in the
argument of the spherical Bessel function~1b!. Examining
the superposition ofu010& and u110&, with ~2b! and orthogo-
nality of spherical harmonics, one obtains

m5s5g5l50. ~2d!

Equating~2a! and ~2b! gives

iȦ15
1

\a2 «1A1 , iȦ25
1

\a2 «2A2 , ~2e!

where«1 ,«2 are given by~2c!.
These latter equations may be integrated to yield

A1~ t !5C1 expF2
i«1

\ E a22~ t ! dtG ,
A2~ t !5C2 expF2

i«2

\ E a22~ t ! dtG . ~3a!

One may construct a classical Hamiltonian correspondin
the motion~2d!. Namely, with~2a! one obtains
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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H5
P2

2M
1K~A1 ,A2 ,a!1V~a!

5
P2

2M
1

1

a2 @«1a1«2b#1V~a!, ~3b!

where with~3a!,

a[uA1u25uC1u2, ~3c!

b[uA2u25uC2u2. ~3d!

Hamilton’s equation forda/dt gives

ȧ5
P

M
. ~3e!

In the preceding equation,V(a) is an arbitrary potential and
M@m is the effective mass of the spherical enclosure. As
well known, a Hamiltonian with no explicit time dependen
and one degree-of-freedom corresponds to a tw
dimensional autonomous system, which is known to
nonchaotic.14

III. NECESSARY CONDITIONS FOR CHAOS IN K
COUPLED STATES

Consider the general superposition state relevant t
system

c5A1wq1
1A2wq2

1¯1Akwqk
, ~4a!

whereqi[( l i ,ni ,mi). If there does not exist a pair of eigen
functions in the sum~5a! that have common angular quan
tum numbers@i.e., there is no pair, (i ,i 8) such that (l i

5 l i 8 , mi5mi 8!#, then forming the norm of~4a! returns a
diagonal form

Ȧ1A1* 1¯1ȦkAk* 5d1uA1u21¯1dkuAku2. ~4b!

All the cross terms vanish by orthogonality of spherical h
monics. The diagonal terms stem from the Laplacian. F
lowing the procedure above gives the HamiltonianH
5H(a,P):

H5
P2

2M
1

1

a2 (
i 51

k

« ia i1V~a!, a i[uAi u25uCi u2; ~4c!

(
i 51

k

uCi u251, Ci5constant. ~4d!

The superposition~4a! is nonchaotic because the Ham
tonian is again autonomous with one degree-of-freedom.

We may conclude that a necessary condition for cha
behavior of an arbitrary superposition state for a system
that at least one pair of functions in the expansion have c
mon angular quantum numbers. Note, for example, that c
pling exists between the states

Jl S rxln

a DYlm~u,f!, j l S rxln8
a DYlm~u,f!, ~4e!

a superposition of which, in general, leads to chaos. In p
ticular, considering small (n,n8), we may obtain a chaotic
superposition for eigenstates with small energies. That is,
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need not consider only the high quantum number limit
order to obtain chaotic behavior, as is the case in most s
ies of quantum chaos.1,4 Note also that this proof applie
equally for a radially vibrating cylindrical quantum billiar
of fixed length in which spherical Bessel functions are
placed by Bessel functions of the first kind, and spheri
harmonics are replaced by elementary harmonic function

IV. CHAOTIC CONFIGURATION

As an example of a chaotic configuration, consider
azimuthally symmetric superposition state

uc~ l ,n,m!&5A1u110&1A2u120&. ~5a!

Denoting the expectations of the left and right sides of~1e!
by T andK, respectively, one obtains

T5m
ȧ

a~ t !
@2A1* A21A1A2* #1Ȧ1A1* 1Ȧ2A2* , ~5b!

m.0.4395263. ~5c!

~The parameterm may be expressed analytically but takes
far too much space and is unsightful.! Again the momentum
equation~3e! and the Hamiltonian~3b! apply. Combining
~5b! with ~2a! and noting thatA1* and A2* may be taken as
independent parameters@or, equivalently, treating~5b! as a
quadratic form# gives the matrix equation

iȦn5 (
n51

2

DnkAk , ~5d!

whereD is the Hermitian matrix

D5S «1 /\a2 2 imȧ/a

imȧ/a «2 /\a2 D , ~5e!

«1[
\2x11

2

2m
, «2[

\2x12
2

2m
.«1 , ~5f!

andm is given by~5c!.
Introducing the Bloch variables8–10

x5A1A2* 1A2A1* , y5 i ~A1* A22A1A2* !,
~6a!

z5A2A2* 2A1A1* 5uA2u22uA1u2

gives, with~5d! and ~5e!,

ẋ52v0y/a222mPz/Ma,

ẏ5v0x/a2,
~6b!

ż52mPx/Ma,

\v0[~«22«1!.

Rewriting K(A1 ,A1 ,a) in terms of the Bloch variablez
gives

K~z,a!5~«11z«2!/a2,
~6c!

«6[~«26«1!/2.

InsertingK(z,a) into ~3b! gives Hamilton’s equations
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ȧ5P/M ,
~6d!

Ṗ52
]V

]a
12@«11«2~z2mx!#/a3.

Equations~6b! and ~6d! are a set of five coupled equation
for our system. The constants of motion for this system
the radius of the Bloch sphere

x21y21z251 ~7a!

and the energy

E5P2/2M1V~a!1K~z,a!, ~7b!

so that there remain three independent dynamical variab
The system of equations~6b! and ~6d! are a full set of dy-
namical equations for the variables~x,y,z,a,P! whose equilib-
rium points satisfy x50, y50, z561, a5a6 , P50,
wherea6 are solutions to the second equation in~6d! for x
5P50 andz561. ProvidingV(a)1K(z,a) has a single
minimum ina, these fixed points are stable elliptic.~That is,
every eigenvalue of the Jacobian of the linearized system
purely imaginary. For the system at hand, there is only o
zero eigenvalue and two pairs of purely imaginary conjug
eigenvalues.!

Oscillation of the radiusa(t) in a bounded radial interva
is implied by the total potential

V0~a2a0!2/a0
21~«11z«2!/a2 ~8a!

for which a6 are given by solutions of the equation

a2a05a0
2«6 /V0a3. ~8b!

A single real solution of~8b! corresponds to each of the«6

values which, as noted previously, are both positive. O
finds that

a1.a2.a0 . ~8c!

It follows that if a2<a(0)<a1 , a(t) likewise remains
bounded in the interval@a2 ,a1#. It is noted that the analysis
of this last section parallels the one-dimensional study
Blümel and Esser.3

Poincare´ maps of~a,P! at x50 are shown in Figs. 1~a!
and 1~b! and that of the Bloch spheres projected onto
~x,y! plane atP50 are shown in Figs. 2~a! and 2~b!. These
maps illustrate the chaotic behavior of the spherical quan
billiard with a vibrating surface. Working in units of\51,
data and initial values used in calculations of Figs. 1~a! and
2~a! are as follows: x(0)5sin 0.95p, y(0)50, z(0)
5cos 0.95p, a051.25, a(0).0.504967,P(0)50, M510,
«1.10.09536,«2.29.83967,m.0.439526, andV0 /a0

255.
We now make a slight change in starting data. Namely, w
all data the same, except fora(0)50.75 andP(0)52.5, re-
lated Poincare´ maps are shown in Figs. 1~b! and 2~b!. The
additional structure in these graphs indicate that correspo
ing to a slight change in initial data, not all of the invaria
tori of the given dynamical configuration are broken u
which is in accord with KAM theory.

As quantum chaos has been established for the pre
system, it is natural to ask about the nature of the co
sponding chaotic behavior in real space. For the station
spherical classical billiard, due to conservation of angu
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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momentum, the particle trajectory sweeps out an annular
main of constant inner radius.15 Vibration of the wall of the
sphere destroys this constant and chaotic motion may be
pected to develop.~The ‘‘moment arm’’ of the reflected tra
jectory increases during, say, the expansion phase of
sphere.! In addition, we consider the following connectio
between classical and quantum chaos is the present con
As a mathematical abstraction~6a! and ~6b! may also be
viewed as classical equations of motion for the five giv
variables which give rise to Hamiltonian chaos. The quant
interpretation of these dynamics may be seen in two m
ners. First, the Bloch variablesx,y,zcorrespond to the quan
tum probabilitiesuA1u2,uA2u2. Second, quantum mechanic

FIG. 1. ~a! Poincare´ map of~a,P! at x50. ~b! Same Poincare´ map as in~a!,
illustrating that for the varied initial conditions,@a(0)50.75, P(0)52.5)#
invariant tori have not all been destroyed.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

129.67.66.133 On: Fri, 2
o-

x-

he

xt.

n

n-

wave functions of the given system depend on these v
ables.

V. CONCLUSIONS

The spherical quantum billiard with a time-varyin
boundary was studied. It was shown that an arbitrary sup
position state of a system is chaotic provided that at least
components of the superposition state have common r
tional symmetry. Examples of both nonchaotic and chao
states were described. For the chaotic case, working in B

FIG. 2. ~a! Poincare´ map of the Bloch sphere projected onto the~x,y! plane
at P50. ~b! Same Poincare´ map as in~a!, illustrating that for the varied
initial conditions,@a(0)50.75,P(0)52.5)# invariant tori have not all been
destroyed.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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variables, a Hamiltonian was derived in which the spheri
radius is a canonical coordinate. A potential function w
introduced which leads to bounded motion of the spher
radius. Two sets of Poincare´ maps were observed to reve
chaotic characteristics. A discussion was included on the
responding chaotic behavior of the classical vibrating sph
cal billiard.
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