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Quantum chaos for the radially vibrating spherical billiard
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The spherical quantum billiard with a time-varying radia€), is considered. It is proved that only
superposition states with components of common rotational symmetry give rise to chaos. Examples
of both nonchaotic and chaotic states are described. In both cases, a Hamiltonian is derived in which
a and P are canonical coordinate and momentum, respectively. For the chaotic case, working in

Bloch variables(x,y,2, equations describing the motion are derived. A potential function is

introduced which gives bounded motion aft). Poin

caremaps of(a,P) at x=0 and the Bloch

sphere projected onto tlie,y) plane atP=0 both reveal chaotic characteristics. ZD00 American

Institute of Physicg.S1054-150000)00602-9

Quantum billiards describe the motion of a point particle
undergoing perfectly elastic collisions inside a domain
with a closed boundary. In the present paper, we con-
sider the spherical quantum billiard with a radially vi-
brating surface. Quantum chaos can occur in this case if
one considers the superposition of at least two eigen-
states. The manifestation of this behavior depends on the
relative quantum numbers of the two superposed eigen-
states. These results are of both theoretical and practical
interest. On the theoretical side, they motivate the defini-
tion of the degree-of-vibration of a quantum billiard with

a time-dependent boundary and set the stage for a new
class of quantum chaos. On the practical side, the radi-
ally vibrating spherical quantum billiard can be consid-
ered as a model for particle behavior in the nucleus as
well as a model of the quantum-dot microdevice compo-
nent.

I. INTRODUCTION

maps of(a,P) at a fixed value of one of the Bloch variables
and the projection of the Bloch sphere onto tkg) plane at

P =0 both reveal chaotic characteristics. Corresponding to a
slight change in initial conditions, structure in related plots
indicates that for this new initial data, not all invariant tori
are destroyed in the configuration in accord with KAM
theory. A discussion is included on the corresponding cha-
otic behavior of the vibrating spherical classical billiard. It is
noted that the radially vibrating quantum billiard has appli-
cation as a model for intradynamics of the nucféwsd the
“quantum dot.”*? At low temperature this latter microde-
vice component experiences vibrations due to zero-point mo-
tions. At higher temperatures, it exhibits vibrations due to
natural fluctuations. Additionally, the “liquid drop” and
“collective” models of the nucleus include boundary vibra-
tions. A degree of vibration of a system is characterized by a
time-dependent displacement parameter of the system. For
example, a rectangle in the plane with moveable boundaries
has two degrees of vibration.

I. NONCHAOTIC CONFIGURATION

Quantum chaos has been studied extensively in the re-

cent past™ Quantum chaotic properties of a particle con-
fined to a one-dimensional box with vibrating walls is well
established.In the present work, we consider the spherical
guantum billiard with a time-varying boundary which is in a

The spherical quantum billiard refers to the quantum dy-
namics of a particle of mags confined to the interior of a
spherical cavity of massl>m, with smooth walls of radius
a. In the present configuratiom=a(t). A two-component

superposition state of two eigenstates of the system. A theguperposition state of this quantum billiard is given by

rem is derived that only superposition states with compo

nents of common rotational symmetry give rise to chaos. An

example of the nonchaotic case is given in terms of a supe

| (1, 0,6,0))=A()[Inm,t)+A,(D)[I'n'm’,t), (18
whereA;(t) and A,(t) are complex amplitudes. The num-

position state of the two azimuthally symmetric eigenfunc-bers (,n,m) are orbital, principal, and azimuthal quantum
tions of lowest energy. The theorem is then proved for ariumbers, respectively, and eigenstates are products of
arbitrary superposition state. In this proof, nonchaotic behavspherical Bessel functions and spherical harmotiids.the

ior is established by showing that equations reduce to aucoordinate representation,

tonomous equations in two dimensions, whose nonchaotic

properties are well knowhAn example is then presented of

a chaotic two-component superposition state, in which Bloch

variables are brought into pl&y° A Hamiltonian is derived
in which a and P are canonical coordinate and momentum,
respectively. A potential function is introduced which im-
plies bounded motion of the spherical rada). Poincare
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It is shown that the condition of common rotational symme- p2
try of the two eigenstates ifla), H=oy TK(ALAz,2)+V(a)
I=1", m=m, (1d) P2 1
=m+¥[sla+szﬁ]+V(a), (3b)

is necessary for chaotic behavior of this superposition state.
The explicit time dependence of eigenstates is in their norwhere with(3a),
malization factors as well as in arguments of spherical Bessel _ ) )
function componentfsee(1b)]. First, we present an example a=[Aq*=[Cq]%, (30)
to motivate the preceding theorem. In the following section, B=|A,|2=|C,|%. (3d)
the theorem is proved for an arbitrary superposition state. An. . ,
example is then given of a superposition state that exhibit§!@milton’s equation foda/dt gives
chaotic behavior. P

The time-dependent Schiimger equation for the system a= M (3¢

at hand is given by
In the preceding equatioN,(a) is an arbitrary potential and

CdY(r,0,0,t) h? 5 M>m is the effective mass of the spherical enclosure. As is

i —a ﬁv ¥(r.0,¢.1) 18 el known, a Hamiltonian with no explicit time dependence
and one degree-of-freedom corresponds to a two-

for r<a(t). Taking expectations of this equation in the su-dimensional autonomous system, which is known to be

perposition staté¢la) gives nonchaotic:*
hz 2 _ 1 2 2
1 ﬁv ¥)= ;[aﬂAll +82|A2| ] I1l. NECESSARY CONDITIONS FOR CHAOS IN K
COUPLED STATES
Consider the general superposition state relevant to a
iﬁ<¢/z‘a¢> ALAY + AL + u| A2+ o| A2+ YA A% system
| T 2R T AL T[A2 YR1R2
at p=A10q,+A20q, T+ Aeq,, (4a)
+NAAT (2b)  whereg;=(l;,n;,m;). If there does not exist a pair of eigen-

functions in the sun(5a) that have common angular quan-

tum numbers[i.e., there is no pair,i(i’) such that [

2m (20) =l;», m;=m;,)], then forming the norm of4a returns a
diagonal form

The diagonal form of the expectation of the Laplacian fol- . .

lows from spherical Bessel-function orthogonality. This or-  A1AT ++ -+ AAY = 81| Ag|>+- -+ 5 A% (4b)

th°9°”,a"ty doe; not carry over to the expectation of the timéy| the cross terms vanish by orthogonality of spherical har-
derivative, as this operation causedependent terms t0 ap- nonics, The diagonal terms stem from the Laplacian. Fol-

pear in the integrand due to differentiation aft) in the lowing the procedure above gives the Hamiltoni&h

2,2 2,2
_h Xin _ﬁ Xirnr
81= y 82:

2m

argument of the spherical Bessel functi@ib). Examining =H(a,P):
the superposition 0010 and|110), with (2b) and orthogo- ' ’
nality of spherical harmonics, one obtains P2 1 ) 5
H:m+5221 gai+V(a), ao=|A>=|C|% (40
pu=o0=7y=\=0. (2d) =
k
Equatlng(Za) and (2b) gives 2 |Ci|2: 1, C;=constant. (4d)
i=1
. 1 . 1 -, . . .
iAl:ﬁslAlv iAZZWSZAz, (2¢9  The superposition4a is nonchaotic because the Hamil-

tonian is again autonomous with one degree-of-freedom.

We may conclude that a necessary condition for chaotic
behavior of an arbitrary superposition state for a system is
that at least one pair of functions in the expansion have com-
mon angular quantum numbers. Note, for example, that cou-
; pling exists between the states

wheree,e, are given by(2c).
These latter equations may be integrated to yield

1

Al(t)zclexp[—i%f a~?(t)dt

Yim(6,9), (4e)

_ ] (rxm)Y 6.4). ] X
le _ , , J -
A2(t)=C2ex;{—72f az(t)dt} (3a) a ) im '\ a
a superposition of which, in general, leads to chaos. In par-
One may construct a classical Hamiltonian corresponding tdicular, considering smallr,;n’), we may obtain a chaotic

the motion(2d). Namely, with(2a one obtains superposition for eigenstates with small energies. That is, we
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need not consider only the high quantum number limit in a=P/M,

order to obtain chaotic4behavior, as is the case in most stud- v (6d)
ies of quantum phads: No'Fe alsq tha}t this proof applles p—_ a—+2[a++s_(z—,ux)]/a3.

equally for a radially vibrating cylindrical quantum billiard Ja

of fixed length in which spherical Bessel functions are re-
placed by Bessel functions of the first kind, and spherica
harmonics are replaced by elementary harmonic functions.

guations(6b) and (6d) are a set of five coupled equations
or our system. The constants of motion for this system are
the radius of the Bloch sphere

x2+y2+72=1 (78
IV. CHAOTIC CONFIGURATION and the energy
—p2
As an example of a chaotic configuration, consider the ~E=P72M+V(a)+K(z,a), (7b)
azimuthally symmetric superposition state so that there remain three independent dynamical variables.
_ The system of equation®b) and (6d) are a full set of dy-
[,n,m))=A{|110 +A,|120. 5 . . . -
[ ))=Adl110+A|120 3 namical equations for the variablesy,z,a, whose equilib-
Denoting the expectations of the left and right sideg1a) rium points satisfy x=0, y=0, z=*1, a=a., P=0,
by T andK, respectively, one obtains wherea. are solutions to the second equation(éa) for x
A =P=0 andz==1. ProvidingV(a)+K(z,a) has a single
T=p——[—AF A+ A AL +AAY +AAS, (5p)  minimum ina, these fixed points are stable ellipti@hat is,
a(t) every eigenvalue of the Jacobian of the linearized system is
w=0.4395263. (5¢  burely imaginary. For the system at hand, there is only one

) zero eigenvalue and two pairs of purely imaginary conjugate
(The parameter. may be expressed analytically but takes Upgijgenvalues.
far too much space and is unsightjuAgain the momentum Oscillation of the radiug(t) in a bounded radial interval
equation(3¢) and the Hamiltonian(3b) apply. Combining s implied by the total potential
(5b) with (28 and noting thatA} and A5 may be taken as

2
independent parametefsr, equivalently, treatingsb) as a Vo(a—ap)?/ag+ (s, +2zs)la? (8a)
quadratic fornj gives the matrix equation for which a.. are given by solutions of the equation
2 2 3
L a—apg=age. /Vya’. (8b)
iAn= 2 DAy, (50) oo
n=1 A single real solution of8b) corresponds to each of the.
whereD is the Hermitian matrix values which, as noted previously, are both positive. One
5 o finds that
eg,/ha® —iuala

(5¢) a,>a_>ag. (80

inala e,lha )’
- - It follows that if a_<a(0)<a,, a(t) likewise remains
_hoXY X3, bounded in the intervdla_ ,a. ]. Itis noted that the analysis
P15 om0 F25 oy L 5O of this last section parallels the one-dimensional study of
Blimel and Esset.
Poincaremaps of(a,P) at x=0 are shown in Figs. (&)
and Xb) and that of the Bloch spheres projected onto the

and u is given by(5c).
Introducing the Bloch variablés!°

x=AA5+AAT,  y=i(ATA,—AA}), (x,y) plane atP=0 are shown in Figs.(2) and Zb). These
) 5 (6a) maps illustrate the chaotic behavior of the spherical quantum
Z=AA; —A1AT = [Ag*—[A| billiard with a vibrating surface. Working in units df=1,
gives, with(5d) and (5e), data and initial values used in palculations of Fig®) And
2(a) are as follows: x(0)=sin0.957, y(0)=0, z(0)
X=—woyla®~2uPzMa, =c0s0.95r, a,=1.25,a(0)=0.504967,P(0)=0, M =10,
. 2 £1=10.09536,¢,=29.83967,4=0.439526, and/y/a3=>5.
y=wox/as, We now make a slight change in starting data. Namely, with
7=2uPx/Ma, (6b) all data the same, except fa(0)=0.75 andP(0)=2.5, re-
lated Poincarenaps are shown in Figs(d) and 2b). The
hwo=(ex—€1). additional structure in these graphs indicate that correspond-
Rewriting K(A;,A;,a) in terms of the Bloch variable ing to a sligh't change in .initial dat.a, no'F all of the invariant
gives tori of the given dynamical configuration are broken up,
which is in accord with KAM theory.
K(z,a)=(g4+2ze_)la% As quantum chaos has been established for the present

(60) system, it is natural to ask about the nature of the corre-
sponding chaotic behavior in real space. For the stationary
InsertingK(z,a) into (3b) gives Hamilton’s equations spherical classical billiard, due to conservation of angular

e.=(g,*rgq)l2.
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FIG. 1. (a) Poincaremap of(a,P) atx=0. (b) Same Poincareap as in(a),
illustrating that for the varied initial condition$a(0)=0.75, P(0)=2.5)] (b) x
invariant tori have not all been destroyed.

FIG. 2. (a) Poincaremap of the Bloch sphere projected onto tig) plane
at P=0. (b) Same Poincarenap as in(a), illustrating that for the varied
initial conditions,[a(0)=0.75,P(0)=2.5)] invariant tori have not all been

. . destroyed.
momentum, the particle trajectory sweeps out an annular do-

main of constant inner radids.Vibration of the wall of the

sphere destroys this constant and chaotic motion may be ewave functions of the given system depend on these vari-
pected to develogThe “moment arm” of the reflected tra- gp|es.

jectory increases during, say, the expansion phase of the

sphere). In add.mon, we consider the fqllowmg connection V. CONCLUSIONS

between classical and quantum chaos is the present context.

As a mathematical abstractiai®a and (6b) may also be The spherical quantum billiard with a time-varying
viewed as classical equations of motion for the five givenboundary was studied. It was shown that an arbitrary super-
variables which give rise to Hamiltonian chaos. The quantunposition state of a system is chaotic provided that at least two
interpretation of these dynamics may be seen in two maneomponents of the superposition state have common rota-
ners. First, the Bloch variablesy,zcorrespond to the quan- tional symmetry. Examples of both nonchaotic and chaotic
tum probabilities|A;|?,|A,|2. Second, quantum mechanical states were described. For the chaotic case, working in Bloch
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