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Abstract. Networks are a convenient way to represent complex systems of interacting en-
tities. Many networks contain “communities” of nodes that are more densely connected to each
other than to nodes in the rest of the network. In this paper, we investigate the detection of com-
munities in temporal networks represented as multilayer networks. As a focal example, we study
time-dependent financial-asset correlation networks. We first argue that the use of the “modu-
larity” quality function—which is defined by comparing edge weights in an observed network to
expected edge weights in a “null network”—is application-dependent. We differentiate between “null
networks” and “null models” in our discussion of modularity maximization, and we highlight that
the same null network can correspond to different null models. We then investigate a multilayer
modularity-maximization problem to identify communities in temporal networks. Our multilayer
analysis depends only on the form of the maximization problem and not on the specific quality func-
tion that one chooses. We introduce a diagnostic to measure persistence of community structure in a
multilayer network partition. We prove several results that describe how the multilayer maximization
problem measures a trade-off between static community structure within layers and larger values of
persistence across layers. We also discuss some computational issues that the popular “Louvain”
heuristic faces with temporal multilayer networks and suggest ways to mitigate them.
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mization, financial correlation networks
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1. Introduction. In its simplest form, a network is simply a graph: it consists
of a set of nodes that represent entities and a set of edges between pairs of nodes
that represent interactions between those entities. One can consider weighted graphs
(in which each edge has an associated edge weight that quantifies the interaction of
interest) or unweighted graphs (weighted graphs with binary edge weights). Networks
provide useful representations of complex systems across many disciplines [54]. Com-
mon types include social networks (which arise via offline and/or online interactions),
information networks (e.g., hyperlinks between webpages on the World Wide Web),
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2 BAZZI, PORTER, WILLIAMS, MCDONALD, FENN, HOWISON

infrastructure networks (e.g., transportation routes between cities), and biological
networks (e.g., metabolic interactions between cells or proteins, food webs, etc.).

Given a network representation of a system, it can be useful to apply a coarse-
graining technique in order to investigate features that lie between those at the
“microscale” (e.g., nodes and pairwise interactions) and those at the “macroscale”
(e.g., total edge weight and degree distribution1) [55, 61]. One thereby studies
“mesoscale” features such as core-periphery structure and (especially) community
structure. Loosely speaking, a community (or cluster) in a network is a set of nodes
that are “more densely” connected to each other than they are to nodes in the rest of
the network [24, 61]. Giving a precise definition of “densely connected” is, of course,
necessary to have a method for community detection. It is important to recognize
at the outset that this definition is subjective and in particular may depend on the
application in question. Correspondingly, community detection methods may need to
be tailored. We restrict ourselves to hard partitions, in which each node is assigned to
exactly one community, and we use the term “partition” to mean “hard partition.”
It is also important, but beyond the scope of this paper, to consider “soft partitions,”
in which communities can overlap [24, 36, 58, 61].

Analysis of community structure has been very useful in a wide range of applica-
tions, many of which are described in [24, 26, 55, 61]. In social networks, communities
can reveal groups of people with common interests, places of residence, or other simi-
larities [56, 73]. In biological systems, communities can reveal functional groups that
are responsible for synthesizing or regulating an important chemical product [31, 45].
In the present paper, we use financial-asset correlation networks as examples [7, 14].
Despite the diversity of markets, financial products, and geographical locations, finan-
cial assets can exhibit strong time-dependent correlations, both within and between
asset classes. It is a primary concern for market practitioners (e.g., for portfolio di-
versification) to estimate the strengths of these correlations and to identify sets of
assets that are highly correlated [48, 74].

Most methods for detecting communities are designed for static networks. How-
ever, in many applications, entities and/or interactions between entities evolve in
time. In such applications, one can use the formalism of temporal networks, where
nodes and/or their edge weights vary in time [33, 34]. This is important for numer-
ous applications, including person-to-person communication [75], one-to-many infor-
mation dissemination (e.g., Twitter networks [28] and Facebook networks [77]), cell
biology [34], neuroscience [6], ecology [34], finance [21, 22, 23, 57], and more.

Two main approaches have been adopted to detect communities in time-dependent
networks. The first entails constructing a static network by aggregating snapshots of
the evolving network at different points in time into a single network (e.g., by taking
the mean or total edge weight for each edge across all time points, which can be prob-
lematic if the set of nodes varies in time, and which also makes restrictive assumptions
on the interaction dynamics between entities [32]). One can then use standard network
techniques. The second approach entails using static community-detection techniques
on each element of a time-ordered sequence of networks at different times or on each
element of a time-ordered sequence of network aggregations2 (computed as above)

1A node’s “degree” is the number of edges attached to it; degree is the special case of “strength”
(2.1) for unweighted networks.

2One needs to distinguish between this kind of aggregation and the averaging of a set of time
series over a moving window to construct a correlation matrix, which one can then interpret as a
fixed-time snapshot of a time-evolving network. Although both involve averaging over a time window,
the former situation entails averaging a network, and the latter situation entails averaging over a
collection of time series (one for each node) with no directly observable edge weights.
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COMMUNITY DETECTION IN MULTILAYER NETWORKS 3

over different time intervals (which can be either overlapping or nonoverlapping) and
then tracking the communities across the sequence [2, 21, 22, 35, 47, 58].

A third approach consists of embedding a time-ordered sequence of networks in a
larger network [50, 60] (and related ideas are also relevant in other contexts [18, 70]).
Each element of the sequence is a network layer, and nodes at different time points are
joined by interlayer edges. This approach was introduced in [50], and the resulting
network is a type of multilayer network [10, 38]. The main difference between this
approach and the previous approach is that the presence of nonzero interlayer edges
introduces a dependence between communities identified in one layer and connectivity
patterns in other layers. Thus far, most computations that have used a multilayer
representation of temporal networks have assumed that interlayer connections are
“diagonal” (i.e., they exist only between copies of the same node) and “ordinal” (i.e.,
they exist only between consecutive layers) [38]. Diagonal is a natural model of the
persistence of node identity in time, while ordinal preserves the time ordering.

The authors of [50] derived a generalization ofmodularity maximization, a popular
clustering method for static networks, to multilayer networks. Modularity is a function
that measures the “quality” of a network partition into disjoint sets of nodes by
computing the difference between the total edge weight in sets in the observed network
and the total expected edge weight in the same sets in a “null network” generated
from some “null model” [24, 61]. Modularity maximization consists of maximizing
the modularity quality function over the space of network partitions. (In practice,
given the combinatorial complexity of this maximization problem, one uses some
computational heuristic and finds a local maximum [29].) Intuitively, the null model
controls for connectivity patterns that one anticipates finding in a network, and one
uses modularity maximization to identify connectivity patterns in an observed network
that are stronger than anticipated.

In this paper, we address two main issues: (1) the choice of null network, and (2)
the role of interlayer edges in multilayer modularity maximization. We discuss the
first issue in section 4 and the second issue in section 5. Most of our conclusions from
sections 4 and 5 are applicable to an arbitrary choice of single-layer networks within
layers, and we use financial correlation networks as illustrative examples. In sections
2 and 3, we give an overview of existing results.

We give a precise definition of the modularity function for single-layer networks
in section 2, where (importantly) we distinguish between a “null network” and a
“null model” in modularity maximization. In section 4, we discuss the choice of null
network for a given application. In section 3, we describe the generalization of single-
layer modularity to multilayer networks proposed in [50]. To date, almost no theory
has explained how a multilayer partition obtained with zero interlayer coupling (which
reduces to single-layer modularity maximization on each layer independently) differs
from a multilayer partition obtained with nonzero interlayer coupling. In section
5, we prove several theoretical properties of an optimal solution for the multilayer
maximization problem to better understand how such partitions differ and how one
can exploit this difference in practice. We also describe two computational issues that
arise when using the popular Louvain heuristic [9] to solve the multilayer maximization
problem, and we suggest ways to mitigate them. The results of section 5 depend only
on the form of the maximization problem and still hold if one uses a quality function
other than the modularity quality function, provided that it has the same form (e.g.,
they are valid for “stability” [17, 41, 42]). We conclude in section 6.D
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4 BAZZI, PORTER, WILLIAMS, MCDONALD, FENN, HOWISON

2. Single-layer modularity maximization.

2.1. The modularity function. Consider an N -node network G and let the
edge weights between pairs of nodes be {Aij |i, j ∈ {1, . . . , N}}, so that A = (Aij) ∈
R

N×N is the adjacency matrix of G. In this paper, we consider only symmetric
adjacency matrices (and hence undirected networks), so Aij = Aji for all i and j.
The strength of a node i is

(2.1) ki =

N∑
j=1

Aij =

N∑
j=1

Aji ,

and it is given by the ith row (or column) sum of A.
When studying the structure of a network, it is useful to compare what is observed

with what is anticipated. We define a null model to be a probability distribution on
the set of adjacency matrices, and a null network to be the expected adjacency ma-
trix under a specified null model. In a loose sense, null models play the role of prior
models, as they control for features that one anticipates finding in the system under
investigation. One can thereby take into account known (or suspected) connectiv-
ity patterns that might obscure unknown connectivity patterns that one hopes to
discover via processes like community detection. For example, in social networks,
one often takes the strength of a node in a null network to be its observed strength
ki [53, 55, 61]. We discuss the use of this null network for financial-asset correla-
tion networks in section 4. In spatial networks that represent the spread of a disease
or information between different locations, some authors have used null networks in
which edge weights between two locations scale inversely with the distance between
them [20, 66].

As we discussed in section 1, one uses modularity maximization to partition a
network into sets of nodes called “communities” that have a larger total internal edge
weight than the expected total internal edge weight in the same sets in a null network,
generated from some null model [24, 55, 56, 61]. Modularity maximization consists of
finding a partition that maximizes this difference [24, 61]. (As we mentioned earlier, in
practice, one uses some computational heuristic and finds a local maximum [29].) In
the present paper, we do not restrict ourselves to the usual choice of null network (i.e.,
the “Newman–Girvan” null network in subsection 2.4.1) for the modularity quality
function, and we ignore any normalization constant that depends on the choice of null
network but does not affect the solution of the modularity-maximization problem for
a given null network. Modularity thus acts as a “quality function” Q : C → R, where
the set C is the set of all possible N -node network partitions.

Suppose that we have a partition C of a network into K disjoint sets of nodes
{C1, . . . , CK}. We can then define a map c(·) from the set of nodes {1, . . . , N} to
the set of integers {1, . . . ,K} such that c(i) = c(j) = k if and only if nodes i and j
lie in Ck. We use the term global maximum to refer to a solution of the modularity-
maximization problem, and the term local maximum to refer to a solution that one
obtains with a computational heuristic. We call c(i) the set assignment (or community
assignment when C is a global or local maximum) of node i in partition C. The value
of modularity for a given partition C is then

(2.2) Q(C|A;P ) :=

N∑
i,j=1

(Aij − Pij)δ(ci, cj) ,
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COMMUNITY DETECTION IN MULTILAYER NETWORKS 5

where P = (Pij) ∈ R
N×N is the adjacency matrix of the null network, ci is short-

hand notation for c(i), and δ(ci, cj) is the Kronecker delta function. We state the
modularity-maximization problem as follows:

(2.3) max
C∈C

N∑
i,j=1

(Aij − Pij)δ(ci, cj) ,

which we can also write as maxC∈C Q(C|B) or maxC∈C
∑N

i,j Bijδ(ci, cj), where B =
A − P is the so-called modularity matrix [53]. The number K of sets in a partition
is free in the optimization problem (2.3). (In other words, one maximizes over the
set of all N -node partitions.) We only consider a fixed value of K when we consider
a particular partition C ∈ C, with |C| = K. We allow self-edges in all numerical
experiments with financial data of sections 4 and 5. (In particular, A is a Pearson
correlation matrix with Aii = 1.) We assume in the rest of the paper that each of the
partitions in the set C contains sets that do not have multiple connected components in
the graph with adjacency matrix B. It is clear from (2.3) that pairwise contributions
to modularity are only counted when two nodes are assigned to the same set. These
contributions are positive (respectively, negative) when the observed edge weight Aij

between nodes i and j is larger (respectively, smaller) than the expected edge weight
Pij between them. If Aij < Pij for all i and j, then the optimal solution is N singleton
communities. Conversely, if Aij > Pij for all i and j, then the optimal solution is a
single N -node community. To obtain a partition of a network with a high value of
modularity, one hopes to have many edges within sets that satisfy Aij > Pij and few
edges within sets that satisfy Aij < Pij . As is evident from (2.3), what one regards
as “densely connected” in this setting depends fundamentally on the choice of null
network.

It can be useful to write the modularity-maximization problem using the trace of
matrices [53]. As before, we consider a partition C of a network into K sets of nodes
{C1, . . . , CK}. We define the partition matrix S ∈ {0, 1}N×K as

(2.4) Sij = δ(ci, j) ,

where j ∈ {1, . . . ,K} and ci = j means that node i lies in Cj . The columns of S
are orthogonal, and the jth column sum of S gives the number of nodes in Cj . This
yields

N∑
i,j=1

Bijδ(ci, cj) =
N∑

i,j=1

K∑
k=1

SikBijSjk = Tr(STBS) ,

where the (i, i)th term of STBS is twice the sum of modularity-matrix entries between
pairs of nodes in Ci. (The (i, j)th off-diagonal term is the sum of modularity-matrix
entries between pairs of nodes with one node in Ci and one node in Cj .) It follows
that one can restate the modularity-maximization problem in (2.3) as

(2.5) max
S∈S

Tr(STBS) ,

where S is the set of all partition matrices in {0, 1}N×K (with K ≤ N).
Modularity maximization is one of myriad community-detection methods [24],

and it has many limitations (e.g., a resolution limit on the size of communities [25]
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6 BAZZI, PORTER, WILLIAMS, MCDONALD, FENN, HOWISON

and a huge number of nearly degenerate local maxima [29]). Nevertheless, it is a
popular method (which has been used successfully in numerous applications [24, 61]),
and the ability to specify explicitly what one anticipates is a useful (and under-
exploited) feature for users working on different applications. In section 4, we make
some observations on one’s choice of null network when using the modularity quality
function.

2.2. The Louvain computational heuristic. For a given modularity matrix
B, a solution to the modularity-maximization problem is guaranteed to exist in any
network with a finite number of nodes. However, the number of possible partitions
in an N -node network, given by the Bell number [8], grows at least exponentially
with N , so an exhaustive search of the space of partitions is infeasible. Modularity
maximization was proved in [13] to be an NP-hard problem (at least for the null net-
works which we consider in this paper), so solving it requires the use of computational
heuristics. In the present paper, we focus on the Louvain heuristic, which is a locally
greedy modularity-increasing sampling process over the set of partitions [9].

The Louvain heuristic consists of two phases, which are repeated iteratively. Ini-
tially, each node in the network constitutes a set, which gives an initial partition that
consists of N singletons. During phase 1, one considers the nodes one by one (in
some order), and one places each node in a set (possibly where it already is) that
results in the largest increase of modularity. This phase is repeated until one reaches
a local maximum (i.e., until one obtains a partition in which the move of a single node
cannot increase modularity). Phase 2 consists of constructing a reduced network G′
from the sets of nodes in G that one obtains after the convergence of phase 1. We
denote the sets in G at the end of phase 1 by {Ĉ1, . . . , ĈN̂} (where N̂ ≤ N) and the

set assignment of node i in this partition by ĉi. Each set Ĉk in G constitutes a node
k in G′, and the reduced modularity matrix of G′ is

B′ = ŜTBŜ ,

where Ŝ is the partition matrix of {Ĉ1, . . . , ĈN̂}. This ensures that the all-singleton
partition in G′ has the same value of modularity as the partition of G that we identified
at the end of phase 1. One then repeats phase 1 on the reduced network and continues
iterating until the heuristic converges (i.e., until phase 2 induces no further changes).

Because we use a nondeterministic implementation of the Louvain heuristic—in
particular, the node order is randomized at the start of each iteration of phase 1—the
network partitions that we obtain for a fixed modularity matrix can differ across runs.3

To account for this, one can compute the frequency of co-classification of nodes into
communities for a given modularity matrix B across multiple runs of the heuristic
instead of using the output partition of a single run. (See [44] for an application
of such an approach to “consensus clustering” and [65] for an application of such
an approach to hierarchical clustering.) We use the term association matrix for a
matrix that stores the mean number of times that two nodes are placed in the same
community across multiple runs of a heuristic, and we use the term co-classification
index of nodes i and j to designate the (i, j)th entry of an association matrix.

3The implementation [37] of the heuristic that we use in this paper is a generalized version of
the implementation in [9]. It is independent of the null network—it takes the modularity matrix as
an input to allow an arbitrary choice of null network—and it randomizes the node order at the start
of each iteration of phase 1 of the heuristic to increase the search space of the heuristic. When one
chooses the same null network that was assumed in [9] and uses a node order fixed to {1, . . . , N} at
each iteration of phase 1 (the value of N can change after each iteration of the heuristic’s phase 2),
then the implementation in [37] and the implementation described in [9] return the same output.
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COMMUNITY DETECTION IN MULTILAYER NETWORKS 7

There are many other heuristics that one can employ to maximize modularity
[24, 54, 61], but the Louvain heuristic is a popular choice in practice [43]. It is very
fast [24, 43], which is an important consideration in multilayer networks, for which
the total number of nodes is the number of nodes in each layer multiplied by the
number of layers. In section 5, we point out two issues that the Louvain heuristic
(independently of how it is implemented) faces with temporal multilayer networks.

2.3. Multiscale community structure. Many networks include community
structure at multiple scales [24, 61], and some systems even have a hierarchical com-
munity structure of “parts-within-parts” [68]. In such a situation, although there
are dense interactions within communities of some size (e.g., friendship ties between
students in the same school), there are even denser interactions in subsets of nodes
that lie inside of these communities (e.g., friendship ties between students in the
same school and in the same class year). Some variants of the modularity function
have been proposed to detect communities at different scales. A popular choice is
to scale the null network using a resolution parameter γ ≥ 0 to yield a multiscale
modularity-maximization problem [64]:

(2.6) max
C∈C

N∑
i,j=1

(Aij − γPij)δ(ci, cj) .

In some sense, the value of the parameter γ determines the importance that one
assigns to the null network relative to the observed network. The corresponding
modularity matrix and modularity function evaluated at a partition C are B = A−
γP and Q(C|A;P ; γ) =

∑N
i,j=1(Aij−γPij)δ(ci, cj). The special case γ = 1 yields the

modularity matrix and modularity function in the modularity-maximization problem
(2.3). This formulation of multiscale modularity has a dynamical interpretation [40,
41, 42] that we will discuss in the next subsection.

In most applications of community detection, the adjacency matrices of the ob-
served and null networks have nonnegative entries. In these cases, the solution to
(2.6) when 0 ≤ γ ≤ γ− = mini�=j,Pij �=0 (Aij/Pij) is a single community regardless of
any structure, however clear, in the observed network, because then

Bij = Aij − γPij ≥ 0 for all i, j ∈ {1, . . . , N} .

(We exclude diagonal terms because a node is always in its own community.) How-
ever, the solution to (2.6) when γ > γ+ = maxi�=j,Pij �=0 (Aij/Pij) is N singleton
communities because

Bij = Aij − γPij ≤ 0 for all i, j ∈ {1, . . . , N} .

(In the above inequality, we assume that Pij = 0 can occur only if Aij = 0.) Partitions
at these boundary values of γ correspond to the coarsest and finest possible partitions
of a network, and varying the resolution parameter between these bounds makes it
possible to examine a network’s community structure at intermediate scales.

For an observed and/or null network with signed edge weights, the intuition be-
hind the effect of varying γ in (2.6) on an optimal solution is not straightforward. A
single community and N singleton communities do not need to be optimal partitions
for any value of γ ≥ 0. In particular, Bij has the same sign as Aij for sufficiently
small values of γ, and Bij has the sign opposite that of Pij for sufficiently large values
of γ. For further discussion, see section 4, where we explore the effect of varying the
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8 BAZZI, PORTER, WILLIAMS, MCDONALD, FENN, HOWISON

resolution parameter on an optimal partition for an observed and null network with
signed edge weights. We vary the resolution parameter in the interval [0, γ+] instead
of [γ−, γ+] in numerical experiments with signed networks because globally optimal
partitions can be different when γ ∈ [0, γ−].4

It is important to differentiate between a “resolution limit” on the smallest com-
munity size that is imposed by a community-detection method [25] and inherently
multiscale community structure in a network [24, 61, 68]. For the formulation of mul-
tiscale modularity in (2.6), the resolution limit described in [25] applies to any fixed
value of γ. By varying γ, one can identify communities that are smaller than the limit
for any particular γ value. In this sense, multiscale formulations of modularity help
“mitigate” the resolution limit, though there remain issues [1, 29, 40]. In this paper,
we do not address the issue of how to identify communities at different scales, though
we note in passing that the literature includes variants of multiscale modularity (e.g.,
see [1]). We make observations on null networks in section 4, and we illustrate how
our observations can occur in practice using the formulation of multiscale modularity
in (2.6). (Our observations hold independently of the formulation of multiscale mod-
ularity that one adopts, but the precise manifestation can be different for different
variants of multiscale modularity.)

We use the term multiscale community structure to refer to a set Clocal(γ) of local
optima that we obtain with a computational heuristic for a set of (not necessarily
all distinct) resolution-parameter values γ = {γ1, . . . , γl}, where γ− = γ1 ≤ · · · ≤
γl = γ+. We use the term multiscale association matrix for an association matrix
Â ∈ [0, 1]N×N that stores the co-classification index of all pairs of nodes for partitions
in this set:

(2.7) Âij =

∑
C∈Clocal(γ)

δ(ci, cj)

|Clocal(γ)|
.

For each partition C ∈ Clocal(γ), nodes i and j either are in the same community (i.e.,
δ(ci, cj) = 1) or are not in the same community (i.e., δ(ci, cj) = 0). It follows that

Âij is the mean number of partitions in Clocal(γ) for which nodes i and j are in the
same community. The value of |Clocal(γ)| is the number of distinct values of γ that
we consider multiplied by the number of runs of the Louvain algorithm performed
for each value of γ. In section 4, we use a discretization of [γ−, γ+] (respectively,
[0, γ+]) for unsigned (respectively, signed) networks and perform a single run for each
resolution-parameter value. The number of partitions in Clocal(γ) is then precisely
the number of distinct values of γ that we consider (i.e., one partition per value of γ).
We use the matrix Â repeatedly in our computational experiments in section 4.

2.4. Null models and null networks. In this section, we describe three null
networks. We make several observations on the interpretation of communities that
we obtain from Pearson correlation matrices using each of these null networks in the
computational experiments of section 4.

2.4.1. Newman–Girvan null network. A popular choice of null network for
networks with positive edge weights is the Newman–Girvan (NG) null network, whose
adjacency-matrix entries are Pij = kikj/(2m), where ki are the observed node strengths

4For γ ≥ γ+, one can show that all modularity contributions no longer change signs. They are
nonpositive (respectively, nonnegative) between pairs of nodes with Pij ≥ 0 (respectively, Pij ≤ 0).
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[52, 56]. This yields the equivalent maximization problems

(2.8) max
C∈C

N∑
i,j=1

(
Aij −

kikj
2m

)
δ(ci, cj) ⇔ max

S∈S
Tr

[
ST

(
A− kkT

2m

)
S

]
,

where k = A1 is the N×1 vector of node strengths and 2m = 1TA1 is the total edge
weight of the observed network. This null network can be derived from a variety of null
models. One way to generate an unweighted network with expected adjacency matrix
kkT /(2m) is to generate each of its edges and self-edges with probability kikj/(2m)
(provided kikj ≤ 2m for all i, j). That is, the presence and absence of edges and
self-edges is a Bernoulli random variable with probability kikj/(2m) [11, 12]. More
generally, any probability distribution on the set of adjacency matrices that satisfies
E
(∑N

j=1 Wij

)
= ki (i.e., the expected strength equals the observed strength; see,

e.g., [15]) and E(Wij) = f(ki)f(kj) for some real-valued function f has an expected

adjacency matrix of E(W ) = kkT /(2m).5 The adjacency matrix of the NG null
network is symmetric and positive semidefinite.

We briefly describe a way of deriving the NG null network from a model on time-
series data (in contrast to a model on a network). The partial correlation corr(a, b | c)
between a and b given c is the Pearson correlation between the residuals that result
from the linear regression of a with c and b with c, and it is given by

(2.9) corr(a, b | c) = corr(a, b)− corr(a, c)corr(b, c)√
1− corr2(a, c)

√
1− corr2(b, c)

.

Suppose that the data used to construct the observed network is a set of time series
{zi|i ∈ {1, . . . , N}}, where zi = {zi(t)|t ∈ T } and T is a discrete set of time points.
The authors of [46] pointed out that Aij = corr(zi, zj) implies that ki = cov(ẑi, ẑtot)
and thus that

(2.10)
kikj
2m

= corr(ẑi, ẑtot)corr(ẑj , ẑtot) ,

where ẑi(t) = (zi(t)−〈zi〉)/σ(zi) is a standardized time series and ẑtot(t) =
∑N

i=1 ẑi(t)
is the sum of the standardized time series.6 Taking a = ẑi, b = ẑj , and c = ẑtot, (2.9)
implies that if corr(ẑi, ẑj | ẑtot) = 0, then corr(ẑi, ẑj) = kikj/(2m). That is, Pearson
correlation coefficients between pairs of time series that satisfy corr(ẑi, ẑj | ẑtot) = 0 are
precisely the adjacency-matrix entries of the NG null network. One way of generating
a set of time series in which pairs of distinct time series satisfy this condition is to
assume that each standardized time series depends linearly on the mean time series
and that residuals are mutually uncorrelated (i.e., ẑi = αiẑtot/N + βi + εi for some
αi, βi ∈ R and corr(εi, εj) = 0 for i 	= j).

The multiscale modularity-maximization problem in (2.6) was initially introduced
in [64] using an ad hoc approach. Interestingly, one can derive this formulation of

5The linearity of the expectation and the assumptions E(
∑N

j=1 Wij) = ki and E(Wij) =

f(ki)f(kj) imply that f(ki) = ki/
∑N

j=1 f(kj) and
∑N

j=1 f(kj) =
√
2m. Combining these equa-

tions gives the desired result.
6The equality (2.10) holds for networks constructed using Pearson correlations between time

series [46]. Such networks are examples of signed networks with edge weights in [−1, 1]. The strength
of a node i is given by the ith (signed) column or row sum of the correlation matrix.
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10 BAZZI, PORTER, WILLIAMS, MCDONALD, FENN, HOWISON

the maximization problem for sufficiently large values of γ by considering a qual-
ity function based on a continuous-time Markov process X(t) on an observed net-
work [40, 41, 42]. The probability density of a continuous-time Markov process with
exponentially distributed waiting times at each node parametrized by λ(i) satisfies

(2.11) ṗ = pΛM − pΛ ,

where the vector p(t) ∈ [0, 1]1×N is the probability density of a random walker at
each node [i.e., pi(t) := P(X(t) = i) for each i], Λ is a diagonal matrix with the
rate λ(i) on its ith diagonal entry, and M is the transition matrix of a random
walker (i.e., Mij := Aij/ki). The solution to (2.11) is p(t) = p0e

Λ(M−I)t, and its
stationary distribution is unique (provided the network is connected) and is given by

π = ckTΛ−1/(2m), where the normalization constant c ensures that
∑N

i=1 πi = 1.
The stability of a partition is a quality function defined by [17, 40, 41, 42]

r(S, t) = Tr
[
ST
(
ΠeΛ(M−I)t − πTπ

)
S
]
,

where Πij = δ(i, j)πi. Equivalently, the stability is

(2.12) r(C, t) =

N∑
i,j=1

[
πi

(
eΛ(M−I)t

)
ij
− πiπj

]
δ(ci, cj) .

Taking p0 = π, the first term in the square brackets on the right-hand side of
(2.12) is P

[
(X(0) = i) ∩ (X(t) = j)

]
, and the second term in the square brackets

is limt→∞ P
[
(X(0) = i) ∩ (X(t) = j)

]
(provided the system is ergodic). The intu-

ition behind the stability quality function is that a good partition at a given time
before reaching stationarity corresponds to one in which the time that a random
walker spends within communities is large compared with the time that it spends
transiting between communities. In other words, a random walker that starts out at
a community ends up there again in the early stages of the random walk, long before
stationarity. The resulting maximization problem is maxS∈S r(S, t) or, equivalently,
maxC∈C r(C, t). By linearizing eΛ(M−I)t at t = 0 and taking Λ = I, one obtains
the multiscale modularity-maximization problem in (2.6) at short time scales with
γ = 1/t and Pij = kikj/(2m). This approach provides a dynamical interpretation
of the resolution parameter γ as the inverse (after linearization) of the time used to
explore a network by a random walker.

2.4.2. Generalization of Newman–Girvan null network to signed net-
works. In [27], Gómez, Jensen, and Arenas proposed a generalization of the NG null
network to signed networks. We refer to this null network as the NGS null network.
They separated A into its positive and negative edge weights:

A = A+ −A− ,

where A+ denotes the positive part of A and −A− denotes its negative part. The
adjacency-matrix entries of the NGS null network are given by Pij = k+i k

+
j /(2m

+)−
k−i k

−
j /(2m

−), where k+i and 2m+ (respectively, k−i and 2m−) are the strengths and

total edge weight in A+ (respectively, A−). This yields the maximization problem

(2.13) max
C∈C

N∑
i,j=1

[(
A+

ij −
k+i k

+
j

2m+

)
−
(
A−

ij −
k−i k

−
j

2m−

)]
δ(ci, cj) .
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The intuition behind this generalization is to use an NG null network on both un-
signed matrices A+ and A− but to count contributions to modularity from nega-
tive edge weights (i.e., the second group of terms in (2.13)) in an opposite way to
those from positive edge weights (i.e., the first group of terms in (2.13)). Nega-
tive edge weights that exceed their expected edge weight are penalized (i.e., they
decrease modularity), and those that do not are rewarded (i.e., they increase mod-
ularity). One can generate a network with edge weights 0, 1, or −1 and expected
edge weights k+i k

+
j /(2m

+)− k−i k
−
j /(2m

−) by generating one network with expected

edge weights W+
ij = k+i k

+
j /(2m

+) and a second network with expected edge weights

W−
ij = k−i k

−
j /(2m

−) using the procedure described for the NG null network in sec-
tion 2.4.1, and then defining a network whose edge weights are given by the difference
between the edge weights of these two networks. More generally, by footnote 5 and
linearity of expectation, any probability distribution on the set {W ∈ R

N×N} of
signed adjacency matrices that satisfies the two conditions

E

(
N∑
j=1

W+
ij

)
= k+i and E(W+

ij ) = f(k+i )f(k
+
j ) ,(2.14)

E

(
N∑
j=1

W−
ij

)
= k−i and E(W−

ij ) = g(k−i )g(k
−
j ) ,(2.15)

where f and g are real-valued functions and Wij = W+
ij −W−

ij , has an expected edge

weight of E(Wij) = k+i k
+
j /(2m

+)− k−i k
−
j /(2m

−) for all i, j ∈ {1, . . . , N}.
The authors of [50] derived a variant of the multiscale formulation of modularity

in (2.6) for the NGS null network at short time scales by building on the random-walk
approach used to derive the NG null network.7 They considered the function

(2.16) r̂(C, t) =

N∑
i,j=1

(
πi

[
δij + tΛii(Mij − δij)

]
− πiρi|j

)
δ(ci, cj) ,

where the term in square brackets on the right-hand side of (2.16) is a linearization of
the exponential term in (2.12), M and πi are as defined in (2.12) on a network with
adjacency matrix |A| := A++A−, and ρi|j is the probability of jumping from node i
to node j at stationarity in one step conditional on the network structure [50]. If the
network is nonbipartite, unsigned, and undirected, then ρi|j reduces to the stationary
probability πj .

2.4.3. Uniform null network. A third null network that we consider is a
uniform (U) null network, with adjacency-matrix entries Pij = 〈k〉2/(2m), where

〈k〉 :=
(∑N

i=1 ki
)
/N denotes the mean strength in a network. We thereby obtain the

equivalent maximization problems

(2.17) max
C∈C

N∑
i,j=1

(
Aij −

〈k〉2
2m

)
δ(ci, cj)⇔ max

S∈S
Tr

[
ST

(
A− 〈k〉

2

2m
1N

)
S

]
,

7In particular, they derived the multiscale formulation of modularity obtained using a Potts-
model approach in [71]. This multiscale formulation results in one resolution parameter γ1 for the
term (k+i k+j )/(2m+) and a second resolution parameter γ2 for the term (k−i k−j )/(2m−) in (2.13)

(see [47] for an application of this multiscale formulation to the United Nations General Assembly
voting networks). Without an application-driven justification for how to choose these parameters,
this increases the parameter space substantially, so we consider only the case γ1 = γ2 in this paper.
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12 BAZZI, PORTER, WILLIAMS, MCDONALD, FENN, HOWISON

where A is an unsigned adjacency matrix and 1N is an N ×N matrix in which every
entry is 1.8 The expected edge weight in (2.17) is constant and satisfies

〈k〉2
2m

=

(∑N
i=1 ki

/
N
)2∑N

i=1 ki
=

2m

N2
= 〈A〉 ,

where 〈A〉 denotes the mean value of the adjacency matrix.9 One way to generate
an unweighted network with adjacency matrix 〈A〉1N is to generate each edge with
probability 〈A〉 (provided 〈A〉 ≤ 1). That is, the presence and absence of an edge
(including self-edges) are independent and identically distributed Bernoulli random
variables with probability 〈A〉. More generally, any probability distribution on the

set of adjacency matrices that satisfies E
(∑N

i,j=1 Wij

)
= 2m and E(Wij) = E(Wi′j′ )

for all i, j, i′, j′ has an expected adjacency matrix E(W ) = 〈A〉1N . The adjacency
matrix of the U null network is symmetric and positive semidefinite. One can derive
the multiscale formulation in (2.6) for the U null network from the stability quality
function in precisely the same way as it is derived for the NG null network, except
that one needs to consider exponentially distributed waiting times at each node with
rates proportional to node strength (i.e., Λij = δ(i, j)ki/〈k〉) [41, 42].

3. Multilayer modularity maximization.

3.1. Multilayer representation of temporal networks. We restrict our
attention to temporal networks in which only edges vary in time. (Thus, each
node is present in all layers.) We use the notation As for a layer in a sequence
of adjacency matrices T = {A1, . . . ,A|T |}, and we denote node i in layer s by
is. We use the term multilayer network for a network defined on the set of nodes
{11, . . . , N1; 12, . . . , N2; . . . ; 1|T |, . . . , N|T |} [38].

Thus far, computations that have used a multilayer framework for temporal net-
works have almost always assumed (1) that interlayer connections exist only between
nodes that correspond to the same entity (i.e., between nodes is and ir for some i
and s 	= r), and (2) that the network layers are “ordinal” (i.e., interlayer edges exist
only between consecutive layers) [6, 38, 49, 50, 63]. It is also typically assumed that
(3) interlayer connections are uniform (i.e., interlayer edges have the same weight). In
a recent review article on multilayer networks [38], condition (1) was called “diagonal”
coupling, and condition (3) implies that a network is “layer-coupled.” We refer to the
type of coupling defined by (1), (2), and (3) as “diagonal, ordinal, and uniform” in-
terlayer coupling, and we denote the value of the interlayer edge weight by ω ∈ R. We
show a simple illustration of a multilayer network with diagonal, ordinal, and uniform
interlayer coupling in Figure 1. One can consider more general interlayer connections
(e.g., nonuniform ones). Although we restrict our attention to uniform coupling in
our theoretical and computational discussions, we give an example of a nonuniform
choice of interlayer coupling in section 5. Results similar to those of subsection 5.2
also apply in this more general case.

3.2. The multilayer modularity function. The authors of [50] generalized
the single-layer multiscale modularity-maximization problem in (2.6) to a multilayer

8For a network in which all nodes have the same strength, the U and NG null networks are
equivalent because ki = kj for all i, j ⇔ ki = 2m/N = 〈k〉 for all i. This was pointed out for an
application to foreign exchange markets in [21].

9Although we use the U null network on unsigned adjacency matrices in this paper, the ex-
pected edge weight in the U null network is always nonnegative for correlation matrices, as positive
semidefiniteness guarantees that 〈A〉 = 1TA1/(N2) ≥ 0.
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Layer 1

11 21

31

Layer 2

12 22

32

Layer 3

13 23

33

←→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 ω 0 0 0 0 0
1 0 0 0 ω 0 0 0 0
1 0 0 0 0 ω 0 0 0
ω 0 0 0 1 1 ω 0 0
0 ω 0 1 0 1 0 ω 0
0 0 ω 1 1 0 0 0 ω
0 0 0 ω 0 0 0 1 0
0 0 0 0 ω 0 1 0 1
0 0 0 0 0 ω 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Example of a multilayer network (left) with unweighted intralayer connections (solid
lines) and uniformly weighted interlayer connections (dashed curves) and its corresponding adja-
cency matrix (right). (The adjacency matrix that corresponds to a multilayer network is sometimes
called a “supra-adjacency matrix” in the network-science literature [38].)

network using an approach similar to that used to derive the NGS null network from
a stochastic Markov process on the observed network. For simplicity, we express
intralayer and interlayer connections in an N |T |-node multilayer network using a
single N |T | × N |T | matrix. Each node is in layer s has the unique index i′ :=
i + (s − 1)N , and we use A to denote the multilayer adjacency matrix, which has
entries Ai′j′ = Aijsδ(s, r) + ωδ(|s − r|, 1) when the interlayer coupling is diagonal,
ordinal, and uniform. (As discussed in [38], one can use either an adjacency tensor
or an adjacency matrix to represent a multilayer network.) The generalization in [50]
consists of applying the function in (2.16) to the N |T |-node multilayer network:

(3.1) r̂(C, t) =

N |T |∑
i,j=1

(
πi

[
δij + tΛii(Mij − δij)

]
− πiρi|j

)
δ(ci, cj) ,

where C is now a multilayer partition (i.e., a partition of an N |T |-node multilayer
network), Λ is the N |T | ×N |T | diagonal matrix with the rates of the exponentially
distributed waiting times at each node of each layer on its diagonal, M (with en-
tries Mij := Aij/

∑
kAik) is the N |T | × N |T | transition matrix for the N |T |-node

multilayer network with adjacency matrix A, πi is the corresponding stationary dis-
tribution (with the strength of a node and the total edge weight now computed from
the multilayer adjacency matrix A), and ρi|j is the probability of jumping from node
i to node j at stationarity in one step conditional on the structure of the network
within and between layers. The authors’ choice of ρi|j , which accounts for the “spar-
sity pattern”10 of interlayer edges in the multilayer adjacency matrix, motivates the
multilayer modularity-maximization problem

(3.2) max
C∈C

N |T |∑
i,j=1

Bijδ(ci, cj) ,

10The sparsity pattern of a matrix X is a matrix Y with entries Yij = 1 when Xij �= 0, and
Yij = 0 when Xij = 0.
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14 BAZZI, PORTER, WILLIAMS, MCDONALD, FENN, HOWISON

which we can also write as maxC∈C Q(C|B), where B is the multilayer modularity
matrix

(3.3) B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B1 ωI 0 . . . 0

ωI
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . ωI

0 . . . 0 ωI B|T |

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and Bs is a single-layer modularity matrix computed on layer s. (For example,
Bs = As − 〈As〉1N if one uses the U null network and sets γ = 1.) We rewrite the
multilayer modularity-maximization problem in [50] as

(3.4) max
C∈C

[ |T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ω

|T |−1∑
s=1

N∑
i=1

δ(cis , cis+1)

]
,

where Bijs denotes the (i, j)th entry ofBs. Equation (3.4) clearly separates intralayer
contributions (left term) from interlayer contributions (right term) to the multilayer
quality function.

In practice, one can solve this multilayer modularity-maximization problem with
the Louvain heuristic in subsection 2.2 by using the multilayer modularity matrix B
instead of the single-layer modularity matrix B as an input (the number of nodes in
the first iteration of phase 1 becomes N |T | instead of N). In this case, the initial
partition consists of N |T | singletons. One first places each of the N |T | nodes into
a set (possibly where it already is) that results in the largest increase of multilayer
modularity. We then iterate this procedure on a reduced network (as defined in
subsection 2.2) until the heuristic converges. It is clear from (3.4) that placing nodes
from different layers into the same set, which we call an interlayer merge, decreases
the value of the multilayer quality function when ω < 0, so we consider only ω ≥ 0.
As with single-layer networks, we assume that each of the partitions in the set C of
N |T |-node partitions contains sets that do not have multiple connected components
in the graph with adjacency matrix B.

In section 5, we try to gain some insight into how to interpret a globally optimal
multilayer partition by proving several properties that it satisfies. The results that
we show hold for any choice of matrices B1, . . . ,B|T |, so (for example) they still
apply when one uses the stability quality function in (2.12) on each layer instead
of the modularity quality function. For ease of writing (and because modularity is
the quality function that we use in our computational experiments of section 5), we
will continue to refer to the maximization problem (3.4) as a multilayer modularity-
maximization problem.

4. Interpretation of community structure in correlation networks with
different null networks. It is clear from the structure of B in (3.3) that the choice
of quality function within layers (i.e., diagonal blocks in the multilayer modularity
matrix) and the choice of coupling between layers (i.e., off-diagonal blocks) for a
given quality function affect the solution of the maximization problem in (3.4). In
this section, we make some observations on the choice of null network for correlation
networks when using the modularity quality function. To do this, we consider the
multilayer modularity-maximization problem (3.4) with zero interlayer coupling (i.e.,
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ω = 0), which is equivalent to performing single-layer modularity maximization on
each layer independently.

4.1. Toy examples. We describe two simple toy networks to illustrate some
features of the NG (2.8) and NGS (2.13) null networks that can be misleading for
asset correlation networks.

4.1.1. NG null network. Assume that the nodes in a network are divided
into K nonoverlapping categories (e.g., asset classes) such that all intracategory edge
weights have a constant value a > 0, and all intercategory edge weights have a constant
value b, with 0 ≤ b < a. Let κi denote the category of node i, and rewrite the strength
of node i as

ki = |κi|a+ (N − |κi|)b = |κi|(a− b) +Nb .

The strength of a node in this network scales affinely with the number of nodes in its
category. Suppose that we have two categories κ1, κ2 that do not contain the same
number of nodes. Taking |κ1| > |κ2| without loss of generality, it follows that

(4.1) Pi,j∈κ1 =
1

2m

[
|κ1|(a− b) +Nb

]2
>

1

2m

[
|κ2|(a− b) +Nb

]2
= Pi,j∈κ2 ,

where Pi,j∈κi is the expected edge weight between pairs of nodes in κi in the NG
null network. That is, pairs of nodes in an NG null network that belong to larger
categories have a larger expected edge weight than pairs of nodes that belong to
smaller categories.

To see how (4.1) can lead to misleading results, we perform a simple experi-
ment. Consider the toy network in Figure 2(a) that contains 100 nodes divided into
four categories of sizes 40, 30, 20, and 10. We set intracategory edge weights to
1 and intercategory edge weights to 0.3 (i.e., a = 1 and b = 0.3 in (4.1)). In Fig-
ure 2(b) (respectively, Figure 2(c)), we show the multiscale association matrix defined
in (2.7) using an NG null network (respectively, a U null network). Colors scale with
the frequency of co-classification of pairs of nodes into the same community across
resolution-parameter values. Because the nodes are ordered by category, diagonal
blocks in Figures 2(b) and (c) indicate the co-classification index of nodes in the
same category, and off-diagonal blocks indicate the co-classification index of nodes in
different categories. We observe in Figure 2(b) that larger categories are identified
as a community across a smaller range of resolution-parameter values than smaller
categories when using an NG null network. In particular, category κ is identified as
a single community when γ < a/Pi,j∈κ (with a/Pi,j∈κ1 < a/Pi,j∈κ2 when |κ1| > |κ2|
by (4.1)). When γ ≥ a/Pi,j∈κ, category κ is identified as |κ| singleton communities.
However, we observe in Figure 2(c) that all four categories are identified as a sin-
gle community across the same range of resolution-parameter values when using the
U null network. In particular, category κ is identified as a single community when
γ < a/〈A〉 and as |κ| singleton communities when γ ≥ a/〈A〉.

The standard interpretation of multiscale modularity maximization is that the
communities that one obtains for larger values of γ reveal “smaller” and “more
densely” connected nodes in the observed network [40, 64]. Although all diagonal
blocks in Figure 2(a) have the same internal connectivity, different ones are identified
as communities for different values of γ when using the NG null network—as γ in-
creases, nodes in the largest category split into singletons first, followed by those in the
second largest category, etc. This example illustrates that one needs to be cautious
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(a) Unsigned adjacency
matrix

20 40 60 80 100

20

40

60

80

100

(b) Multiscale
association matrix for
the NG null network
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(c) Multiscale
association matrix for
the U null network
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(d) Signed adjacency
matrix
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(e) Multiscale
association matrix for
the NGS null network
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(f) Multiscale
association matrix for
the U null network

Fig. 2. (a) Toy unsigned block matrix with constant diagonal and off-diagonal blocks that take
the value indicated in the block. (b) Multiscale association matrix of (a) that gives the frequency of co-
classification of nodes across resolution-parameter values using an NG null network. (c) Multiscale
association matrix of (a) that uses a U null network. (d) Toy signed block matrix with constant
diagonal and off-diagonal blocks that take the value indicated in the block. (e) Multiscale association
matrix of (d) that uses an NGS null network. (f) Multiscale association matrix of (d) that uses a
U null network. For the NG and U (respectively, NGS) null networks, our sample of resolution-
parameter values is the set {γ−, . . . , γ+} (respectively, {0, . . . , γ+}) with a discretization step of
10−3 between each pair of consecutive values.

when using multiscale community structure to estimate the strength of connectivity
patterns in an observed network.

4.1.2. NGS null network. A key difference between an NG null network (2.8)
and an NGS null network (2.13) is that the expected edge weight between two nodes
must be positive in the former but can be negative in the latter. Consider a signed
variant of the example in section 4.1.1 in which intracategory edge weights equal a
constant a > 0, and intercategory edge weights equal a constant b < 0. The strengths
of node i in the κth category are

k+i = |κ|a and k−i = (N − |κ|)b .

We consider two categories κ1, κ2 with different numbers of nodes. Taking |κ1| > |κ2|
without loss of generality, it follows that

Pi,j∈κ1 =
1

2m+

(
|κ1|a
)2

− 1

2m−

[
(N − |κ1|)b

]2

>
1

2m+

(
|κ2|a
)2

− 1

2m−

[
(N − |κ2|)b

]2
= Pi,j∈κ2 ,

where Pi,j∈κi is the expected edge weight between pairs of nodes in κi in the NGS
null network. As was the case for an NG null network, pairs of nodes in an NGS
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null network that belong to larger categories have a larger expected edge weight than
pairs of nodes that belong to smaller categories.

However, the fact that the expected edge weight can be negative can further
complicate interpretations of multiscale community structure. A category κ for which
Pi,j∈κ < 0 and Pi∈κ,j /∈κ ≥ 0 is identified as a community when −Aij < −γPij for
all i, j ∈ κ (this inequality must hold for sufficiently large γ because Pi,j∈κ < 0)
and does not split further for larger values of γ. This poses a particular problem
in the interpretation of multiscale community structure obtained with the NGS null
network because nodes with negative expected edge weights do not need to be “densely
connected” in the observed network to contribute positively to modularity. In fact, if
one relaxes the assumption of uniform edge weights across categories, one can ensure
that nodes in the category with lowest intracategory edge weight will never split. This
is counterintuitive to standard interpretations of multiscale community structure [40].

In Figures 2(d) and (e), we illustrate the above feature of the NGS null network
using a simple example. The toy network in Figure 2(d) contains 100 nodes divided
into three categories: one of size 50 and two of size 25. The category of size 50 and one
category of size 25 have an intracategory edge weight of 1 between each pair of nodes.
The other category of size 25 has an intracategory edge weight of 0.4 between each
pair of nodes. All intercategory edges have weights of −0.05. (We choose these values
so that the intracategory expected edge weight is negative for the third category but
positive for the first two, and so that intercategory expected edge weights are positive.)
We observe in Figure 2(e) that the first and second categories split into singletons
for sufficiently large γ, that the smaller of the two categories splits into singletons for
a larger value of the resolution parameter, and that the third category never splits.
We repeat the same experiment with the U null network in Figure 2(f) (after a linear
shift of the adjacency matrix to the interval [0, 1] using Aij �→ 1

2 (Aij + 1) for all i
and j), and we observe that the co-classification index of nodes reflects the value of
the edge weight between them. It is largest for pairs of nodes in the first and second
categories, and it is smallest for pairs of nodes in the third category.

4.2. Data sets. We illustrate how the features that we discussed in section 4.1
can occur in real data. We use two data sets of financial time series for our computa-
tional experiments.

The first data set, which we call MultiAssetClasses, has multiple types of
assets and consists of weekly price time series for N = 98 financial assets during the
time period 01 Jan 99–01 Jan 10 (resulting in 574 prices for each asset). The assets
are divided into seven asset classes: 20 government bond indices (Gov.), 4 corporate
bond indices (Corp.), 28 equity indices (Equ.), 15 currencies (Cur.), 9 metals (Met.),
4 fuel commodities (Fue.), and 18 commodities (Com.). This data set was studied
in [23] using principal component analysis, and a detailed description of the financial
assets can be found in that paper.

The second data set, which we call SingleAssetClass, consists of daily price
time series for N = 859 financial assets from the Standard & Poor’s (S&P) 1500
index during the time period 01 Jan 99–01 Jan 13 (resulting in 3673 prices for each
asset).11 The financial assets are all equities and are divided into 10 sectors: 64
materials, 141 industrials, 150 financials, 142 information technology, 55 utilities,
47 consumer staples, 138 consumer discretionary, 48 energy, 68 health care, and 6
telecommunication services.

11We consider fewer than 1500 nodes because we include only nodes for which data is available
at all time points to avoid issues associated with choices of data-cleaning techniques.
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(a) MultiAssetClasses: Surface plot of
correlations over all 238 time windows

(b) SingleAssetClass: Surface plot of
correlations over all 854 time windows

0 0.1 0.2

Fig. 3. Surface plots of the correlations over all time windows for (a) MultiAssetClasses

data set and (b) SingleAssetClass data set. The colors in each panel scale with the value of the
observed frequency (color available online).

The precise way in which one chooses to compute a measure of similarity be-
tween pairs of time series and the subsequent choices that one makes (e.g., uniform
or nonuniform window length, and overlap or no overlap if one uses a rolling time
window) affect the values of the similarity measure. There are myriad ways to define
similarity measures—the best choices depend on facets such as application domain,
time-series resolution, and so on—and this is an active and contentious area of re-
search [62, 67, 69, 76]. Constructing a similarity matrix from a set of time series and
investigating community structure in a given similarity matrix are separate problems,
and we are concerned with the latter in the present paper. Accordingly, in all of our
experiments, we use Pearson correlation coefficients for our measure of similarity. We
compute them using a rolling time window with a uniform window length and uniform
amount of overlap.

We adopt the same network representation for both data sets. We use the term
time window for a set of discrete time points and divide each time series into overlap-
ping time windows that we denote by T = {Ts}. The length of each time window |T |
and the amount of overlap between consecutive time windows |T | − δt are uniform.
The amount of overlap determines the number of data points that one adds and re-
moves from each time window. It thus determines the number of data points that can
alter the connectivity patterns in each subsequent correlation matrix (i.e., each subse-
quent layer). We fix (|T |, δt) = (100, 2) for the MultiAssetClasses data set (which
amounts to roughly two years of data in each time window) and (|T |, δt) = (260, 4) for
the SingleAssetClass data set (which amounts to roughly one year of data in each
time window). Every network layer with adjacency matrix As is a Pearson correla-
tion matrix between the time series of logarithmic returns during the time window Ts.
We take correlations between logarithmic returns because it is standard practice [16],
but one can also examine correlations between other quantities (such as arithmetic
returns [30]). For each data set, we study the sequence of matrices{

As ∈ [−1, 1]N×N |s ∈ {1, . . . , |T |}
}
.

We show a surface plot of the observed frequency of correlations in each layer for each
data set in Figure 3.
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4.3. Multiscale community structure in asset correlation networks. We
perform the same experiments as in Figure 2 on the correlation matrices of both
data sets. Our resolution-parameter sample is the set {γ−, . . . , γ+} (respectively,
{0, . . . , γ+}) for the U and NG (respectively, NGS) null networks with a discretization
step of the order of 10−3. We store the co-classification index of pairs of nodes
averaged over all resolution-parameter values in the sample. We use the U and NG
null networks for a correlation matrix that is linearly shifted to the interval [0, 1]. For
each null network, we thereby produce |T | multiscale association matrices with entries
between 0 and 1 that indicate how often pairs of nodes are in the same community
across resolution-parameter values.

We show the multiscale association matrices for a specific layer of MultiAsset-

Classes in Figure 4. The matrix in Figure 4(a) corresponds to the correlation matrix
during the interval 08 Feb 08–01 Dec 10. In accord with the results in [23], this matrix
reflects the increase in correlation between financial assets that took place after the
Lehman bankruptcy in 2008 compared to correlation matrices that we compute from
earlier time periods. (One can also see this feature in the surface plot of Figure 3(a).)
The matrices in Figures 4(b), (c), and (d) correspond, respectively, to the multiscale
association matrix for the U, NG, and NGS null networks. We reorder all matrices
(identically) using a node ordering based on the partitions that we obtain with the
U null network that emphasizes block-diagonal structure in the correlation matrix.

20 40 60 80

20

40

60

80

(a) Reordered
correlation matrix

20 40 60 80

20

40

60

80

(b) Reordered
multiscale association

matrix (U)

20 40 60 80

20

40

60

80

(c) Reordered
multiscale association

matrix (NG)

20 40 60 80

20

40

60

80

(d) Reordered
multiscale association

matrix (NGS)

10 20 30

10

20

30

(e) Reordered
correlation matrix

10 20 30

10

20

30

(f) Reordered
multiscale association

matrix (U)

10 20 30

10

20

30

(g) Reordered
multiscale association

matrix (NG)

10 20 30

10

20

30

(h) Reordered
multiscale association

matrix (NGS)

0 0.5 1

Fig. 4. Multiscale association matrix for the U, NG, and NGS null networks for the entire
correlation matrix and a subset of the correlation matrix in the last layer of the MultiAssetClasses

data set. In panel (a), we show the entire matrix; in panels (b), (c), (d), we show the multiscale
association matrix that we obtain from this matrix using each of the three null networks. In panel
(e), we show the first 35 × 35 block of the correlation matrix from panel (a); in panels (f), (g), (h),
we show the multiscale association matrix that we obtain from this subset of the correlation matrix
using each of the three null networks. The colors scale with the entries of the multiscale association
and the entries of the correlation matrix. Black squares on the diagonals correspond to government
and corporate bond assets, and white squares correspond to equity assets. (Color available online.)
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We observe that the co-classification indices in the multiscale association matrix of
Figure 4(b) are a better reflection of the strength of correlation between assets in
Figure 4(a) than the multiscale association matrices in Figures 4(c) and (d). As in-
dicated by the darker shades of red in the upper left corner in Figures 4(c) and (d),
we also observe that the government and corporate bond assets (which we represent
with black squares on the diagonal) are in the same community for a larger range of
resolution-parameter values than the range for which equity assets (which we repre-
sent with white squares on the diagonal) are in the same community. In fact, when we
use an NGS null network, the expected weight between two government or corporate
bonds is negative (it is roughly −0.1), and these assets are in the same community
for arbitrarily large values of the resolution parameter. (In other words, they do not
split into smaller communities for large γ.) One needs to be cautious when using
the multiscale association matrices in Figures 4(c) and (d) to gain insight about the
strength of connectivity between assets in Figure 4(a).

When studying correlation matrices of multiasset data sets, one may wish to
vary the size of the asset classes included in the data (e.g., by varying the ratio of
equity and bond assets). We show how doing this can lead to further misleading
conclusions. By repeating the same experiment using only a subset of the correlation
matrix (the first 35 nodes), we consider an example where we have inverted the relative
sizes of the bond asset class and the equity asset class. As indicated by the darker
shades of red in the lower right corner in Figures 4(g) and (h), equity assets now
have a larger co-classification index than government and corporate bond assets when
using the NG or NGS null networks. If one uses the co-classification index in the
multiscale association matrices of Figures 4(c) and (d) (respectively, Figures 4(g) and
(h)) to estimate the values of observed correlation between equity and bond assets in
Figure 4(a) (respectively, Figure 4(e)), one can draw different conclusions despite the
fact that these values have not changed. However, the multiscale association matrix
with a U null network in Figure 4(f) reflects the observed correlation between equity
and bond assets in Figure 4(e).12

To quantify the sense in which a multiscale association matrix of one null network
“reflects” the values in the correlation matrix, we compute the Pearson correlation
between the upper triangular part of each multiscale association matrix and its corre-
sponding adjacency matrix across all time layers of both data sets for the U, NG, and
NGS null networks. We show these correlation plots in Figure 5. Observe that the
correlation between the adjacency and multiscale association matrix in Figures 5(a)
and (b) is strongest in each layer for the U null network and weakest in (almost) each
layer for the NGS null network.

The above observation can be explained as follows. Recall from (2.5) that we
can write the modularity-maximization problem as maxS∈S Tr(STBS), where S is
the set of partition matrices. When one uses a U null network, the entries of the
modularity matrix are the entries of the adjacency matrix shifted by a constant γ〈A〉,

12The authors of [72] showed that a globally optimal partition for a null network called the
“constant Potts model” (CPM), in which the edge weights are given by a constant that is independent
of the network, is “sample-independent.” Their result can be generalized as follows for the U null
network (in which expected edge weights are constant but are not independent of the observed
network). Suppose that Cmax is a partition that maximizesQ(C|A;P ; γ1), and consider the subgraph
induced by the network on a set of communities C1, . . . , Cl ∈ Cmax. It then follows that {C1 ∪
C2 . . . ∪ Cl} maximizes Q(C|Ã;P ; γ2), where Ã is the adjacency matrix of the induced subgraph
and γ2 = γ1〈A〉/〈Ã〉. For the CPM null network, the same result holds with γ1 = γ2.
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(a) Correlation between
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adjacency matrix for the
MultiAssetClasses data set
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Fig. 5. Correlation between the adjacency matrix and the multiscale association matrix for the
U (solid curve), NG (dashed curve), and NGS (dotted curve) null networks over all time layers
for (a) the MultiAssetClasses data set and (b) the SingleAssetClass data set. We compute
the Pearson correlation coefficients between entries in the upper diagonal blocks in each matrix (to
avoid double counting, as the matrices are symmetric), and we exclude diagonal entries (which, by
construction, are equal to 1 in both matrices).

and the quality function reduces to

(4.2) max
S∈S

[
Tr(STAS)− γ〈A〉||c(S)||2

]
,

where ||c(S)||2 = ||Tr(ST1NS)||2 is the 2-norm of the vector of set sizes in S (i.e., c(S)

is the vector whose kth entry is
∑N

i=1 Sik). It follows that modularity maximization
with a U null network is equivalent to a block-diagonalization of the adjacency matrix
A (the first term in (4.2)) with a penalty on the size of communities (the second
term). As one increases the resolution parameter, one favors smaller sets of nodes
with stronger internal connectivity. Note that one could also apply (4.2) on adjusted
adjacency matrices A′ = A−Ã. For example, one can let Ã be a matrix that controls
for random fluctuations in a correlation matrix A (e.g., the “random component” Cr

in [46]).
For a general null network, (4.2) takes the form

max
S∈S

[
Tr(STAS)− Tr(ST (γP )S)

]
,

where P is the adjacency matrix of the null network. That is, modularity maximiza-
tion finds block-diagonal structure in A (first term) that is not in γP (second term).
It is common to avoid using the U null network in applications because “it is not a
good representation of most real-world networks” [53]. The extent to which one wants
a null network to be a good representation of an observed network depends on the
features that one wants to take as given. We argue that whether an NG null network
is more appropriate than a U null network for a given situation depends at least in
part on one’s interpretation of node strength for that application. As we discussed in
section 2.4, the strength of a node in correlation matrices is given by the covariance be-
tween its standardized time series and the mean time series. When using the NG null
network, it thus follows that pairwise differences Bij−Bi′ j′ in the modularity quality

function depend on corr(ẑi, ẑj), corr(ẑi′ , ẑj′ ), and corr(ẑk, ẑtot), where k ∈ {i, j, i
′
, j

′},
the quantity ẑi is the standardized time series of asset i defined in subsection 2.4.1,
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and ẑtot =
∑N

i=1 ẑi. When using the U null network, pairwise differences in the mod-
ularity quality function depend only on the observed edge weights corr(ẑi, ẑj) and
corr(ẑi′ , ẑj′ ). The term corr(ẑk, ẑtot) introduces a dependence between the communi-
ties that one finds using the NG null network and the extent to which nodes in those
communities are representative of the mean time series for the sample (as measured
by corr(ẑk, ẑtot)). In situations where one may wish to vary one’s node sample (e.g.,
by changing the size of asset classes), one needs to bear such dependencies in mind
when interpreting the communities that one obtains.

5. Effect of interlayer coupling on a multilayer partition. In section 4,
we set the interlayer connection weights to 0 in the multilayer network. The solution
to the multilayer modularity-maximization problem (3.4) then depends solely on the
values in the modularity matrix of each time layer, and the multilayer modularity-
maximization problem reduces to performing single-layer modularity maximization
on each layer independently.

Recall the multilayer modularity-maximization problem

max
C∈C

[ |T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ω

|T |−1∑
s=1

N∑
i=1

δ(cis , cis+1)

]
.

A solution to this problem is a partition of an N |T |-node multilayer network. Its
communities can contain nodes from the same layer and nodes from different layers.
Nodes from different layers can be the same node at different times ((is, ir) with s 	= r)
or different nodes at different times ((is, jr) with i 	= j and s 	= r). We say that a
node is remains in the same community (respectively, changes communities) between
consecutive layers s and s+ 1 if δ(cis , cis+1) = 1 (respectively, δ(cis , cis+1) = 0).

Positive diagonal, ordinal, and uniform interlayer connections favor nodes remain-
ing in the same community between consecutive layers. Every time a node does not
change communities between two consecutive layers (i.e., δ(cis , cis+1) = 1), a positive
contribution of 2ω is added to the multilayer quality function. One thereby favors
communities that do not to change in time because community assignments are tran-
sitive: if δ(cis , cjs) = 1 and δ(cis , cis+1) = δ(cjs , cjs+1) = 1, then δ(cis+1 , cjs+1) = 1.
We define the persistence of a multilayer partition to be the total number of nodes
that do not change communities between layers:

(5.1) Pers(C) :=

|T |−1∑
s=1

N∑
i=1

δ(cis , cis+1) ∈ {0, . . . , N(|T | − 1)} .

As indicated in (5.1), Pers(C) is an integer between 0, which occurs when no node
ever remains in the same community across layers, and N(|T | − 1), which occurs
when every node always remains in the same community. (See [6] for a closely related
measure called “flexibility” that has been applied to functional brain networks.) Let
Pers(C)|s denote the number of nodes that remain in the same community between
two consecutive layers s and s+ 1:

(5.2) Pers(C)|s :=
N∑
i=1

δ(cis , cis+1) ∈ {0, . . . , N} ,

so that Pers(C) =
∑|T |−1

s=1 Pers(C)|s. Persistence provides an insightful way of rewrit-
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ing the multilayer modularity-maximization problem:

(5.3) max
C∈C

⎡
⎣ |T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ωPers(C)

⎤
⎦ .

The multilayer maximization problem thus measures a trade-off between static com-
munity structure within layers (the first term in (5.3)) and temporal persistence across
layers (the second term in (5.3)).

To better understand how the partitions that one obtains with nonzero interlayer
coupling (i.e., using ω > 0) can differ from the partitions that one obtains with-
out interlayer coupling (i.e., using ω = 0), we define notation that helps to compare a
multilayer partition to single-layer partitions. LetNs := {1s, . . . , Ns} denote the set of
nodes in layer s. The restriction of a set Cl ⊆ {11, . . . , N1; 12, . . . , N2; . . . ; 1|T |, . . . , N|T |}
of nodes to a layer s is Cl|s := Cl ∩Ns, and we define the partition induced by a mul-
tilayer partition C ∈ C on layer s by

C|s := {Cl|s, Cl ∈ C} .

We refer to a “globally optimal partition” as an “optimal partition” in this section

for ease of writing, and we refer to
∑|T |

s=1

∑N
i,j=1 Bijsδ(cis , cjs) (i.e., the first term in

(5.3)) as intralayer modularity. In the next two subsections, we illustrate how the set
of partitions induced by a multilayer partition with ω > 0 on individual layers can
differ from intralayer partitions obtained with ω = 0.

5.1. Toy examples.

5.1.1. Changes in connectivity patterns. This toy example illustrates how
interlayer coupling can enable us to detect and differentiate between changes in con-
nectivity patterns across layers. In Figure 6, we show an unweighted multilayer net-
work with |T | = 10 layers and N = 8 nodes in each layer. Every layer except for layers
3 and 6 contains two 4-node cliques. In layer 3, node 53 is connected to nodes {13, 23}
instead of nodes {63, 73, 83}. In layer 6, node 56 is connected to nodes {16, 26, 36, 46}
instead of nodes {66, 76, 86}. We show the layers of the multilayer network in Fig-
ures 6(a)–(c). We examine its communities using a U null network with a resolution
parameter γ = 1. Layer s then has the following single-layer modularity matrix:

Bijs =

{
1− 〈As〉 if i is connected to j,
−〈As〉 otherwise.

The optimal partition in each layer is unique and is Cs = {{1s, 2s, 3s, 4s}, {5s, 6s, 7s, 8s}}
in layer s for s /∈ {3, 6} and Cs = {{1s, 2s, 3s, 4s, 5s}, {6s, 7s, 8s}} in layers 3 and 6.
When the value of interlayer coupling is 0, the optimal multilayer partition is the union
of |T | disconnected optimal single-layer partitions. The resulting multilayer partition

C0 =
⋃10

i=1 Cs, which we show in Figure 6(d), has a persistence of Pers(C0) = 0. For
any ω > 0, any partition with the same intralayer partitions as C0 and a nonzero
value of persistence yields a higher value of multilayer modularity than C0. This
follows immediately from the expression of the multilayer quality function:

Q(C|B) =

|T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ωPers(C) .
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Fig. 6. Toy example illustrating the use of diagonal, ordinal, and uniform interlayer coupling
for detecting changes in community structure across layers. We consider 10 layers (|T | = 10) with
eight nodes (N = 8) in each layer. We show the network structures in (a) layers s �∈ {3, 6}, (b) layer
3, and (c) layer 6. Panels (d)–(g) illustrate four different multilayer partitions. In each panel, the
sth column of circles represents the nodes in the sth layer, which we order from 1 to 8. We show
sets of nodes in the same community using solid curves in panel (d) (to avoid having to use 20
distinct colors) and using colors in panels (e)–(g) (color available online). In panel (h), we show the
difference between the multilayer modularity value between the partition in panels (f) (thin line) and
(g) (thick line) and the partition in panel (e) for different values of ω. We include the horizontal
dotted line to show the point at which the thin line intercepts the horizontal axis. The panel labels
in the regions defined by the area between two consecutive vertical lines in panel (h) indicate which
of the multilayer partitions in panels (e), (f), and (g) has a higher value of modularity.

Increasing persistence without changing intralayer partitions increases the last term
of Q(C|B) without changing the other terms. (In section 5.2, we will prove that ω > 0
is both necessary and sufficient for an optimal partition to have a positive value of
persistence.) To obtain the multilayer partition in panel (e), we combine all of the
sets in panel (d) that contain 1s into one set, and all of the sets that contain Ns into
another set. This partition has a persistence equal to N(|T | − 1)− 4, and any other
way of combining the sets in C0 yields a lower value of persistence.

We now examine Figure 6 further. We consider the multilayer partitions in panels
(e)–(g). The example in panel (e) shows the structural changes from both layer 3 (see
panel (b)) and layer 6 (see panel (c)), the example in panel (f) shows only the change
from layer 6, and panel (g) does not show either change. As we soon quantify in terms
of modularity cost, the change in layer 6 is the “stronger” of the two changes. We let
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C1 denote the multilayer partition in panel (e), C2 denote the multilayer partition in
panel (f), and C3 denote the multilayer partition in panel (g). Additionally, note that
Pers(C1) < Pers(C2) < Pers(C3). The value ω of interlayer coupling determines which
partition of these three has the largest value of multilayer modularity. To see this, we
compute the modularity cost of changing static community structure within layers in
partition C1 in favor of persistence. (Such a computation is a multilayer version of
the calculations for static networks in [29].) The intralayer modularity cost in C1 of
moving node 5s from community {1s, 2s, 3s, 4s, 5s} to community {6s, 7s, 8s} in layers
s ∈ {3, 6} is

ΔQ(s) = 2

( ∑
j∈{6,7,8}

B5js −
∑

j∈{1,2,3,4}
B5js

)

=

{
−4 + 2〈A3〉 ≈ −3.3 if s = 3,
−8 + 2〈A6〉 ≈ −7.2 if s = 6.

The interlayer modularity cost from this move is +4ω in both cases; the first +2ω
contribution of the +4ω follows by symmetry of B, and the second +2ω contribution
of the +4ω follows from the fact that either move increases persistence by +2. Conse-
quently, for 0 < 4ω < |ΔQ(3)|, the partition in panel (e) yields a larger value of mul-
tilayer modularity than the partitions in (f) and (g). When |ΔQ(3)| < 4ω < |ΔQ(6)|,
the multilayer modularity value of the partition in (f) is larger than that of (e) or
(g). Finally, when 4ω > |ΔQ(6)|, the partition in panel (g) has the largest value of
multilayer modularity of the three. When 4ω = |ΔQ(3)| (respectively, 4ω = |ΔQ(6)|),
the multilayer partition in panels (e) and (f) (respectively, (f) and (g)) have the same
value of multilayer modularity. We illustrate these results in Figure 6(h) by plot-
ting Q(C2|B)−Q(C1|B) and Q(C3|B)−Q(C1|B) against ω. This example is a simple
illustration of how interlayer connections can help distinguish between changes in
connectivity patterns: stronger changes (in terms of modularity cost) persist across
larger values of interlayer coupling (see [3, 59] for other approaches to “change point
detection” in temporal networks).

5.1.2. Shared connectivity patterns. In the previous toy example, the in-
tralayer partitions induced on each layer by the multilayer partitions in Figures 6(e),
(f), and (g) are optimal for at least one layer when ω = 0 (see Figure 6(d)). This sec-
ond example illustrates how interlayer coupling can identify intralayer partitions that
are not optimal for any individual layer when ω = 0 but which reflect connectivity
patterns that are shared across layers.

In Figure 7, we consider an unweighted multilayer network with |T | = 3 lay-
ers and N = 13 nodes in each layer. Every sth layer contains four 3-node cliques
and a node that is connected to each of the three nodes in the sth clique, and to
nodes 10s and 12s in the 4th clique. We show the layers of the multilayer net-
work in panels (a)–(c). We examine its communities using a U null network with a
resolution-parameter value of γ = 1. The optimal partition in each layer is unique and
is {{11, 21, 31, 131}, {41, 51, 61}, {71, 81, 91}, {101, 111, 121}} for layer 1, {{12, 22, 32},
{42, 52, 62, 132}, {72, 82, 92}, {102, 112, 122}} for layer 2, and {{13, 23, 33}, {43, 53, 63},
{73, 83, 93, 133}, {103, 113, 123}} for layer 3. We obtain the multilayer partition C1
in panel (d) by combining these sets such that induced intralayer partitions are op-
timal for each layer when ω = 0 and persistence is maximized between layers. The
multilayer partition C2 in panel (e) reflects connectivity patterns that are shared by
all layers (i.e., node 13s is with the fourth 3-node clique instead of the sth 3-node
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Fig. 7. Toy example illustrating the use of diagonal, ordinal, and uniform interlayer coupling
for detecting shared connectivity patterns across layers. We consider three layers (|T | = 3) with
13 nodes (N = 13) in each layer. We show the network structures in (a) layer 1, (b) layer 2, and
(c) layer 3. Solid lines represent edges present in all three layers, and dashed lines represent edges
that are present only in one of the layers. Panels (d) and (e) illustrate two different multilayer
partitions. In each panel, the sth column of circles represents the nodes in the sth layer, which
we order 1 to 13. We show sets of nodes in the same community using colors in panels (d) and
(e) (color available online). In panel (f), we show the difference between the multilayer modularity
value between the partition in panel (e) and the partition in panel (d) for different values of ω. We
include the horizontal dotted line to show the point at which the line intercepts the horizontal axis.
The panel labels in the regions defined by the area between two consecutive vertical lines in panel
(f) indicate which of the multilayer partitions in panels (d) and (e) has a larger value of multilayer
modularity.

clique), but its intralayer partitions are not optimal for any layer when ω = 0. By
carrying out calculations similar to those in the previous toy example, one can show
that when ω > 3/2,13 the multilayer partition in panel (e) yields a larger modularity
value than the multilayer partition in panel (d). We illustrate this result in Figure 7(f)
by plotting Q(C2|B)−Q(C1|B) against ω. This example is a simple illustration of how
interlayer connections can help identify connectivity patterns that are shared across
layers.

5.2. Some properties of multilayer partitions. We now ask how introduc-
ing positive diagonal, ordinal, and uniform coupling (i.e., ω > 0) alters the set of
maximum-modularity partitions of static networks (i.e., the case ω = 0). To clearly
differentiate between intralayer and interlayer modularity contributions, we denote
the quality function by

Q(C|B1, . . . ,B|T |;ω) :=

|T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ωPers(C)

13That is, when 4ω + 6[2(1 − 〈As〉) − 〈As〉 − 3(1 − 〈As〉)] > 0, with 〈A1〉 = 〈A2〉 = 〈A3〉 by
construction in this example.
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instead of Q(C|B), where C ∈ C is a multilayer partition. We assume throughout this
section that |T | ≥ 2. Let Cmax(ω) denote the set of optimal partitions for the multi-
layer modularity-maximization problem (5.3), and let Cω

max be an arbitrary partition
in Cmax(ω). In the discussion that follows, it will be helpful to recall our assumption
that each of the partitions in the set C contains sets that do not have multiple con-
nected components in the weighted graph with adjacency matrix B. In particular,
this applies to partitions Cω

max ∈ Cmax(ω). We prove several propositions that hold
for an arbitrary choice of the matrices Bs (for example, if one uses the modularity
quality function with a U null network and a resolution parameter value of 1, then
Bs = As − 〈As〉1N ).

Proposition 5.1. Pers(Cω
max) > 0⇔ ω > 0.

Proposition 5.1 ensures that as soon as (and only when) the value of ω is strictly
positive, the value of persistence of an optimal solution is also positive. To prove
this, it suffices to observe that if one rearranges sets in a multilayer partition by
combining some of the sets into the same set without changing the partitions induced
on individual layers, then one only changes the value of persistence in the expression
of multilayer modularity. For example, this phenomenon occurs in Figure 6 when
going from the partition in panel (d) to the partition in panel (e).

Proof.
⇒: We prove the contrapositive. Assume that ω = 0, and consider a multilayer

partition C such that Pers(C) > 0. The partition C contains at least one set with
multiple connected components (because Pers(C) > 0 and nodes in different layers
are not connected), and C is not optimal by our assumption that global optima do
not contain sets with multiple connected components.
⇐: Assume that ω > 0, and consider a multilayer partition C with Pers(C) = 0.

We will show that C is not optimal. Let ir be an arbitrary node in {11, . . . , N1; . . . ;
1|T |, . . . , N|T |}, and let Cir denote the set in C that contains ir. Let C′ be the
partition obtained from C by combining all sets that contain is, for some s, into one
set:

C′ =

(
C \

|T |⋃
s=1

{Cis}
)
∪
{ |T |⋃

s=1

Cis

}
,

where Cis denotes the set in C that contains is. Consequently,

Q(C′|B1, . . . ,B|T |;ω) ≥ Q(C|B1, . . . ,B|T |;ω) + 2ω(|T | − 1) ,

so C is not optimal. (Note that 2ω(|T | − 1) is strictly positive for ω > 0 because we
have assumed that |T | ≥ 2.)

Proposition 5.2. Let Cω
max ∈ Cmax(ω) and Cl ∈ Cω

max. The set

{s ∈ {1, . . . , |T |} : Cl|s 	= ∅}

of layers consists of contiguous layers.
Proposition 5.2 ensures that if a community becomes empty in a given layer, then

it remains empty in all subsequent layers. We omit the proof, as this result follows
directly from the sparsity pattern of B and our assumption that optimal partitions
do not contain sets with multiple connected components in the graph with adjacency
matrix B.
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Proposition 5.3. Cω
max|s = Cω

max|s+1 ⇔ Pers(Cω
max)|s = N .

Proposition 5.3 connects the notion of persistence between a pair of layers to the
notion of change in community structure within layers. Various numerical experiments
that have been performed with diagonal, ordinal, and uniform interlayer coupling
consist of varying the value of ω and using information about when nodes change
communities between layers as an indication of change in community structure within
these layers [5, 6, 50]. The equivalence relation in Proposition 5.3 motivates the use
of Pers(C)|s (or a variant thereof) as an indication of intralayer change in community
structure.

Proof.
⇐: The proof of this implication follows straightforwardly by transitivity of com-

munity assignments: if δ(cjs , cjs+1) = δ(cis , cis+1) = 1 for all i, j, then δ(cis , cjs) = 1
if and only if δ(cis+1 , cjs+1) = 1 for all i, j. (This direction holds for any multilayer
partition; it need not be optimal.)
⇒: Let C ∈ C be a multilayer partition such that C|s = C|s+1 and Pers(C)|s < N

for some s ∈ {1, . . . , |T |}. We show that C is not optimal.14 Consider a set Cl ∈ C
of nodes such that Cl|s 	= ∅. If δ(cis , cis+1) = 1 (respectively, δ(cis , cis+1) = 0) for
some is ∈ Cl|s, then δ(cjs , cjs+1) = 1 (respectively, δ(cjs , cjs+1) = 0) for all js ∈ Cl|s
by transitivity of community assignments and because C|s = C|s+1 by hypothesis.
Because Pers(C)|s < N by hypothesis, there exists at least one set Ck|s of nodes
(where Ck ∈ C) such that δ(cis , cis+1) = 0 for all is ∈ Ck|s. Let Cm|s+1, with Cm ∈ C,
denote the set of nodes in layer s + 1 that contains is+1 for all is ∈ Ck|s. Consider
the set ∪r≤sCk|r of nodes in Ck that are in layers {1, . . . , s} and the set ∪r>sCm|r
of nodes in Cm that are in layers {s + 1, . . . , |T |}. Because δ(cis , cis+1) = 0 for all
is ∈ Ck|s, it follows by Proposition 5.2 that Ck = ∪r≤sCk|r and Cm = ∪r>sCm|r.
Define the partition C′ by

C′ =
(
C \
(
{Ck} ∪ {Cm}

))⋃(
{Ck ∪ Cm}

)
.

This partition satisfies C′|r = C|r for all r ∈ {1, . . . , |T |}, Pers(C′)|r = Pers(C)|r
for all r 	= s, and Pers(C′)|s > Pers(C)|s. It follows that Q(C′|B1, . . . ,B|T |;ω) >
Q(C|B1, . . . ,B|T |;ω) and C is not optimal.

Propositions 5.1, 5.2, and 5.3 apply to an optimal partition obtained with any
positive value of ω. The next two propositions concern the existence of “boundary”
values for ω.

Proposition 5.4. There exists ω0 > 0 such that

if ω < ω0 , then

|T |⋃
s=1

Cω
max|s ∈ Cmax(0) .

Moreover, we show that ω0 = ΔQ/
[
2N(|T | − 1)

]
, where ΔQ is the difference between

Q(C0
max|B1, . . . ,B|T |; 0) and the second largest value of Q(C|B1, . . . ,B|T |; 0) among

the partitions of C.
Proposition 5.4 reinforces the idea of thinking of ω as the cost of breaking static

community structure within layers in favor of larger values of persistence across layers.
It demonstrates that there is a positive value of interlayer coupling such that for any
smaller coupling, multilayer modularity maximization only gives more information

14Imposing Pers(C)|s = N by setting cis+1
= cis is not sufficient because changing Pers(C)|s

locally can change Pers(C)|s+1 or Pers(C)|s−1.
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than single-layer modularity maximization in that it identifies the set of partitions in
Cmax(0) with largest persistence. The proof of this property relies on the fact that
the set of possible modularity values for a given modularity matrix is finite.

Proof. Let C be an arbitrary partition such that ∪|T |
s=1C|s /∈ Cmax(0). We will

show that there exists a value ω0 of the interlayer coupling parameter ω such that C
is never optimal for any interlayer coupling less than ω0. Given a sequence of single-
layer modularity matrices {B1, . . . ,B|T |}, the set of possible multilayer modularity
values for a fixed value of ω > 0 is finite and is given by

Qω =
{
Q(C|B1, . . . ,B|T |;ω)|C ∈ C

}
,

where C is a multilayer partition. Let Q1
0 = maxQ0, Q2

0 = maxQ0 \ {Q1
0}, and

ΔQ = Q1
0 −Q2

0 > 0. By hypothesis,

Q(C|B1, . . . ,B|T |; 0) < Q(C0
max|B1, . . . ,B|T |; 0) ,

where C0
max ∈ Cmax(0). Furthermore, by definition of persistence, it follows that

(5.4) Q(C|B1, . . . ,B|T |;ω) ≤ Q2
0 + 2ωN(|T | − 1)

for all values of ω. By choosing ω < ω0, with ω0 = ΔQ/
[
2N(|T | − 1)

]
, we obtain

Q(C|B1, . . . ,B|T |;ω) ≤ Q2
0 + 2ωN(|T | − 1) < Q2

0 +ΔQ = Q0
1 ,

so C is not optimal for any interlayer coupling below ω0.
Clearly, ω0 = ΔQ/

[
2N(|T | − 1)

]
is not an upper bound for the set

{
ω ∈ R

+ :⋃|T |
s=1 C

ω
max|s ∈ Cmax(0)

}
,15 but our main concern is that the smallest upper bound

of this set is not 0. (In fact, we have shown that it must be at least as large as
ΔQ/
[
2N(|T | − 1)

]
> 0.)

Proposition 5.5. There exists ω∞ > 0 such that

if ω > ω∞ , then Pers(Cω
max)|s = N for all s ∈ {1, . . . , |T | − 1} .

Moreover, we show that ω∞ = |T |N2
[
max(Bdiag)−min(Bdiag)

]
/2, where max(Bdiag) =

maxijs Bijs and min(Bdiag) = minijs Bijs.
Proposition 5.5 implies that a sufficiently large value of interlayer coupling ω

guarantees that Cω
max|s remains the same across layers (by Proposition 5.3). The

proof of this proposition is similar to the proof of Proposition 5.4.
Proof. Let C be an arbitrary partition of a multilayer network with Pers(C)|s < N

for some s ∈ {1, . . . , |T | − 1}. We show that there exists a value ω∞ > 0 of the
interlayer coupling parameter ω such that C is never optimal for ω > ω∞. We first
rewrite the quality function as

Q(C|B1, . . . ,B|T |;ω) = β1 + 2ω[N(|T | − 1)−A] ,

where β1 =
∑|T |

s=1

∑N
i,j=1 Bijsδ(cis , cjs) and A ≥ 1 because Pers(C) < N(|T | − 1) by

assumption. Now consider the set of values

(5.5) Bdiag =
{
Bijs|i, j ∈ {1, . . . , N}, s ∈ {1, . . . , |T |}

}
15For example, one could replace N(|T | − 1) in (5.4) by N(|T | − 1) − Pers(Cmax(0)), where

Pers(Cmax(0)) denotes the maximum value of persistence that one can obtain by combining sets in
each partition of Cmax(0) without changing the partitions induced on individual layers. Proposition
5.4 still holds if one takes ω0 = ΔQ/[2(N(|T | − 1) − Pers(Cmax(0)))], where ΔQ/[2(N(|T | − 1) −
Pers(Cmax(0)))] > ΔQ/2N(|T | − 1), because Pers(Cmax(0)) ≥ |T | − 1 in any multilayer network.
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on the diagonal blocks of the multilayer modularity matrix B, and let max(Bdiag) and
min(Bdiag), respectively, denote the maximum and minimum values of the set Bdiag.
Without loss of generality,16 we assume that min(Bdiag) < 0 and max(Bdiag) > 0. Let
C′ be any multilayer partition with a maximal value of persistence. It follows that

Q(C′|B1, . . . ,B|T |;ω) = β2 + 2ωN(|T | − 1)

for some β2 ∈ R. Because A ≥ 1, choosing

2ω > |T |N2
[
max(Bdiag)−min(Bdiag)

]
≥ β1 − β2

ensures that C′ yields a larger value of multilayer modularity than C for any β1 and
for all A ∈ {1, . . . , N(|T | − 1)}.

The following proposition follows directly from Proposition 5.5.
Proposition 5.6. There exists ω∞ > 0 such that

for all r ∈ {1, . . . , |T |}, Cω
max|r is a solution of max

C∈C
Q

(
C|

|T |∑
s=1

Bs

)

for all ω > ω∞.
Propositions 5.5 and 5.6 imply the existence of a “boundary value” for ω above

which single-layer partitions induced by optimal multilayer partitions (1) are the
same on all layers, and (2) are optimal solutions for the single-layer modularity-
maximization problem defined on the mean modularity matrix.

Proof. Suppose that ω > ω∞, where ω∞ is as defined in Proposition 5.5, and
let Cω

max ∈ Cmax(ω). By Proposition 5.5, Pers(Cω
max) = N(|T | − 1), and community

assignments in Cω
max are the same across layers. Consequently, for ω > ω∞

C∗ = argmax
C∈C

⎛
⎝ |T |∑

s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ωPers(C)

⎞
⎠ ,

⇔ C∗ = argmax
C∈C

⎛
⎝ |T |∑

s=1

N∑
i,j=1

Bijsδ(ci, cj) + 2ωN(|T | − 1)

⎞
⎠ ,

⇔ C∗ = argmax
C∈C

⎛
⎝ N∑

i,j=1

( |T |∑
s=1

Bijs

)
δ(ci, cj)

⎞
⎠ ,

where ci denotes the community assignment of node i in all layers.
The next two propositions formalize the intuition that an optimal multilayer

partition measures a trade-off between static community structure within layers (i.e.,
intralayer modularity) and persistence of community structure across layers.

Proposition 5.7. Let ω1 > ω2 > 0. For all Cω2
max ∈ Cmax(ω2), one of the

following two conditions must hold:

(1) Cω2
max ∈ Cmax(ω1) ,

(2) Pers(Cω2
max) < Pers(Cω1

max) for all Cω1
max ∈ Cmax(ω1) .

16If min(Bdiag) and max(Bdiag) have the same sign or if either is equal to 0, then every diagonal
block of B has either all nonnegative entries or all nonpositive entries. In both cases, an optimal
partition Cω

max has maximal persistence for any value of ω > 0, because Cω
max|s is given either by

a single community or by N singleton communities for all s. Consequently, by Proposition 5.3,
Pers(Cω

max)|s = N for all s.
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Proof. Let Cω2
max ∈ Cmax(ω2). If Cω2

max ∈ Cmax(ω1), then condition (1) is satisfied.
Suppose that Cω2

max /∈ Cmax(ω1), and assume that Pers(Cω2
max) ≥ Pers(Cω1

max) for some
Cω1

max ∈ Cmax(ω1). By definition of optimality, Cω2
max /∈ Cmax(ω1) implies that

(5.6) Q(Cω2
max|B1, . . . ,B|T |;ω1) < Q(Cω1

max|B1, . . . ,B|T |;ω1) ,

where ω1 > ω2 by hypothesis. By writing

Q(Cωk
max|B1, . . . ,B|T |;ωk′) =

|T |∑
s=1

N∑
i,j=1

Bijsδ(c
ωk

is
, cωk

js
) + 2ωk′Pers(Cωk

max) ,

where cωk

is
is the community assignment of node is in Cωk

max and k, k′ ∈ {1, 2}, and by
substituting ω1 by ω2 + Δ for some Δ > 0, one can show that the inequality (5.6)
implies

Q(Cω2
max|B1, . . . ,B|T |;ω2) < Q(Cω1

max|B1, . . . ,B|T |;ω2) ,

which contradicts the optimality of Cω2
max.

One can similarly prove the following proposition.
Proposition 5.8. Let ω1 > ω2 > 0. For all Cω2

max ∈ Cmax(ω2), one of the
following two conditions must hold:

(1) Cω2
max ∈ Cmax(ω1) ,

(2) Q(Cω2
max|B1, . . . ,B|T |; 0) > Q(Cω1

max|B1, . . . ,B|T |; 0) for all Cω1
max ∈ Cmax(ω1) .

Proof. Let Cω2
max ∈ Cmax(ω2). If Cω2

max ∈ Cmax(ω1), then condition (1) is satisfied.
Suppose that Cω2

max /∈ Cmax(ω1), and assume that

(5.7) Q(Cω2
max|B1, . . . ,B|T |; 0) ≤ Q(Cω1

max|B1, . . . ,B|T |; 0)

for some Cω1
max ∈ Cmax(ω1). By definition of optimality, Cω2

max /∈ Cmax(ω1) implies that

(5.8) Q(Cω2
max|B1, . . . ,B|T |;ω1) < Q(Cω1

max|B1, . . . ,B|T |;ω1) ,

where ω1 > ω2 by hypothesis. By writing

Q(Cωk
max|B1, . . . ,B|T |;ω1) = Q(Cωk

max|B1, . . . ,B|T |; 0) + 2ω1Pers(C
ωk
max),

where k ∈ {1, 2}, and by using (5.7), one can show that (5.8) implies that

Q(Cω2
max|B1, . . . ,B|T |;ω2) < Q(Cω1

max|B1, . . . ,B|T |;ω2)

for all ω2 < ω1. This contradicts the optimality of Cω2
max.

To develop intuition for Propositions 5.7 and 5.8, it is helpful to think of a multi-
layer quality function Q(C|B1, . . . ,B|T |;ω) for a given partition C as a linear function
of ω that crosses the vertical axis at Q(C|B1, . . . ,B|T |; 0) with a slope Pers(C) (see,
for example, the last panels of Figures 6 and 7).

The next three corollaries follow straightforwardly from Propositions 5.7 and 5.8.
The first states that the largest achievable value of persistence for an optimal partition
obtained with a given value of interlayer coupling is a nondecreasing function in ω.
The second states that the largest achievable value of intralayer modularity for an
optimal partition obtained with a given value of interlayer coupling is a nonincreasing
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function in ω. The third property states that if two distinct values of ω have the same
set of optimal partitions, then this set is also optimal for all intermediate values.

Corollary 5.9. Let ω1 > ω2 > 0. It follows that

Pers(Cmax(ω1)) ≥ Pers(Cmax(ω2)) ,

where Pers(Cmax(ω)) := max{Pers(Cω
max), C

ω
max ∈ Cmax(ω)}.

Corollary 5.10. Let ω1 > ω2 > 0. It follows that

Q
(
Cmax(ω1)|B1, . . . ,B|T |; 0

)
≤ Q
(
Cmax(ω2)|B1, . . . ,B|T |; 0

)
,

where Q(Cmax(ω)|B1, . . . ,B|T |; 0) := max{Q(Cω
max|B1, . . . ,B|T |; 0), C

ω
max ∈ Cmax(ω)}.

Corollary 5.11. Assume that Cmax(ω1) = Cmax(ω2) for ω1 > ω2 > 0. It follows
that

Cmax(ω1) = Cmax(ω) = Cmax(ω2) for all ω ∈ (ω2, ω1) .

One can extend the proofs of Propositions 5.1–5.8 so that they apply for interlayer
coupling that is uniform between each pair of contiguous layers but may differ from
pair to pair. In other words, one can obtain similar results for the maximization
problem

max
C∈C

⎡
⎣ |T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2

|T |−1∑
s=1

ωsPers(C)|s

⎤
⎦ .

Propositions 5.1–5.6 trivially extend to this case, and one can extend Propositions

5.7–5.8 if (for example) one assumes that ω
(1)
s > ω

(2)
s > 0 for all s ∈ {1, . . . , |T | − 1},

where ω(1) and ω(2) are (|T | − 1)-dimensional vectors. (For example, one could set
ω(2) = ωω(1) and vary ω > 0.)

5.3. Computational issues. We now examine issues that can arise when using
the Louvain heuristic (see section 2.2) to maximize multilayer modularity (3.4).

5.3.1. Underemphasis of persistence. Consider the example network in Fig-
ure 8, which is a 3-layer network that has 5 nodes in each layer. Suppose that all
nodes are strongly connected to each other in layers 1 and 3, and that the edge
weight between node 12 and nodes {22, 32, 42, 52} is smaller in layer 2 than the edge
weight between node 1s and nodes {2s, 3s, 4s, 5s} when s = 1, 3. We use the uniform
null network with γ = 0.5 and set ω = 0.1. This produces a multilayer modular-
ity matrix in which all the single-layer modularity entries Bijs except those of node
12 are positive and exceed the value of interlayer coupling. Suppose that one loops
over the nodes ordered from 1 to N |T | in phase 1 of the Louvain heuristic. The
initial partition consists of N |T | singletons, and each node is then moved to the
set that maximally increases modularity. The partition at the end of phase 1 is
{{11, 21, 31, 41, 51, 12}, {22, 32, 42, 52}, {13, 23, 33, 43, 53}}. In phase 2, the second and
third sets merge to form a single set,17 and the Louvain heuristic gets trapped in
a local optimum in which the smaller set of nodes (i.e., {11}) remains in the same
community across layers 1 and 2, and the larger set of nodes (i.e., {21, 31, 41, 51})

17Note that combining the first and second sets into a single set decreases modularity because the
value of interlayer coupling is too small to compensate for the decrease in intralayer contributions to
modularity.
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Fig. 8. Toy example illustrating the effect of postprocessing on a multilayer partition by increas-
ing multilayer modularity via community-assignment swaps that increase the value of persistence but
do not change intralayer partitions. The colors in panels (a)–(c) scale with the entries of the ad-
jacency matrix (color available online). Panel (d) (respectively, panel (e)) represents the output
multilayer partition obtained with Louvain before (respectively, after) postprocessing. The horizon-
tal axis represents the layers, and the vertical axis represents the nodes. The shading in panels (d)
and (e) represents the community assignments of nodes in each layer.

changes community. We show this multilayer partition in Figure 8(d). Repeating this
experiment 1000 times using a randomized node order at the start of each iteration of
phase 1 of the Louvain heuristic yields the same multilayer partition. One can modify
this multilayer partition to obtain a new partition with a larger value of multilayer
modularity by increasing the value of persistence across layers without changing intra-
layer partitions (we use this idea in the proof of Proposition 5.1). We show an example
of this situation in Figure 8(e).

In Figure 8(d), we illustrate the above issue visually via abrupt changes in colors
between layers. (These are more noticeable in larger networks.) Such changes are
misleading because they imply a strong decrease in persistence that might not be
accompanied by a significant change in intralayer partitions. In Figure 8(d), for
example, the intralayer partitions differ in the community assignment of only a single
node. To mitigate this problem, we apply a postprocessing function to all output
partitions that maximizes persistence between layers without changing the partitions
that are induced on each layer. We thereby produce a partition with a larger value of
multilayer modularity. In our postprocessing, we relabel the community assignments
of nodes in each layer such that (1) the number of nodes that remain in the same
community between consecutive layers is maximized, and (2) the partition induced
on each layer by the original multilayer partition is unchanged. By reformulating
the problem of maximizing persistence for a given set of intralayer partitions as a
weighted bipartite matching problem between consecutive layers, one can implement
our postprocessing procedure using the Hungarian algorithm [19, 39, 51].

5.3.2. Abrupt drop in the number of intralayer merges. The Louvain
heuristic faces a second problem in multilayer networks. When the value of inter-
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(b) Mean number of
intralayer merges after the
first completion of phase 1

of LouvainRand
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community assignment between layers in

output partition of Louvain

(d) Mean number of nodes that change
community assignment between layers in

output partition of LouvainRand

Fig. 9. Comparison between the Louvain and LouvainRand algorithms. The sample of inter-
layer coupling values is the set {0, 0.02, . . . , 0.98, 1} with a discretization step of 0.02 between each
pair of consecutive values. Top row: The number of nodes nintra that have been merged with at least
one node from the same layer after the first completion of phase 1 of (a) the Louvain heuristic and
(b) the LouvainRand heuristic. For each heuristic, we average nintra over |T | = 238 layers and 100
iterations. The error bars in panels (a) and (b) indicate standard deviations. Bottom row: The value
of 1 − Pers(C)|s/N averaged over 100 runs of (c) the Louvain heuristic and (d) the LouvainRand
heuristic after convergence of the algorithms to a local optimum.

layer coupling satisfies

(5.9) ω > max(Bdiag) ,

where Bdiag is the set of values on the diagonal blocks of B defined in (5.5), the
interlayer contributions to multilayer modularity are larger than the intralayer con-
tributions for all pairs of nodes. Consequently, only interlayer merges occur during
the first completion of phase 1 of the Louvain heuristic. In Figure 9(a), we illustrate
this phenomenon using the MultiAssetClasses data set. The mean number of
intralayer merges drops from roughly N = 98 (almost every node contains at least
one other node from the same layer in its community) to 0. For ω values larger than
max(Bdiag), every set at the end of the first completion of phase 1 only contains copies
of each node in different layers and, in particular, does not contain nodes from the
same layer. This can yield abrupt changes in the partitions induced on individual
layers of the output multilayer partition.

In Figure 9(c), we show an example, using the MultiAssetClasses data set, of
how the above issue can lead to an abrupt change in a quantitative measure computed
from a multilayer output partition obtained with the Louvain heuristic. We note that
the mean size of sets (averaged over 100 runs) after the first completion of phase 1
of the Louvain algorithm for ω > max(Bdiag) is relatively small for MultiAsset-
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Classes. (The mean is 3 nodes per set, and the maximum possible number of nodes
per set is |T | = 238, because each of these sets only contains copies of the same node
when ω > max(Bdiag).) Nevertheless, as ω increases past ω = max(Bdiag), there is a
sudden drop in the value of (1−Pers(C)|s/N) between consecutive layers in the output
partition at ω = max(Bdiag) (see Figure 9(c)). Nonzero values of (1 − Pers(C)|s/N)
indicate that community assignments have changed between layers s and s + 1 (by
Proposition 5.3). Roughly speaking, Figure 9(c) suggests that when ω > max(Bdiag),
one abruptly moves away from the situation ω ≈ ω0 to a scenario that is closer to
ω ≈ ω∞.18

The above phenomenon occurs when the values of interlayer coupling are large
relative to the entries of Bdiag. In the correlation multilayer networks that we consider
(or in unweighted multilayer networks), entries of the adjacency matrix satisfy |Aijs| ≤
1. Assuming that one uses the modularity quality function on each layer and that
Pijs ≥ 0 (e.g., Pijs = 〈As〉), this implies that

max(Bdiag) ≤ 1 for all γ ∈ [γ−, γ+] .

For networks in which the modularity cost of changing intralayer partitions in favor
of persistence is large in comparison to the values of Bdiag, it may be desirable to use
ω > 1 to gain insight into multilayer community structure. (For example, this occurs
in both toy examples of section 5.1.)

To mitigate this problem, we change the condition for merging nodes in the Lou-
vain heuristic. Instead of moving a node to a community that maximally increases
modularity, we move a node to a community chosen uniformly at random from those
that increase modularity. We call this heuristic LouvainRand [37], and we illustrate
the results of using it in Figures 9(b) and (d). Although LouvainRand can increase
the output variability (by increasing the search space of the optimization process),
it seems to mitigate the problem for multilayer networks with diagonal, ordinal, and
uniform coupling.

5.4. Multilayer community structure in asset correlation networks. In
this section, we show the results of computational experiments in which we fix the
value of the resolution parameter γ and vary the value of interlayer coupling ω. We use
the uniform null network (i.e., Pijs = 〈As〉) and set γ = 1. We use the LouvainRand
heuristic to identify multilayer partitions and apply our postprocessing procedure that
increases persistence without changing partitions induced on individual layers to all
output multilayer partitions. We showed in Proposition 5.5 that for 2ω > 2ω∞ =
|T |N2

[
max(Bdiag)−min(Bdiag)

]
, the set Cmax(ω) of global optima no longer changes,

and every optimal partition in this set has maximal persistence.19 In our example,
|T |N2

[
max(Bdiag) −min(Bdiag)

]
≤ 2|T |N2, with N = 98 and |T | = 238. However,

for the purposes of the present paper, we take the set {0, 0.1, . . . , 49.9, 50} with a
discretization step of 0.1 between consecutive values (giving 501 values in total) as
our sample of ω values.

In agreement with the properties derived in Propositions 5.7 and 5.8, we observe
in Figure 10(a) that normalized persistence (given by Pers(C)/[N(|T | − 1)]) tends to
be larger for larger values of interlayer coupling, and in Figure 10(b) that intralayer

18For another instance in which an abrupt transition occurs as one increases ω, see the discussion
in [63] on the change in eigenvalues of a multilayer Laplacian as a function of ω.

19Note that there can also be smaller values of ω∞ for which this is true; in other words, we did
not show that ω∞ is the smallest lower bound of the set {w : Pers(Cω

max) = N(|T |−1) for all Cω
max ∈

Cmax(ω)}.
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Fig. 10. Numerical experiments with MultiAssetClasses. We sample the set of interlayer
edge weights uniformly from the interval [0, 50] with a discretization step of 0.1 (so there are 501
values of ω in total), and we use the uniform null network (i.e., Pijs = 〈As〉) with γ = 1. (a)
The persistence normalized by N(|T | − 1) for each value of ω averaged over 20 runs of Louvain-

Rand. (b) The intralayer modularity
∑|T |

s=1

∑N
i,j=1 Bijsδ(cis , cjs ) normalized by

∑|T |
s=1

∑N
i,j=1 Aijs

for each value of ω averaged over 20 runs of LouvainRand. (c) Sample output multilayer partition.
Each point on the horizontal axis represents a single time window, and each position on the vertical
axis is an asset. We order the assets by asset class, and the colors represent communities (color
available online). (d) Association matrix of normalized persistence values between all pairs of layers
averaged over all values of ω ∈ [0, 50] in our sample and 20 runs for each value. The normalized

persistence between a pair of layers {s, r} is
∑N

i=1 δ(cis , cir )/N . (e) Association matrix indicating
the co-classification of nodes averaged over the set of partitions induced on each layer for each value
of ω and 20 runs of LouvainRand.

modularity (which we normalize by
∑|T |

s=1(1
TAs1)) tends to be smaller for larger

values of interlayer coupling. The increase of persistence and the decrease of intra-
layer modularity need not be monotonic, because we are finding a set of local optima
for each value of ω rather than the set of global optima.

In Figure 10(c), we show a sample output of the multilayer partition (which
contains 35 communities). (See section 4.2 for our definitions of the asset-class abbre-
viations.) Some of the changes in community structure correspond to known events
(e.g., the Lehman bankruptcy in September 2008 (marked by an increase in the size
of the equity asset class)). Observe that the two largest communities are the ones
that contain the government bond assets and the equity assets. In particular, the
community that contains equities becomes noticeably larger between 2006 and 2007,
and again toward the end of 2008 (after the pink streak between 2008 and 2009 in
Figure 10(c)). For larger values of the resolution parameter γ, this community instead
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becomes noticeably larger only in 2008. (By inspecting the correlation matrices, one
can check that the increase in correlation between equities and other assets is greater
in 2008 than in 2006.)

In Figure 10(d), we show the matrix of mean values of persistence between all pairs

of layers. The (s, r)th entry is the term
∑N

i=1 δ(cis , cir )/N (where s, r ∈ {1, . . . , |T |}
need not be from consecutive layers), averaged over all values of ω ∈ [0, 50] in our
sample and over multiple runs for each value of ω. Instead of only plotting Pers(C)|s
for consecutive layers, Figure 10(d) gives some indication as to whether nodes change
communities between layers s and s+ 1 to join a community that contains a copy of
some of these nodes from another time layer (i.e.,

∑N
i=1 δ(cis+1 , cir ) 	= 0 for some r)

or to join a community that does not contain a copy of these nodes in any other time
layer (i.e.,

∑N
i=1 δ(cis+1 , cir ) = 0 for all r). Figure 10(d) also gives some insight into

whether there are sets of consecutive layers across which persistence values remain
relatively large. This may shed light on when connectivity patterns change in a
multilayer network. As indicated by the values on the color scale, the values of
persistence in Figure 10(d) remain relatively high (which can be explained in part
by the fact that equities and bonds remain in the same community across almost all
layers, and these constitute roughly 50% of the node sample). The most noticeable
separation into diagonal blocks in the middle of Figure 10(d) corresponds to the
change in Figure 10(c) between 2005 and 2006, at which various currencies, metals,
and fuels separate from the bond community (blue) to form a dark green community.
The smaller diagonal block at the bottom right of Figure 10(d) corresponds to the
change in Figure 10(c) after the Lehman bankruptcy between 2008 and 2009 (after
the pink streak in Figure 10(c)).

In Figure 10(e), we show the mean co-classification index of nodes in partitions
induced on individual layers. To calculate the mean, we average the co-classification
index over layers, over all values of ω ∈ [0, 50] in our sample, and over multiple
runs for each value of ω. (We reorder the nodes to emphasize diagonal blocks in the
association matrix.) This figure yields insight into what sets of nodes belong to the
same community across layers for increasing values of ω. This may help illuminate
which connectivity patterns are shared across layers. Unsurprisingly, the first diagonal
block corresponds primarily to bond assets, and the second diagonal block corresponds
primarily to equity assets. Figures 10(d) and (e) complement each other: at a given
γ resolution, the former gives an idea about when community structure has changed,
and the latter gives an idea about how it has changed.

6. Conclusions. Modularity maximization in temporal multilayer networks is a
clustering technique that produces a time-evolving partition of nodes. We have inves-
tigated two questions that arise when using this method: (1) the role of null networks
in modularity maximization, and (2) the effect of interlayer edges on the multilayer
modularity-maximization problem. We demonstrated that one must be cautious in
interpreting communities obtained with a null network in which the distribution of
expected edge weights is sample dependent. Furthermore, we showed that an opti-
mal partition in multilayer modularity maximization reflects a trade-off between static
community structure within layers and persistence of community structure across lay-
ers. One can try to exploit this in practice to detect changes in connectivity patterns
and shared connectivity in a time-dependent network. Our results and observations
hold for any choice of single-layer networks within layers; we discussed correlation
networks in detail to use them as illustrative examples.

At the heart of modularity maximization is a comparison between what one antic-
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ipates and what one observes. The ability to specify what is anticipated is a desirable
(albeit underexploited) feature of modularity maximization, because one can explic-
itly adapt it for different applications [4, 5, 20, 66]. By defining a null model as a
probability distribution over the space of adjacency matrices and a null network as
the expected adjacency matrix under the specified distribution, we highlight the im-
portant point that the same null network can correspond to different null models;
this is not something that has been properly appreciated in the literature. Moreover,
one needs to be very careful with one’s choice of null network because it determines
what one regards as densely connected in a network: different choices in general yield
different communities. As we illustrated in section 4 for financial correlation networks,
this choice can have a large impact on results and can lead to misleading conclusions.

In section 5, we proved several properties that describe the effect of diagonal,
ordinal, and uniform interlayer coupling on multilayer modularity maximization or,
more generally, on any maximization problem that can be cast in the form (3.4).
Although our theoretical results do not necessarily apply to the local optima that one
attains in practice, they do provide useful guidelines for how to interpret the outcome
of a computational heuristic for maximizing modularity: if a multilayer partition is
inconsistent with one of the proven properties, then it must be an artifact of the
heuristic and not a feature of the quality function.

To further examine multilayer modularity maximization, we defined a measure
that we called persistence to quantify how much community assignments change in
time in a multilayer partition. For zero interlayer coupling, the value of persistence
is 0, and it achieves a maximum finite value for sufficiently large interlayer coupling.
We showed that the highest achievable value of persistence for an optimal partition
obtained with a given value of interlayer coupling ω is a nondecreasing function in
ω. Similarly, the highest achievable value of intralayer contributions to the quality
function for an optimal partition obtained with a given value of interlayer coupling
ω is a nonincreasing function in ω. The notion of persistence makes it possible to
measure this trade-off between static community structure within layers and temporal
persistence across layers. We illustrated this trade-off in our numerical experiments.

Finally, we showed that the Louvain heuristic can pose two issues when applied
to multilayer networks with diagonal, ordinal, and uniform coupling. These can pro-
duce misleading values of persistence (or other quantitative measures of a multilayer
partition) and can cause one to draw false conclusions about temporal changes in com-
munity structure in a network. We proposed ways to mitigate these problems and
showed several numerical experiments on real data as illustrations. To further inter-
pret these results, one needs to investigate more closely how the increase in persistence
and the decrease in intralayer contributions to the quality function are exhibited in a
multilayer partition between the “boundary cases” ω0 and ω∞ (see Propositions 5.4
and 5.5). This may help identify an interval of ω values in which the trade-off between
persistence and intralayer modularity yields the most insights.
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mance, I. Sendina-Nadal, Z. Wang, and M. Zanin, The structure and dynamics of
multilayer networks, Phys. Rep., 544 (2014), pp. 1–122.

[11] B. Bollobás, S. Janson, and O. Riordan, The phase transition in inhomogeneous random
graphs, Random Structures Algorithms, 31 (2007), pp. 3–122.

[12] B. Bollobás and O. Riordan, Random graphs and branching processes, in Handbook of Large-
Scale Random Networks, Bolyai Soc. Math. Stud. 18, Springer, Berlin, 2009, pp. 15–115.

[13] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wag-

ner, On modularity clustering, IEEE Trans. Knowl. Data Eng., 20 (2008), pp. 172–188.
[14] M. Catanzaro and M. Buchanan, Network opportunity, Nature Phys., 9 (2013), pp. 121–123.
[15] F. Chung and L. Lu, The average distance in a random graph with given expected degrees,

Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 15879–15882.
[16] R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues, Quant.

Finance, 1 (2001), pp. 223–236.
[17] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona, Stability of graph communities across

time scales, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 12755–12760.
[18] M. De Domenico, A . Lancichinetti, A. Arenas, and M. Rosvall, Identifying modular flows

on multilayer networks reveals highly overlapping organization in interconnected systems,
Phys. Rev. X, 5 (2015), 011027.

[19] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network
flow problems, J. ACM, 19 (1972), pp. 248–264.

[20] P. Expert, T. S. Evans, V. D. Blondel, and R. Lambiotte, Uncovering space-independent
communities in spatial networks, Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 7663–7668.

[21] D. J. Fenn, M. A. Porter, M. McDonald, S. Williams, N. F. Johnson, and N. S. Jones,
Dynamic communities in multichannel data: An application to the foreign exchange mar-
ket during the 2007–2008 credit crisis, Chaos, 19 (2009), 033119.

[22] D. J. Fenn, M. A. Porter, P. J. Mucha, M. McDonald, S. Williams, N. F. Johnson,

and N. S. Jones, Dynamical clustering of exchange rates, Quant. Finance, 12 (2012),
pp. 1493–1520.

[23] D. J. Fenn, M. A. Porter, S. Williams, M. McDonald, N. F. Johnson, and N. S. Jones,
Temporal evolution of financial market correlations, Phys. Rev. E, 84 (2011), 026109.

[24] S. Fortunato, Community detection in graphs, Phys. Rep., 486 (2010), pp. 75–174.
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