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ce-chain network architecture in
granular materials using community detection
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and Karen E. Danielsc

Force chains form heterogeneous physical structures that can constrain the mechanical stability and

acoustic transmission of granular media. However, despite their relevance for predicting bulk properties

of materials, there is no agreement on a quantitative description of force chains. Consequently, it is

difficult to compare the force-chain structures in different materials or experimental conditions. To

address this challenge, we treat granular materials as spatially-embedded networks in which the nodes

(particles) are connected by weighted edges that represent contact forces. We use techniques from

community detection, which is a type of clustering, to find sets of closely connected particles. By using a

geographical null model that is constrained by the particles' contact network, we extract chain-like

structures that are reminiscent of force chains. We propose three diagnostics to measure these chain-

like structures, and we demonstrate the utility of these diagnostics for identifying and characterizing

classes of force-chain network architectures in various materials. To illustrate our methods, we describe

how force-chain architecture depends on pressure for two very different types of packings: (1) ones

derived from laboratory experiments and (2) ones derived from idealized, numerically-generated

frictionless packings. By resolving individual force chains, we quantify statistical properties of force-chain

shape and strength, which are potentially crucial diagnostics of bulk properties (including material

stability). These methods facilitate quantitative comparisons between different particulate systems,

regardless of whether they are measured experimentally or numerically.
I. Introduction

Particulate matter comes in many forms: it ranges from fric-
tionless emulsions and frictional granular materials to bonded
composites and biological cells. A long-known hallmark of
particulate systems is the heterogeneous distribution of inter-
particle forces within them1–6—a phenomenon that has come to
be known as force chains. The term “force chain” arises from the
appearance—particularly in two-dimensional (2D) systems—of
chains of particles that transfer force from one particle to
another along the chain. In Fig. 1, for example, the eye readily
focuses on the backbone that arises from the set of bright
particles. These particles experience forces that are larger than
average, and one can see such forces by using photoelastic
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particles and placing them between crossed polarizers. In both
two and three dimensions, it is increasingly common to
measure inter-particle forces in a variety of systems – including
frictional grains,6,7 frictionless grains,8 and frictionless emul-
sions.9–11 This opens the door for achieving a better under-
standing of force chains in a variety of systems.

It is known that force chains are important for resisting
shear5 and directing sound propagation,13–16 but little is known
about which properties of these chains are universal to partic-
ulate systems and which are sensitive to details (such as fric-
tion, adhesion, boundary conditions, and body forces like
gravity). Improved methods for automatically identifying force
chains and quantifying their specic properties (e.g. size and
shape) would yield a deeper understanding of how they impact
mechanical properties of particulate systems.

Although the presence of force chains is a generic feature of
particulate systems, the term “force chain” is oen used collo-
quially, and the eld still lacks a quantitative denition of the
term. Recently, several techniques have been proposed that aim
to identify which subset of particles form a “force-chain
network.” Peters et al.17 calculated force chains in low friction by
demanding two requirements: particles must occur in a “quasi-
linear” arrangement, and they must contain a concentrated
stress. They used an algorithm that requires a choice of a
Soft Matter, 2015, 11, 2731–2744 | 2731
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Fig. 1 We represent granular materials as spatially-embedded
networks12 whose nodes (particles) are connected by weighted edges
that represent contact forces. (A) Image of a 2D vertical aggregate of
photoelastic disks that are confined in a single layer by a pressure of Pz
6.7� 10�4E. Several particles are embedded with a piezoelectric sensor,
for which the wires are visible. (B) The internal stress pattern in the
photoelastic particlesmanifests as a network of force chains. (C) The blue
line segments show the edges of a weighted graph, which we determine
from image processing and overlay on the image from panel (B). An edge
between two particles (i.e., nodes) exists if the two particles are in physical
contact with each other; the forces between particles give the weights of
the edges. Note: the orientation of the packings is larger horizontal
coordinates to the right, and larger vertical coordinates upward.
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threshold value for each of the two conditions, and their notion
does not allow force chains to branch. Using discrete-element
simulations with a at-punch geometry, Peters et al.17 obtained
force chains that contain approximately half of the particles in a
2732 | Soft Matter, 2015, 11, 2731–2744
system. Additionally, they reported that the lengths of these
chains satisfy an approximately exponential distribution. Are-
valo et al.18 examined polygonal structures that underly a force-
chain network, which they determined by selecting all inter-
particle forces above some threshold. In their numerical
simulations, they observed that triangular structures dominate
the network near a critical packing fraction. More recently,
topological tools such as computational homology have been
used to address the question of how to determine the structure
of force chains.19–21 For example, using numerical simulations,
Kondic et al.19 were able to distinguish between frictional and
frictionless packings via a topological invariant known as the
0th Betti number.22 They demonstrated that the 0th Betti number
changes with packing density, and they used a force threshold
to isolate strong forces from weak forces.

The above investigations have been informative, but they
also share a common viewpoint that the strongest inter-particle
forces form the backbone of a particulate system. However, even
a linear chain of strong particles would not be stable against
buckling without the participation of the particles that lie
alongside them.23 Therefore, it is necessary to develop tech-
niques that do not include a minimum threshold force to be
able to consider a particle to be part of a network.

The purpose of the present paper is to use an approach based
on network science24 to develop an example of an appropriate
method. Network science provides a powerful set of tools to
represent complex systems by focusing not only on the
components of such systems, but also on the interactions
among those components. A network representation is partic-
ularly appropriate for particulate systems, where particles
(network nodes) are connected to one another by contact forces
(network edges).

In Fig. 1, we show an example network, which we con-
structed from laboratory experiments. Network approaches in
granular materials have already had several successes in
describing the dynamics of granular materials. For example,
prior studies have investigated spatial patterns in the breaking
of edges in a (binary) contact network under shear25–28 and the
inuence of network topology on acoustic propagation.29 The
latter study established the importance of using weighted
contact networks to take into account the strength of inter-
particle forces. Several other papers have also recently contrib-
uted to this line of inquiry using a variety of different network-
based approaches.30–33

In the present paper, we use network representations to build a
set of practical methods to (1) automatically extract force chains
from force networks (without the use of thresholding) and (2)
dene a set of three scalar quantities that one can use to char-
acterize and classify different particulate materials. In Section II,
we present two commonly-used granular systems (which are
rather different from each other) in which it is possible to
measure inter-particle forces. These two case studies—one in a
“wet” laboratory and the other based on a standard computa-
tionalmodel for jammed packings—provide a basis for describing
the utility of our new technique. In Section III, we describe our
method to automatically extract the force-chain structure from a
force network.
This journal is © The Royal Society of Chemistry 2015
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Our method uses community detection, which is a form of
clustering for networks.34,35 In contrast to previous uses of
community detection in particulate systems,29,36 our method
incorporates a geographical null model to account for spatial
embeddedness. This geographical null modelmakes it possible to
identify clusters of particles that are more densely interconnected
via strong contact forces than expected given their geographical
proximity. We then calculate a gap factor that allows one to opti-
mize the resolution at which the detected communities are
maximally branched. One can use the gap factor to quantify
similarity of a community's geometry to that expected in a force
chain. The gap factor is larger when communities are more
branch-like and thus more similar to the expected geometry of a
force chain; it is smaller when communities are either more
compact or more string-like, and thus less similar to the expected
geometry of a force chain. In addition to the gap factor, we use two
other diagnostics—size and network force—to help characterize
particulate structures. (We dene the three diagnostics in Section
III B.) In Section IV, we then apply our methodology to force
networks that we measure in two very different case studies. We
demonstrate the utility of our diagnostics for (1) quantifying
changes in force-chain structure as a function of the conning
pressure applied to a granular material and (2) facilitating the
comparison and classication of force-chain network architec-
tures across different media. We conclude and discuss several
implications of our work in Section V.
II. Methods

To better understand which features of force chains are
universal and to demonstrate that our methodology for identi-
fying force chains is insightful for particulate systems in
general, we compare and contrast results from two very
different case studies: granular experiments and frictionless
simulations. In both situations, the particles are conned in
two dimensions, and they each consist of packings of bidisperse
disks that interact with each other in a Hertzian-like manner.
Both cases are jammed under constant pressure and use
approximately the same number of particles (600). The key
differences between the two systems are (1) the presence of
friction and gravitational pressure in the experiments and (2)
the use of periodic boundary conditions in the simulations.
Additional differences include a different fabric tensor due to
different initial conditions and the fact that laboratory experi-
ments have a slight ne-scale polydispersity for particles of the
“same” size in addition to the coarse-scale bidispersity. For each
of the experiments and simulations, we measure force-contact
networks for (approximately) the same seven different values of
conning pressure.
A. Granular experiments

We perform experiments on a vertical 2D granular system of
bidisperse disks that are conned between two sheets of Plexiglas.
The particles are 6.35 mm thick, their diameters are d1 ¼ 9 mm
and d2 ¼ 11 mm (which yields a diameter ratio of approximately
1.22), and they are cut from Vishay PSM-4 photoelastic material to
This journal is © The Royal Society of Chemistry 2015
provide measurements of the internal forces. These particles have
an elastic modulus of E¼ 4 MPa. We produce new congurations
by rearranging the particles by hand. We increase the pressure by
placing additional brass weights on the top surface of the packing.
The values of pressure, which we report in units of the elastic
modulus E (recall that the conguration is two-dimensional), are
2.7 � 10�4E, 4.1 � 10�4E, 6.7 � 10�4E, 1.1 � 10�3E, 2.2 � 10�3E,
3.8� 10�3E, and 5.9� 10�3E. Particles are constrained by vertical
walls to prevent deformation due to these pressures from occur-
ring in the direction perpendicular to the loading direction. Such
constraints on deformation can inuence the shape of force
chains, which tend to form in the direction of the major principal
stress.6,26,37 See ref. 16, 29 and 38 for additional details about the
experiments.

For each of 21 particle congurations and the seven values of
pressure, we compute particle positions and forces using two
high-resolution pictures of the system. We use one image,
which we take without the polarizers, to determine the particle
positions and contacts. (See39 for a description of the tech-
nique.) We take particles to be in contact if the force between
them is measurable by our photoelastic calculations. Using a
second image that we take with the polarizers, we then deter-
mine the particle contact forces by solving the inverse photoe-
lastic problem.39
B. Frictionless simulations

We perform numerical simulations of a 50 : 50 ratio of bidis-
perse frictionless disks. We use a diameter ratio of 1.22, and
particles interact via a Hertzian potential in a box with periodic
boundary conditions in both directions and zero gravity.40–42

This model has been well-studied and it is signicantly different
from our experimental system with respect to friction, gravity,
and the xed boundaries. We generate mechanically-stable
packings via a standard conjugate-gradient method.40 We then
perform simulations for a xed packing fraction and volume,
and we analyze 20 mechanically-stable packings at each packing
fraction f. We choose the seven values of the packing fraction
so that the mean pressure �p at that packing fraction43 matches
the ones in the experiments: [f, �p] ¼ [0.8499, 3 � 10�4E],
[0.8521, 4 � 10�4E], [0.8560, 7 � 10�4E], [0.8621, 11 � 10�4E],
[0.8760, 22 � 10�4E], [0.8927, 38 � 10�4E], and [0.9106, 59 �
10�4E], where the modulus E is dened as the energy scale for
the Hertzian interaction 3 divided by the mean Voronöı area of a
particle in the packing. The smallest value of f provides a data
point for a jammed packing that is less dense than what is
accessible in our experiments.
III. Force-chain extraction and
characterization
A. Force-chain extraction

To locate the force chains, we begin by recording which parti-
cles are in contact with (and exert force on) which other parti-
cles. In network language, we represent each particle as a node,
and we represent each inter-particle contact as an edge whose
weight is given by the magnitude of the force at that contact. We
Soft Matter, 2015, 11, 2731–2744 | 2733
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thereby construct a force-weighted contact network W from a
list of all inter-particle forces. If particle i and j are in contact,
then Wij ¼ fij/mean (f), where fij is the normal force between
them. If two particles are not in contact, then Wij ¼ 0. In addi-
tion, we let Wii ¼ 0. We also construct an unweighted (i.e.,
binary) matrix B whose elements are

Bij ¼
�
1; Wijs0;
0; Wij ¼ 0:

The matrix B is oen called an “adjacency matrix”,24 and the
matrix W is oen called a “weight matrix.”

To obtain force chains fromW, we want to determine sets of
particles for which strong inter-particle forces occur amidst
densely connected sets of particles. We can obtain a solution to
this problem via “community detection”,34,35,44 in which we seek
sets of densely connected nodes called “modules” or “commu-
nities.” A popular way to identify communities in a network is
by maximizing a quality function known as modularity with
respect to the assignment of particles to sets called “commu-
nities.” Modularity Q is dened as

Q ¼
X
i;j

�
Wij � gPij

�
d
�
ci; cj

�
; (1)

where node i is assigned to community ci, node j is assigned to
community cj, the Kronecker delta d(ci, cj) ¼ 1 if and only if ci ¼
cj, the quantity g is a resolution parameter, and Pij is the
expected weight of the edge that connects node i and node
j under a specied null model.

One can use the maximum value of modularity to quantify
the quality of a partition of a force network into sets of particles
that are more densely interconnected by strong forces than
expected under a given null model. The resolution parameter
g provides a means of probing the organization of inter-particle
forces across a range of spatial resolutions. To provide some
intuition, we note that a perfectly hexagonal packing with non-
uniform forces should still possess a single community for
small values of g and should consist of a collection of single-
particle (i.e., singleton) communities for large values of g. At
intermediate values of g, we expect maximizing modularity to
yield a roughly homogeneous assignment of particles into
communities of some size (i.e., number of particles) between 1
and the total number of particles. (The exact size depends on
the value of g.) The strongly inhomogeneous community
assignments that we observe in the laboratory and numerical
packings (see Section IV) are a direct consequence of the
disorder in the packings.

An important choice in maximizing modularity optimization
is the null model Pij.45,46 The most common null model for
modularity optimization is the Newman–Girvan (NG) null
model34,35,47,48

PNG
ij ¼ kikj

2m
; (2)

where ki ¼
X
j

Wij is the strength (i.e., weighted degree) of node

i and m ¼ 1
2

X
ij

Wij. The NG null model is most appropriate for
2734 | Soft Matter, 2015, 11, 2731–2744
networks in which a connection between any pair of nodes is
possible. Importantly, many networks include (explicit or
implicit) spatial constraints that exert a strong inuence on
which edges are present.12 For particulate systems, numerous
edges are simply physically impossible, so it is important to
improve upon the NG null model for such applications. We use
the term geographical constraints to describe the explicit spatial
constraints in such systems. These constraints exert a signi-
cant effect on network structure, so it is important to take them
into account when choosing a null model. For granular mate-
rials (and other particulate systems), each particle can only be in
contact (i.e., Wij s 0) with its immediate neighbors. We there-
fore use a null model, which we call the geographical null model,
to account for this constraint. The geographical null model is

Pij ¼ rBij, (3)

where r is themean edge weight in a network and B is the binary
adjacency matrix of the network (such a null model was used
previously for applications in neuroscience46). Recall that the
adjacency matrix encapsulates the presence or absence of
contact between each pair of particles. For a granular material,
r ¼ �f :¼ hfiji is the mean inter-particle force. Because we have
normalized the edge weights in the force network (Wij¼ fij/mean
(f)), we note that in our case r ¼ 1.

Maximizing Q yields a so-called “hard partition” of a
network into communities in which the total edge weight
inside of modules is as large as possible relative to the chosen
null model. A hard partition assigns each node to exactly one
community. (An alternative is a “so partition”,49 which
allows each node in a network to be associated with multiple
communities.) For the geographical null model in (3), maxi-
mizing Q assigns the particles into communities that have
inter-module particle forces that are larger than the mean
force. Such communities represent the force chains in a
granular system.

Because maximizing Q is NP-hard,50 the success of the
maximization is subject to the limitations of the employed
computational methods. In the present paper, we use a Lou-
vain-like locally greedy algorithm.51 Additionally, given the
numerous near-degeneracies in the modularity landscape that
tends to inict networks that are constructed from empirical
data52 (i.e., many different partitions oen yield comparably
large values of Q), we report community-detection results that
are ensemble averages over 20 optimizations.
B. Properties of force chains

We characterize communities using several diagnostics: size,
network force, and a gap factor (a novel notion that we introduce
in the present paper). The size sc of a community c is simply the
number of particles in that community. The systemic size s is
given by the mean of sc over all communities. The modularity Q
is composed of sums of magnitudes of bond forces and there-
fore also has units of force. Therefore, we use the term network
force to indicate the contribution of a community c to modu-
larity. The network force of a community is given by the formula
This journal is © The Royal Society of Chemistry 2015
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sc ¼
X
i;j˛C

�
Wij � grBij

�
; (4)

where C is the set of nodes in community c. The systemic
network force s is the mean of sc over all communities.
Communities that correspond to force chains composed of
densely packed particles with large forces between them have
large values of network force, whereas communities that
correspond to force chains composed of sparsely packed parti-
cles with small forces between them have small values of
network force.

To identify the presence of gaps and the extent of branching
in the geometry of a force-chain network, we calculate the
Pearson correlation between “physical distance” (which we
measure using the standard Euclidean metric) and “hop
distance” (which is oen called the “topological distance” and
counts distance measured only along network edges), and we
examine how the correlation depends on the force-chain
topology. Communities with compact or linear-chain charac-
teristics (see the main diagonal in Fig. 2) occur when there is a
perfect correlation between hop distance and physical distance.

The perfect correlation arises because particles that are one
hop away from each other (i.e., they are adjacent to each other in
the binary contact network) are also 1 particle-distance away.
Small linear chains occur close to the origin, where both hop
distance and physical distance are small, whereas long linear
chains occur in the upper right quadrant of Fig. 2. Note that we
use the term “compact” in the spirit of the mathematical sense of
the term, although our exact meaning is somewhat different:
“compact” communities of particles are at the opposite extreme as
linear chains. Small compact blobs contain particles that are 1
hop-distance away from one another and 1 particle-distance away
from one another, and they therefore occur near the origin of
Fig. 2. Larger compact blobs contain particles that are several hop-
distances away (and an equal amount of particle-distances away),
and they therefore occur in the upper right quadrant of Fig. 2.

In contrast to compact blobs and linear chains, force chains
with gaps, branches, and rings have a larger hop distance than
Fig. 2 Schematic illustration of the gap factor, which we measure via
the Pearson correlation between the hop distance Lt and physical
distance Lp in granular force networks. Network communities with
gaps, branches, and rings can have a larger hop distance than physical
distance. They thus reside in the upper triangle.

This journal is © The Royal Society of Chemistry 2015
physical distance (see the upper triangle in Fig. 2). Particles that
are close together in space do not necessarily have strong forces to
bind them; the presence of more complicated shapes decreases
the correlation between the physical and hop distance. (Note for
particulate systems that the lower triangle is unphysical, as it
would require forces between particles that are not in contact with
one another to achieve a larger physical distance than hop
distance).

To identify communities that are composed of branched
structures, we measure the amount of correlation between the
hop distance and the physical distance in the set of all node
pairs in a given community. To compute the hop distance of a
community, we dene the community contact network Bc. Its
elements Bij

c are entries of the matrix B for which the corre-
sponding nodes have both been assigned to the same
community c. We then calculate the path lengths between
possible pairs of nodes in a community c using the hop distance
on thematrix Bc. The resultingmatrix of pairwise distances is Lt.
To compute physical distance, we calculate the Euclidean
distances between all possible pairs of nodes in a community.
The resulting matrix of pairwise distances is Lp.

In dening the community gap factor, we choose to weight
each community by its size. We thus weight large communities
more heavily than small communities in linear proportion to the
number of particles that they contain. In this case, the gap factor gc
of a community cmeasures the presence of gaps and the extent of
branching in a community. We calculate it using with the formula

gc ¼ 1� rcsc

smax

; (5)

where rc is the value of the Pearson correlation between the
upper triangle of Lt and the upper triangle of Lp, and smax is
the size of the largest community. (Note that we exclude the
diagonal elements of the matrices Lp and Lt). To provide
further illustration of this quantity, a set of communities
colored by their respective gap-factors is shown in Fig. 3C.

We dene the (weighted) systemic gap factor as

g ¼ 1� 1

n

X
c

rcsc

smax

; (6)
Fig. 3 Sample community-detection results for a single granular
experiment at 4.1 � 10�4E. We color communities according to (A)
community size sc, (B) network force sc, and (C) community gap factor
gc. In these calculations, we use gopt ¼ 0.9, which we choose to
maximize the systemic gap factor g across all pressures (rather than for
a single pressure). This example illustrates that the three network
diagnostics can reveal very different spatial distributions in the data and
thereby supports examining all three diagnostics.

Soft Matter, 2015, 11, 2731–2744 | 2735
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Fig. 4 Sample community-detection results for a single granular
experiment at 4.1 � 10�4E illustrate multiresolution structure in chain-
like communities. (A) Community structure as a function of the reso-
lution parameter g. Color indicates the logarithm (base 10) of the
network force sc of community c. (We don't show single-particle
communities.) (B) The systemic gap factor g [see eqn (6)] as a function
of the resolution parameter g exhibits a maximum at g ¼ 0.7 (for g ˛
{0.1, 0.3,., 2.1}). The error bars indicate the standard deviation of the
mean over the laboratory packings. In the inset, we show an image of
the 2D vertical packing of photoelastic disks that we use for panels (A)
and (B).
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where the quantity n is the total number of communities
(including singletons) and we again note that large communi-
ties contribute more than small communities to the averaging
in eqn (6). An alternative choice for the systemic gap factor is to
weight all communities uniformly to calculate an alternative
systemic gap factor

guniform ¼ 1� 1

n

X
c

rc: (7)

As we discuss in more detail in the appendix, branched
communities typically include more nodes than linear
communities, so the weighted gap factor g tends to be larger for
communities with more branching. By contrast, guniform tends
to be larger for more linear communities. For the remainder of
the main manuscript, we focus on the weighted gap factor g
because it varies far less across packings. Further studies of
guniform would also be interesting.

IV. Characterizing force chains

We now characterize the force-chain networks of the experi-
ments and simulations that we described in Section II using the
methodology that we described in Section III. Our community-
detection procedure consists of two stages. First, we maximize
modularity (eqn (1)) with the geographical null model (eqn (3))
for different values of the resolution parameter g: from g ¼ 0.1
to g ¼ 2.1 in increments of Dg ¼ 0.2. We then choose a reso-
lution that approximately maximizes the systemic gap factor g
[see eqn (6)]. This ensures that we extract communities of
particles that have strong and dense force-weighted contacts
with one another (i.e., our network partition has a large value of
the modularity Q), and that they are spatially sparse (i.e., they
tend to have a small topological-physical distance correlation
rc). The communities that we obtain tend to take the form of
chain-like structures that are reminiscent of force chains; this
provides visual support that our technique is successful. Our
communities are much better than what one obtains using the
NG null model. In previous work using the NG null model,29 we
observed that these latter communities always tend to be
compact in form. We know, however, that communities with
other qualitative features are very common. (See the schematic
in Fig. 2.)

The resolution parameter g sets the spatial resolution of the
communities34,53,54 [see eqn (1)]. By tuning g, one can either
examine large communities (using small values of g) or small
communities (using large values of g). In Fig. 4A, we show an
example computation using data from experiments. (Note that
we do not show single-particle communities). Observe that
small values of g produce communities that are dominated by
compact structures (small g), whereas large values of g produce
communities that are dominated by linear structures (small g as
well). This suggests that we can identify an optimal value gopt

that maximizes the systemic gap factor g. This also corresponds
to the choice for which the detected communities are most
similar to the force-chain structure that we observe visually (see
Fig. 4B). For this particular packing, we identify gopt¼ 0.7 as the
2736 | Soft Matter, 2015, 11, 2731–2744
best choice in our examination of g ˛ {0.1, 0.3,., 2.1}. As one
can see in Fig. 4A, we observe at all values of g that the detected
communities vary in their size, network force, and gap factor.
We also note that single-particle communities are common for
all values of g near 1 (and become increasingly common as g

increases aer it exceeds 1).
Community detection via modularity maximization with a

resolution parameter chosen to yield a maximal systemic gap
factor provides an automated approach for detecting force
chains in granular media. Once identied, we then calculate the
size s, network force s, and gap factor g to describe key features
of a force-chain network. In the following subsections, we
quantitatively examine how the distributions of s, s, and g vary
as a function of pressure for both granular experiments and
frictionless simulations.
A. Granular experiments

Our experiments are at seven different pressures, which range
from 2.7 � 10�4E to 5.9 � 10�3E. As we illustrate in Fig. 5A, we
observe that the communities become more compact (so they
are closer to the diagonal line in Fig. 2) as pressure increases. At
a small value of the resolution parameter (g ¼ 0.7), the detected
communities metamorphose from branched structures to
This journal is © The Royal Society of Chemistry 2015
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Fig. 5 (A) Images of experimental 2D vertical packings of photoelastic
disks. These images reveal the manifestation of the internal stress
pattern in a set of photoelastic particles as a network of force chains.
(B) Community structure as a function of the resolution parameter g
for the following pressures: (top) 6.7 � 10�4E, (middle) 2.2 � 10�3E,
and (bottom) 5.9 � 10�3E. Color indicates the logarithm (base 10) of
the network force sc of community c. (C) Gap factor as a function of
both the resolution parameter g and the pressure. The error bars
indicate a standard deviation of themean over the laboratory packings.
The arrow emphasizes increasing pressure.

Fig. 6 Cumulative probability distributions of (A) community size sc
and (B) network force sc for all communities. (C) Histogram of the gap
factor gc for all communities. In these calculations, we use gopt ¼ 0.9,
which we choose to maximize the systemic gap factor g across all
pressures (rather than for a single pressure). The arrows emphasize
increasing pressure.
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compact domains as pressure increases. At a large value of the
resolution parameter (g ¼ 1.9), the detected communities tend
to shrink from many-particle chains to 2-particle chains as
pressure increases. This provides a way to quantify our earlier
observations that force-chain networks at higher pressures are
more homogeneous (observations at small g) and less chain-
like (observations at large g) than they are at lower pressures.

At all pressures (and despite the aforementioned differ-
ences), we nd a maximum in the systemic gap factor g as a
function of the resolution parameter g (see Fig. 5B). The shape
of the curve of the gap factor versus the resolution-parameter
has a more pronounced peak at higher pressures than at lower
pressures: larger slopes descend from and (especially) lead up to
the values of g near the maximum. At all pressures, small values
of g select compact communities and large values of g select
two-particle communities. In between, we observe a value of g at
which the most branch-like structures appear; we refer to this
value that approximately maximizes the gap factor as the
This journal is © The Royal Society of Chemistry 2015
“optimal” value. This optimal value changes slightly as a func-
tion of pressure; for example, gopt ¼ 0.9 at 5.9 � 10�3E and gopt

¼ 0.7 for 2.7 � 10�4E. High-pressure packings also exhibit a
much smaller systemic gap factor than low-pressure packings at
both small and large values of the resolution parameter. This
observation is consistent with both the increased compactness
of the communities and the increasingly homogeneous nature
of the force-chain structure as one increases the pressure.

The resolution that maximizes the gap factor identies
structures in a force network that are most reminiscent of the
force chains that are apparent by eye; in other words, it
identies branching communities. Therefore, to extract force
chains from force networks across different packings and
pressures, we examine community structure for a range of
resolution parameters and identify the resolution-parameter
value that approximately maximizes the gap factor. We refer
to the communities detected at gopt as the “force chains” in
our calculations, and we characterize their properties in
terms of their size, network force, and gap factor. For an
illustrative example of a single packing whose communities
are color-coded by either size, network force, or gap factor
(see Fig. 3).

As we illustrate in Fig. 6, we observe that the size and
network force of the force chains have approximately expo-
nential distributions for all seven pressures. This identies that
the majority of communities are relatively small and weak, but a
few communities are relatively large and strong. By contrast, the
gap-factor distribution is skewed: most communities have a
large gap factor, and only a few communities have a small gap
factor. In high-pressure packings, communities tend to be less
broadly distributed with respect to both size and network force;
this is consistent with the homogenization of force chains as
pressure increases.
Soft Matter, 2015, 11, 2731–2744 | 2737
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B. Frictionless simulations

To illustrate quantitative differences in force-chain structure
between laboratory and numerical packings, we use our method
to identify force chains in frictionless simulations. In addition
to their lack of friction, the numerical packings also differ from
our experiments in that they use periodic boundary conditions,
have zero gravity, have zero ne-scale polydispersity, and have a
different fabric tensor due to their different initial conditions.
(A commonality between the two types of packings is that they
are both bidisperse). As in Section IV A, we nd communities via
modularity maximization at different values of the resolution
parameter for different packing fractions, which we select to
match the seven pressures from the experiments.

As we show in Fig. 7A, the simulated packings change
qualitatively as a function of the resolution parameter. For
relatively small values of the resolution parameter (g ¼ 0.7), the
granular force network has collapsed into a single compact
Fig. 7 Multiresolution structure of chain-like communities in numerical
packings in frictionless simulations as a function of pressure. (A)
Community structure as a function of the resolution parameter g for the
following pressures: (top) 6.7 � 10�4E, (middle) 2.2 � 10�3E, and
(bottom) 5.9 � 10�3E. Color indicates the logarithm (base 10) of the
network force sc of community c. (B) Gap factor as a function of both the
resolution parameter g and the pressure. The error bars indicate the
standard deviation of the mean over the numerical packings.

2738 | Soft Matter, 2015, 11, 2731–2744
community. In contrast, for relatively large values of the reso-
lution parameter (g ¼ 1.3), we identify many small branch-like
communities that are reminiscent of force chains. Unlike in the
granular experiments, we do not observe a strong qualitative
change in community structure as a function of pressure
(regardless of the value of g). Compare Fig. 5B and 7B.

In order to select the most branched community structure,
we again identify a value gopt that is associated with the
maximum value of the systemic gap factor g. As with the
experimental packing, there is a clearly identiable maximum
(see Fig. 7B), which occurs at g¼ 0.9 for g˛ {0.1, 0.3,., 2.1}. We
also observe that the shape of g(g) is more consistent across
pressures for the simulations than it is for the experiments.

As in the laboratory packings, we refer to the communities at
gopt as our “force chains,” and we characterize their properties in
terms of size, network force, and gap factor (see Fig. 8). Across the
set of pressures from 2.7 � 10�4E to 5.9� 10�3E, we observe that
chain size and network force have approximately exponential
distributions. This indicates that the majority of communities are
relatively small and weak, but a few communities are relatively
large and strong. The gap-factor distribution has a le skew,
which indicates that most communities have a large gap factor
and only a few communities have a small gap factor.

In contrast to the laboratory experiments, the shape of the
distributions for size, network force, and gap factor in fric-
tionless simulations do not change dramatically as a function of
pressure. Nevertheless, the frictionless simulations do exhibit a
systematic difference in the mean size and mean network force
for communities as a function of pressure [see Fig. 8B].
C. Comparison between laboratory and numerical force
chains

Using our methodology of extracting force chains, it is possible
to quantitatively compare and contrast two particulate systems
Fig. 8 Size and network force of chain-like communities in numerical
packings as a function of pressure. Cumulative distributions of (A)
community size sc and (B) network force sc for the resolution-parameter
value (g ¼ 0.9) that maximizes the gap factor in the seven different
pressures separately. (C) Histogram of the gap factor gc for the
communities at g ¼ 0.9. The arrows emphasize increasing pressure.

This journal is © The Royal Society of Chemistry 2015
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Fig. 9 Comparison between the laboratory and numerical packings.
(A) Scatter plot of [s, s, g] for each of the 21 runs and seven different
pressures. (B, C, D) we average the same diagnostics over all equal-
pressure runs for (B) size, (C) network force, and (D) gap factor. All of
these calculations use a resolution-parameter value of gopt ¼ 0.9. The
error bars indicate the standard deviation of themean over the 21 runs.
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(such as the aforementioned granular experiments and fric-
tionless simulations). In Fig. 9, we summarize the three main
diagnostics (size, network, force, and gap factor) that we
calculate for each of our two case studies. We anticipate that
these diagnostics might provide a helpful means of character-
izing how well a given set of simulations—e.g., with anisotropic
cell shapes55,56 or different models of friction57,58—captures
experimental features. It also provides a systematic way to
compare the properties of different particulate systems or to
monitor the temporal evolution of a particulate system.

The rst key difference between our results for the experi-
mental and numerical packings is that the granular experi-
ments have force chains with smaller mean size and network
force (compare Fig. 9A and B). This result is consistent with the
more homogeneous nature of force chains in the frictionless
packings than in the laboratory packings. Laboratory packings
exhibit a few large and strong force chains (see Fig. 6A and B),
but the majority of a packing tends to be dominated by
singleton communities (see Fig. 6A). By contrast, the frictionless
packings have community-size and network-force distributions
that are far less skewed (see Fig. 8). Additionally, the majority of
such a packing is dominated by the force chains (see Fig. 8A);
there are few singletons. These differences in the homogeneity
of the packings and in the distributions of size and network
force leads on average to larger and stronger force chains in the
frictionless numerical packings than in the laboratory ones.

We also observe that the gap factor is smaller on average in
the laboratory packings than in the frictionless packings. This
result is also consistent with the homogenization of structure in
frictionless packings, but it might also be inuenced by differ-
ences between the two types of packings from the presence
versus absence of gravity. The frictionless packings are gravity-
free, whereas the laboratory packings are inuenced by gravity.
In contrast to the frictionless packings, the laboratory packings
therefore oen exhibit linear vertical chains, which decrease the
systemic gap factor. (See our discussion in Appendix 2).
This journal is © The Royal Society of Chemistry 2015
Finally, we observe that the size and network force of chains
increases with pressure in laboratory packings, whereas the
systemic gap factor decreases with pressure for such packings.
These observations indicate the presence of a changing length
scale, as is to be expected.59,60 As pressure increases, the force
structure becomes more homogeneous, leading to extended
sections of material with densely packed particles that exert
strong forces on one another. However, the force structure
becomes less branch-like, leading to a decrease in the systemic
gap factor. The frictionless numerical packings also exhibit
increases in size and network force of chains with pressure;
however, unlike in the laboratory packings, the frictionless
packings do not exhibit a decrease in systemic gap factor with
pressure. This quantitative difference between the two types of
packings yields a technique for measuring the visual differences
between Fig. 5A and 7A, in which it is clear that the geometry of
the force chains is affected less by pressure in the simulated
setting than in the laboratory setting.

Fig. 9B also demonstrates that the size of communities that
resemble force chains decreases as pressure approaches 0,
which provides some elucidation for a longstanding question in
the eld of disordered matter. In particulate systems at
0 temperature, the point at which pressure P¼ 0 is the jamming
transition, and much recent work has been devoted to
attempting to understand the nature of this transition.61 There
is now strong evidence that there is a growing length scale,59,60

which corresponds to the size of regions that are mechanically
unstable, near the transition. As we discuss in Section V, it is
natural to postulate that our force-chain communities are
negatively correlated with weak regions in a particulate packing.
Therefore, we expect force chains to shrink as mechanically
unstable regions grow.

V. Conclusions and discussion

In this paper, we treated granular materials as spatially-
embedded networks in which nodes (particles) are connected by
edges whose weights we determine from contact forces. We
developed and applied a network-based clustering method, in
which we detect tightly-connected “communities” of particles
viamodularity maximization with a geographical null model, to
extract chain-like structures that are reminiscent of force chains
in both numerical and laboratory packings. From these chain-
like structures, we calculated three key diagnostics (size,
network force, and gap factor), and we illustrated their utility for
identifying and characterizing force-chain network architec-
tures across two types of packings (laboratory and numerical)
and across seven different pressures. To characterize force
chains, we identied an “optimal” resolution-parameter value
that approximately maximizes the gap factor in each of these
scenarios. An alternative approach would be to examine the
structure of force chains that are identied at a set of resolution
parameters that one optimizes separately by considering other
parameters (e.g., size, network force, etc.). This is an interesting
direction for future study.

Aer we identied an optimal value for the resolution
parameter, we systematically evaluated and compared
Soft Matter, 2015, 11, 2731–2744 | 2739
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properties of force-chain communities. A common feature that
we observed in both the (frictional) laboratory and (frictionless)
numerical packings is that the distribution of force-chain
sizes is consistent with an exponential distribution. In the
laboratory packings of 2D granular materials, we found that
high-pressure force networks exhibit compact rather than
branching communities, which is consistent with the notion
that increasing pressure causes a breakdown in the long-range
heterogeneous structure in a material. In contrast, the geometry
of the force chains in the frictionless numerical packings
appear to be affected less by pressure. The force chains in the
numerical packings also tend to be both larger and stronger
than their counterparts in laboratory packings. Together, these
results support the conclusion that the force-chain structure,
topology, and geometry is different in the two systems.
Methodological insights

An important conclusion of our paper is that choosing an
appropriate null model is critical for extracting information
from community detection in networks. We have developed and
applied a geographical null model for the detection of network
communities, which are strongly reminiscent of force chains, in
particulate materials. The power of this null model lies in its
ability to x a network's topology (which is given by a binary
contact network) while scrambling its geometry (which is given
by a force-weighted contact network). The geographical null
model thereby includes more of the fundamental physics of
particulate systems than the Newman-Girvan null model that is
commonly used in modularity maximization. An interesting
future direction would be to incorporate different physical
constraints and principles (e.g., force balance) and to examine
the different results that one obtains by including different
combinations of relevant physical ideas. A key question in
community detection is what is the minimal set of physical
ideas—and, more generally, the minimal amount of problem-
specic information—that one can include in a null model to
get answers that are more insightful than using a one-size-ts-
all null model like the Newman–Girvan model.
Fig. 10 (A) In the laboratory packings, the systemic uniformly-weighted
parameter g between roughly g ¼ 0.9 and g ¼ 1.3 (for g ˛ {0.1, 0.3,.,
standard deviation of themean over the laboratory packings. (B) In the nu
pressure) as a function of the resolution parameter g at g ¼ 1.1. The erro
packings.

2740 | Soft Matter, 2015, 11, 2731–2744
Practical utility

We expect that our methodology will provide a framework for
understanding which features of force chains are universal
versus which are governed by detailed particle–particle or
particle–environment interactions. For example, one can use
our methodology to provide a quantication of the similarity of
force chains between a simulation and a given experiment. It
can also provide similar quantications between two experi-
ments (or two simulations) with different types of particles or
boundary conditions. It is also a viable tool to help predict
differences in macroscropic behavior based on subtle differ-
ences in the mean or distributions of force-chain diagnostics.

Our methodology also provides additional information that
is not available via traditional methods for identifying force
chains. For example, we know which particles are strongly
connected within communities, and we can also observe the
spatial arrangement of the various communities that comprise
a force network. This allows one to ask whether the arrange-
ment of communities helps to govern the linear and nonlinear
response of a disordered packing. For example, it is possible
that large, strong communities indicate a region of relatively
high mechanical stability or that boundaries between these
communities indicate areas of weakness. In the future, these
types of investigations should be helpful for obtaining a better
understanding of the onset of ow or failure in particulate
systems.

Appendix 1: Effect of community
weighting on force-chain extraction

In this appendix, we describe an alternative set of measure-
ments that we make using the uniformly-weighted systemic gap
factor guniform, which we dened in eqn (7).

Gap factor versus resolution parameter

In Fig. 10, we observe that the curve of the maximum of guniform
versus the resolution parameter g varies signicantly with
pressure in the (frictional) laboratory packings but not in the
(frictionless) numerical packings. In the laboratory packings,
gap factor guniform exhibits a maximum as a function of the resolution
2.1} that is different for different pressures. The error bars indicate the
merical simulations, guniform exhibits a maximum (which varies little with
r bars indicate the standard deviation of the mean over the numerical

This journal is © The Royal Society of Chemistry 2015
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Fig. 11 In both (A) (frictional) laboratory and (B) (frictionless) numerical
packings, we identify larger and more branched force chains at the
optimal resolution determined by (left; g ¼ 0.9) the size-weighted gap
factor g, and we identify smaller and less branched force chains at the
optimal resolution determined by (right; g ¼ 1.1) the uniformly-
weighted gap factor guniform. These observations are consistent across
all pressure values, but they are especially evident at high pressures in
the laboratory packings and are least evident at low pressures in the
laboratory packings. In the numerical packings, we observe little
variation for different values of pressure. In both panels, we highlight
the network force for the force chains that we identify in example
packings.
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we observe a maximum of guniform at g¼ 0.9 (for g ˛ {0.1, 0.3,.,
2.1}) in high-pressure packings (5.9 � 10�3E) and at g ¼ 1.5 for
low-pressure packings (2.7� 10�4E). In the numerical packings,
we observe a maximum of guniform at g¼ 1.1 for all pressures. In
comparison to our observations in the main text from employ-
ing the size-weighted systemic gap factor g, we nd that the
optimal value of g is larger when we instead employ guniform
(compare Fig. 10 to Fig. 5 and 7). We also observe that the curves
of the systemic gap factor versus resolution parameter exhibit
larger variation for the uniformly-weighted gap factor than for
the size-weighted gap factor.

Optimal value of the resolution parameter

The large variation in the maximum of guniform over packings
and pressures makes it difficult to choose an optimal resolu-
tion-parameter value. We choose to take gopt¼ 1.1 because (1) it
corresponds to the maximum of guniform in the numerical
packings and (2) it corresponds to the mean of the maximum of
guniform in the laboratory packings. To facilitate the comparison
of optimal values of g from the two weighting schemes, we
denote gopt for g as ĝ and we denote gopt for guniform as ĝuniform.
Note that ĝuniform ¼ 1.1 differs from (and is larger than) ĝ ¼ 0.9.

Force-chain structure at the optimal value of the resolution
parameter

The force chains that we identify for the optimal value for the
uniformly-weighted gap factor (at ĝuniform ¼ 1.1) differ from
those that we identied in the main text for the optimal value of
the size-weighted gap factor (at ĝ ¼ 0.9). We show our
comparison in Fig. 11. For both laboratory and numerical
packings, the force chains that we identify at g ¼ 0.9 are larger
and more branched than the ones that we identify at g ¼ 1.1
(which are smaller and more linear). Indeed, the communities
that we identify at g ¼ 1.1 have more singletons than the
communities that we identify at g ¼ 0.9. These results follow
from the difference in the two weighting schemes for calcu-
lating a systemic gap factor. The size-weighted systemic gap
factor g weights larger communities more heavily than smaller
ones, and the larger communities tend to be the more branched
communities that we identify at smaller values of the resolution
parameter (e.g., at g ¼ 0.9). In contrast, the uniformly-weighted
systemic gap factor guniform gives equal weight to small and large
communities, and it therefore uncovers the linear communities
that are evident at larger values of the resolution parameter
(e.g., at g ¼ 1.1). We can therefore use the size-weighted gap
factor to identify larger, more branched force chains and the
uniformly-weighted gap factor to identify smaller, more linear
force chains.

Appendix 2: Methodological
considerations
Robustness of community structure to errors in the
estimation of contact forces

In our frictional laboratory experiments, we estimate that errors
in the force measurements could be as large as �30% of the
This journal is © The Royal Society of Chemistry 2015
contact force fij; the high variability arises from the nonlinear
tting process. (Recall that we take particles to be in contact if
the force between them is measurable by our photoelastic
calculations. We then determine the particle contact forces by
solving the inverse photoelastic problem using images taken
with polarizers39). Somewhat surprisingly, we nd that the
errors in the force estimates are independent of both the local
force and the global pressure. To ensure that our results are
qualitatively robust to these variations, we construct 20 simu-
lated force networks for each experimental network (21 pack-
ings, seven pressures) by adding Gaussian noise with width fij/3
to each contact. For each of these simulated networks, we
reevaluate the estimated community structure (from which we
infer the force chains).

To determine whether the estimates are robust to this
amount of noise, we compare the community structure of the
actual force networks with those of the simulated force
networks using the z-score of the Rand coefficient.62 For
comparing two partitions a and b, we calculate the Rand z-score
in terms of the network's total number M of pairs of nodes, the
numberMa of pairs that are in the same community in partition
Soft Matter, 2015, 11, 2731–2744 | 2741
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a, the number Mb of pairs that are in the same community in
partition b, and the number wab of pairs that are assigned to the
same community both in partition a and in partition b. The z-
score of the Rand coefficient comparing these two partitions is

zab ¼ 1

swab

�
wab � MaMb

M

�
; (8)

where swab
is the standard deviation of wab (as in62). Let themean

partition similarity z denote the mean value of zab over all
possible partition pairs for a s b.

We observe that the assignment of particles to communities
(and consequently to force chains) in the experimental labora-
tory force networks is, on average, statistically similar (the
z-scores for similarity are larger than 18) to the assignment of
particles to communities in the simulated networks constructed
by adding Gaussian noise with width fij/3 to each contact (see
Fig. 12A). These results indicate that our estimates of network
Fig. 12 In both (A) laboratory and (B) numerical packings, we calculate
the similarity between the assignment of particles to communities for
the actual packings as compared to the packings in which we have
added Gaussian noise with width fij/3 to each contact. We estimate
partition similarity using the z-score of the Rand coefficient; we
compute the z-score for each pair of actual-noisy networks, for each
pressure, for each packing, and for each value of the resolution
parameter. In this figure, we show the mean z-score of the Rand
coefficient over the 21 packings and over the 20 noisy instantiations of
the actual force networks.

2742 | Soft Matter, 2015, 11, 2731–2744
communities is relatively robust to the empirical measurement
error in the inter-particle contact forces.

To further clarify the robustness of our algorithm to varia-
tions in inter-particle forces on the order of�30% of the contact
forces, we perform similar calculations for the numerical
packings. For each numerical packing, we construct 20 simu-
lated force networks by adding Gaussian noise with width
fij/3 to each contact. For each of these simulated networks, we
reevaluate the estimated community structure (from which we
infer the force chains). We observe that the assignment of
particles to communities (and consequently to force chains) in
the numerical force networks is, on average, statistically similar
(the z-scores for similarity are larger than 9) to the assignment
of particles to communities in the simulated networks con-
structed by adding Gaussian noise with width fij/3 to each
contact (see Fig. 12B). These results indicate that our estimates
of network communities are relatively robust to measurement
error in the inter-particle contact forces in the form of �30% of
the contact force.
Effects of gravity on community structure in laboratory
packings

In the laboratory packings, gravity can play an important role in
the heterogeneity of observed force chains. To determine the
impact of gravity on network diagnostics, we calculate the mean
vertical position of particles in each network community for
each packing, pressure, and optimization of the modularity
quality function for the resolution-parameter value (g ¼ 0.9)
that maximizes the gap factor. For each pressure value sepa-
rately, we collate these four diagnostics (size, network force, gap
factor, and mean vertical position) for every community that we
identify over packings and modularity optimizations. To
decrease the potential for false positives, we then identify the
unique community sizes, and average network force, gap factor,
and mean vertical position over all communities of that size.
This process serves as a data-reduction procedure. It decreases
the degrees of freedom in subsequent statistical testing, and it
thereby decreases the potential for false positives. We then ask
whether the network diagnostics (size, network force, or gap
factor) are signicantly correlated with the mean vertical posi-
tion of the communities. We use a Spearman rank correlation to
increase our robustness to outliers in the data. For low values of
pressure we observe a signicant correlation between each of
the three community-level network diagnostics (size, gap factor,
and strength) and the mean vertical position of the particles in
that community (see Fig. 13).

At pressures of 2.7 � 10�4E and 4.1 � 10�4E, larger
communities with larger network force tend to be identied at a
lower vertical position of the packing; this is consistent with the
compaction effects of gravity. At pressures of 4.1 � 10�4E,
communities with large gap factors tend to be observed at high
vertical positions in the packings (where communities tend to
be small and less compact). For values of pressure between 22�
10�4E and 59 � 10�4E, we observe no relationship between
mean vertical position of particles in a community and
community size, network force, or gap factor. These results
This journal is © The Royal Society of Chemistry 2015

http://dx.doi.org/10.1039/c4sm01821d


Fig. 13 Spearman correlation between network diagnostics
(community size, network force, and gap factor) and the mean vertical
position of the community as a function of pressure. Asterisks indicate
significant correlations at the level of p < 0.05. (The p-value is
uncorrected).
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indicate that gravity can play a role in the shape of force chains,
particularly at low pressures.
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