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Abstract. The vortex density of a rotating superfluid, divided by its particle
mass, dictates the superfluid’s angular velocity through the Feynman relation. To
find how the Feynman relation applies to superfluid mixtures, we investigate a
rotating two-component Bose–Einstein condensate, composed of bosons with
different masses. We find that in the case of sufficiently strong interspecies
attraction, the vortex lattices of the two condensates lock and rotate at the drive
frequency, while the superfluids themselves rotate at two different velocities,
whose ratio equals the ratio between the particle masses of the two species.
In this paper, we characterize the vortex-locked state, establish its regime of
stability, and find that it survives within a disk smaller than a critical radius,
beyond which vortices become unbound and the two Bose-gas rings rotate
together at the frequency of the external drive.
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After the first experimental realization of Bose–Einstein condensates (BECs) of alkali
atoms, their study has experienced enormous advancements [1]. Among the major threads
of investigation in BECs has been the study of vortices both experimentally [2]–[4] and
theoretically [5]. It is known from the classic works of Onsager and Feynman [6, 7] that
superfluids rotate by nucleating vortices. When there are several vortices present, they form
a triangular Abrikosov vortex lattice [8], with density given by

ρv =
m�

π h̄
, (1)

where m is the mass of a constituent boson and� is the rate at which the superfluid—
which rotates with the vortex lattice—is being rotated (see, for instance [9]). The so-called
‘Feynman relation’ (1) states that, on average, a uniform superfluid rotates like a rigid body.
It has been shown that corrections to equation (1) due to the typical experimental situation of
nonuniform superfluid density resulting from a harmonic trap are small [10] but experimentally
observable [11]. Vortex physics becomes much more intriguing in multi-component BECs. Thus
far, the investigation of vortex lattices in multi-component BECs has utilized different hyperfine
levels of the constituent atoms to obtain multi-component condensates (e.g., see [12, 13]). Thus
the mass of all condensate components was identical, and the generalization of equation (1)
straightforward.

In this paper, we investigate the consequences of the Feynman condition, equation (1), in
a system of interacting two-component rotating condensates withdifferent masses. We find that
for sufficiently large attractive interactions, the Feynman condition leads to a novel state. The
two components, rather than rotating together at the drive frequency, rotate at angular velocities
�1,2 inversely proportional to their masses,m1,2, such that:

m1�1 = m2�2, (2)

while the vortex lattices of the two components lock at the drive angular velocity�v, lying
between�1 and�2 (see figure1). Qualitatively, the attractive interspecies interaction leads to
an attraction between vortices of the two flavors. If it is sufficiently strong, vortices pair, and the
lowest-energy vortex configuration then occurs when the vortex lattices of the two flavors are
‘locked’ together, rotate at the same rate, and have essentially the same density. Equation (1)
then reads:

ρ1
v =

m1�1

π h̄
≈

m2�2

π h̄
= ρ2

v , (3)
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Figure 1. Schematic diagram of bound vortex pairs (for species with masses
m1 andm2 <m1) in the limit of large interspecies interaction in which the two
vortex lattices are locked. The diagram is in the frame of reference rotating
with the vortex lattices, which rotate at the drive frequency. The Magnus force
Fmag opposes such locking and is balanced by a restoring forceFrstr due to the
interspecies vortex–vortex interaction.

whereρ1,2
v are the vortex densities of the two flavors. This state is strongly related to experiments

in [14], where a vortex lattice was locked to an optical lattice with a similar periodicity.
As we show below, this state survives within a finite disk about the center of the rotating

condensate. The relative motion between the vortices and the condensate gives rise to a Magnus
force that opposes the interspecies vortex attraction. Beyond a critical distance the Magnus force
(figure1) becomes larger than the maximal pairing force, and the vortices become unbound. In
this region, the two condensates and their vortices rotate together at the drive frequency�v;
the vortex densities in the two flavors are no longer equal, but instead reflect the mass ratio:
ρ1

v/m1 = ρ2
v/m2. Because the locked state cannot exist in the thermodynamic limit of many

vortices, this effect should not be viewed as a phase transition or a crossover. Below we derive
the characteristics and conditions for the vortex locking state.

1. Energetics

The energy of weakly interacting BECs is well described by the Gross–Pitaevskii functional
for the condensate wavefunctionψα(α = 1,2) for the two atomic species [1]. We consider
the situation in which the two condensates are stirred at the same rate�v. Transforming to
the rotating frame, our problem becomes time independent. The energy of the two-component
system in the rotating frame is given byE = E1 + E2 + E12, where

Eα =

∫
d2r

(
h̄2

2mα

|∇ψα|
2 + Vtrap(r)nα +

gα
2

n2
α − h̄�v ψ

∗

α

(
−i

∂

∂ϕ

)
ψα

)
(4)

describes the energy for each atomic species andgα is the intraspecies coupling for bosons of
flavorα. The interspecies interaction is given by

E12 = g12

∫
d2r [ n1(r)n2(r) ] , (5)
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wherenα = |ψα|
2 is the density of flavorα, Vtrap is the external trapping potential, and the

z-component of the angular momentum operator isLz = −i ∂
∂ϕ

(where ϕ is the azimuthal
coordinate).

The energyEα of one BEC component is minimized via the nucleation of a vortex lattice
rotating with the external drive�v. In the following, we assume that the coherence length

ξα =

√
h̄2

2mαgαnα0
is much shorter than the characteristic distance between vortices. Each vortex

is then well described by a small core region of sizeξα, at which the superfluid density drops
to zero and its phase field accounts for the flow around the vortex. The vortex core region gives
rise to a small constant energy, and we can account for the phase field by writingψα =

√
nαeiθα ,

whereθα determines a lattice of vortices with unit winding number at the positions{rαi }. We
assume that we can writeθα as a sum of the different vortex contributionsθα = θα1 + θα2 + · · ·.

With these assumptions,Eα can be written in terms of the positions of the vortices as

Eα =
h̄2π

mα

nα0
∑
i 6= j

log

(
ξα

|rαi − rαj |

)
+ h̄�vn

α
0π
∑

i

(r αi )
2 , (6)

where we have dropped terms that do not depend on the positions of the vortices and have also
neglected effects due to the nonuniform superfluid density [10]. The first term in equation (6)
is the usual logarithmic interaction between vortices, and the second is the centripetal energy,
reflecting the fact that vortices towards the edge of the cloud carry less angular momentum
relative to the center of the cloud. In a single-component rotating BEC, the balance of the two
terms gives the Feynman condition (1). The equations describe charged particles interacting in
two dimensions (2D) with a uniform background charge of opposite sign.

The energyE12 arising from the interspecies interaction energy is less straightforward to
evaluate. Unlike the intraspecies logarithmic interaction, this nonuniversal interaction depends
on the details of the short-distance density variations around the vortex cores. For instance, one
could study the interaction of a vortex with an optical lattice using a step function with width
given by the BEC coherence length [15]. In this work, we take a Gaussian depletion around the
vortex core:

nα(r)= nα0(1− e−|r−r0|
2/ξ2

α ) (7)

so that the system will be amenable to analytic treatment. For a single vortex this depletion gives
the correct behavior at short distances, but not the long distance behavior, in which the density
due to a single isolated vortex heals asξ2/r 2. As we show in the appendix, the combined density
variations on scales larger than the inter-vortex separation due to the vortex lattice only change
the chemical potential (which is proportional to the density correction), byh̄2

2mπ
2ρ2

vr 2, which just
reflects the kinetic energy associated with uniform rotation of the condensate. This can be shown
to have a negligible effect on the vortex pairs, which are the focus of this work. Neglecting
this piece of the density fluctuation is also consistent with the standard approximation of
neglecting the intraspecies core–core interactions [5]. Indeed, the short distance region is the
relevant one for vortex locking; two-species vortex pairs become unbound once their separation
is comparable to the coherence lengths, where the approximate form we take for the density
profiles is still valid. Evaluating the interaction integral in equation (5), and keeping only the
contributions due to the interactions between pairs of vortices from different species, gives

E12 = g12n
1
0n

2
0π

ξ2
1ξ

2
2

ξ2
1 + ξ2

2

∑
i j

e−(|r1
i −r2

j |
2)/(ξ2

1 +ξ2
2 ). (8)
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Equations (6) and (8) now give the energetics of the system purely in terms of the positions of
the vortices.

2. Forces

An understanding of the locked phases can be obtained by considering the forces acting
on the vortices. Equation (6) leads to the well-known Magnus force acting on a vortex of
speciesα [9]:

Fαmag= 2π h̄nα0(v
α
SF− vv)× κ̂, (9)

whereκ̂ is a unit vector pointing out of the plane,nα0 is the equilibrium superfluid density for
speciesα (evaluated away from the vortex core),vαSF =

h̄
mα

∇θα is the superfluid velocity for
speciesα (with the vortex on which the force operates excluded fromθα), andvv is the velocity
of the vortex. On the other hand, the force arising from the energy in equation (8) provides an
attractive force between two vortices of different species. It has the form

Fαrstr = −2π |g12|n
1
0n

2
0

ξ2
1ξ

2
2

(ξ2
1 + ξ2

2 )
2
e−d2/(ξ2

1 +ξ2
2 )d, (10)

whered is the displacement vector between vortices.
Let us first briefly consider the unlocked case, where the vortex interspecies interaction

force is small. Because the force counteracting the Magnus force is too small, it follows that
to bind vortex pairs, we must haveFmag= 0 for any isolated vortex, which implies that the
superfluid velocity must be the same as the vortex velocity. That is, the vortex lattice rotates
with the superfluid. Thus, because the two vortex lattices rotate at the same frequency, the two
superfluids rotate together at that frequency. Accordingly, for this case, the vortex densities are
not equal:ρ1

v =
m1
m2
ρ2

v .
We next consider the other extreme, in which the two vortex lattices are locked. Our

approach is to consider the forces acting on a bound pair of vortices at distancer from the
center of the trap (see figure1). As stated before, the Magnus force for the locked state
is nonzero because the superfluids are rotating at different rates. Balancing the forces gives
Fα

mag= Fα
rstr. Because the restoring force acting on either species has the same magnitude, we

obtainF1
mag= F2

mag. Noting thatvα =�αr andvv =�vr (we are assuming thatr is much larger
than the distance between the two vortices) givesn1

0(�v −�1)= n2
0(�2 −�v). This, along with

the conditionm1�1 = m2�2 (from ρ1
v = ρ2

v ) gives the following relation between the angular
velocities:

�1 =
(n1

0 + n2
0)m2

m1n2
0 + m2n1

0

�v <�v <�2 =
(n1

0 + n2
0)m1

m1n2
0 + m2n1

0

�v. (11)

Note that unlike the restoring force, the Magnus force grows linearly with distance from
the center of the condensate. Thus, at some critical distancerc, the pairs of vortices invariably
become unbound from each other. For radiir > rc, the vortex lattices are unlocked, and the two
condensates rotate at the same frequency after a short healing region. An expression forrc can
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be obtained by equating the Magnus force with the maximum possible value for the restoring
force:

rc =

√
1

2e

|g12|

h̄�v

m1n2
0 + m2n1

0

m1 − m2

ξ2
1ξ

2
2

(ξ2
1 + ξ2

2 )
3/2
. (12)

Note that (12) diverges when the masses are equal. In addition, the bound pairs of vortices are
pulled further apart at increasing distances from the center of the condensate. The interspecies
vortex separationxv satisfies

xve
−x2

v/(ξ
2
1 +ξ2

2 ) =
r

rc

√
2e

√
ξ2

1 + ξ2
2 , (13)

which is valid forr < rc. This introduces a small correction to the vortex density and creates a
small shear in the motion of the two condensates.

For the vortex-locked state to be stable up to the critical radiusrc, the superfluid velocities
in the rotating frame of the vortex lattice,|vαSF− vv|, must not exceed the critical velocity of the
superfluid. Otherwise, it would be possible to create elementary excitations from the flow of
the superfluid around the vortices. For the two coupled superfluids, the Bogoliubov elementary
excitations are given by

(�k)
2
=

1
2(E

1
k + E2

k)±
1
2

√
(E1

k − E2
k)

2 + 16g2
12n

1
0n

2
0ε

1
kε

2
k, (14)

whereEα
k =

√
(εαk )

2 + 2gαnα0ε
α
k andεαk =

h̄2k2

2mα
. It is then straightforward to compute the critical

velocityvc = mink(
�k
h̄k ); one obtains

vc = minα

{√
gαnα0
mα

}
= minα

{
h̄

√
2mαξα

}
. (15)

The superfluid velocity of species 1 or 2 in the vortex lattice frame evaluated atrc (where it is
maximal) is given by

|v{1,2}

SF − vv| =
1

√
2e

|g12|

g{2,1}

h̄

2m{2,1}

ξ2
{1,2}

(ξ2
1 + ξ2

2 )
3/2
. (16)

The condition|vαSF− vv|< vc must be checked so that the vortex-locked state is stable against
the creation of elementary excitations. For instance, it can be shown that the system is stable

against creating such elementary excitations if the conditions1
10 6

n0
1

n0
2
6 10 and 1

10 6
m1
m2
6 10

are satisfied. Another instability which must be considered is phase separation. We note that
to prevent phase separation, the criterion|g1g2|> |g12|

2 must be satisfied. We also point out
that this condition is typically sufficient to ensure that the phase is guarded against dynamical
instability [16].

3. Numerical simulations

Now that the expected types of phases have been discussed, we minimize the total energy
E = E1 + E2 + E12 as a function of the vortex positions given by equations (6) and (8). The
ability to compute analytical expressions for the gradients of the energy as a function of the
vortex positions∇{r i }E allows us to apply the steepest descent method for the minimization.
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γ = 28 γ = 17 γ = 5

Figure 2. Vortex lattice for two-component condensate (with 43 vortices of each
species) for different values ofγ = |gab|n0/(h̄�v). Circles are shown for the
theoretical prediction for the critical radius equation (19) at which the vortices
become unbound.

Specifically, starting with an initial configuration for the vortex positions{r (0)i }, we perform the
1D minimization of

E
(
{r (n)i } − λ∇{r i }E

)
(17)

overλ, where∇{r i }E is evaluated at{rn
i }. The new vortex positions are given by

{r (n+1)
i } = {r (n)i } − λmin∇{r i }E (18)

and the above procedure is repeated until it converges.
To simplify the analysis, we restrict our attention to the case in which the equilibrium

densities and healing lengths of the two condensate components are equal:n0 ≡ n1
0 = n2

0 and
ξ ≡ ξ1 = ξ2. Motivated by the example of a133Cs–87Rb condensate [17], we fix the mass ratio
to bem1/m2 = 1.5. The vortex interaction strength is parameterized byγ =

|g12|n0

h̄�v
, which we

vary while keeping the quantitiesh̄π
�vmα

1
πξ2 for α = 1,2 fixed. (The total energy has been scaled

by h̄�vπn0ξ
2.) We set the ratio of the ‘average’ vortex lattice constant to the coherence length

alat/ξ = 10 (which is consistent with typical experiments). We definealat by 2
√

3a2
lat

=
m̃�v
π h̄ , where

m̃ =
2m1m2
m1+m2

, and consider a system with 43 vortices of each species. The results for such a
calculation are shown in figure2. We also plot our prediction for the critical radius at which
the vortex pairs become unbound [see equation (12)] which for equal densities is

rc =
γ

4
√

e

m1 + m2

m1 − m2
ξ. (19)

This prediction agrees quite well with our numerical results.

4. Experimental realization

A very promising candidate for the realization of these locked states is a133Cs–87Rb condensate
mixture [17], which has a mass ratio of about 1.5. One has exquisite control over the self-
scattering length of caesium [18], and a Cs–Rb mixture is also expected to exhibit interspecies
Feshbach resonances. This allows one to control the interactiong12 over a wide range; such
interspecies resonances have recently been identified for Li–Na [19] and Rb–K [20] mixtures.
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5. Conclusions

In this paper, we described a novel state of rotating interacting condensates with unequal masses
in the Thomas–Fermi regime. The possibility of locking the two individual vortex lattices yields
a remarkable demonstration of the nonintuitive behavior of superfluids: the two gasses, rather
than equilibrating to the same speed, prefer to move at different angular velocities that are
inversely proportional to their masses. The vortex-locking of the different-mass condensates
is also an example of synchronization: a phenomenon that is ubiquitous in physics, biology
and other fields [21]. Already in single-mass mixtures, a rich variety of vortex dynamics arises
from the extra degrees-of-freedom, resulting in such effects as the formation of square vortex
lattices, as well as topologically nontrivial defects such as skyrmions or hedgehogs [13, 22].
To investigate these effects in the different-mass mixtures, as well as to better establish the
locked state we proposed in this paper, this system must be numerically investigated by solving
the appropriate dynamical Gross–Pitaevskii equations. Such a numerical investigation will also
allow one to find the preferred lattice geometry of the locked vortex lattice. Other directions for
future study involve dynamical aspects such as Tkachenko modes [23] of the locked state, as
well as whether a similar state survives in the Landau regime of large vortex density. Finally,
it might be interesting to consider such locking phenomena in the limit of low rotational rates
where there is not yet a vortex lattice and the Feynman relation specifying the vortex density
does not apply.
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Appendix

In this appendix, we discuss the change in the superfluid density as a result of a vortex
lattice, and its effect on the validity of approximation (7) and the resulting expression for the
interspecies vortex attraction [equations (5) and (8)].

First consider a single species which has the energy functional

E =

∫
d2r

(
h̄2

2m
|∇ψ |

2 + Vtrap(r )|ψ |
2 +

1

2
g|ψ |

4

)
. (A.1)

We writeψ = f eiθ where f is real andθ contains information about the positions of the vortices
asθ =

∑
i θi . By varying f we obtain the equation

−
h̄2

2m
∇

2 f +
h̄2

2m
|∇θ |2 f + Vtrap f + g f 3

= µ f (A.2)
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determining the superfluid density which minimizesE for the particular vortex configuration.
Let us consider a single vortex taken to be at the origin, so that∇θ = ẑ×

r̂
r . The long-distance

behaviorr � ξ is obtained from the Thomas–Fermi approximation [neglecting the∇
2 f in

equation (A.2)], and we obtain

f ≈
µ

g

(
1−

h̄2

2mµr 2

)
= n0

(
1−

ξ2

r 2

)
, (A.3)

where we have neglected the contribution from the trapping potential. This implies that the
suppression of the density is due to the kinetic energy in the supercurrent, which counters the
condensation energy of the BEC.

Equation (A.3) seems to imply that at large distances from a vortex core, the interspecies
vortex–vortex interaction will include a persistent power-law component, and die off only as
1/r 2 rather than as an exponential. The observation that the power-law decay reflects the
current-induced superfluid suppression allows us to ignore the power-law decay in a many-
vortex situation, with the argument as follows. Let us consider a vortex lattice, and evaluatef
at a position which is several coherence lengths away from any vortex. This allows us to invoke
the continuum approximation and write

∇θ(r)= ẑ×

∑
i

r − r i

|r − r i |
2

= πρvẑ× r , (A.4)

whereρv is the density of the vortices. Each individual contribution in this sum would yield a
∝

1
r 2 dependence in the density corrections, but the vector sum of the velocities of all vortices

squared is not a simple sum of the 1/r 2 corrections. Inserting this into the equation for the
density profile one finds:

−
h̄2

2m
∇

2 f +
h̄2

2m
π2ρ2

vr 2 f + Vtrap f + g f 3
= µ f. (A.5)

Thus the combined vortex effect renormalizes the trapping potential and does not need to be
explicitly taken into account. To get an estimate for the magnitude of such a renormalization,
one can compare this term with the chemical potential:

(h̄2/2m)π2ρ2
vr 2

µ
∼

(
ξ

alat

r

alat

)2

, (A.6)

wherealat is the vortex lattice constant (which is small for typical experiments).
For a two-component BEC, the situation is similar for vortices which are many coherence

lengths away from each other. When the cores of the different types of vortices overlap, their
interaction needs to be explicitly calculated, and the continuum approximation cannot be used.
This is the case for paired-vortex configurations. Because the combined effect of far-away
vortices on a locked pair is small, the locking depends only on the short-distance density profile.
Had we used the step-function potential interaction between two vortices of [15] the results
would only differ from the Gaussian depletion equation (7) by small quantitative amounts.
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