
Computational Topology in
Neuroscience

Bernadette Stolz

Lincoln College

University of Oxford

A dissertation submitted for the degree of

Master of Science in Mathematical Modelling & Scientific Computing

September 2014

To my grandfather, Jaromı́r Hladký, who was my first critical reader.

Acknowledgements

I would like to thank my supervisors Dr. Heather Harrington and Prof.

Mason Porter for providing me with such an interesting topic and being

both very supportive and helpful throughout my dissertation. I enjoyed

working with them very much and am grateful for all their advice and

patience, in particular during the weeks where one IT problem seemed to

chase the next.

Further thanks go to Dr. Danielle Bassett from the University of Penn-

sylvania for letting me use her experimental data [5] and Matlab codes

[24, 30], which I used when editing my own codes, and for providing me

with additional information on the data set.

Moreover, I would also like to thank Jacopo Binchi and in particular

Matteo Rucco from the University of Camerino for all their help and

support during my work with the jHoles algorithm [11].

I would also like to thank Corrine Previte from the Colorado State Univer-

sity, who answered all my questions about D-neighbourhood complexes

and her Matlab implementations of these patiently, and was moreover

happy to discuss ideas of adapting these codes to use on our data sets

[36].

On a more general note, I would like to thank Dr. Kathryn Gillow,

the course director of the M.Sc., for her great organisation and support

throughout the course.

Finally, I would also like to thank the Berrow Foundation, in particular

the Marquise de Amodio, for funding me throughout my Masters.

Abstract

Computational topology is a set of algorithmic methods developed to un-

derstand topological invariants such as loops and holes in high-dimensional

data sets. In particular, a method know as persistent homology has been

used to understand such shapes and their persistence in point clouds and

networks. It has only been applied to neuronal networks in recent years.

While most tools from network science focus solely on local properties

based on pairwise connections, the topological tools reveal more global

features. We apply persistent homology to neuronal networks to see which

properties these tools can uncover, which might be invisible to existing

methods.

We give an introduction to relevant concepts from algebraic topology such

as topological spaces, simplicial complexes and filtrations. Filtrations are

the main ingredients for methods from persistent homology and can be

imagined as an embedded sequence of networks with some form of geo-

metrical object built from the edges and nodes in each sequence step. We

use three different filtrations: a filtration by weights, a weight rank clique

filtration and a modified version of the Vietoris-Rips complex to analyse

networks. Our example networks consist of data from neuroscientific ex-

periments and the output of a non-linear oscillator model, the Kuramoto

model.

Our results reveal that all three methods can be used to investigate dif-

ferent aspects of such networks, but that the methods and their inter-

pretation still need to be developed further. In particular, computational

scaling needs to be improved on the more sophisticated methods so that

they can be used on networks of a reasonably large size and density.

Contents

1 Introduction 1

2 Computational Topology 4

2.1 Topological background . 4

2.1.1 Graphs from a topological perspective 4

2.1.2 Topological spaces . 6

2.1.3 Simplicial complexes . 7

2.1.4 Homology and Betti numbers 10

2.2 Persistent homology . 16

2.2.1 Filtrations . 16

2.2.2 Barcodes . 18

2.2.3 Simplicial complexes for point cloud data 20

3 Model Networks and Data 21

3.1 The Kuramoto model . 21

3.1.1 The basic model . 21

3.1.2 The Kuramoto model in a network setting 23

3.1.3 Null models for the Kuramoto data 25

3.2 Neuronal network data . 26

3.2.1 The use of graph theory in neuroscience 26

3.2.2 Data set: Human brain networks during learning 28

4 Topological network analysis 30

4.1 Methods and algorithms . 30

4.1.1 Filtration by weights . 31

4.1.2 Weight rank clique filtration 31

4.1.3 Comparison of the two filtrations based on graph filtrations by

weight . 31

4.1.4 Modified Vietoris-Rips complex 33

i

4.1.5 Computational tools and issues 33

4.2 The Kuramoto model . 35

4.2.1 Simulation . 35

4.2.2 Filtration by weights . 36

4.2.3 Weight rank clique filtration 41

4.2.4 Modified Vietoris-Rips complex 43

4.3 Functional imaging data . 45

4.3.1 Filtration by weights . 46

4.3.2 Weight rank clique filtration 47

4.3.3 Modified Vietoris-Rips complex 49

5 Discussion 50

6 Conclusions and future work 53

Bibliography 55

A Appendix 60

A.1 Additional definitions from topology and algebra 60

B Appendix 63

B.1 Further general barcodes . 63

B.2 Further Kuramoto barcodes . 63

B.2.1 Kuramoto filtration by weights barcodes for five time layers . 63

B.2.2 Kuramoto filtration by weights barcodes for fixed natural fre-

quencies and two time layers 66

B.2.3 Kuramoto modified Vietoris-Rips complex barcodes 67

B.3 Further data barcodes . 68

B.3.1 Filtration by weights . 68

B.4 Motor and visual modules in the human brain 69

ii

List of Figures

1.1 Illustration of the approach taken in this dissertation. 2

2.1 Examples of low dimensional simplices. 9

2.2 Examples of simplicial complexes. 9

2.3 Example of a simplicial complex. 11

2.4 Simple filtration example: House. 17

2.5 Graph filtration example: Pentagon. 17

2.6 Betti barcodes for the house and the pentagon filtration. 19

2.7 Vietoris-Rips complex and barcodes for the house filtration. 20

3.1 Example of a coupling matrix A we use for the interaction between

oscillators in the Kuramoto model. 24

3.2 Steps for creating a functional network from the Kuramoto model. . . 24

3.3 Steps for creating a functional network from fMRI data. 27

4.1 Dodecagon filtration. 32

4.2 Barcodes for the dodecagon filtration. 32

4.3 Mean oscillator coherence between all-coupled Kuramoto oscillators

versus the coupling strength. 35

4.4 Functional networks generated from the Kuramoto model, the simple

null model, and the Fourier null model over all time steps. 36

4.5 Filtration by weights barcodes generated from the Kuramoto model,

the simple null model, and the Fourier null model. 36

4.6 Functional networks generated from the Kuramoto model, the simple

null model, and the Fourier null model. 38

4.7 Filtration by weights barcodes generated from the Kuramoto model,

the simple null model, and the Fourier null model. 39

4.8 Functional networks generated from the Kuramoto model, the simple

null model, and the Fourier null model. 40

iii

4.9 Filtration by weights barcodes generated from the Kuramoto model,

the simple null model, and the Fourier null model. 40

4.10 Weight rank clique filtration barcodes generated from the Kuramoto

model, the simple null model, and the Fourier null model. 42

4.11 Modified Vietoris-Rips complex barcodes generated from the Kuramoto

model, the simple null model, and the Fourier null model. 44

4.12 Modified Vietoris-Rips complex barcodes generated from the Kuramoto

model, the simple null model, and the Fourier null model. 45

4.13 Example of functional matrices, days 1–3 for subject 8. 46

4.14 Example of filtration by weights barcodes generated from data from

subject 8. 46

4.15 Weight rank clique filtration barcodes generated from thresholded data

from subject 1. 47

4.16 Weight rank clique filtration barcodes generated from thresholded data

from subjects 5, 9 and 13. 48

4.17 Modified Vietoris-Rips complex barcodes generated from data from

subjects 1 and 3. 49

B.1 Barcodes for a random network. 63

B.2 Functional networks generated from the Kuramoto model, the simple

null model, and the Fourier null model. 64

B.3 Filtration by weights barcodes generated from the Kuramoto model,

the simple null model, and the Fourier null model. 65

B.4 Functional matrices for fixed natural frequencies and two time layers

of the Kuramoto model, the simple null model, and the Fourier null

model. 66

B.5 Filtration by weights barcodes for fixed natural frequencies and two

time layers of the Kuramoto model, the simple null model, and the

Fourier null model. 66

B.6 Modified Vietoris-Rips complex barcodes generated from the Kuramoto

model, the simple null model, and the Fourier null model. 67

B.7 Further examples of filtration by weights barcodes generated from data. 68

iv

Chapter 1

Introduction

In the process of understanding the human brain, the study of neuronal networks

using mathematical tools has become increasingly important [13, 14, 39]. The human

brain consists of approximately 100 billion neurons, whose major task is to receive,

conduct, and transmit signals. Every neuron consists of a cell body and one long

axon, which is responsible for propagating signals to other cells [2]. This interaction

can be modelled using networks, which one can subsequently analyse using graph

theory. A relatively new approach to analyse such networks is based on computational

topology, a set of algorithmic methods used to understand topological invariants such

as connectedness, loops, or holes in high-dimensional data structures [18, 19, 20]. The

advantage of such analysis is that it goes beyond pairwise connections and enables

one to understand global low-dimensional structures in networks, which is difficult

for existing methods. In particular, persistent homology, a method that consists of

a mathematical formalism to explore the persistence of such structures in data sets,

has only in recent years been used on neuronal networks and has already lead to

promising results (see, for example, [17, 34]).

The aim of this dissertation is to give both an introduction to persistent homology

methods by illustrating their use on small examples and to apply them to networks

generated from time-series data. There will be two sources for the time-series used:

A mathematical model, the Kuramoto model, and functional magnetic resonance

imaging (fMRI) data gained from neuroscientific experiments conducted on human

subjects. One creates a functional network from the time-series data regarding ev-

ery entity monitored over time as a separate node connected to every other entity

observed with an edge weight based on the pairwise similarity of the two time-series.

One can then analyse the functional networks constructed in this way by tools from

computational topology. In Figure 1.1 we give a schematic representation of the

approach taken in this dissertation.

1

Brain

Model

Coupled Time Series Functional Network

Topological Tools

Output

Figure 1.1: Illustration of the approach taken in this dissertation. time-series data is generated
from both neuroscientific experiments and a mathematical model. We generate a functional network
based on some measure of pairwise similarity between the time-series, which we then analyse using
tools from computational topology.

The networks generated from the experimental data [5] evolve in time in the

sense that the time-series were monitored on three different days during a learning

process. For every subject we will thus be looking at the generated network at three

points in time. We study the data from the mathematical model both in the form

of one and several networks generated from the time-series based on different time

intervals within the series. We use the mathematical model output in addition to

the experimental data to form an intuition for the interpretation of the results we

obtain by applying the topological methods. Because the Kuramoto model is well-

studied (see, for example, [23, 40]), this gives us a way to control some features of

the functional networks created and determine what we can learn from employing

topological methods. We then use these findings to interpret the functional networks

from experimental data. The data set is also well-studied by existing methods from

networks science [5, 6], which will also be useful for the interpretation and discussion

of our results. In our data analysis we apply several different methods from persistent

homology and compare these against each other, which is a novel contribution of this

dissertation. Moreover, we use the newly developed algorithm jHoles [11] in one

part of the analysis.

The incorporation of spatial information into the analysis of brain networks is

still a major open issue (see [43] for an example of recent research). While the

consideration of this is important for neuronal networks, we do not explicitly consider

this information in this dissertation. Methods from computational topology could,

however, potentially be used when focussing on such questions.

The present dissertation is structured as follows: In Chapter 2, we give an intro-

duction to the topological background needed to understand the methods, that we

apply and we also give an introduction to the methods themselves. We illustrate the

mathematical concepts on a variety of examples. If not stated otherwise, we con-

struct these examples specifically for this purpose. We give a brief introduction to

2

the Kuramoto model, neuronal networks in general, and the experimental data set

that we use in Chapter 3. In Chapter 4, we give an overview on the employed compu-

tational tools and the results that we obtain. We discuss the results in Chapter 5 and

summarise the main conclusions in Chapter 6. In Appendix A, we list further defini-

tions from algebra and topology, that can be helpful when following the theoretical

introduction in Chapter 2. We list further results in Appendix B.

3

Chapter 2

Computational Topology

Computational topology consists of algorithmic methods which investigate high-dimen-

sional data in a quantitative manner [18, 19, 20]. One might think of it as a tool for

understanding shapes and surfaces in data structures. An important method within

computational topology is persistent homology, which is a mathematical formalism

for analysing topological invariants such as connectedness, loops, or holes in various

dimensions. Persistent homology enables one to detect structures persisting in a data

set in a certain sense. The applications are particularly promising in the context of

network science because persistent homology methods can not only uncover non-local

structures in large data sets, which is difficult for existing methods, but also allow

the simultaneous analysis of connections of more than just one node, which is also an

important advantage over standard methods in network science. We now introduce a

set of basic notions from topology before we proceed to explain a few methods from

persistent homology, which we use in Chapter 4 to analyse a set of network examples.

If not referenced otherwise, the discussion in this Chapter based on [17, 20]. Further

algebraic and topological prerequisites for the notions introduced in the main text

are listed in Appendix A.

2.1 Topological background

2.1.1 Graphs from a topological perspective

From a topological point of view, a graph is a one-dimensional object that consists of

points (the vertices), and curves connecting these points (the edges). The topological

definition differs slightly from the commonly used definition in network science, where

the vertices describe abstract elements and the edges consist of pairs of these elements

4

[32]. However, the two definitions are compatible. We now introduce a few topological

concepts for graphs.

Definition 2.1.1 (graph). A graph G = (V,E) is a pair that consists of a set of

vertices V and edges E.

A subgraph H = (Ṽ , Ẽ) of G is defined by the subsets Ṽ ⊆ V and Ẽ ⊆ E. We use

the following definition to classify an in practice very commonly used set of graphs

with an important property.

Definition 2.1.2 (simple graph). A graph G = (V,E) is called simple if the set of

edges E is a subset of the set of unordered pairs of vertices.

This implies that there are no multiple edges between two vertices and no node is

connected to itself.

Definition 2.1.3 (complete graph). A graph G = (V,E) is called complete, if the

set E of edges contains exactly one edge for every unordered pair of vertices.

Remark 1. i. Every simple graph with n ∈ N vertices is a subgraph of the complete

graph Kn on n vertices.

ii. Complete graphs on n+ 1 vertices are sometimes also called n−cliques.

Given two vertices of a simple graph, we might want to know if it is possible to go

from one vertex to the other within the graph. This is the case if there is a path

between the vertices.

Definition 2.1.4 (path). Let G = (V,E) be a simple graph with n ∈ N vertices. Let

u, v ∈ V be a pair of vertices. We say that there is a path of length k between vertex

u and vertex v if there exists a sequence of vertices {u0, u1, . . . , uk} ⊆ V , k ≤ n, with

u0 = u and uk = v such that there is an edge ei+1 ∈ E between ui and ui+1 for every

i ∈ {0, . . . , k − 1}. We call the path simple, if the vertices in the path are distinct.

The following few definitions yield one of the most important topological concepts

that we will study using persistent homology.

Definition 2.1.5 (connected graph). A simple graph is connected if there exists a

path between every pair of vertices v1, v2 ∈ V .

If a graph is not connected, then we will look at the amount of “non-connectedness“

by considering connected subgraphs.

5

Definition 2.1.6 (connected component). A connected component of a simple graph

G is a maximal subgraph H that is connected.

In particular, we are interested in combining connected components to obtain the

original graph.

Definition 2.1.7 (separation). A separation of a simple graph G = (V,E) is a non-

trivial disjoint partition of its vertices V = U ∪̇W with U,W 6= ∅, such that no edge

connects a vertex in U with a vertex in W .

We note that a graph that has no separation is connected. We will see that the

concept of connectedness in a general topological space is defined very similarly in

the following Section.

2.1.2 Topological spaces

The notion of topological spaces arose from the generalisation of the study of the

real line and Euclidian space [31]. We define a few basic concepts needed to under-

stand notions such as simplicial complexes, which will be important in the following

Sections. We begin by defining a topology.

Definition 2.1.8 (topology). A topology on a set X is a collection T of subsets of X
with the following properties:

i. ∅ and X are in T .

ii. The union of elements of any subcollection of T is in T .

iii. The intersection of elements of any finite subcollection of T is in T .

We call sets that belong to the collection T open sets of X.

The set X can, for example, be a set of points but it can also be an uncountable set

such as the real line. The definition of a topological space follows naturally.

Definition 2.1.9 (topological space). A topological space is an ordered pair (X, T)

that consists of a set X and a topology T on X.

Remark 2. We often refer to X as the topological space.

Example 2.1.1. One of the simplest examples of a topological space is the real line

with all open intervals.

As with graphs, we are interested in connected components of a topological space.

However, in this case, these are not defined based on the existence of paths. 1

1Path connectedness as a concept does exist on topological spaces, but it is a far stronger property
than connectedness and we will not be needing it further. See [31] for further details.

6

Definition 2.1.10 (separation). A separation of a topological space X is a disjoint

partition X = U ∪̇W into two non-empty, open subsets. We say that a topological

space is connected if there exists no separation of X.

Connectedness is an important topological property that stays invariant under con-

tinuous functions. This will be relevant for our methods used in Chapter 4. For

further background on these topological concepts also see [25, 31].

2.1.3 Simplicial complexes

One can represent the underlying structures of topological spaces by partitioning

the space into smaller and topologically simpler pieces, which when assembled back

together carry the same aggregate topological information as the original space. These

building blocks can not be chosen arbitrarily, but we will demand that they fulfil a

certain set of properties. For example, we will want that the pieces intersect only in

smaller pieces with the same properties. There are two different approaches that one

can take to decompose a topological space [20]. One can either choose to use a small

number of complicated pieces or we can use a large number of simple pieces. From a

computational point of view, the latter is preferable [20] so we take this perspective.

A simple example for such a construction is the tetrahedron in Euclidian space,

which consists of four triangular faces that are bounded by three edges (which each

connect two points). The triangular faces intersect in edges only, and the edges

themselves intersect in the four points of the tetrahedron. One can look at the tetra-

hedron as a sort of simplified version of a 2-sphere, as it carries the same topological

properties (e.g. connectedness, enclosing a hole) as the sphere.

We can now easily imagine using triangles as building blocks to build more com-

plex constructs resembling for example a torus or some other manifold.2 While repre-

senting the underlying manifold in a simplified way, these constructs carry the same

topological properties as the manifold. Note that one can consider the triangle con-

structs as a version of the manifold with a network on its surface.

To properly grasp these concepts, we need additional definitions. For the discus-

sion, we consider the space Rd with dimension d ∈ N.

Definition 2.1.11 (affine combination and affine hull). Let U = {u0, u1, . . . , uk} be

points in Rd. A point x ∈ Rd is an affine combination of the points ui ∈ U , 0 ≤ i ≤ k,

if there exist λi ∈ R such that

2See Definition A.1.4 in the Appendix.

7

i. x =
∑k

i=0 λiui,

ii.
∑k

i=0 λi = 1.

We call the set of all affine combinations of U the affine hull of U .

To ensure uniqueness of the affine combination, we introduce the following definition.

Definition 2.1.12 (affinely independant). Let U = {u0, u1, . . . , uk} be points in Rd.

The k + 1 points in U are said to be affinely independent, if the vectors {ui − u0 :

0 ≤ i ≤ k} are linearly independent.

Remark 3. In Rd there are at most d+ 1 independent points.

Example 2.1.2. Any two distinct points in R2 are affinely independent. Similarly,

any three points in R2 are affinely independent, provided they do not lie on the same

straight line.

Convex combinations and hulls are a special case of affine combinations:

Definition 2.1.13 (convex combination and convex hull). An affine combination

x =
∑k

i=0 λiui is a convex combination, if λi ≥ 0 for all 0 ≤ i ≤ k. The set of all

convex combinations of the points in U is called the convex hull of U .

Example 2.1.3. A triangle spanned by three points u0, u1, u2 ∈ R2 is the convex

hull of these points.

We can now finally define a k-simplex:

Definition 2.1.14 (k-simplex). A k-simplex σ = [u0, u1, . . . , uk] is the convex hull

of the k + 1 affinely independent points u0, u1, . . . , uk ∈ Rd. We call k the dimension

of the simplex.

Example 2.1.4. In Figure 2.1 we examples of simplices for the first few dimensions:

a point is a 0-simplex, an edge is a 1-simplex, a triangle is a 2-simplex and the

tetrahedron that we have encountered before is a 3-simplex.

We observe that the lower-dimensional simplices from example 2.1.4 appear to be

contained in the higher dimensional simplices. This is due to the fact that subsets

of affinely independent points are also affinely independent. Moreover, the lower

dimensional simplices form so called faces of the higher dimensional objects:

Definition 2.1.15 ((proper) faces and cofaces). A face τ of a k-simplex σ is the

convex hull of a subset V ⊆ U . We call the face proper, if the subset is proper. If τ

is a (proper) face, we call σ a (proper) coface of τ .

8

Figure 2.1: Examples of a 0-simplex, a 1-simplex, a 2-simplex and a 3-simplex (from left to right)
[20].

a) b) c) d)

Figure 2.2: a), b) and c) are examples of simplicial complexes. The collection of simplices we show
in d) is not a simplicial complex. The colours are used to indicate 2-simplices.

Remark 4. We use the notation τ ≤ σ to denote a face of σ and τ < σ to denote a

proper face of σ.

Remembering the building blocks we described in the beginning of this Section, we

can ask ourselves whether it is only possible to build shapes using 2-simplices (i.e.

triangles) or whether we could also combine these with higher- or lower-dimensional

simplices. The result such a combination is called a simplicial complex :

Definition 2.1.16 (simplicial complex). A simplicial complex is a finite collection of

simplices Σ such that

i. If σ ∈ Σ and τ ≤ σ, it follows that τ ∈ Σ.

ii. If σ, σ̃ ∈ Σ, it follows that the intersection of both simplices is either the empty

set or a face of both.

Examples 2.1.1. 1. The simplest example of a simplicial complex is a simplex.

2. In Figure 2.2 we show examples of simplicial complexes. Example a) illustrates

that simplicial complexes are not necessarily equal to simplices. The three

edges do not form a 2- simplex, but form a simplicial complex consisting of

1-simplices. In examples b) and c), all 1- and 2-simplices are connected by 0-

simplices. Example d) is a collection of simplices that violates the definition of

a simplicial complex because the intersection between the two triangles does not

consist of a complete edge. Note that any combination of the three simplicial

complexes a), b) and c) is again a simplicial complex.

9

We take the dimension of Σ to be the dimension of its highest-dimensional simplex.

Simplicial complexes can also be defined in a more abstract way (see [20]). However,

this is not relevant for the methods we use. Simplicial complexes can be used to

represent topological spaces as described in the following definitions.

Definition 2.1.17 (underlying space of a simplicial complex). The underlying space

|Σ| of a simplicial complex Σ is the union of its simplices together with the topology

inherited from the Euclidian space, in which the simplicial complex is defined.

Definition 2.1.18 (triangulation). A triangulation of a topological space X is a

simplicial complex Σ together with a homeomorphism3 φ : X −→ |Σ|. We call a

topological space triangulable if a triangulation exists.

We now see that the tetrahedron in the beginning of the chapter, was in fact a

triangulation of the 2-sphere. We can imagine the homeomorphism between the two

objects to fill the tetrahedron with air until it is completely round. It is important that

the map is a homeomorphism, because topological properties such as connectedness

are invariant under homeomorphisms and we thereby ensure that the topological space

and its triangulation carry the same topological properties. One can also shown that

every compact surface4 is triangulable [31].

2.1.4 Homology and Betti numbers

Homology is a formal way of quantitatively detecting loops and holes in various di-

mensions to give insight into the way a topological space is connected. It for example

makes it possible to distinguish a 2-sphere from a torus by capturing the fact that

one can contract any one-dimensional loop on the sphere to a point, whereas there

are two distinct loops on the torus surface, that cannot be continuously deformed

into each other. Moreover, these loops can not be contracted to a point since they

surround different holes.

Even though homology is not the only and most detailed formalism that can be

used for this, it so far has the fastest algorithms [20]. Homology groups, which are

topological invariants of a space, and Betti numbers (which are derived from them)

play the key role in this endeavour. Homology groups detect holes and loops indirectly

by looking at the space surrounding them, whereas Betti numbers give a way to count

the number of distinct loops and holes. We start constructing the homology groups,

by looking at formal sums of simplices, which themselves form an Abelian group. 5

3See Definition A.1.1 in the Appendix.
4See Definition A.1.5 in the Appendix.
5See Definition A.1.6 in the Appendix.

10

Definition 2.1.19 (p-chain). Let Σ be a a simplicial complex, let p be a given

dimension and let G be an Abelian group. A p-chain c is a formal sum of p-simplices

in Σ:

c =
∑
i∈I

aiσi, (2.1)

where ai ∈ G are coefficients, σi are p-simplices, and I is an index set.

For a more general version of the definition, see [10].

Remark 5. i. In a more theoretical context Z is a common choice for the commu-

tative group G. In computational topology, the commutative group G is usually

given by Z/2Z. Using Z/2Z has the advantage, that we can regard p-chains as

subsets of the set of all p-simplices in Σ by assigning the coefficient 1 to simplices

that form part of the subset and the coefficient 0 to those not in the subset. More-

over, because Z/2Z is in fact a field, we can also think of p-chains as elements of

a vector space.

ii. We allow all possible integer values for p. Note that for p = 0 and p > dim Σ

however, we only obtain trivial p-chains.

iii. We use Cp = Cp(Σ) to denote the set of all p-chains of a simplicial complex Σ.

Example 2.1.5. We consider the simplicial complex in Figure 2.3 and assume that

we are working with coefficients in Z/2Z. The 2-chains of the simplicial complex are

{0, the blue 2-simplex pointing upwards, the blue 2-simplex pointing downwards, the

union of both 2-simplices}. The 1-chains are given by the set of all subsets of the 11

edges.

Figure 2.3: Example of a simplicial complex. The blue 2-simplices are examples of 2-chains, the
11 edges are examples of 1-chains of the simplicial complex.

We define the summation of two p-chains, c =
∑

i∈I aiσi and c′ =
∑

i∈I biσi, on Σ

componentwise:

c+ c′ =
∑
i∈I

(ai + bi)σi. (2.2)

This leads us to an important property of p-chains.

11

Proposition 2.1.1. The set of p-chains of a simplicial complex Σ together with sum-

mation forms an Abelian group (Cp,+).

Proof. i) Summation on Cp is associative. Because we have defined summation to

be componentwise, this property is inherited from the fact that the coefficients

ai are elements of a commutative group.

ii) Existence of an element neutral under summation. Because the commutative

group of coefficients has a neutral (i.e. identity) element e, we naturally can

define the neutral element of Cp as
∑

i∈I eσi.

iii) Existence of inverse elements: The inverse elements are also inherited from the

commutative group. We define the inverse of a p-chain c =
∑

i∈I aiσi to be

−c =
∑

i∈I(−ai)σi.
iv) Summation on Cp is commutative. This is again inherited from the commutativity

of the summation of the coefficients.

We observe when working with coefficients from Z/2Z that the sum of two p-chains

results in the sum of all p-simplices in which the two original p-chains differ. The

p-simplices which the two p-chains have in common will be present in the sum twice

and therefore vanish by the properties of addition on Z/2Z. From now on, we assume

that the coefficients of our p-chains are taken from Z/2Z, which will simplify some

the following definitions and proofs. For their corresponding more general versions,

see [25]. The following definition will help to relate the different p-chain groups of a

simplicial complex.

Definition 2.1.20 (boundary of a p-simplex). We define the boundary ∂pσ of a p-

simplex σ = [u0, u1, . . . , up] as the formal sum of its (p− 1)-dimensional faces:

∂pσ =

p∑
j=0

[u0, . . . , ûj, . . . , up], (2.3)

where ûj denotes the point not included in spanning the simplex.

We can naturally extend this definition to p-chains by defining the boundary of a p-

chain c =
∑

i∈I aiσi as ∂c =
∑

i∈I ai∂σi. We can now construct a family of boundary

homomorphisms6 ∂p between the different groups of p-chains of a simplicial complex

6See Definition A.1.9 in the Appendix.

12

by mapping p-simplices to their boundaries:

. . .
∂p+2−→ Cp+1

∂p+1−→ Cp
∂p−→ Cp−1

∂p−1−→ . . .
∂1−→ C0

c 7−→ ∂c.

By construction, taking the boundary of a p-chain satisfies the property ∂p(c+ c′) =

∂pc+∂pc
′. Thus ∂p is indeed a homomorphism. We call such a sequence of chains and

homomorphisms a chain complex. The following theorem states a crucial property of

the boundary homomorphisms in a chain complex.

Theorem 2.1.2. Let d ∈ Cp+1. It holds, that

∂p∂p+1d = 0. (2.4)

Proof. It is sufficient to show that statement (2.4) holds for a (p + 1)-simplex τ =

[u0, . . . , ûj, . . . , up+1]:

∂p∂p+1τ = ∂p

p+1∑
j=0

[u0, . . . , ûj, . . . , up+1] (2.5)

=

p+1∑
j=0

∂p[u0, . . . , ûj, . . . , up+1] (2.6)

=

p+1∑
j=0

p+1∑
i=0

[u0, . . . , ûi, . . . , ûj, . . . , up+1] (2.7)

= 0. (2.8)

The last step follows from the fact, that we are working on Z/2Z and every (p− 1)-

simplex on the right-hand side appears in the sum as the face of two p-simplices.

For simplicity, we often denote the boundary homomorphism by ∂, i.e. we omit the

specification of p. If we go back to the example of the simplicial complex in Figure

2.3, we see that the 1-chains are formed by edges coming from 1-simplices as well as

boundaries of 2-simplices. Given the above Theorem 2.1.2 we should now be able to

distinguish between these two sets because applying the boundary homomorphism to

the 1-chains should map all edges of 2-simplices to 0. We therefore now look at two

subgroups of (Cp,+) that are based exactly on this fact. Together with Theorem 2.1.2

they form the main ingredients in constructing the homology group of a simplicial

complex.

Definition 2.1.21 (p-cycle). A p-cycle is a p-chain c that satisfies ∂c = 0.

13

We denote the set of p-cycles as Zp.

Proposition 2.1.3. (Zp,+) is a subgroup7 of (Cp,+).

Proof. This follows immediately from the fact that the boundary operator is a ho-

momorphism. Let a, b ∈ Zp. It follows that a + b is also an element of Zp because

∂(a + b) = ∂a + ∂b = 0. Similarly, for a ∈ Zp it follows that ∂(−a) = −∂a = 0.

Hence, Zp is a subgroup of Cp.

Remarks 1. i. Since (Cp,+) is an Abelian group, it follows immediately that (Zp,+)

is also Abelian.

ii. An equivalent definition for the group of p-cycles Zp is Zp = ker ∂p, where ker ∂p

denotes the kernel8 of ∂p.

Definition 2.1.22 (p-boundary). A p-boundary is a p-chain c for which there exists

a (p+ 1)-chain with ∂d = c.

We denote the set of p-boundaries as Bp.

Proposition 2.1.4. (Bp,+) is a subgroup of (Cp,+).

Proof. Let a, b ∈ Bp. By definition there exist ã, b̃ ∈ Cp+1 such that ∂ã = a and

∂b̃ = b. It must therefore hold that a+ b = ∂ã+ ∂b̃ and hence that a+ b = ∂(ã+ b̃).

Similarly, with a ∈ Bp, we obtain −a = −∂ã = ∂(−ã).

Remarks 2. i. Because (Cp,+) is an Abelian group, it follows immediately that

(Bp,+) is also Abelian.

ii. An equivalent definition for the group of p-boundaries Bp is Bp = Im ∂p+1, where

Im ∂p+1 denotes the image9 of ∂p+1.

Using Theorem 2.1.2 we can now relate the subgroups to each other: By Theorem

2.1.2, we have ∂p(Im ∂p+1) = 0, so Bp ⊆ Zp. It is easy to show that Bp is indeed a

subgroup of Zp.

Examples 2.1.2. Consider the 1-chains of the simplicial complex in Figure 2.3. We

observe that the boundaries of the blue 2-simplices are elements of the boundary

subgroup B1. These are, however, not the only 1-chains that form part of the kernel

of ∂0 and thus Z0. If we consider the loop that consists of three edges at the left-hand

7See Definition A.1.7 in the Appendix.
8See Definition A.1.10 in the Appendix.
9See Definition A.1.11 in the Appendix.

14

side of the simplicial complex, we can see that every vertex in this loop forms part of

the boundary of two separate edges. Because we are working with coefficients from

Z/2Z, we see that these vertices are not part of the image of ∂0. This is not the case

for any of the other vertices. These vertices are therefore mapped non-trivially to the

set B−1, i.e. the set of vertices that form part of the boundaries of edges.

Example 2.1.2 illustrates how one-dimensional loops10 behave differently from other

edges. Any parts of their boundaries vanish completely when applying ∂0. This does

not happen to any other 1-chain, because even long tails of vertices and edges map

to at least one 0-chain if their ends are not joined. We have thus come very close to

our goal of being able to count holes and loops. Although we have so far identified

the subgroup, to which such loops will belong, this subgroup still also contains the

boundaries of higher dimensional chains. To differentiate between the two subgroups,

we need to define the p-th homology group of a simplex.

Definition 2.1.23 (p-th homology group). The p-th homology group Hp of a simpli-

cial complex Σ is the quotient group11 of the group of p-cycles Zp modulo the group

of boundaries Bp:
Hp = Zp/Bp.

Two p-cycles in the p-th homology group are regarded as different if they differ by

more than just a boundary. Otherwise, the quotient group treats them as being in

the same homology class. Two elements in the same homology class are said to be

homologous. For example, all p-boundaries are homologous to the ∅-chain. Every hole

of dimension p found in a simplicial complex is surrounded by at least one p-cycle in

the homology group. Counting the number of classes in Hp thus gives an estimate

of the number of p-dimensional loops of a simplicial complex. However, cycles that

surround the same hole are counted separately. A solution to this problem is to count

the minimal number of elements needed to generate the group.12 This leads to the

definition of p-th Betti number.

Definition 2.1.24 (p-th Betti number). The p-th Betti number βp of a simplicial

complex is defined by

βp = rank Hp.

10We use the term loop to describe connected chains which are not faces of a higher dimensional
simplex and can be mapped to an k-dimensional sphere by a homomorphism for some dimension
k ∈ N. Note that this corresponds to what we intuitively would call a loop or hole for dimensions 1
and 2.

11See Definition A.1.13 in the Appendix.
12See Definition A.1.14 in the Appendix.

15

Remark 6. Recall that we are working with coefficients from Z/2Z. This turns the

set of p-cycles into a vector space and we can think of the homology group Hp as a

quotient vector space. The p-th Betti number is then given by the dimension of this

vector space.

One can interpret the first three Betti numbers, β0, β1 and β2, to represent respectively

the number of connected components, the number of 1-dimensional loops and the

number of 2-dimensional holes in a simplicial complex.

2.2 Persistent homology

We now explain how to use Betti numbers of a simplicial complex for the analysis of

graphs. We base our discussion on [16, 19, 22].

2.2.1 Filtrations

We first define what we mean by a subcomplex of a simplicial complex Σ.

Definition 2.2.1 (subcomplex of a simplicial complex). A subcomplex of a simplicial

complex is a subset of simplices that satisfy the properties of a simplicial complex.

We can now build sequences of simplicial complexes that form subcomplexes of each

other.

Definition 2.2.2 (filtration). A filtration of a simplicial complex Σ is a nested se-

quence of subcomplexes starting with the empty complex ∅ and ending with the full

simplicial complex:

∅ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · · ⊆ Σk = Σ. (2.9)

We observe that there are natural inclusion maps ij : Σj ↪−→ Σj+1 that can be defined

along the filtration.

Example 2.2.1. In Figure 2.4 we show a simple example of a filtration. For practical

reasons, we have not included the ∅-complex in the filtration. The filtration starts

with four 1-simplices that form a square. In the second filtration step, a 0-simplex

appears in addition to the square. We see that the first filtration step is embedded

in the second. In the third and fourth filtration steps the “framework for the roof“

of the house is added to the simplicial complex. In the final step, the collection of

1-simplices that previously formed the “framework of the roof“ become faces of a

2-simplex, that forms the full “roof“.

16

Figure 2.4: Simple filtration example: House (modified from [1]).The filtration steps are shown in
numerical order starting with filtration step 1 on the left-hand side.

We now use the same concept on a graph. Similar to before, we define a filtration of

graphs to be a nested sequence of subgraphs. In Figure 2.5 we show an example of a

graph filtration on a complete graph. For graphs we often think of the 0-th filtration

Figure 2.5: Graph filtration example: Pentagon. The filtration steps are shown in numerical order
starting with filtration step 1 on the left-hand side.

step as the set of vertices instead of the ∅-complex. As a consequence, no vertices

appear in later filtration steps, even though we have seen in the House filtration

example that this not pathological for general filtrations of simplicial complexes.

In order to apply topological tools to a graph filtration, we need to define simplicial

complexes on the graph. We assume that our filtrated graph is embedded in a higher

dimensional space, such that its edges do not cross. The simplest way to define

simplicial complexes on the graph, is to look at the edges and vertices as 1- and 0-

simplices forming a simplicial complex. The graph filtration thus already is a filtration

of simplicial complexes. We are now interested in when a prominent feature, for

example a homology class, of the simplicial complex first appears in the filtration and

when it disappears.

Definition 2.2.3 (birth and death of a homology class, persistence). A homology

class h ∈ Hp(Σ) is born at Σm, if h is an element of Hp(Σm) but it is not in the image

of the inclusion map im−1 : Σm−1 ↪−→ Σm.

A homology class g ∈ Hp(Σ) dies entering Σn, if g is an element of Hp(Σn−1) but it

is not in the image of the inclusion map in−1 : Σn−1 ↪−→ Σn.

We denote the filtration step in which h is born by mh and the filtration step in which

h dies by nh. We define the persistence of a homology class h ∈ Hp(Σ) as

ph = nh −mh.

17

Persistence was first used as a measure to rank topological features by their life-time

within a filtration in [18].

Examples 2.2.1. 1. In the filtration example from Figure 2.4, the 1-loop that

forms the framework of the roof before it becomes a 2-simplex has persistence 1:

It is born in the fourth filtration step and dies when entering the fifth filtration

step. The 1-loop that forms the basis of the house lives until the very end

of the filtration. By convention, we say that it has persistence ∞. Similarly,

we examine the connected components, the “0-loops“, of the filtration. The

vertex that appears in the second step of the filtration only forms a separate

connected component during that filtration step and it dies when entering the

next filtration step. Its persistence is therefore 1. The connected component

that exists in the filtration from the first step onwards is the base of the house.

It has persistence ∞.

2. In the filtration example from Figure 2.5, the loop that forms in the beginning

of the filtration has persistence ∞. In every following step, an additional 1-

dimensional loop with persistence ∞ is added to the homology group.

2.2.2 Barcodes

We now introduce a visualisation of persistence of homology classes of a filtration of

simplicial complexes, so called barcodes [22].

Definition 2.2.4 (persistence interval). The persistence interval for a homology class

h ∈ Hp(Σ) is given by [mh, nh].

One can think of a barcode for a filtration of a simplicial complex as a parametrised

version of Betti numbers depicting persistence intervals of homology classes.

Definition 2.2.5 (barcode). A p-dimensional barcode for a filtration of a simplicial

complex is a collection of horizontal line segments on a plane representing the persis-

tence intervals of homology generators of the p-th homology group arbitrarily ordered

along the vertical axis.

We read a p-dimensional barcode as follows: Every line segment represents a p-loop,

the length of the segment indicates its persistence in the filtration. We can trace the

filtration step in which the loop is born and in which it dies on the x-axis.

18

Examples 2.2.2. 1. We show the barcode for the house filtration from Figure 2.4

in the left-hand side of Figure 2.6. The 0-barcode consists of two line segments

that represent a connected component of persistence 1 that is born in filtration

step 1 and dies in filtration step 2 and a connected component of persistence

∞ that is born in the beginning of the filtration. These correspond to the

vertex added in filtration step 2 and the base of the house respectively. In the

1-barcode the “framework for the roof“ of the house is represented by a short

lived 1-loop of persistence 1 before it gets covered by the blue 2-simplex. The

base of the house corresponds to the line segment of persistence ∞.

2. We show the barcode representation for the pentagon filtration from Figure 2.5

on the right-hand side of Figure 2.6. Since the 0-th filtration step consists of the

5 vertices of the graph, we can see 5 connected components in the 0-barcode

that merge into one connected component in the first step of the filtration.

The 1-dimensional barcode shows the 1-loops that are born in every step of the

filtration and persist until the end.

0 1 2 3 4 5 6

House Filtration (dimension 0)

0 1 2 3 4 5 6

House Filtration (dimension 1)

0 1 2 3 4 5 6 7

Pentagon Filtration (dimension 0)

0 1 2 3 4 5 6 7

Pentagon Filtration (dimension 1)

Figure 2.6: Betti barcodes for the house filtration and the pentagon filtration.

For a graph the amount of connected components in the 0-dimensional barcodes will

always consist of the number of nodes in the graph. The death of a connected com-

ponent in the barcode can signify one of two possible situations: it either represents

a node’s first connection with some part of the graph or it represents the connection

of two subgraphs. With a barcode alone it is impossible to distinguish between these

two cases. However, the death of a connected component also indicates more than

just that two components have merged. If the difference between the persistence of

two succeeding components is large, we can deduce that the connections made by the

graph in the meantime are all made within existing subgraphs.

Persistent homology is not necessarily restricted to the application on data in the

form of graphs but has in fact more often been used for point cloud data [16, 22].

19

2.2.3 Simplicial complexes for point cloud data

Point cloud data consists of an unordered sequence of points S = {x1, . . . , xk} em-

bedded in an n-dimensional Euclidian space En. One defines simplicial complexes

on point cloud data by considering each point in the metric space as a vertex of a

graph. Two vertices are connected by an edge based on their proximity. Higher-

dimensional simplices can then be defined on the graph in different ways. One of the

most commonly used complexes is the Vietoris-Rips complex [22].

Definition 2.2.6 (Vietoris-Rips complex). Let S = {x1, . . . , xm} be a collection of

points in the Euclidian space En and ε a given distance. The Vietoris-Rips complex

Rε is the simplicial complex, whose k-simplices are defined by unordered (k+1)-tuples

of points {xi}ki=0, whose pairwise distance is at most ε.

The choice of the distance ε determines important properties of the resulting simplicial

complex: If we choose ε to be very small we obtain a discrete set while for a very

large epsilon all points are joined in a single high-dimensional simplex. A filtration

of Vietoris-Rips complexes is therefore constructed by varying ε [16, 22]. We show an

example of Vietoris-Rips complex filtration with a corresponding barcode in Figure

2.7. As ε increases, more vertices are connected by edges. The first two connected

0 0.5 1 1.5 2 2.5 3 3.5 4

Vietoris−Rips Filtration House (dimension 0)

0 0.5 1 1.5 2 2.5 3 3.5 4

Vietoris−Rips Filtration House (dimension 1)

Figure 2.7: Vietoris-Rips complex and barcodes for the house filtration [1]. The value of ε increases
over the filtration steps and is shown on the x-axis of the barcode.

components die in filtration step 3, when the vertices forming the “roof“ of the house

are joined. In filtration step 4, all vertices are part of one connected component. At

the same time, a 1-loop is born in the square forming the “base“ of the house. Is dies

in the subsequent filtration step when all nodes in the base are connected to each

other.

20

Chapter 3

Model Networks and Data

The main goal of the present dissertation is to analyse time-dependant network data

generated from neuroscientific experiments using methods from computational topol-

ogy. Since experimental data has a tendency to be influenced by a variety of math-

ematically unpredictable factors, we first use the methods on the output of a well-

studied dynamical system, the Kuramoto model, which we analyse on a network.

This will help to shape our intuition how to interpret the results of applying these

methods and provide insight into what kinds of properties one can detect.

3.1 The Kuramoto model

The Kuramoto model is a well-studied non linear model for a large set of coupled

limit-cycle oscillators with distinct natural frequencies traditionally drawn from some

prescribed distribution [4, 23, 26, 40]. While the Kuramoto model can be regarded

as a toy model, the properties of the model are well-known and hence a good choice

for this study.

3.1.1 The basic model

The Kuramoto model was developed in the 1970s to understand the phenomenon

of collective synchronisation of a large system of oscillators and it has been used

as a toy model by neuroscientists because a few underlying characteristics of the

synchronisation patterns bear resemblance to those found in neuronal communities

[12]. It also has a variety of further applications in chemical or biological contexts

[4, 23, 40, 41]. If not declared otherwise, the following discussion is based on [40].

21

The governing equations of the model are most commonly written as

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi), for i = 1, . . . , N, (3.1)

where θi denotes the phase of oscillator i, the parameter ωi is its natural frequency,

K ≥ 0 parametrises the coupling strength between different oscillators, and N is

the number of oscillators in the model. The normalisation factor 1
N

ensures that the

equations are bounded for N → ∞. The distribution from which the frequencies ωi

are drawn is usually assumed to be unimodal and symmetric about its mean frequency,

which can be set to 0 due to the rotational symmetry of the model (Equation (3.1)

stays invariant under a translation of θi). The parameter ωi then denotes the deviation

from the mean frequency.

One can summarise the dynamics of the model by a parameter r that gives the

collective rhythm and ψ that represents the mean phase. Both parameters are time-

dependent and satisfy the relation

reiψ =
1

N

N∑
j=1

eiθj . (3.2)

If the phases θi are evenly distributed around the circle, their centroid lies in the

middle of the circle, so r ≈ 0. If however, the phases are close together such that the

centroid lies almost on the boundary of the unit circle, then r ≈ 1 and the oscillators

resemble a single coherent oscillator that moves around the unit circle. One can write

Equation (3.1) as

dθi
dt

= ωi +Kr sin(ψ − θi), for i = 1, . . . , N, (3.3)

using the parameters in Equation (3.2). Although every oscillator is an own entity,

it is coupled to all other oscillators via the parameters r and ψ. Equation (3.3)

illustrates that an individual oscillator is influenced primarily by the mean phase and

the centroid of the phases rather than by any individual oscillator. The interaction

between one oscillator and the other oscillators is stronger if r is large. This can

lead to a positive feedback loop since for a growing phase coherence the coupling

increases, which in turn leads to an even stronger aggregate coherence. The process

can, however, also be self-limiting, because oscillators can synchronise with the rest

of the population without leading to an increased coherence in the population as a

whole.

22

It has been shown that there is a critical coupling strength thereshold Kc deter-

mining whether or not the oscillators tend to synchronise [26, 27]. For values K ≤ Kc

we find that the coherence r decays quickly over time to a very small value so that the

oscillators almost decouple completely. For K ≥ Kc however, the phase coherence r

reaches a level close to 1. We use this property to test codes that were written to

simulate the Kuramoto model.

3.1.2 The Kuramoto model in a network setting

We can adapt Equation (3.1) to create a network of N oscillators by introducing

binary coupling between the oscillators, which is an approach that was used in [3, 4, 6].

We consider the following generalised version of Equation (3.1):

dθi
dt

= ωi +
N∑
j=1

κAij sin(θj − θi), i = 1, . . . , N, (3.4)

where κ ≥ 0 denotes the normalised coupling strength and the entries of the coupling

matrix A = (Aij)
N
i,j=1 indicate whether oscillators i and j are coupled (i.e. Aij = 1),

or not (i.e. Aij = 0). Note that Equation (3.4) can be even more general by using

different coupling strengths κi,j for every different pair of oscillators or by considering

a functions other than sine on the right-hand side.

We use the same constants and underlying set up as in [6]. We choose the coupling

strength to be κ = 0.2, the number of oscillators to be N = 128, and we draw

the natural frequencies ωi from a Gaussian distribution with mean 0 and standard

deviation 1. We construct an underlying network by dividing the oscillators into 8

separate communities 1 of 16 distinct oscillators each and let every oscillator have

exactly 14 connections, 13 of which are with oscillators in the same community and

1 outside of the community.2 We call this network a structural network in analogy to

neuronal data, as we will see later. In figure 3.1 we illustrate the planted community

structure.

We observe the system for M + 1 time steps until time T = 10 and create time

vectors τi = (θi(t0), . . . , θi(tM)) for every oscillator θi. These give a time-series for

each oscillator. To quantify the pairwise synchrony of two oscillators i and j through-

out a set number of k ≤ M time steps, we partition the time-series into vectors τ k̂i ,

1In this context, we use the term community to denote a set of densely connected nodes with
little connections to other nodes outside of this set. In network science however, the term can also
be used differently. For a detailed discussion see for example [35].

2This network set up differs slightly from [6], where every oscillator had at least 13 connections
inside its community and at least 1 connection outside of the community.

23

Figure 3.1: Example of a coupling matrix A we use for the interaction between oscillators in the
Kuramoto model. Each oscillator has exactly 13 connections to oscillators within its community and
exactly 1 connection to an oscillator outside of it.

that consist of k consecutive elements each, and we define the following local measure,

which was introduced by [3] and adapted by [6]:

φk̂ij = 〈| cos[τ k̂i − τ k̂j]|〉, (3.5)

where the angular brackets indicate an average over several simulations, in our case 20.

We then use the values φij to define the edge weights in the fully connected weighted

temporal network of Kuramoto oscillators. In analogy to neuronal networks, we call

this network a functional network for the Kuramoto model. We vary the number

k ≤ M to create separate time layers of the functional network from the partitioned

time-series in our analysis.

We show an illustration of the steps we take to create a functional network from

the Kuramoto model in Figure 3.2.

Kuramoto model

Imposed structural network

Kuramoto data

20 40 60 80 100 120

20

40

60

80

100

120
13

14

15

16

17

18

19

20

21

22

Pairwise synchrony of oscillators

Functional network

Figure 3.2: Steps for creating a functional network from the Kuramoto model.

24

3.1.3 Null models for the Kuramoto data

To assess whether structures revealed by the methods that we use are influenced

significantly by the actual behaviour of the Kuramoto model and to what extent

these can be explained as by random processes, we also analyse two different null

models based on the time-series output. The first null model consists of randomly

permuting the time-series for every oscillator before computing the similarity measure

with Equation (3.5). We refer to this null model as the simple null model. The second

null model is based on creating surrogate data using a discrete Fourier transformation.

This approach, which was introduced for time-series in [37], has the advantage of

preserving not only the mean and the variance of the original time-series but also its

autocorrelation function. In a first step, we take the discrete Fourier transform of the

time-series data τ of length M :

τ̂n =
1√
M

M−1∑
m=0

τme
2πinm
M . (3.6)

We then construct surrogate data by multiplying the Fourier transform by random

phases an chosen uniformly from the interval [0, 2π) and fulfilling a symmetry prop-

erty: For every n ≤ M , there exists ñ such that an = −añ. This symmetry

ensures that the inverse Fourier transform yields real values. The surrogate data

σ = (σ1, . . . , σM) is thus given by

σm =
1√
M

M−1∑
n=0

eian τ̂ne
− 2πinm

M . (3.7)

We call this null model Fourier null model. Both null models were used in [6] and

performed differently under various community-detection techniques.

25

3.2 Neuronal network data

The human brain is a source for real-life networks. Neurons, which are specialised

brain cells, receive, process, and transmit signals to each other via networks. Even

though this has been known for a long time, graph theory has only been applied to

neuronal networks in the past 15 years [13] (for a more recent review, see also [39]).

In the following Section we give a brief overview on networks based on data from

neuroscientific experiments. We also introduce a particular data set [5], which we will

analyse using tools from computational topology in Chapter 4.

3.2.1 The use of graph theory in neuroscience

Treating the brain as a complex system offers the possibility to use mathematical

tools that can help identifying key regions in the brain that are involved in various

physiological and pathological processes, as well as giving more general information

about the structure of such networks. There is for example strong evidence that the

brain has an underlying modular structure, i.e. it is organised in small subunits,

which can carry out specific functions without influencing the network as a whole

[13, 14, 33].

There are two different types of brain networks: structural and functional net-

works. In a structural network, the nodes consist of neurons, and the physical con-

nections between them form the edges. Obtaining such information experimentally

is laborious and usually requires microscopical techniques, which can only be carried

out on a dead subject [32]. Moreover, although structural networks provide informa-

tion on the underlying architecture of brain connections, they do not provide direct

information about the neurophysiological dynamics. Therefore, it is also important

to study functional networks. Functional networks consist of multiple spatially dis-

tinct brain regions, e. g. defined by a fixed anatomical atlas that form the nodes,

and edges that are based on behavioural similarity between these regions. We recall

that in the previous chapter we imposed a network on the Kuramoto model, which

corresponds to what we now know as a structural network for the model. We then

created the functional network from the time-series output of the model. The data for

neuronal functional networks are usually obtained by imaging methods such as func-

tional MRI (fMRI) or electrode-based methods monitoring N predetermined regions

and producing time-series for these regions. One then defines an association matrix

Ã = (ãij)i,j=1,...,N for the functional network using a measure for the statistical asso-

ciation between the time-series of node i and j (see Figure 3.3 for schematic overview

26

of the process). The measure for the association matrix is chosen depending on the

underlying neuroscientific question. Even though structural and functional networks

differ greatly in their definition, as in the Kuramoto case the structural network of a

brain underlies the functional network and there is strong evidence that network topo-

logical parameters are conserved, many of which can undergo changes for example in

neurological diseases [13, 32]. In most studies, the graphs analysed after processing

anatomy where few modules uncovered at large spatial scales are
complemented by more modules at smaller spatial scales (27).

Dynamic Modular Structure.We next consider evolvability, which is
most readily detected when the organism is under stress (29) or
when acquiring new capacities such as during external training in
our experiment. We found that the community organization of
brain connectivity reconfigured adaptively over time. Using a re-
cently developed mathematical formalism to assess the presence
of dynamic network reconfigurations (25), we constructed multi-
layer networks in which we link the network for each time window
(Fig. 3A) to the network in the time windows before and after
(Fig. 3B) by connecting each node to itself in the neighboring win-
dows. We then measured modular organization (30–32) on this
linked multilayered network to find long-lasting modules (25).

To verify the reliability of our measurements of dynamic mod-
ular architecture, we introduced three null models based on per-
mutation testing (Fig. 3C). We found that cortical connectivity is
specifically patterned, which we concluded by comparison to a
“connectional” null model in which we scrambled links between
nodes in each time window (33). Furthermore, cortical regions
maintain these individual connectivity signatures that define
community organization, which we concluded by comparison to
a “nodal” null model in which we linked a node in one time win-
dow to a randomly chosen node in the previous and next time
windows. Finally, we found that functional communities exhibit
a smooth temporal evolution, which we identified by comparing
diagnostics computed using the true multilayer network structure
to those computed using a temporally permuted version (Fig. 3D).
We constructed this temporal null model by randomly reordering
the multilayer network layers in time.

By comparing the structure of the cortical network to those
of the null models, we found that the human brain exhibited a
heightened modular structure in which more modules of smaller
size were discriminable as a consequence of the emergence and
extinction of modules in cortical network evolution. The statio-
narity of communities, defined by the average correlation be-
tween partitions over consecutive time steps (34), was also higher
in the human brain than in the connectional or nodal null models,
indicating a smooth temporal evolution.

Learning. Given the dynamic architecture of brain connectivity, it
is interesting to ask whether the specific architecture changes

A

B

Fig. 1. Structure of the investigation. (A) To characterize the network struc-
ture of low-frequency functional connectivity (24) at each temporal scale,
we partitioned the raw fMRI data (Upper Left) from each subject’s brain into
signals originating from N ¼ 112 cortical structures, which constitute the net-
work’s nodes (Upper Right). The functional connectivity, constituting the net-
work edges, between two cortical structures is given by a Pearson correlation
between the mean regional activity signals (Lower Right). We then statisti-
cally corrected the resulting N × N correlation matrix using a false discovery
rate correction (54) to construct a subject-specific weighted functional brain
network (Lower Left). (B) Schematic of the investigation that was performed
over the temporal scales of days, hours, and minutes. The complete experi-
ment, which defines the largest scale, took place over the course of three
days. At the intermediate scale, we conducted further investigations of
the experimental sessions that occurred on each of those three days. Finally,
to examine higher-frequency temporal structure, we cut each experimental
session into 25 nonoverlapping windows, each of which was a fewminutes in
duration.

A C

B

Fig. 2. Multiscale modular architecture. (A) Results for the modular decomposition of functional connectivity across temporal scales. (Left) The network plots
show the extracted modules; different colors indicate different modules and larger separation between modules is used to visualize weaker connections
between them. (A) and (B) correspond to the entire experiment and individual sessions, respectively. Boxplots show the modularity index Q (Left)
and the number of modules (Right) in the brain network compared to randomized networks. See Materials and Methods for a formal definition of Q.
(C) Modularity index Q and the number of modules for the cortical (blue) compared to randomized networks (red) over the 75 time windows. Error bars
indicate standard deviation in the mean over subjects.

7642 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1018985108 Bassett et al.

Figure 3.3: Creating a functional network from fMRI data (with permission from [5]).

experimental data are binary. Frequently one applies a global threshold τ ∈ R+ to

the association matrix yielding a binary3 adjacency matrix A = (aij)i,j=1,...,N that

represents the graph to be studied as follows:

aij =

{
1, if ãij ≥ τ,

0, otherwise.
(3.8)

The choice of threshold has a major influence on the resulting graph and inevitably

leads to a loss of information. Moreover, it has been suggested the chosen threshold

determines the properties that can be observed [14]. The two approaches normally

taken to address this problem are either to try and find one optimal threshold or to

threshold the association matrix at different values and examine the resulting network

properties as a function of the threshold [14, 33].

Using graph theory on neuronal networks has led to many interesting medical

insights. For example, a series of neurological and psychiatric disorders appear to be

accompanied by changes in network connectivity, and some network properties can

even be used as diagnostic markers for conditions such as Alzheimers, strokes, autism,

3Alternatively, one can study a thresholded version of the weighted graph.

27

and schizophrenia. However, such results need to be treated with caution, because

other factors can also influence network structure [13, 44].

The full potential of using network theory in neuroscience is yet to be tapped. Thus

far, it has mainly been used for descriptive purposes of static networks, seldom taking

into account temporal evolution or interactions with outside networks. These form

promising areas of recent research and offer opportunities for future work [33].

3.2.2 Data set: Human brain networks during learning

The data set that we study in the present dissertation is a set of time-dependent

functional brain networks that has been studied by several existing methods. The

data was analysed in [5] to investigate the temporal correlation of neuronal activity

during the acquisition of motor learning skills. Twenty subjects were monitored while

performing a simple motor learning task similar to a musical sequence executed by

four fingers using their non-dominant hand. In addition, the data from the daily

sessions were cut into 25 non-overlapping time windows, each of the length of 80

data points. The data set therefore consists of 60 networks with 25 time layers

each. The edge weights of the functional networks were calculated from the temporal

correlation between the activity of every pair of nodes, which in this case are fixed in

time and represent 112 different brain structures based on a neuroanatomical atlas.

The association matrices for the the functional networks were corrected for a false

discovery rate. i.e. matrix elements under a certain threshold which represent a

correlation that is to be expected at random, were set to zero while the other matrix

elements were retained.

The results indicated that there is a significant segregation of the nodes in the

functional networks into a small number of different communities with dense high edge

weight connections inside the communities and sparse high edge weight connections

to other nodes. Within these communities certain nodes appeared to stay within the

same community over the time of the experiment while others seemed to constantly

switch between different communities. In [8] it was shown that two very important

groups of nodes forming parts of such a community during the acquisition of the

motor-learning task described above over a longer amount of time are the primary

and secondary sensimotor regions and the primary visual cortex. With task practice,

the strength of their interaction has been observed to decrease as they presumably

become more autonomous. Moreover, [7] showed that these modules form part of a

densely connected stiff temporal core surrounded by a periphery of nodes frequently

28

changing connections among each other. Thereby, a stronger segregation of the core

and periphery was observed among subjects who showed better learning.

The data set was further used in [6] to illustrate the use of null models in robust

community detection.

29

Chapter 4

Topological network analysis

As mentioned in Subsection 3.2.1, graphs are often studied after applying a threshold

to the data. The choice of such a threshold is difficult since there is no guarantee

that a subinterval of thresholds shows conserved network properties. In particular,

many parameters such as graph size need to be taken into account when interpreting

results on thresholded networks [44]. One of the major advantages of using persistent

homology is that we can examine a graph filtration generated by all possible thresholds

and analyse how persistent certain topological features are across the filtration. We

now give a detailed explanation of the methods that we use for topological network

analysis, and we then present results on the various data sets studied.

4.1 Methods and algorithms

As we saw in Section 2.2, the main ingredients to using persistent homology on

network data are simplicial complexes and filtrations. There are many ways to define

simplicial complexes and filtrations on graphs, and the choice is either motivated by

the type of questions to be answered or by consideration of computational scaling. We

use three different filtrations for our analysis: a filtration by weights, a weight rank

clique filtration and a modified version of the Vietoris-Rips complex for weighted

networks. All three filtrations have previously been applied to weighted neuronal

networks [29, 34, 28], although we use a slightly different approach when transforming

edge weights into distances in a metric space for the Vietoris-Rips complex since the

idea to use this approach was independent of [28].

30

4.1.1 Filtration by weights

The simplest graph filtration is a filtration by weights [29], which we obtain via the

following steps:

1. Define filtration step 0 as the set of all nodes.

2. Rank all edge weights {ω1, . . . , ωτ}, where ω1 = ωmax and ωτ = ωmin, where τ

is the amount of distinct weights in the graph.

3. In filtration step t, threshold the graph at weight ωt, for 1 ≤ t ≤ τ and create

a binary graph.

We then define the simplicial complexes on the graph: Every node defines a 0-simplex

and every edge in the graph forms a 1-simplex. We include unconnected nodes as

0-simplices in the simplicial complex. We call this simplicial complex an edge-node

complex. As mentioned in Subsection 3.2.1, we imagine the graph to be embedded in

a higher-dimensional space to avoid edges crossing. Note that the simplicial complex

on a graph is maximally of dimension 1.

4.1.2 Weight rank clique filtration

The weight rank clique filtration, first introduced by [34], is also based on a graph

filtered by weights. However, it differs in the subsequent definition of the simplicial

complex on the graph. Instead of just building 0- and 1-simplices, we build p-simplices

from p-cliques. This is a valid simplicial complex because every (p+ 1)-clique in the

graph guarantees the existence of a p-face on that clique, due to the fact that cliques

are closed under intersection or taking subsets. Hence, they satisfy the requirements

for a simplicial complex. This type of simplicial complex on a graph is called a clique

complex.

4.1.3 Comparison of the two filtrations based on graph fil-
trations by weight

We now present an example to illustrate the advantages and disadvantages of using

a filtration by weights and the weight rank clique filtration. We consider the graph

filtration in Figure 4.1 and build an edge-node complex as well as a clique complex

on it. Figure 4.2 shows the resulting barcodes. The 0-dimensional barcodes in both

cases show us what we expect: Prior to the first filtration step, all points are separate

connected components. In the first step, the graph is separated into two distinct

31

Figure 4.1: Dodecagon filtration: We show the three holes recognised by the weight rank clique
filtration in colour.

0 1 2 3 4 5 6 7 8

Dodecagon filtrated by weights (dimension 0)

0 1 2 3 4 5 6 7 8

Dodecagon filtrated by weights (dimension 1)

0 1 2 3 4 5 6 7 8

Dodecagon weight rank clique filtration (dimension 0)

0 1 2 3 4 5 6 7 8

Dodecagon weight rank clique filtration (dimension 1)

Figure 4.2: Barcodes for the dodecagon filtration using two different methods for building the
simplicial complex on the graph filtration.

connected components before it becomes fully connected in the second filtration step.

Although the barcodes for dimension 0 do not exhibit any difference between the two

filtrations, the filtrations provide very different information for the 1-dimensional case.

The filtration by weights counts every new connection closing a loop as a separate

1-loop in the network. These 1-loops do not die throughout the filtration because no

higher-dimensional simplices are built on top of them. The 1-dimensional barcodes

thus primarily point us towards filtration steps, where a large number of edges closing

a new loop or crossing an existing loop is added. This can be observed in filtration

step 5 and 7 of our example. The 1-dimensional barcode does however not reveal any

information on how large these loops are or whether they are crossed by a new edge

at a later filtration step. In the weight rank clique filtration a 1-loop needs to consist

of at least 4 edges to appear in the 1-dimensional barcode and it subsequently dies as

soon as it is completely filled with triangles of connected vertices forming 2-simplices.

In our example, the blue loop created in filtration step 2 is crossed by weaker edges in

filtration steps 3 and 4 giving rise to the pink and yellow loops respectively and it only

disappears in the last filtration step when it is fully filled with 2-simplices. Persistent

32

1-loops in the weight rank clique filtration indicate that the loop in question consists

of strong edges and the edge completing the last 2-simplex in the loop is much weaker

in comparison. 1-loops that are born and die very early in this filtration can indicate

the existence of very strongly connected node communities of the network, such as

the 4 nodes surrounding the yellow and pink hole in Figure 4.1. Note, that since both

of these filtrations are constructed on a graph filtered by weights, the persistence of

loops is always relative to the edge weights, i.e. we obtain the exact same barcodes

as above for a graph, which could for example have a very different spectrum of edge

weights, if their ranking and distribution on the graph edges remains the same. Both

filtrations reveal different aspects of the studied graph, which, when taken together,

give an impression of the types of questions that can be answered by using these

methods.

4.1.4 Modified Vietoris-Rips complex

The Vietoris-Rips complex, as described in Subsection 2.2.3, provides a good method

for analysing point cloud data in a metric space. In order to use the complex on

weighted network data, we define a map φ that assigns elements of the association

matrix Ã = (aij)
N
i,j=1 to elements in a distance matrix D̃ = (d̃ij)

N
i,j=1, such that the

entry d̃ij = φ(ãij) represents the distance between nodes i and j embedded in a

metric space. To detect communities with high edge weights between nodes within

the community and much lower edge weights to nodes outside the communities, we

define φ as follows:

φ(aij) =
1

aij
, (4.1)

for i, j = 1, . . . , N . We then build the Vietoris-Rips complex on the resulting point

cloud, varying the radius ε of the balls around every point in the metric space in 1000

steps from zero to a set maximum. In comparison to the other two filtrations the

barcodes resulting from the Vietoris-Rips complex are therefore not relative to the

edge weight spectrum.

4.1.5 Computational tools and issues

We analysed networks with Matlab code constructed using javaPlex [42], a soft-

ware package for persistent homology. For a given filtration of a simplicial complex,

javaPlex outputs Betti intervals that include representative cycles and barcodes.

For the filtration by weights and the modified Vietoris-Rips complex these tools

posed no problems. The weight rank clique filtration, however, exhibited several

33

major computational difficulties. We first attempted to write a Matlab code using

a maximal clique finding algorithm from the Mathworks library [45] based on the

Bron-Kerbosch algorithm, which is to date the most efficient algorithm known for this

problem. A maximal clique finding algorithm with a good running time with respect

to the network size n has been shown to be impossible and as a worst case such an

algorithm has a runtime of order O(3
n
3) [9]. For the weight rank clique filtration all

cliques that are found in one filtration step need to be saved and compared with all

later cliques because every reported clique can be added as a simplex only the first

time it appears. For the given data, the code appeared to be very slow. One first

solution was to restrict the dimension of the simplicial complex to a maximum of 4

and only consider barcodes to a maximal dimension of 2 — the estimated runtime

for one network sample from the analysed networks is in the range of several weeks

to months. We made another attempt by combining k-clique finding algorithms for

k ≤ 4. This, however, did not speed up the process presumably because more cliques

had to be stored and compared in every filtration step.

Therefore, we further attempted to use the newly developed algorithm jHoles

in addition to the Matlab codes. jHoles was presented in [11] as an efficient java

implementation of the weight rank clique filtration built on the javaPlex library.

For a given set of nodes and edges, jHoles performs the weight rank clique filtration

and outputs Betti intervals and, in the newest version released in August 2014, even

barcodes. There are two disadvantages of jHoles that we observed on computation.

Although jHoles is very fast and uses little RAM for small networks with a small

number of cliques, it appears that there are major computational issues when it is

used with almost complete networks such as our functional networks. The analysed

networks needed more than 180 GB of RAM and ran very slowly (the estimated

runtime for one data sample is several weeks). The large number of cliques appears

to be causing these issues.

Several strategies were attempted to overcome these problems. The results which

we present are based on the Matlab codes. To reduce computational time, we

consider a thresholded version of the weighted graphs, including at least half of the

edges. We used jHoles to check the Matlab codes for small examples, which were

consistent.

34

4.2 The Kuramoto model

4.2.1 Simulation

We simulated the basic Kuramoto model for all-to-all coupled oscillators using the

Runge-Kutta Matlab solver ODE45. We checked the code using an existing code

based on explicit Euler by producing a plot of the mean coherence between the oscilla-

tors as a function of the coupling strength. 1 We carried out a total of 10 simulations

using the same initial conditions and we averaged the coherence value over these. The

model exhibits the sigmoidal dependency that is known to occur. The two codes fully

agree for small time steps as shown in figure 4.3.

0 0.5 1 1.5 2 2.5 3 3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coupling strength: K

A
ve

ra
ge

 C
oh

er
en

ce
: r

Timestep = 0.001

Explicit Euler
ODE45

Figure 4.3: Mean oscillator coherence between all-coupled Kuramoto oscillators versus the coupling
strength. We tested the code based on ODE45 using an existing explicit Euler code for the same
model.

We then constructed the community coupled version of the Kuramoto model as

described in section 3.1.2. We set the maximal time to T = 10 and we used ∆t =

0.02 for the time step. We carried out a total of 20 simulations, which yielded one

functional network each using the same coupling matrix A = (Aij)
N
i,j=1. We varied

the initial conditions for the oscillators as well as the natural frequencies between

simulations. We averaged the resulting functional networks over the 20 realisations

and we varied the number of time-series elements that we used for one time layer to

gain insights into the synchronisation process at different time scales.

We also simulated a second version of the community-coupled Kuramoto model,

where we fixed the natural frequencies and the coupling matrix for all 20 simulations.

In both cases, we created the null models used simultaneously to the Kuramoto output

(see Section 3.1.3). We set up the Fourier null model in the same way as in [24].

1During these investigations we found a minor bug in the reference code. This implementation
was based on the code [30], which included the same bug and was published online together with
[41].

35

4.2.2 Filtration by weights

We first discuss the results based on simulations using different natural frequencies for

each simulation. In Figure 4.4 we show functional networks based on the coherence

measured according to Equation (3.5) over all time steps – this corresponds to one

time layer – represented in matrix form. We created the underlying community

structure using the coupling matrix shown in Figure 3.1.

Kuramoto data

20 40 60 80 100 120

20

40

60

80

100

120
13

14

15

16

17

18

19

20

21

22

Simple null model

20 40 60 80 100 120

20

40

60

80

100

120
13

14

15

16

17

18

19

20

21

22
Fourier null model

20 40 60 80 100 120

20

40

60

80

100

120
13

14

15

16

17

18

19

20

21

22

Figure 4.4: Functional networks generated from the Kuramoto model, the simple null model, and
the Fourier null model over all time steps.

Although both null models also detect stronger edge weights within the commu-

nities than between them, the distinction appears to be weaker in comparison to the

Kuramoto model output. Moreover, the maximal edge weights in the null models

appear to be smaller than in the Kuramoto data. This reflects in the length of the

filtration by weights as well as in the resulting barcodes (see Figure 4.5). Although

0 500 1000 1500 2000 2500 3000

Kuramoto filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500 3000

Kuramoto filtrated by weights (dimension 1)

0 500 1000 1500 2000

Simple null model filtrated by weights (dimension 0)

0 500 1000 1500 2000

Simple null model filtrated by weights (dimension 1)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fourier null model filtrated by weights (dimension 0)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fourier null model filtrated by weights (dimension 1)

Figure 4.5: Filtration by weights barcodes generated from the Kuramoto model, the simple null
model, and the Fourier null model. The functional networks were based on all time steps.

the Kuramoto data includes about 3400 filtration steps, both null models have fever

than 2500 filtration steps.

Recall for the 0-dimensional barcodes that every node of a network is regarded as

an individual connected component prior to the first filtration step. A component’s

life within the barcode ends when it is joined to another component by an edge. We

36

cannot distinguish whether a connected component consists of only a node or a whole

set of connected nodes by looking at the barcode only. javaPlex outputs the Betti

intervals combined with representative cycles, so it is possible to trace the cause of

death of an individual component to some extent. In the 0-dimensional case, these

cycles consist of nodes potentially representing an entire component of connected

nodes and we therefore need to go back to the actual filtration step in the graph

filtration to detect whether the death of a component is caused by a node joining

another node or a larger component, or whether two larger components are joined.

In the case of the Kuramoto data the very long lived components in the 0-barcode

in Figure 4.5 with a persistence of over 500 filtration steps can be traced back to

the joining together of the 8 separate communities, which were implanted in the

structural network. This indicates that there are about 500 different, very strong

edge weights, which connect nodes within the communities before the communities

are joint together in one component later in the filtration. In the two null models

the long living components often consist of nodes joining the network at a later time,

which reflects the less distinct communities.

The 0-barcode based on Kuramoto data has a different shape compared to the two

null models. In the first filtration steps connected components disappear very rapidly,

forming a very sharp peak in the barcode with about two thirds of the connected

components dying within the first 150 filtration steps. The 0-barcodes generated from

the two null models appear to have more persistent components from the beginning

onwards forming a wider cone in the upper two thirds of the shown components

even after taking into account that the filtration lengths differ. Together with the

observation that individual nodes tend to join the network later, this could indicate

that more connections are made within the communities early. The communities are

then joined together earlier than in the Kuramoto case, where most nodes connect to

their communities early in the filtration, but the communities are connected later.

After the rapidly dying components, the Kuramoto data exhibits a regime of

linearly longer lived components followed by the last eight very long lived components.

We observe a similar phenomenon for the null models.

The 1-dimensional barcodes look very similar in all three cases and exhibit a

very slow increase of 1-loops in the first third of the filtration steps. This indicates

that in this regime nodes are joined sparsely to each other without forming many

loops. Note that this corresponds to the filtration steps during which all separate

components in the network are connected. We observe that in the filtration step,

in which the network finally consists of one single component, a larger proportion

37

of 1-loops has formed in the Kuramoto model output than in the two null models.

This presumably again reflects the fact that in-community edges are stronger for the

Kuramoto communities, and thus form more 1-loops early on, than in the null models.

After this first regime the 1-loops increase more rapidly, presumably when more

connections within the communities are made. They then almost saturate as more

connections between the communities are formed in the end of the filtration.

The form of the 0- and the 1-dimensional barcodes are determined by the under-

lying community structure as well as the behaviour of the model. Random networks

of the same size constructed by drawing edge weights from a uniform distribution are

longer in filtration length and also have fewer long-lived components in the 0-barcode.

They exhibit a strictly linear increase in 1-loops (see Figure B.1 in Appendix B).

We now examine different time scales in the Kuramoto dynamics by creating two

time layers of the functional network from the model output. One is based on the

first half of the time steps and the other is based on the second half of the time steps.

In Figure 4.6 we show the two matrix representations of the functional networks that

we create in this way. During the first 250 time steps, we observe a strong synchro-

Kuramoto data 1

20 40 60 80 100 120

20

40

60

80

100

120
8

9

10

11

12

13

14

15

Simple null model 1

20 40 60 80 100 120

20

40

60

80

100

120
8

9

10

11

12

13

14

15

Fourier null model 1

20 40 60 80 100 120

20

40

60

80

100

120
8

9

10

11

12

13

14

15

Kuramoto data 2

20 40 60 80 100 120

20

40

60

80

100

120
8

9

10

11

12

13

14

15

Simple null model 2

20 40 60 80 100 120

20

40

60

80

100

120
8

9

10

11

12

13

14

15

Fourier null model 2

20 40 60 80 100 120

20

40

60

80

100

120
8

9

10

11

12

13

14

15

Figure 4.6: Functional networks generated from the Kuramoto model, the simple null model, and
the Fourier null model. Top row: Networks based on time steps 1–250. Bottom row: Networks
based on time steps 251–500.

nisation within the communities in the Kuramoto data. The synchrony gets even

stronger in the second half of the time steps and some communities exhibit stronger

inter-community synchronisation than others. Both null models exhibit a weaker

38

in-community synchrony than the Kuramoto case, but they appear to exhibit less

variation in the synchronising patterns among the communities leading to a higher

overall synchronisation of the oscillators. The corresponding barcodes are shown in

Figure 4.7.

0 500 1000 1500 2000 2500

Kuramoto filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500

Kuramoto filtrated by weights (dimension 1)

0 200 400 600 800 1000 1200 1400 1600 1800

Simple null model filtrated by weights (dimension 0)

0 200 400 600 800 1000 1200 1400 1600 1800

Simple null model filtrated by weights (dimension 1)

0 200 400 600 800 1000 1200 1400 1600 1800

Fourier null model filtrated by weights (dimension 0)

0 200 400 600 800 1000 1200 1400 1600 1800

Fourier null model filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500 3000 3500

Kuramoto filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500 3000 3500

Kuramoto filtrated by weights (dimension 1)

0 200 400 600 800 1000 1200 1400 1600 1800

Simple null model filtrated by weights (dimension 0)

0 200 400 600 800 1000 1200 1400 1600 1800

Simple null model filtrated by weights (dimension 1)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fourier null model filtrated by weights (dimension 0)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fourier null model filtrated by weights (dimension 1)

Figure 4.7: Filtration by weights barcodes generated from the Kuramoto model, the simple null
model, and the Fourier null model. Top row: Barcodes generated from functional matrices based on
time steps 1–250. Bottom row: Barcodes generated from functional matrices based on time steps
251–500.

The shape of the 0-barcodes for both time ranges differs slightly in the Kuramoto

case with more components dying prior to filtration step 500 in the first time range.

These components only consist of merging communities in some cases, mostly they

represent nodes joining the network at a later filtration step. For the barcode gener-

ated from the second time range the death of the longest living components in about

half the cases represent the joining of the eight communities, which can be expected

from the functional matrix.

Both 0-barcodes generated for the null models have similar traits in both time

ranges, as can be expected. The longest living components in all four barcodes

represent nodes connecting to the rest of the network late in the filtration. This can

be expected given the similarly strong connections in and outside the communities.

The shape of the 1-barcodes hardly differs from the previously shown barcodes

in Figure 4.5. Only the barcode based on the second time range of the Kuramoto

time-series seems to differ slightly from the previous shape from filtration step 2700

39

onwards. This could be caused by the fact that instead of just closing connections

within existing components we also have a large proportion of new nodes entering

the network subsequently closing 1-loops. Indeed, looking at the functional matrices

in Figure 4.6 we observe that there are a few nodes with relatively low edge weights

within their communities compared to the first time range.

We consider a final example, which we create from the Kuramoto model using a

fixed set of natural frequencies over 20 simulations. In Figure 4.8 we show the matrix

representation of a functional network created from 20 community-coupled Kuramoto

simulations using the same underlying coupling matrix and natural frequencies in ev-

ery simulation.

Kuramoto Data

20 40 60 80 100 120

20

40

60

80

100

120

8

10

12

14

16

18

20

22

Simple null model

20 40 60 80 100 120

20

40

60

80

100

120

8

10

12

14

16

18

20

22
Fourier null model

20 40 60 80 100 120

20

40

60

80

100

120

8

10

12

14

16

18

20

22

Figure 4.8: Functional networks generated from the Kuramoto model, the simple null model, and
the Fourier null model over all time steps using fixed natural frequencies.

Observe that in the Kuramoto case the communities are generally more strongly

internally connected than among each other, but some internal connections are also

very weak. Both null models appear to have less communities than the Kuramoto

case and in some cases also weaker internal connections. This has an influence on the

corresponding barcodes, which we show in Figure 4.9.

0 500 1000 1500 2000 2500 3000 3500

Kuramoto filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500 3000 3500

Kuramoto filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500

Simple null model filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500

Simple null model filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500

Fourier null model filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500

Fourier null model filtrated by weights (dimension 1)

Figure 4.9: Filtration by weights barcodes generated from the Kuramoto model, the simple null
model, and the Fourier null model. The functional networks are based on all time steps and the
simulations used fixed natural frequencies.

40

The 0-barcodes for the null models now appear to exhibit a much thicker peak

caused by more persisting components in the beginning of the filtration. The overall

persistence of the components also seems to be longer for the null models than for

the Kuramoto case. While all three 0-barcodes exhibit long lived components of

persistence 500-1000 filtration steps, there are only about half as many long lived

components in the Kuramoto case. Moreover, the Kuramoto oscillators exhibit a

phase between filtration step 250 to 600, where edges appear to connect nodes within

already existing components rather than joining separate components together. Even

though the increase in the number of 1-loops in the corresponding filtration phase of

the 1-barcodes are of similar magnitude for all three cases, the connections made in

the Kuramoto case during this phase are presumably within communities while most

in-community connections in the null models have at this stage presumably already

been made due to the smaller amount of strongly connected communities.

Further examples of filtration by weights barcodes for the Kuramoto output can

be found in Appendix B.2.

It generally appears difficult to deduce information from the 1-barcodes in this

filtration, even though they carry important information when compared to the 0-

barcodes of the filtration. In Subsection 4.2.3, we present the results from the weight

rank clique filtration, which carries more information in the 1-barcodes.

4.2.3 Weight rank clique filtration

As we discussed in Subsection 4.1.5, the weight rank clique filtration is computation-

ally very demanding. We therefore produced barcodes for a small set of examples

and considered only a little more than half of the filtration steps. We run the codes

on the Kuramoto data, the simple null model, and the Fourier null model. We used

the functional matrices with two time layers introduced in Figure 4.6. In Figure 4.10

we show the corresponding 1- and 2-barcodes. We omitted the 0-barcodes since they

are the same as for the filtration by weights (see Figure 4.7).

Both barcodes generated from Kuramoto data appear to have short lived 1-loops

in the beginning of the filtration. More persistent 1-loops appear later in the filtration.

In the functional network created from the early time steps most of the 1-loops up to

filtration step 900 are short lived. In particular the ones appearing before filtration

step 300. Recalling the 0-barcodes in Figure 4.7, this is also the point in the filtration

when the remaining separate components in the network become more persistent. As

before, we can look for representative cycles in the javaPlex output. In this case

this information needs to be treated with caution since the output can consist of a

41

200 400 600 800 1000 1200 1400 1600 1800

Kuramoto weight rank clique filtration (dimension 0)

200 400 600 800 1000 1200 1400 1600 1800

Kuramoto weight rank clique filtration (dimension 1)

200 400 600 800 1000 1200 1400 1600 1800

Kuramoto weight rank clique filtration (dimension 2)

0 200 400 600 800 1000 1200

Kuramoto weight rank clique filtration (dimension 0)

0 200 400 600 800 1000 1200

Simple null model weight rank clique filtration (dimension 1)

0 200 400 600 800 1000 1200

Simple null model weight rank clique filtration (dimension 2)

0 100 200 300 400 500 600 700 800 900 1000

Fourier null model weight rank clique filtration (dimension 0)

0 100 200 300 400 500 600 700 800 900 1000

Fourier null model weight rank clique filtration (dimension 1)

0 100 200 300 400 500 600 700 800 900 1000

Fourier null model weight rank clique filtration (dimension 2)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Kuramoto weight rank clique filtration (dimension 0)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Kuramoto weight rank clique filtration (dimension 1)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Kuramoto weight rank clique filtration (dimension 2)

0 200 400 600 800 1000 1200

Simple null model weight rank clique filtration (dimension 0)

0 200 400 600 800 1000 1200

Simple null model weight rank clique filtration (dimension 1)

0 200 400 600 800 1000 1200

Simple null model weight rank clique filtration (dimension 2)

0 100 200 300 400 500 600 700 800 900 1000

Fourier null model weight rank clique filtration (dimension 0)

0 100 200 300 400 500 600 700 800 900 1000

Fourier null model weight rank clique filtration (dimension 1)

0 100 200 300 400 500 600 700 800 900 1000

Fourier null model weight rank clique filtration (dimension 2)

Figure 4.10: Weight rank clique filtration barcodes generated from the Kuramoto model, the simple
null model, and the Fourier null model. Top row: Barcodes generated from functional matrices based
on time steps 1–250. Bottom row: Barcodes generated from functional matrices based on time steps
251–500.

1-loop, which does measure the same hole as the one we are interested in, but that

could appear in the network in a much later filtration step than the first appearance

of the hole in the network. Hence, this could for example give the impression that the

loop is born by an inter community connection occurring later in the filtration when

in fact it is created as an in-community loop at first. Around filtration step 900 many

of the representative loops observed are in communities, which is what we expect.

None of these loops appear to be very persistent, which indicates that they are filled

quickly with 2-simplices, i.e. the nodes in the community are densely connected by

high edge weights. This is also the point in the filtration at which we observed a

rapid increase of 1-loops in the filtration by weight (see Figure 4.7).

The functional matrix for the second time range of the Kuramoto data appears to

have even more short-lived 1-loops in the beginning of the filtration than the previous

time range, which is presumably caused by the even more synchronised communities

in the functional network. The early 2-loops are also represented by in-community

connections supporting this claim. Moreover, we recall that the merging connected

components at the end of this phase in the filtration consisted of communities being

connected. We also observe more late-formed persistent loops than in the previous

time range. Because the later parts of the filtration are not visible, we cannot discuss

precisely how persistent these loops are. We can only speculate that these more

persistent 1-loops could be inter community connections.

Both null models also exhibit quickly dying cycles in the beginning of the filtration,

although in the case of the Fourier null model this phase is much shorter than in the

two other examples. These are followed by more very persistent 1-loops than we

42

observed in the Kuramoto case. The 2-loops up to about filtration step 700 are in

both null models very often represented by in-community loops, which could indicate

that the short-lived 1-loops in the beginning of the filtration are also mostly in-

community loops. The barcodes for the later time range for both null models is very

similar to the first. We recall that the functional networks for both null models showed

less in-community synchronisation compared to the overall synchronisation than the

Kuramoto output (see Figure 4.6). This was in particular the case for the Fourier

null model. Since all shown barcodes exhibit very short-lived 1-loops in the beginning

of the filtration, we will thus treat this as a sign of densely connected communities,

in particular if this is supported by the early forming 2-loops. Even though the

functional networks for the null models do not seem to change significantly between

the time ranges, the barcodes differ in the appearance of long-lived 1-loops and the

form of the 2-barcodes, indicating that these properties are subject to variability and

should only be used with caution when characterising the data networks we analyse

later on. Note that both short-lived 1-loops in the beginning of the filtration followed

by persistent 1-loops do not occur in a uniformly at random generated network (see

Figure B.1 in the Appendix).

4.2.4 Modified Vietoris-Rips complex

We now consider the same set of functional networks (see Figure 4.6) using the modi-

fied Vietoris-Rips complex. We show the barcodes for the Kuramoto data, the simple

null model, and the Fourier null model in Figure 4.11.

Recall that nodes connected by strong edge weights in the network are placed in

proximity of each other in the metric space while weakly connected nodes are further

apart. We thus expect for nodes to connect to their communities much earlier than

to other communities. For all three cases the 0-barcodes show that the separate

connected components merge within a small interval of ε values. Only the Kuramoto

data exhibits a group of longer lived components. For both time ranges most of these

components die due to communities that are merging: seven respectively six out of

nine long lived components die due to inter-community connections. The null models

do not share this property. This reflects expect on the basis of the differences between

the functional networks (see Figure 4.6), where the communities in the Kuramoto data

are stronger connected than in the null models.

In the 1-barcodes, we also see very clear differences between the Kuramoto case

and the two null models. In the Kuramoto case, there is a clear gap in the 1-loops

which appears as the nodes merge with their distinct communities. 1-loops only start

43

0 0.5 1 1.5

Modified Rips complex Kuramoto (dimension 0)

0 0.5 1 1.5

Modified Rips complex Kuramoto (dimension 1)

0 0.5 1 1.5

Modified Rips complex simple null model (dimension 0)

0 0.5 1 1.5

0 0.5 1 1.5

Modified Rips complex Fourier null model (dimension 0)

0 0.5 1 1.5

Modified Rips complex Fourier null model (dimension 1)

0 0.5 1 1.5

Modified Rips complex Kuramoto (dimension 0)

0 0.5 1 1.5

Modified Rips complex Kuramoto (dimension 1)

0 0.5 1 1.5

Modified Rips complex simple null model (dimension 0)

0 0.5 1 1.5

Modified Rips complex simple null model (dimension 1)

0 0.5 1 1.5

Modified Rips complex Fourier null model (dimension 0)

0 0.5 1 1.5

Modified Rips complex Fourier null model (dimension 1)

Figure 4.11: Vietoris-Rips barcodes generated from the Kuramoto model, the simple null model,
and the Fourier null model. Top row: Barcodes generated from functional matrices based on time
steps 1–250. Bottom row: Barcodes generated from functional matrices based on time steps 251–500.

forming again, once the communities start to join. The gap is more prominent in the

second time layer which reflects the stronger connections within the communities in

the second time regime. The barcodes therefore not only point us towards the joining

communities, but also indicate how strong the edge weights within the communities

are. Moreover, the 1-loops formed between communities appear to be more persistent

in the filtration, which is due to the reciprocal relationship we introduced between

the distance in the metric space and the strength of the edge weights.

Both null models show a less clear separation in the 1-barcode, again indicating

that the modified Vietoris-Rips complex is sensitive to the strength of edge weights

in the communities as well as the absolute difference between the edge strengths in

and outside of the communities (see Figure B.6 in the Appendix for barcodes of more

pronounced communities in the null models as observed in the functional networks in

Figure 4.4).

As a final example, we show the modified Vietoris-Rips complex barcodes for the

functional network we introduced in Figure 4.8, which for the null models exhibited

less communities than for the Kuramoto data, in Figure 4.12.

For the Kuramoto case, we again see a strong separation between the 1-loops

formed in communities and those formed between communities. This is not the case

for the null models and only the Fourier null model shows a prominent gap in the

44

0 0.5 1 1.5

Modified Rips complex Kuramoto (dimension 0)

0 0.5 1 1.5

Modified Rips complex Kuramoto (dimension 1)

0 0.5 1 1.5

Modified Rips complex simple null model (dimension 0)

0 0.5 1 1.5

Modified Rips complex simple null model (dimension 1)

0 0.5 1 1.5

Modified Rips complex Fourier null model (dimension 0)

0 0.5 1 1.5

Modified Rips complex Fourier null model (dimension 1)

Figure 4.12: Vietoris-Rips barcodes generated from the Kuramoto model, the simple null model,
and the Fourier null model. The functional networks were based on all time steps.

1-barcode. This is surprising because the communities in the Fourier null model are

overall connected by weaker edge weights than it is the case in the simple null model.

The 0-barcodes also differ greatly in shape and only the Kuramoto case shows clear

signs of late merging communities. This indicates that while the modified Vietoris-

Rips complex is a good indicator of very strong in-community connections combined

with weaker inter-community connections, it might not point us to a small amount

of communities with a smaller difference in edge weights to the connections between

communities.

For modified Vietoris-Rips complex barcodes of a network with edge weights drawn

uniformly at random, see Figure B.1 in the Appendix.

4.3 Functional imaging data

We recall that the data was collected from 20 subjects during a time period of 3 days.

We analyse several versions of the data. The first version that we study consists

of one matrix per subject per day. A second version of the data is further divided

into 25 time windows for every day, which resultis in 1500 functional matrices in

total. In the third version of the data, these 1500 matrices are also corrected for false

detection. We present barcodes of version one of the data only and consider the other

two versions as references for the filtration by weights only. We observe whether we

can detect any of the features we observe in version one are characteristic for all three

versions.

We show three functional matrices from the data in Figure 4.13. Generally, high

edge weights seem to be underrepresented in comparison to weaker edge weights.

Some of the edge weights seem to get perceivably stronger over the course of the

three days.

45

Functional Network, Subject 8, Day 1

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Functional Network, Subject 8, Day 2

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Functional Network, Subject 8, Day 3

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.13: Example of functional matrices, days 1–3 for subject 8. The matrices are based on
version one of the data.

4.3.1 Filtration by weights

In Figure 4.14 we show example barcodes that we created by using a filtration by

weights on the data set from subject 8.

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

Figure 4.14: Example of filtration by weights barcodes generated from data from subject 8. Every
barcode represents one of the three days of the experiment shown in temporal order. Top row:
0-dimensional barcodes. Bottom row: 1-dimensional barcodes.

We consider the 1-dimensional barcodes first. Throughout the filtration there

seems to be no particular phase of filtration steps, where a very large amount of

1-loops are born. We can explain this with the fact that in the given network two

edges hardly ever carry the same edges weight and thus the filtration in most cases

consisted of one filtration step per edge enabling at most two 1-loops to be generated

in one step. The 1-barcodes for this filtration in all versions we analysed and across

all subjects and days do not exhibit any further noteworthy or changing features and

we thus concentrate on the 0-dimensional barcodes. The 0-barcodes in Figure 4.14

look slightly different for each of the three days, but there seems to be an underlying

distinctive shape of the barcodes. For all three days components die rapidly in the

beginning and persist for under 150 filtration steps. After about two thirds of the

nodes are connected, individual components begin to persist for 300 filtration steps

or more. For day three there even seems to be a group of longer-lived components

46

that die within 100 filtration steps of each other. The representative cycles in the

code output however do not point us towards any specific long-living communities.

In general, the persistence of the connected components appears to increase for the

studied subject. This was however not a tendency that we observed across all subjects,

and we also did not observe any apparent connection of this phenomenon to the task

performance of an individual subject. The last particularly long-lived components on

all three days consist of nodes joining the network at a late filtration step.

We observe the shape, which we describe for the 0-barcode of day three in Figure

4.14, as an underlying barcode form across most subjects. In versions two and three

of the data this form even appears at least once for every subject. Apart from this

underlying form we observe no general tendency for changes from day 1 to day 3 over

all the 20 subjects.

We show further examples of filtration by weight barcodes for other subjects in

the Appendix B.3.1.

4.3.2 Weight rank clique filtration

Due to the computational issues with the weight rank clique filtration, we only anal-

yse thresholded versions of the functional networks. We mostly used around 2600

filtration steps, i.e. a little more than half of the edge weights. For five subjects we

were able to carry out the analysis up the filtration step 4000 for one or two of the

days. Even though the 0-barcodes do not differ from the 0-barcodes we created from

the filtration by weights, we include the plots when we want to refer to points in

the filtration when all or most components are connected. We present weight rank

clique filtration barcodes based on data from subject 1 in Figure 4.15. All three 1-

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 2)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 2)

0 500 1000 1500 2000 2500 3000

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500 3000

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500 3000

3−day data weight rank clique filtration (dimension 2)

Figure 4.15: Weight rank clique filtration barcodes generated from thresholded data from subject
1. Every barcode represents one of the three days of the experiment shown in temporal order.

barcodes exhibit very short-lived 1-loops in the beginning of the filtration. Recalling

the Kuramoto findings, these could potentially be indicators of communities of nodes

47

connected densely by high edge weights. We further notice that these 1-loops form at

a point in the filtration at which only a small part of the connected components are

already joint together. The 2-loops generally do not begin to form until almost all

components are connected. This was not the case in the Kuramoto barcodes. Thus,

even if the short-lived 1-loops are indicators of communities, the nodes within the

communities are not quite as densely interconnected by high edge weights as they

were in the Kuramoto case. We observe both these features across almost all subjects

and days with very few exceptions. However, we do not observe any clear tendency

of these short-lived 1-loops to become less or more over the course of the three days

and we also do not see any connection to task performance of the subjects.

Although the 1-barcodes for subject 1 could suggest that more persistent 1-loops

tend to appear later in the filtration over the course of the three days, this is not

a common tendency across the subjects. We, however, observe that there is often

a noticeable horizontal gap between early persistent 1-loops and persistent 1-loops

that appear later in the filtration. Again, this does not occur for all subjects or

for any particular day of the experiment. We show further examples of weight rank

clique filtration barcodes for the data in Figure 4.16. We present these barcodes
0 500 1000 1500 2000 2500 3000 3500 4000 4500

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

3−day data weight rank clique filtration (dimension 2)

0 500 1000 1500 2000 2500 3000

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500 3000

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500 3000

3−day data weight rank clique filtration (dimension 2)

0 500 1000 1500 2000 2500 3000

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500 3000

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500 3000

3−day data weight rank clique filtration (dimension 2)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 2)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 2)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 2)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000

3−day data weight rank clique filtration (dimension 2)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 2)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 0)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 1)

0 500 1000 1500 2000 2500

3−day data weight rank clique filtration (dimension 2)

Figure 4.16: Weight rank clique filtration barcodes generated from thresholded data from subjects
5 (row 1), 9 (row 2) and 13 (row 3). Every barcode represents one of the three days of the experiment
shown in temporal order.

mainly as an illustration of how different the barcodes are for different subjects. This

difference is particularly striking in the 2-barcodes, which do not even seem to show

48

a similar amount of 2-loops across the subjects or the days. The 1-barcodes show

a similar form and, as described above, short lived 1-loops in early filtration steps,

but no common features among the more persistent 1-loops. A gap is visible between

persistent 1-loops occurring for subject 9 on day 1 and 3 and subject 5 on day 2.

4.3.3 Modified Vietoris-Rips complex

We show two examples of modified Vietoris-Rips complex barcodes in Figure 4.17.

Similar to the Kuramoto examples, we observe a small gap forming in the 1-barcodes,

0 1 2 3 4 5 6

Modified Rips complex data (dimension 0)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 1)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 0)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 1)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 0)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 1)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 0)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 1)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 0)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 1)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 0)

0 1 2 3 4 5 6

Modified Rips complex data (dimension 1)

Figure 4.17: Modified Vietoris-Rips complex barcodes generated from data from subjects 1 (row
1),and 3 (row 2). Every barcode represents one of the three days of the experiment shown in temporal
order.

although it is not quite as prominent as before. These first 1-loops are formed early on

in the filtration when about half of the separate components are yet to be connected.

We find them across most subjects on at least one day of the experiment, although

the amount of short-lived 1-loops does not seem to be the same, and they are not

always similarly prominent across subjects. We assume that these 1-loops indicate

either the existence of a small number of small communities, in which nodes are

densely connected by high edge weights or a small number of larger communities,

in which nodes are more sparsely connected by high edge weights, since we would

expect a more clear separation of early short-lived 1-loops from a large number of

communities, in which nodes are densely connected by high edge weights.

49

Chapter 5

Discussion

The analysed Kuramoto examples suggest that all three methods which we employed

can detect the imposed communities to some extent. In the 0-barcodes which we ob-

tained from the filtration by weights, we observed that very rapidly merging network

components followed by later very long-lived components can be a sign of distinct

communities in the network. This barcode shape can, however, also be a sign of a

network exhibiting a large amount of high edge weights followed by long-lived individ-

ual nodes, which are connected to the network by weaker edges. In the cases where we

identified long-lived separate components in the 0-barcode as separate communities

being joined late in the filtration, we needed prior knowledge on the nodes belonging

to one community. We then used this knowledge to check the representative nodes

given by the output of the Matlab codes and to further trace these nodes in the

respective filtration step of the network filtration. We observed a large variation of

the shapes of the 0-barcodes for the null models, which usually exhibited less distinct

communities than the Kuramoto data. The 1-barcodes which we analysed for the

filtration by weights did not appear to give us any important information.

The results from the weight rank clique filtration seemed to detect the commu-

nities in the Kuramoto examples. We observed short-lived 1-loops in a phase of the

filtration when the communities were not yet interconnected according to what we

found in 0-barcodes. Indeed, there seemed to be a larger number of these short-lived

1-loops in the barcodes for cases when the nodes were more synchronised within their

community. Again, we needed prior knowledge of the communities to deduce this. In

addition, the representative cycles given by the Matlab outputs did not necessarily

give us the information we were interested in, i.e. the 1-cycles that cause specific 1-

loops to be born can not necessarily be expected to be listed as representative cycles

by the output of the code. Moreover, we were not able to perform the weight rank

50

clique filtration on the full network due to major computational issues, so we could

not observe potentially important features in later filtration steps.

For the Kuramoto examples, the modified Vietoris-Rips complex showed the most

promising results. For the Kuramoto data we found a clear divide into a phase of

strong connections that are formed between in-community nodes leading to short-

lived 1-loops in the barcode, and into a second phase where more persistent 1-loops

are formed by weaker inter-community connections. We found the gap between these

phases more pronounced for stronger in-community synchrony. We observed a weaker

divide into these two phases for the null models. We interpreted this as a sign that

the method not only detects communities, but also gives an impression of how strong

the in-community edges are.

For the neuronal imaging data it was difficult to find clear observable tendencies

across subjects or days, although the shapes of the barcodes did have some underlying

similar traits. For the weight rank clique filtration and the modified Vietoris-Rips

complex the barcodes often exhibited features, which we had connected to network

communities in the Kuramoto examples. These consisted of short-lived 1-loops form-

ing very early in the filtration in a phase during which the networks consist of separate

connected components. This was the case in both filtrations. We further observed

visible gaps between these short-lived 1-loops and the later 1-loops in the barcodes

for the modified Vietoris-Rips complex.

As mentioned in Section 3.2, a similar data set was analysed by [8], focussing

on changes in the architecture of functional connectivity patterns during learning.

The brain regions studied were the same as in the data set that we analyse here

and it was observed that two brain regions were consistently forming a common

network community during the motor-learning task: the sensimotor regions and the

primary visual cortex. We tried to trace members of both of these components in

the representative cycles given by the Matlab output (see Appendix B.4 for the sets

of nodes). For the weight rank clique filtration we found that the early short-lived

1-loops were predominantly represented by cycles of nodes from these two areas.

Often, there even seemed to be a clear separation into loops that were formed by

edges between nodes from the visual component and loops that were formed within

the sensimotor component. However, we need to keep in mind that the representative

cycles are only homologous to the cycles which form these loops in the first instance.

For the modified Vietoris-Rips complex the short-lived 1-loops also often consisted of

connected members of the motor visual components, but there were less tendencies

51

towards a separation between the two components. We observed no further tendencies

across days in the representative cycles of the short-lived 1-loops. None of the other

properties observed in the same or a similar data set [5, 6, 7, 8] seemed to feature in

the barcodes and we also did not appear to observe any barcode features which we

could have associated with task performance of the individual subjects.

Over all, from the above observations the filtration by weights did not appear to

be very useful. This was mostly due to the fact that only the 0-barcodes seemed

to carry information. In general, we did not observe clear relevant features in the

0-barcodes alone for any of the methods. In particular in cases, where no prior

knowledge of the network was given, we were not able to draw any conclusions from

these barcodes. Previous studies using the filtration by weights, such as [29], had

used the 0-barcodes as one of several approaches to compare two different data sets

focussing on the differences in the shapes of the barcodes. They did, however, not

attempt to find any underlying network features solely by observing these barcodes,

but based their conclusions on a combination of methods they used. Similarly, [28]

compared 0-barcodes for different data sets using a version of the modified Vietoris-

Rips complex. This supports our observation that these barcodes are not informative

on their own. They were, however, very helpful when used in combination with 1-

barcodes for the weight rank clique filtration and the modified Vietoris-Rips complex.

Moreover, if one is merely interested in observing connected components in a network,

methods based on eigenvalue spectrums, such as in [3], might be more advisable in

general.

One of the major problems encountered during the topological data analysis was

the computational scaling. In particular the weight rank clique filtration posed major

problems, even after limiting the analysis to the 0-, 1- and 2-homology groups and

storing only up to 4-cliques. The algorithm jHoles, which we tried to apply, did also

not overcome these problems. An approach to overcome the issues for this filtration in

future could be to use minimal simplicial sets that capture the topology of a simplicial

complex [46]. The advantage of such an approach is that it omits constructing the

clique complex, which caused the bad computational scaling. Another line of action

could be to analyse separate filtration windows. This could however result in a large

loss of important information.

52

Chapter 6

Conclusions and future work

In the present dissertation, we studied two sets of functional networks using tools

from computational topology. The first set consisted of data generated from the Ku-

ramoto model, the second set consisted of neuronal imaging data, which was based on

experiments investigating the acquisition of a motor learning task [5]. We used three

different methods from persistent homology to analyse these data sets: a filtration by

weights [29], a weight rank clique filtration [34] and a version of a modified Vietoris-

Rips complex [28]. The data generated from the model served mainly to shape our

intuition for the interpretation of the barcodes. For the neuronal imaging data set

our aim was to see whether we could detect any previously found properties of these

networks [5, 6] or similar data sets [7, 8].

We found that for the weight rank clique filtration and the modified Vietoris-

Rips complex the 1-barcodes show very short-lived 1-loops in the beginning of the

filtration, which we also observed in Kuramoto examples with a strong underlying

segregation of the network into functional communities. Further, these 1-loops were

often represented by cycles of nodes from the motor-visual component, which was

found to play an important role in the acquisition of motor learning tasks in [8]. Since

this analysis is based on representative cycles only, further computational methods

would need to be developed to identify the 1-cycles which form these 1-loops when

they first become visible in the barcode. We also observed major computational issues

for the weight rank clique filtration, even when using the newly developed algorithm

jHoles. These computational obstacles still need to be overcome to enable future

use of the method on densely connected networks such as the data sets studied.

For the topological methods, a better framework for the analysis of barcodes needs

to be developed in order to study networks without prior knowledge of their features.

This could be done by further analysing outputs from different set-ups for the Ku-

ramoto model. For example, the model could be modified by using different coupling

53

strengths between the oscillators, adding internal or external Gaussian noise or an

inertial term as it has been done by [23] in the all-to-all coupled oscillator case. This

changes the dynamics of the model and could therefore lead to interesting insights.

Further, more neuroscientific models such as the Fitzhugh-Nagumo or integrate-and-

fire models [21] could also lead to relevant insights.

From the topological methods tested it has become clear that while all filtrations

used were very promising at a theoretical level, this is no indication of their practi-

cal use. Further definitions of filtrations and simplicial complexes should therefore

be considered. An example for a further definition of a simplicial complex is the

D-neighbourhood complex, which is studied by [36]. This complex is formed by con-

sidering sets of neighbourhoods for every vertex in a graph. These neighbourhoods

consist of vertices which are within a set distance D of one vertex and are used to

define the simplices. Codes to apply these simplicial complexes have been developed

by [36], but can so far only be used on connected graphs. Two approaches could be

taken to use for analysis on our data sets: Firstly, the edge weights of the functional

networks could be interpreted as distances [36]. Secondly, a filtration by weights could

be applied followed by an algorithm that identifies separate connected components in

every filtration step. The D-neighbourhood codes could then be used on all of these

separately.

In general, to draw a significant conclusion for the data set, it would be impor-

tant to use statistical methods to detect which significant features can be observed

across the subjects. Moreover, these features would have to be detected in similar

experiments. From a big-picture perspective, it is also important that when defining

a functional network based on similarity between two time-series, strong edge weights

do not imply a causal relationship. There are many other measures for similarity

besides the one used in the data set (and the Kuramoto model) [38], which can retain

different information in a similarity network. Similarly, in the data set, the definition

of the nodes and the choice of the number of nodes to be measured also influences

the outcome [44]. Combining findings from different node definitions and similar-

ity measure would thus be useful, but would make both the experiments and the

interpretation of the data unrealistically time-consuming.

In conclusion, the employed topological methods show a great potential for inter-

esting insights in neuronal networks. However, issues such as computational scaling

need to be addressed. Moreover, a good framework for barcode analysis needs to

be developed and the full range of practically suitable definitions of filtrations and

simplicial complexes is yet to be explored.

54

Bibliography

[1] Henry Adams and Andrew Tausz, javaPlex tutorial, 2014. PDF version avail-

able at: http://javaplex.googlecode.com/svn/trunk/reports/javaplex_

tutorial/javaplex_tutorial.pdf

[2] Bruce Alberts, Dennis Bray, Karen Hopkin, Alexander Johnson, Julian Lewis,

Martin Raff, Keith Roberts and Peter Walter, Essential Cell Biology. Garland

Science, New York and London, 2004.

[3] Alex Arenas, Albert Dı́az-Guilera and Conrad Pérez-Vicente, Synchronization

reveals topological scales in complex networks. Physical Review Letters 96: 11,

2006: 114102.

[4] Alex Arenas, Albert Dı́az-Guilera, Jurgen Kurths, Yamir Moreno and Changsong

Zhou, Synchronization in complex networks. Physics Reports 469: 3, 2008: 93 –

153.

[5] Danielle S. Bassett, Nicholas F. Wymbs, Mason A. Porter, Peter J. Mucha,

Jean M. Carlson and Scott T. Grafton, Dynamic reconfiguration of human brain

networks during learning. Proceedings of the National Academy of Sciences of

the United States of America 108: 18, 2011: 7641 – 7646.

[6] Danielle S. Bassett, Mason A. Porter, Nicholas F. Wymbs, Scott T. Grafton,

Jean M. Carlson and Peter J. Mucha, Robust detection of dynamic community

structure in networks. Chaos 23, 2013: 013142.

[7] Danielle S. Bassett, Nicholas F. Wymbs, M. Puck Rombach, Mason A. Porter,

Peter J. Mucha and Scott T. Grafton, Task-based core-periphery organisation of

human brain dynamics. PLoS Computational Biology 9: 9, 2013: e1003171.

[8] Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs and Scott T. Grafton,

Learning-Induced Autonomy of Sensimotor Systems. arXiv: 1403.6034, 2014.

55

http://javaplex.googlecode.com/svn/trunk/reports/javaplex_tutorial/javaplex_tutorial.pdf
http://javaplex.googlecode.com/svn/trunk/reports/javaplex_tutorial/javaplex_tutorial.pdf

[9] Frederic Cazals and Chinmay Karande, A note on the problem of reporting max-

imal cliques. Theoretical Computer Science 407: 1-3, 2008: 564 – 568.

[10] Fred H. Croom, Basic Concepts of Algebraic Topology. Springer, New York, Hei-

delberg, Berlin, 1978.

[11] Jacopo Binchi, Emanuela Merelli, Matteo Rucco, Giovanni Petri and Francesco

Vaccarino, jHoles: A tool for understanding biological complex networks via

clique weight rank persistent homology. Electronic Notes in Theoretical Computer

Science 306,2014: 5 – 18.

[12] Michael Breakspear, Stewart Heitmann and Andreas Daffertshofer, Generative

models of cortical oscillations: neurobiological implications of the Kuramoto

model. Frontiers in Human Neuroscience 4, 2010: 190.

[13] Edward T. Bullmore and Olaf Sporns, Complex brain networks: graph theoretical

analysis of structural and functional systems. Nature Reviews Neuroscience 10,

2009: 186 – 198.

[14] Edward T. Bullmore and Danielle S. Bassett, Brain Graphs: Graphical Models of

the Human Brain Connectome. Annual Review of Clinical Psychology 7, 2011:

113 – 140.

[15] Edward T. Bullmore and Olaf Sporns, The economy of brain network organiza-

tion. Nature Reviews Neuroscience 13, 2012: 336 – 349.

[16] Gunnar Carlsson, Topology and data. Bulletin of the American Mathematical

Society 46, 2009: 255 – 308.

[17] Yu Dabaghian, Facundo Mémoli, L. Frank and Gunnar E. Carlsson, A topological

paradigm for hippocampal spatial map formation using persistent homology. PLoS

ONE 8: 8, 2012: e1002581.

[18] Herbert Edelsbrunner, David Letscher and Afra Zomorodian, Topological persis-

tence and simplification. Discrete and Computational Geometry 28, 2002: 511 –

533.

[19] Herbert Edelsbrunner and John L. Harer, Persistent homology - a survey. Con-

temporary mathematics 453, 2008: 257 – 282.

56

[20] Herbert Edelsbrunner and John L. Harer, Computational Topology. American

Mathematical Society, Providence R. I., 2010.

[21] Jianfeng Feng, Is the integrate-and-fire model good enough? – A review. Neural

Networks 14, 2001: 955 – 975.

[22] Robert Ghrist, Barcodes: The persistent topology of data. Bulletin of the Amer-

ican Mathematical Society 45, 2008: 61 – 75.

[23] Shamik Gupta, Alessandro Campa and Stefano Ruffo, Kuramoto model of syn-

chronization: Equilibrium and nonequilibrium aspects. arXiv: 1403.2083, 2014.

[24] David Kaplan, Fftsurrogate: A code creating phase randomized surrogate data

from a time series, 1996. Code available at:

http://www.macalester.edu/~kaplan/Software/Software/fftsurr.m

[25] Czes Kosniowski, A First Course in Algebraic Topology. Cambridge University

Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1980.

[26] Yoshiki Kuramoto, Chemical Oscillations, Waves, and Turbulence. Springer,

Berlin, New York, 1984.

[27] Yoshiki Kuramoto, Self-entertainment of a population of coupled non-linear os-

cillators, in: Arakai, H. (Ed.): International Symposium on Mathematical Prob-

lems in Theoretical Physics, Lecture Notes in Physics 39. Springer, Berlin, New

York, 1975: 420 – 422.

[28] Hyekyoung Lee, Moo K. Chung, Hyejin Kang, Bung-Nyun Kim and Dong Soo

Lee, Discriminative persistent homology of brain networks. IEEE International

Symposium on Biomedical Imaging: From Nano to Macro, 2011: 841 – 844.

[29] Hyekyoung Lee, Hyejin Kang, Moo K. Chung, Bung-Nyun Kim and Dong Soo

Lee, Weighted functional brain network modelling via network filtration. NIPS

Workshop on Algebraic Topology and Machine Learning, 2012.

[30] Joakim Munkhammar, Simulation of Kuramoto’s model, 2010. Code available

at: http://www.collective-behavior.com/Simulations/Ch6BoxA.m

[31] James R. Munkres, Topology. Pearson Prentice Hall, New Jersey, 2000.

[32] Mark E. J. Newman, Networks: An introduction. Oxford University Press, Ox-

ford, 2013.

57

http://www.macalester.edu/~kaplan/Software/Software/fftsurr.m
http://www.collective-behavior.com/Simulations/Ch6BoxA.m

[33] David Papo, Massimiliano Zanin, José A. Pineda-Pardo, Stefano Boccaletti and

Javier M. Buldú, Functional brain networks: great expectations, hard times, and

the big leap forward. arXiv: 1406.4006, 2014.

[34] Giovanni Petri, Martina Scolamiero, Irene Donato and Francesco Vaccarino,

Topological Strata of Weighted Complex Networks. PLoS ONE 8: 6, 2013:

e66505.

[35] Mason A. Porter, Jukka-Pekka Onnela and Peter J. Mucha, Communities in

networks. Notices of the American Mathematical Society 56: 9, 2009: 1082 –

1166.

[36] Corrine Previte, Personal communication.

[37] Dean Prichard and James Theiler, Generating surrogate data for time series with

several simultaneously measured variables. Physical Review Letters 73: 7, 1994:

951 – 954.

[38] Stephen M. Smith, Karla L. Miller, Gholamreza Salimi-Khorshidi, Matthew

Webster, Christian F. Beckmann, Thomas E. Nichols, Joseph D. Ramsay, Mark

W. Woolrich, Network modelling methods for fMRI. NeuroImage (Elsevier) 54:

2, 2011: 875 – 891.

[39] Olaf Sporns, Contributions and challenges for network models in cognitive neu-

roscience. Nature Reviews Neuroscience 17: 5, 2014: 653 – 660.

[40] Steven H. Strogatz, From Kuramoto to Crawford: Exploring the onset of syn-

chronisation in populations of coupled oscillators. Physica D 143, 2000: 1 – 20.

[41] David Sumpter, Collective Animal Behaviour. Princeton University Press, 2010.

[42] Andrew Tausz, Mikael Vejdemo-Johansson and Henry Adams, javaPlex: A

research software package for persistent (co)homology, 2011. Software available

at: http://javaplex.github.io/

[43] Rebecca M. Todd, Margot J. Taylor, Amanda Robertson, Daniel B. Cassel, Sam

M. Doesberg, Daniel H. Lee, Pang N. Shek, Elizabeth W. Pang, Temporal-spatial

neural activation patterns linked to perceptual encoding of emotional salience.

PLoS ONE 9: 8, 2014: e105648.

58

http://javaplex.github.io/

[44] Fabrizio De Vico Fallani, Jonas Richiardi, Mario Chavez and Sophie Archard,

Graph analysis of functional brain networks: practical issues in translational

neuroscience. arXiv: 1406.7391, 2014.

[45] Jefferey Wildmann, Bron-Kerbosch maximal clique finding algorithm, 2011. Code

available at: http://www.mathworks.co.uk/matlabcentral/fileexchange/

30413-bron-kerbosch-maximal-clique-finding-algorithm

[46] Afra Zomorodian, The tidy set: A minimal simplicial set for computing homol-

ogy of clique complexes. Proceedings of the 2010 annual symposium on Compu-

tational geometry, 2010: 257 – 266.

59

http://www.mathworks.co.uk/matlabcentral/fileexchange/30413-bron-kerbosch-maximal-clique-finding-algorithm
http://www.mathworks.co.uk/matlabcentral/fileexchange/30413-bron-kerbosch-maximal-clique-finding-algorithm

Appendix A

Appendix

A.1 Additional definitions from topology and al-

gebra

Most of the following definitions can be found in [10]. For some of the more basic

topological definitions we used [31], but note that [10] contains equivalent but more

complicated formulations in most cases.

Definition A.1.1 (homeomorphism). Let X and Y be topological spaces and φ :

X −→ Y be a bijection. φ is called a homeomorphism if and only if both φ and

φ−1 : X −→ Y

are continuous.

Definition A.1.2 (Hausdorff space). A topological space X is called a Hausdorff

space if for every pair x1, x2 ∈ X of distinct points there exist neighbourhoods U1 and

U2 of x1 and x2 respectively that are disjoint.

Definition A.1.3 (compact). A topological space X is said to be compact if for every

covering of X by open sets we can find a finite subcollection of open sets that also

covers X.

Definition A.1.4 (m-manifold). An m-manifold is a compact, connected Hausdorff

space X such that each point x ∈ X has a neighbourhood that is homeomorphic to

an open subset of Rm.

Definition A.1.5 (compact surface). We call a 2-manifold a compact surface.

Definition A.1.6 ((Abelian) group). A group (G, ∗) is a set G together with a binary

operation ∗ : G×G→ G satisfying the following properties:

60

i) The binary operation is associative on G: a∗ (b∗ c) = (a∗ b)∗ c for all a, b, c ∈ G.

ii) There is a neutral element e ∈ G such that e ∗ a = a ∗ e = a for all a ∈ G.

iii) For every a ∈ G there is an inverse element a−1 such that a ∗ a−1 = e for any

a ∈ G.

If the binary operation is in addition commutative on G, i.e. a ∗ b = b ∗ a for all

a, b ∈ G, we say the group is Abelian.

If the binary operation is additive, the inverse element of a ∈ G is usually denoted as

−a.

Definition A.1.7 (subgroup). A subset G′ of G is a subgroup if it fulfils the following

properties:

i) G′ is closed under the group operation: a′, b′ ∈ G′ implies a′ ∗ b′ ∈ G′.
ii) e ∈ G′.
iii) a′ ∈ G′ implies a′−1 ∈ G′.

Definition A.1.8 (normal subgroup). A subgroup N of G is said to be normal if for

every element a ∈ N and every b ∈ G it holds that

b ∗ a ∗ b−1 ∈ N. (A.1)

Definition A.1.9 (group homomorphism). Let (G, ∗) and (H, ◦) be groups. A group

homomorphism ϕ : G→ H is a map such that

ϕ(a ∗ b) = ϕ(a) ◦ ϕ(b),

for all a, b ∈ G.

Definition A.1.10 (kernel). Let (G, ∗) and (H, ◦) be groups and eH ∈ H the neutral

element in H. The set

kerϕ = {g ∈ G : ϕ(g) = eH}

is the kernel of the group homomorphism ϕ.

Proposition A.1.1. The kernel of a group homomorphism ϕ : G → H is a normal

subgroup of G.

Definition A.1.11 (image). Let (G, ∗) and (H, ◦) be groups. The set

Imϕ = {h ∈ H : ϕ(g) = h for some g ∈ G}

is the image of the group homomorphism ϕ.

61

Proposition A.1.2. The image of a group homomorphism ϕ : G → H is a normal

subgroup of H.

Definition A.1.12 (coset). Let A be a subgroup of G and g ∈ G. We say the set

gA = {g ∗ a : a ∈ A} (A.2)

is the left coset of A by g. Right cosets Ag are defined analogously.

Proposition A.1.3. If A is a normal subgroup of G, it holds that gA = Ag.

Definition A.1.13 (quotient group). Let A be a normal subgroup of G. We call the

family of all cosets G/A of A together with the operation

gA ∗ hA = (g ∗ h)A (A.3)

the quotient group of G modulo A.

Proposition A.1.4. G/A is a group.

Definition A.1.14 (set of generators of a group). For a group G, we call a subset

X = {g1, . . . , gk} ⊆ G a set of generators of G if every element in G can be written

as a product of elements from X. We write 〈X〉 = G.

Definition A.1.15 (ring). A ring (R, ∗, ◦) is a set R together with two binary oper-

ations + and ∗ such that:

i) (R,+) is an Abelian group.

ii) The operation ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c),
iii) a ∗ (b+ c) = (a ∗ b) + (a ∗ c),
iv) (b+ c) ∗ a = (b ∗ a) + (c ∗ a),

for all a, b, c ∈ R.

62

Appendix B

Appendix

B.1 Further general barcodes

0 1000 2000 3000 4000 5000 6000 7000 8000

Random network filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000 7000 8000

Random network filtrated by weights (dimension 1)

0 500 1000 1500 2000

Random network weight rank clique filtration (dimension 0)

0 500 1000 1500 2000

Random network weight rank clique filtration (dimension 1)

0 500 1000 1500 2000

Random network weight rank clique filtration (dimension 2)

0 0.5 1 1.5

Random network modified Rips complex (dimension 0)

0 0.5 1 1.5

Random network modified Rips complex (dimension 1)

Figure B.1: Barcodes of a filtration by weights (left), a weight rank clique filtration (middle) and
a modified Rips complex (right) performed on a network of 128 nodes with edge weights drawn
uniformly from the interval (0, 1).

B.2 Further Kuramoto barcodes

B.2.1 Kuramoto filtration by weights barcodes for five time
layers

63

Kuramoto Data 1

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
Simple Nullmodel 1

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10 Fourier Nullmodel 1

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Kuramoto Data 2

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10 Simple Nullmodel 2

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
Fourier Nullmodel 2

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Kuramoto Data 3

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
Simple Nullmodel 3

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10 Fourier Nullmodel 3

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Kuramoto Data 4

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
Simple Nullmodel 4

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10 Fourier Nullmodel 4

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Kuramoto Data 5

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
Simple Nullmodel 5

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
Fourier Nullmodel 5

20 40 60 80 100 120

20

40

60

80

100

120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Figure B.2: Functional networks generated from the Kuramoto model, the simple null model, and
the Fourier null model. Row 1: Networks based on time steps 1–100. Row 2: Networks based on
time steps 101–200. Row 3: Networks based on time steps 201–300. Row 4: Networks based on
time steps 301–400. Row 5: Networks based on time steps 401–500.

64

0 1000 2000 3000 4000 5000 6000

Kuramoto filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

Kuramoto filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simple null model filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simple null model filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

Fourier null model filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

Fourier null model filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

Kuramoto filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

Kuramoto filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simple null model filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simple null model filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

Fourier null model filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

Fourier null model filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000 7000

Kuramoto filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000 7000

Kuramoto filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simple null model filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simple null model filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

Fourier null model filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

Fourier null model filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

Kuramoto filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

Kuramoto filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simple null model filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simple null model filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

Fourier null model filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

Fourier null model filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000 7000

Kuramoto filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000 7000

Kuramoto filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simple null model filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simple null model filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

Fourier null model filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

Fourier null model filtrated by weights (dimension 1)

Figure B.3: Barcodes generated from the Kuramoto model, the simple null model, and the Fourier
null model. Row 1: Barcodes generated from functional matrices based on time steps 1-100. Row
2: Barcodes generated from functional matrices based on time steps 101–200. Row 3: Barcodes
generated from functional matrices based on time steps 201–300. Row 4: Barcodes generated from
functional matrices based on time steps 301–400. Row 5: Barcodes generated from functional
matrices based on time steps 401–500.

65

B.2.2 Kuramoto filtration by weights barcodes for fixed nat-
ural frequencies and two time layers

Kuramoto Data 1

20 40 60 80 100 120

20

40

60

80

100

120

4

6

8

10

12

14

Simple Nullmodel 1

20 40 60 80 100 120

20

40

60

80

100

120

4

6

8

10

12

14

Fourier Nullmodel 1

20 40 60 80 100 120

20

40

60

80

100

120

4

6

8

10

12

14

Kuramoto Data 2

20 40 60 80 100 120

20

40

60

80

100

120

4

6

8

10

12

14

Simple Nullmodel 2

20 40 60 80 100 120

20

40

60

80

100

120

4

6

8

10

12

14

Fourier Nullmodel 2

20 40 60 80 100 120

20

40

60

80

100

120

4

6

8

10

12

14

Figure B.4: Functional matrices for fixed natural frequencies and two time layers of the Kuramoto
model, the simple null model, and the Fourier null model.

0 500 1000 1500 2000 2500 3000

Kuramoto filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500 3000

Kuramoto filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500

Simple null model filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500

Simple null model filtrated by weights (dimension 1)

0 500 1000 1500 2000

Fourier null model filtrated by weights (dimension 0)

0 500 1000 1500 2000

Fourier null model filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500 3000 3500 4000

Kuramoto filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500 3000 3500 4000

Kuramoto filtrated by weights (dimension 1)

0 500 1000 1500 2000 2500

Simple null model filtrated by weights (dimension 0)

0 500 1000 1500 2000 2500

Simple null model filtrated by weights (dimension 1)

0 500 1000 1500 2000

Fourier null model filtrated by weights (dimension 0)

0 500 1000 1500 2000

Fourier null model filtrated by weights (dimension 1)

Figure B.5: Filtration by weights barcodes for fixed natural frequencies and two time layers of the
Kuramoto model, the simple null model, and the Fourier null model.

66

B.2.3 Kuramoto modified Vietoris-Rips complex barcodes

0 0.5 1 1.5

Modified Rips complex Kuramoto (dimension 0)

0 0.5 1 1.5

0 0.5 1 1.5

Modified Rips complex simple null model (dimension 0)

0 0.5 1 1.5

Modified Rips complex simple null model (dimension 1)

0 0.5 1 1.5

Modified Rips complex Fourier null model (dimension 0)

0 0.5 1 1.5

Figure B.6: Modified Vietoris-Rips complex barcodes generated from the Kuramoto model, the
simple null model, and the Fourier null model. The functional networks were based on all time steps.

67

B.3 Further data barcodes

B.3.1 Filtration by weights

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 0)

0 1000 2000 3000 4000 5000 6000

3−day data filtrated by weights (dimension 1)

Figure B.7: Further examples of filtration by weights barcodes generated bases on data from
subjects 6, 9, and 15. The barcodes are shown in temporal order from left to right.

68

B.4 Motor and visual modules in the human brain

The motor and visual modules are listed according to [8], where experiments were

conducted using the same brain areas as in the data analysed in this dissertation.
Sensimotor component node Primary visual component node

Left precentral gyrus 7 Left intracalcrine cortex 24
Right precentral gyrus 55 Right intracalcrine cortex 72
Left postcentral gyrus 17 Left cuneus cortex 32
Right postcentral gyrus 65 Right cuneus cortex 80
Left superior parietal lobule 18 Left lingual gyrus 36
Right superior parietal lobule 66 Right lingual gyrus 84
Left supramarginal gyrus, anterior 19 Left supracalcrine cortex 47
Right supramarginal gyrus, anterior 67 Right supracalcrine cortex 95
Left supplemental motor area 26 Left occipital pole 48
Right supplemental motor area 74 Right occipital pole 96
Left parietal operculum cortex 43
Right supramarginal gyrus posterior 68

69

	Introduction
	Computational Topology
	Topological background
	Graphs from a topological perspective
	Topological spaces
	Simplicial complexes
	Homology and Betti numbers

	Persistent homology
	Filtrations
	Barcodes
	Simplicial complexes for point cloud data

	Model Networks and Data
	The Kuramoto model
	The basic model
	The Kuramoto model in a network setting
	Null models for the Kuramoto data

	Neuronal network data
	The use of graph theory in neuroscience
	Data set: Human brain networks during learning

	Topological network analysis
	Methods and algorithms
	Filtration by weights
	Weight rank clique filtration
	Comparison of the two filtrations based on graph filtrations by weight
	Modified Vietoris-Rips complex
	Computational tools and issues

	The Kuramoto model
	Simulation
	Filtration by weights
	Weight rank clique filtration
	Modified Vietoris-Rips complex

	Functional imaging data
	Filtration by weights
	Weight rank clique filtration
	Modified Vietoris-Rips complex

	Discussion
	Conclusions and future work
	Bibliography
	Appendix
	Additional definitions from topology and algebra

	Appendix
	Further general barcodes
	Further Kuramoto barcodes
	Kuramoto filtration by weights barcodes for five time layers
	Kuramoto filtration by weights barcodes for fixed natural frequencies and two time layers
	Kuramoto modified Vietoris-Rips complex barcodes

	Further data barcodes
	Filtration by weights

	Motor and visual modules in the human brain

