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Abstract

The field of network science has seen massive growth in the last 15 years. Tools
have been developed to study the properties of abstract networks, as well as
problems involving real-world systems. One such problem concerns the robust-
ness of a network: how well the network continues to function when parts of its
structure are destroyed. A rapidly emerging area of network science is the study
of multilayer networks. We investigate the robustness of one type of multilayer
network: interdependent networks.

We use probability generating functions, along with computer simulations, to
analyse the behaviour of interdependent networks under random failure and tar-
geted attacks. Using Erdős-Rényi networks and scale-free networks as examples,
we find that the same network can react quite differently, depending on the type
of attack. Moreover, for scale-free networks, the interdependent system some-
times displays very different behaviour to the equivalent non-interdependent
network.
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1. Introduction

1.1 Motivation

The study of networks is the study of individuals (called nodes), and the con-
nections between them (called edges) [23]. For example, networks may be:

• Biological: Food webs, where nodes are organisms and an edge between
two organisms indicates that one is eaten by the other; or protein-protein
interaction networks.

• Technological: Computer networks, where nodes are terminals and edges
are the physical cables that connect them; or the World Wide Web, where
the nodes are websites, which are connected by an edge if one site contains
a link to the other.

• Social: Nodes correspond to individuals in a group of people, and an
edge represents a relationship, such as friendship or enmity, between two
people.

We often picture a network as a set of points in space, connected by lines
that join one point to another. Two examples of real-life networks, represented
in this way, are shown in Fig 1.1.

Specific networks, such as those described above, have been studied by people
working in a variety of fields for several decades [22]. However, the pace of
mathematical research into networks in general has significantly increased in
recent years. One of the reasons for this is the technology boom, which has
resulted in network data becoming much easier to assemble and to share (p8,
[2]).

The study of networks can be roughly divided into the study of structural
properties of networks, and the study of dynamical processes on networks. One
dynamical property is the “robustness” of a network: the resilience of the net-
work against the removal of a subset of its nodes or edges. The study of the
robustness of networks has clear applications to real-life networks. On the one
hand, we might ask how to design a rail network that remains functional, even
when some routes are out of service. On the other hand, we might want to
determine the best individuals to vaccinate in order to minimise the size of an
outbreak of a disease. Investigating the robustness of networks allows us to
suggest answers to each of these questions [15].
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Figure 1.1: Examples of networks. Panel (a) shows the social network of mem-
bers of a karate club, and panel (b) shows a Facebook network. The image
in panel (a) was created from the data in [29], using the NodeXL template for
Microsoft Excel [25]. The image in panel (b) was generated using Facebook
Report for Wolfram|Alpha [13].

Much of the work on network robustness concerns single networks, that do
not interact with other networks in any way. However, many real networks are
fundamentally linked to other networks, and by considering these networks in
isolation we run the risk of overlooking features that could significantly affect
the behaviour of the network. An example is the electrical blackout that took
place in Italy in 2003 [6]. Power stations relied on an Internet communica-
tions network, which itself needed electricity from the power stations. When
a few power stations failed, these dependencies caused the failures to cascade
throughout the system, causing widespread disruption.

Consequently, the focus is now shifting towards so-called “multilayer” net-
works. The 2014 article by Kivelä et al. ([19]) is a comprehensive review of
the current state of research regarding multilayer networks. The article gives a
general framework for multilayer networks which allows the modelling, amongst
other things, of networks whose structure changes with time, networks whose
edges can be divided into different categories, and networks that depend on
other networks. In this report, however, we concern ourselves only with net-
works that depend on other networks, such as in the example in the previous
paragraph. These are called interdependent networks.

1.2 Structure of the Report

Chapter 2 contains background information that is necessary for the calculations
in later chapters. I give some basic definitions from graph theory, and define
generating functions and random graphs: two useful tools for studying networks.
I also summarise the work that has been done on robustness in single-layer
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networks, that we can later compare against results for interdependent networks.
Chapter 3 is based on a 2010 paper by Buldyrev et al. ([6]), which analyses

the robustness of coupled networks against the failure of nodes uniformly at
random (I define coupled networks on p 13). I introduce a process of cascading
failures in coupled networks, as described in [6], and replicate results from the
paper. I provide detailed derivations, that are not included in the original paper.
Finally, I perform computer simulations for two types of coupled networks, and
compare some of the simulations with results that were derived analytically.

Chapter 4 concerns targeted attack, where the probability that a node will
fail depends on how many other nodes it is joined to. This chapter follows the
argument in a 2011 paper by Huang et al. ([16]), where the targeted attack
case on coupled networks is reduced to a failure-uniformly-at-random case on
modified networks. I duplicate results from [16], then use an analytic method
based on the work in [16] to derive results for the same example networks as in
Chapter 3. I compare these results to computer simulations.

Chapter 5 contains my own work, concerning robustness against attacks
where nodes are targeted based on how many “second neighbours” they have.
I attempt to apply a modified version of the method from Chapter 4 to the
problem, explain how the method fails, and present the results of computer
simulations.
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2. Preliminary Information

2.1 Basic Definitions

In order to study networks from a mathematical perspective, we need a math-
ematical representation for networks. Typically, networks are represented as
graphs, which are defined as follows [4].

Definition 2.1. A graph is an pair of sets G = (V,E). The set V (G) = V is
the set of vertices, or nodes, of the graph; E(G) = E ⊆ V (2) (where V (2) =
{{u, v} : u, v ∈ V, u 6= v}) is the set of edges of the graph.

One simple way of comparing two graphs is by calculating the degree distri-
butions.

Definition 2.2. If u and v are nodes in a graph G, u is a neighbour of v if
{u, v} ∈ E(G).

Definition 2.3. An edge {u, v} is incident to a vertex w if either u = w or
v = w.

Definition 2.4. For a node w ∈ V , the degree d(w) of w is the number of
edges that are incident to w.

Definition 2.5. The degree distribution of a graph G is
PG = (PG(0), PG(1), PG(2), . . .), where PG(k) is the probability that a node cho-
sen uniformly at random has degree k. If G is a given graph, with size |G| = n,
this is equivalent to

PG(k) = 1
n
|{v ∈ V : d(v) = k}|.

In this report, we investigate whether or not networks remain “functional”
under various conditions, where a network is functional if information can spread
throughout the network. Therefore, we need to define what it means for parts
of a network to be connected.

Definition 2.6. Two nodes u, v ∈ V (G) are connected if there is a path be-
tween u and v along edges of G. A set C of nodes in G is connected if any two
nodes in C are connected. A connected set C is a connected component of G
if there is no node v ∈ V \ C such that C ∪ {v} is connected. Often, connected
components are simply called “components”.

7



2.2 Example Graphs and Networks

2.2.1 Scale-Free Networks

A large number of observed networks have degree distributions that appear to
have a “power-law tail”, where for suitably large k the probability of a randomly
chosen node having degree k is approximately Ck−β , for constants C and β [23].
Networks with such a degree distribution have a small number of very high
degree nodes, and a large number of nodes with low degrees. These networks
are often called scale-free networks, since the distribution of the degrees within
a given range stays about the same if the range is scaled by some constant
factor. There is some debate about when it is appropriate to model the degree
distribution of a network using a power law [26]. Networks for which it has been
shown that a power-law distribution is a reasonable fit for the degree distribution
include a protein-protein interaction network, and a citation network (where
nodes are academic papers, and an edge exists between two papers if one cites
the other) [8].

2.2.2 Random Graphs

If we know the exact structure of a network, we can translate it directly into a
graph, and then study the graph. In most cases, however, either the network is
very large or complex, or we wish to study a collection of networks that share
certain features but have non-identical structures. In these situations, random
graphs can be very helpful.

A random graph is a graph that is generated by some random process, but in
which certain properties are ensured, often by specifying the values of a set of pa-
rameters [23]. Consequently, the study of random graphs usually leads to results
that describe the average or expected behaviour of a family, or “ensemble”, of
networks. We can consider random graphs of fixed size |G| = |V (G)| = N , or de-
rive results for arbitrarily large graphs by considering a random-graph-ensemble
as |G| approaches infinity. In this report, we will use random graphs to study
scale-free networks, as described above, and Erdős-Rényi random graphs, which
are defined in the next section.

2.2.3 The Erdős-Rényi Graph

The Erdős-Rényi random graph is named for Paul Erdős and Alfréd Rényi, who
studied the model in the 1950s and 1960s (see [11, 12]), although a version was
first formulated by Edgar Gilbert in 1959 [14]. The model is defined as follows.

Definition 2.7. The Erdős-Rényi random graph G(N, q) is the graph with
nodes V = {1, 2, . . . , N} and edge set E, where each of the

(
N
2
)
possible edges is

included in E, independently of other edges, with probability q. The Erdős-Rényi
graph is also known as the Bernoulli random graph.

Although we commonly say “the Erdős-Rényi graph”, we actually mean a
graph picked randomly, according to the rule above, from the ensemble of all
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possible graphs on N nodes. In particular, if q = 1
2 then an Erdős-Rényi graph

is simply a graph chosen uniformly at random from all graphs with size N .
The simplicity of the definition of the Erdős-Rényi graph allows some of its

properties to be calculated easily (Chapter 12, [23]). Edges exist independently
and with constant probability, so the total number of edges e(G) = |E| in
G(N, q) has distribution Bin

((
N
2
)
, q
)
. Therefore, the expected number of edges

is
(
N
2
)
q.

The degree distribution is calculated in a similar way. For each node in
the graph, there are N − 1 possible edges to other nodes, each of which ex-
ists independently with probability q, so the degree of a node has distribution
Bin(N − 1, q), and the mean degree is 〈k〉 = (N − 1)q.

As N → ∞, with (N − 1)q remaining nearly constant, the binomial distri-
bution with parameters N − 1 and q converges to the Poisson distribution with
parameter Nq [23]. Therefore, when working with large Erdős-Rényi graphs, we
can assume the degree distribution is approximately Po(Nq). For this reason,
the Erdős-Rényi graph is sometimes also called the Poisson random graph.

2.2.4 The Configuration Model

The configuration model gives a method of producing a random graph with a
desired degree sequence (k1, k2, . . . , kN ). Each node vi is assigned ki “stubs”,
or half-edges [23]. Pairs of stubs are then joined to create edges between nodes,
by choosing two stubs uniformly at random and connecting them, as shown in
Fig 2.1.

Figure 2.1: Illustration of the formation process for the configuration model.
This example generates a random graph with degree sequence (1,2,1,5,2,1). The
dotted line shows a pair of edges that has been chosen uniformly at random,
and joined to each other. This figure was created using the NodeXL template
for Microsoft Excel ([25]).
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A slight adjustment to the configuration model allows us to fix a degree
distribution, rather than a degree sequence. Instead of directly specifying the
degrees of the nodes, we draw a sample of size N from the desired degree
distribution, and use this as the degree sequence for the configuration model.1

When choosing stubs to combine into edges, it is possible to choose two stubs
that originate from the same node. There is also a chance that an edge can be
created between two nodes that are already joined by an edge. These self-edges
and multiple edges are not included in our definition of a graph (Def. 2.1).
However, as the size of the graph increases, the probability of self-edges or
multiple edges occurring becomes very small. The results in this report are all
for n → ∞, so we will assume that self-edges and multiple edges have little
impact on the behaviour of the random graphs in this case.

In this report, when a network is described as an Erdős-Rényi network or a
scale-free network we mean that the network is generated by the configuration
model, taking the degree sequence from a Poisson distribution, or from a power-
law distribution.

2.3 Generating Functions

In the analysis of the robustness of networks, we will often need to manipulate
probability distributions, such as the distribution of degrees. An extremely
useful tool will be probability generating functions:

Definition 2.8. The probability generating function for a discrete distri-
bution P = (p1, p2, . . .) is the function

G(z) =
∑
k

pkz
k.

In many cases, it is easier to work with probability generating functions than
with the corresponding probability mass functions. In particular, probability
generating functions have the following properties (for proofs, see Chapter 6 in
[27]):

• At z = 1, we have G(z) = 1, provided the distribution P is normalised so
that

∑
k

pk = 1.

• The probabilities p1, p2, . . . can be recovered by differentiating the proba-
bility generating function:

pk = 1
k!G

(k)(0).

Consequently, the probability generating function exactly determines the
underlying distribution.

1The configuration model can deal with any degree sequence, as long as
∑n

i=1 ki is not
odd. This requirement is because each edge uses two of the stubs, so the total number of
stubs must be even. If necessary, we can keep drawing sequences from the degree distribution
until we obtain a sequence that meets this condition.
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• If X is a discrete random variable with distribution P , then G(z) = E[zX ].
Moreover, G′(1) = E[X].

• If X and Y are independent random variables with probability generating
functions GX(z) and GY (z), then the sum Z = X + Y has probability
generating function GZ(z) = GX(z)GY (z).

• If (Xi ; i ≥ 1) is a collection of independent, identically distributed ran-
dom variables, and T is an independent, non-negative, discrete random

variable, then the sum Y =
T∑
i=1

Xi has probability generating function

GY (z) = GT (GX1(z)) .

Table 2.1 summarises the notation used in this report for various probability
generating functions. The generating function for the degree of a node chosen
uniformly at random from a network A is denoted GA(z). The excess degree is
obtained by choosing a node u uniformly at random and then following an edge,
also chosen uniformly at random, from u to a node v. The excess degree of the
node v is the number of edges incident to v, excluding the one edge leading from
u. The generating function for this distribution is denoted G̃A(z).

Table 2.1: Notation for probability generating functions.

Notation Underlying probability distribution
GA(z) Degree distribution of network A
G̃A(z) Distribution of the excess degree of a node

reached by following an edge in A

2.4 The Giant Component

In this report we will consider ensembles of random graphs that share a degree
distribution, but we will vary the size N of the graphs, allowing N to tend
to infinity. We will see that under certain conditions, the size of the largest
connected component of a graph tends to a constant, non-zero fraction of the
size of the whole graph. When this occurs, we say that the graph possesses a
giant component.

Definition 2.9. A random graph (ensemble) has a giant component if, for
some µ ∈ (0, 1],

NC → µN as N →∞,

where NC is the size of the largest connected component and N is the size of
the full graph.

If a component is not a giant component, then its size, as a fraction of the
whole graph, tends to zero as the size of the graph tends to infinity. We call
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such components small components. If a random graph does not possess a giant
component then all components are small components.

In the analysis of robustness of networks, we assume that a node only remains
functional if it is in the giant connected component of a network.

2.5 Results for Single-Layer Networks

The first work on robustness of networks was carried out on networks that
consist of a single connected component, and that do not interact with any
other networks. In this section, we give an account of the main results for
these single-layer networks. In later chapters, we will compare our results for
interdependent networks with the results described here.

The robustness of scale-free networks was studied by Cohen et al., in the
years 2000 and 2001 [10, 9]. In the 2000 paper, Cohen et al. investigated
how the connectedness of networks with power-law degree distributions (i.e.
P (k) = Ck−β) is affected when nodes are removed uniformly at random. They
found that scale-free networks are in general extremely resilient to the failure of
nodes uniformly at random [10]. In particular, they showed that if the parameter
β is no larger than 3, and we allow the size of the network to tend to infinity,
then the network remains well-connected, no matter what proportion of the
nodes fail. This seems reasonable, since in a scale-free network most nodes
have low degree, and therefore have little influence on the overall connectivity
of the network. When removing nodes uniformly at random, we are likely to
pick a node with low degree, rather than one of the fewer high-degree nodes,
the removal of which might cause more damage. Callaway et al. derived an
equivalent result, also in the year 2000, using probability generating functions
[7].

This reasoning is reversed when the network is subject to a targeted attack,
where nodes are removed in decreasing order of degree [9]. In this case, the nodes
with the largest degrees are removed first, significantly reducing the connectivity
of the network. The 2001 paper shows that it is only necessary to remove a
small fraction of nodes in this way before the network is broken up into small
components [9]. In fact, there is no value of β for which it is necessary to remove
more than 3% of the nodes in order to destroy the connectivity of the network
(p613, [23]). For both the case of failure uniformly at random, and the case of
targeted attack in decreasing order of degree, the results given by Cohen et al.
are in agreement with the simulations presented by Albert et al. in 2000 [1].

The generating function method in [7] applies equally to the study of the
robustness of Erdős-Rényi networks. Newman also considers Erdős-Rényi net-
works as an example in Chapter 16 of [23]. He shows that if nodes are removed
uniformly at random from an Erdős-Rényi network A, with mean degree 〈k〉 = a,
then we should expect a giant component to remain, as long as no more than
a fraction 1 − 1

a of the nodes are removed. For example, if the mean degree of
the network is 3, we would expect a giant component to survive until the point
when two thirds of the nodes have been removed. Consequently, Erdős-Rényi
networks with sufficiently large mean degrees can be very resilient against the
failure uniformly at random of nodes.
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3. Random Node Failure

3.1 The Cascade Process

We study a model consisting of a pair of interdependent networks, as discussed
by Buldyrev et al. in 2010 [6]. In the model, we consider two networks A and B
with degree distributions PA(k) and PB(k) and equal sizes |A| = |B| = N . We
say that a node iA in A depends on a node jB in B if the failure of jB causes
the failure of iA. In this model, we assume that each node iA of A depends only
on one node iB of B, which in turn depends only on iA. If two networks are
related in this way, we will call them coupled networks.

Figure 3.1: An example of coupled networks. Edges within networks are rep-
resented by solid lines, and dependencies between networks are represented by
dotted lines. A-edges join nodes in A and B-edges join nodes in B. Each node
in A depends on, and is depended upon by, exactly one node in B. This figure
is adapted, with permission, from Figure 7 in [19], using Inkscape ([17]).

In single-layer networks, connected components are used to measure how
well a network is connected. For the coupled networks described above, we
generalise the concept of connected components to mutually connected clusters,
which are defined as follows.

Definition 3.1. A set of nodes SA ⊆ A with corresponding set SB ⊆ B is a
mutually connected set if any two nodes in SA are connected by a path of
A-edges in SA and any two nodes in SB are connected by a path of B-edges in
SB.
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A mutually connected set is a mutually connected cluster (MCC) if it is
impossible to add another node to the set to form a mutually connected set.

Mutually connected clusters serve the same role in coupled networks as con-
nected components serve in single-layer networks. We can define the giant
mutually connected cluster, or giant cluster, in the same way as we defined the
giant component (Def. 2.9). Small clusters are also defined, analogously to small
components. To remain functional in a pair of coupled networks, a node must
be part of the giant cluster.

Following the argument in [6], we study how this model reacts to the failure of
a given fraction of nodes, picked uniformly at random from one of the networks.
First, choose a fraction 1− p of the nodes of network A, uniformly at random.
Remove these nodes from the network and delete all edges that are incident to
the removed nodes. This creates a network A0 of size N0 = pN . Carry out the
following cascade process on A0 and B (as illustrated in Fig. 3.2):

1. Define the a1-clusters as the connected components of network A0 (a11, a12
and a13 in panel (b) of Fig. 3.2), and the b1-sets as the sets of B-nodes
corresponding to the a1-clusters.

2. Remove any B-edges that connect two different b1-sets. Define the b2-
clusters as the connected components of the modified B. In Fig. 3.2,
these are b21, b22, b23 and b24, in panel (c). Note that any b1-sets that are
also b2-clusters are mutually connected clusters.

3. Repeat steps 1 and 2 to find a2-sets, a3-clusters, b3-sets, b4-clusters, and
so on.

4. Stop when no more edges are removed (panel (d) in Fig. 3.2). When this
occurs, the an-clusters will be the same as the bn+1-clusters, which will
be the same as the an+2-clusters, for some n ∈ N.

We will call the largest mutually connected cluster after step 4 the surviving
cluster. This is the largest part of the coupled system that remains functional
after the cascade of failures. We investigate which values of p allow the survival
of a giant mutually connected cluster, and which result in highly fragmented
networks which consist entirely of small clusters. In addition, we are interested
in how the system transitions from one state to the other. As explained in
Chapter 16 in ref. [23], when p = 1 there are no node failures, and there is a
giant cluster of size N . On the other hand, for small values of p there is no giant
cluster. We use the notation pc for the threshold value of p: the point at which
a giant cluster first appears. For p < pc, there is no surviving giant cluster; for
p > pc, there is a giant cluster.

3.2 The Generating Function Method

We use probability generating functions to investigate the size of the largest
clusters of the networks at each stage of the process. LetGA(z) be the generating
function for PA(k) and GB(z) be the generating function for PB(k). At the nth
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Figure 3.2: The cascade process on coupled networks. Panel (a) shows the
initial failure of a node, and the removal of the edges connected to the node.
Panel (b) shows the a1-clusters, as described in step 1. Panel (c) shows the
state of the coupled networks after step 2, and panel (d) shows the state of the
networks when the cascade process terminates (step 4). This figure is adapted,
with permission, from Fig. 7 in [19].

stage of the process, for n ∈ {1, 2, . . .}, let µn be the fraction of the nodes of the
original network that are included in the largest an- or bn-cluster. It follows that
µ∞ = limn→∞ µn is the probability that a node chosen uniformly at random
from the original network belongs to the surviving cluster. We use the notation
An and Bn, for n ∈ {1, 2 . . .}, to denote the largest components of the modified
networks A and B at the nth stage. For any network X, we write dX(v) to
mean the degree of a (usually randomly chosen) node v in X.

In the first stage of the process, we remove a fraction 1 − p of the nodes
uniformly at random from A, and this alters the degree distribution of the
remaining nodes. Let GA0(z) be the probability generating function for the
degree distribution of network A0. The function GA0(z) can then be written in
terms of GA(z) as follows:

GA0(z) =
∞∑
m=0

zm Pr(dA0(v) = m)

=
∞∑
m=0

∞∑
k=m

zm Pr(dA0(v) = m | dA(v) = k)× Pr(dA(v) = k)

=
∞∑
k=0

k∑
m=0

zm
(
k

m

)
pm(1− p)k−mPA(k)

=
∞∑
k=0

PA(k)(1− p+ zp)k

GA0(z) = GA(1− p(1− z)). (3.1)
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In order to study the size of the giant cluster, if one exists, we first consider
the sizes of the small clusters. Choose a node v uniformly at random from
A0. Let the distribution of the size of the cluster reachable from v be Pclust =
(q1, q2, . . .), if the cluster is a small cluster. We write HA0(z) for the probability
generating function of Pclust. Suppose that we choose an edge e of v, uniformly
at random. Let P ex

clust = (qex
1 , q

ex
2 , . . .) be the probability distribution of the size

of the cluster reached by following the edge e, and let P ex
clust have generating

function H̃A0(z). If there is no giant component of A0, then all the clusters are
small clusters, so H̃A0(1) =

∑∞
s=1 q

ex
s = 1. If there is a giant component, then

H̃A0(1) < 1.
Let G̃A0(z) be the probability generating function for the excess degree dis-

tribution P ex = (pex
1 , p

ex
2 , . . .) of A0. When choosing the random edge e, leading

from the random vertex v, the probability of ending up at any given node is
proportional to the degree of that node. This allows us to write G̃A0(z) in terms
of GA0(z), as in [7]:

G̃A0(z) =
∞∑
k=0

zkpex
k

∝
∞∑
k=0

zk(k + 1) Pr(dA0(v) = k + 1)

= G′A0
(z).

Normalising gives

G̃A0(z) =
G′A0

(z)
G′A0

(1) .

Additionally, the same reasoning that leads to Eq. (3.1) gives

G̃A0(z) = G̃A(1− p(1− z)). (3.2)

We now derive expressions for HA0(z) and H̃A0(z). Suppose that an edge
e, chosen uniformly at random, leads to a node with excess degree k. Each of
the k additional edges leads to a cluster, and the sizes of these clusters are in-
dependently distributed,1 with distribution generated by H̃A0(z) (see Fig. 3.3).
Therefore, the total size of the cluster that can be reached from e has probability
generating function [H̃A0(z)]k. Consequently,

H̃A0(z) = z

∞∑
k=0

pex
k [H̃A0(z)]k

= zG̃A0

(
H̃A0(z)

)
= zG̃A

(
1− p

[
1− H̃A0(z)

])
.

1Actually, the sizes of the clusters are only independent if the network is locally tree-
like, which means that the network does not contain many small loops. Networks that are
generated by the configuration model, with sufficiently few edges, satisfy this condition [24],
so our approach is appropriate in this case. It should be noted, however, that some results
derived using generating function methods have been shown to hold, even in networks that
contain many small loops (for more information, see ref. [21]).
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Figure 3.3: The cluster reachable by following a random edge e. In this example,
e has excess degree 3. The bubbles represent the clusters reached by following
each of the three edges.

By choosing a node v uniformly at random from A0, and conditioning on
the degree of v, we derive a similar result for HA0(z). Let cA0(v) denote the
size of the cluster containing v. We then calculate

HA0(z) = z

∞∑
k=0

zk Pr(cA0(v) = k + 1)

= z

∞∑
k=0

zk
∞∑
m=0

Pr(cA0(v) = k + 1 | dA0(v) = m)× Pr(dA0(v) = m)

= z

∞∑
m=0

Pr(dA0(v) = m)
∞∑
k=0

zk Pr(cA0(v) = k + 1 | dA0(v) = m)

= z

∞∑
m=0

Pr(dA0(v))
[
H̃A0(z)

]m
= zGA0(H̃A0(z))

HA0(z) = zGA

(
1− p

[
1− H̃A0(z)

])
.

3.3 The Size of the Surviving Cluster
The function HA0(z) only generates the distribution of the sizes of the small
clusters. If a giant cluster exists, let gA(p) be the fraction of the nodes of A0
that are included in the giant cluster. It follows that the fraction of the nodes
of A0 that are not in the giant cluster is given by

1− gA(p) =
∞∑
k=1

Pr(cA0(v) = k)

= HA0(1).

Using the expression for HA0(z) that we derived earlier, we can write

gA(p) = 1−HA0(1)

= 1−GA
(

1− p
[
1− H̃A0(1)

])
gA(p) = 1−GA(1− p [1− fA]), (3.3)
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where fA = H̃A0(1) satisfies

fA = G̃A(1− p [1− fA]). (3.4)

Similarly, defining G̃B(z) and gB(p) in the obvious way yields

gB(p) = 1−GB(1− p [1− fB ]), (3.5)

where fB = H̃B0(1) satisfies

fB = G̃B(1− p [1− fB ]). (3.6)

The largest component of A0 is denoted A1, and A1 has size

N1 = N0gA(p) = pgA(p)N = µ1N.

The second stage of the cascade process takes place on the network B. Any
nodes in B that depend on nodes not in A1 become disconnected from the largest
cluster. This amounts to the removal uniformly at random of a fraction µ1 of
the nodes from B. Therefore, by the method explained above, the resulting
largest component B2 has size

N2 = N1gB(µ1) = p gA(p) gB(µ1)N = µ2N.

This gives the relation µ2 = p gA(p) gB(µ1). We derive similar relations, so
that each of the fractions µn, for n ∈ {2, 3, . . .}, can be calculated recursively.
To find a relation for each µn, we look for a fraction µ′n−1 such that the nth
stage of the cascade process is equivalent to a random attack on the original
network, with survival probability µ′n−1. For example, we have already seen
that µ′0 = µ0 = p, and µ′1 = µ1 = pgA(p) = µ′0gA(µ′0). However, µ′n 6= µn for n
in general.

At stage 2m of the cascade, we remove the 1−gA(µ′2m) fraction of nodes that
are in the largest component B2m but not in A2m+1 ⊆ B2m. This has the same
effect as removing the same fraction of nodes from B0 uniformly at random,
so we can calculate the number of remaining nodes at the (2m + 1)-stage by
randomly removing

[1− gA(µ′2m)]N0 + (1− p)N = [1− gA(µ′2m)] pN + (1− p)N
= [1− pgA(µ′2m)]N

nodes from the original network B. This is equivalent to the first step of the
process, except that p is replaced by the fraction µ′2m+1, where

µ′2m+1 = pgA(µ′2m). (3.7)

We can now calculate µ2m+1 in the same way as we found µ1, to get

µ2m+1 = µ′2mgA(µ′2m). (3.8)
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Reversing the roles of A and B and considering stage 2m − 1 of the cascade
yields

µ′2m = pgB(µ′2m−1), (3.9)
µ2m = µ′2m−1gB(µ′2m−1). (3.10)

We use Eqs. (3.7–3.10) to calculate µ∞ = limn→∞ µn. We know that µ∞
must satisfy µ2m+1 = µ2m = µ2m−1, and it is also clear that the equality
µ′m = µ′m+2 must hold as m→∞. Therefore, we can write x = µ′2m+1 = µ′2m−1
and y = µ′2m = µ′2m−2, with the understanding that m is large. Therefore
µ∞ = xgB(x) = ygA(y), and Eqs. (3.7) and (3.9) become

{
x = pgA(y),
y = pgB(x).

(3.11)

Recall that Eqs. (3.3–3.6) express gA and gB in terms of GA, G̃A, GB , and
G̃B . When the degree distributions of A and B are known, the system (3.11)
can therefore be solved numerically, and we can obtain µ∞ as a function of p.

Numerical results give an idea of how the coupled networks behave, but for
some networks it is possible to obtain analytic results concerning the values of
p that lead to highly fragmented networks, those that allow the survival of a
large mutually connected cluster, and the transition between the two states.

3.4 Example: Uniform Random Failure in Erdős-
Rényi Networks

If networks A and B are Erdős-Rényi networks, then we can simplify many of the
expressions in sections 3.2 and 3.3. In an Erdős-Rényi network, the node degrees
are approximately Poisson-distributed, for large N . Therefore, the probability
generating functions are

GA(z) = exp [a(z − 1)] ,

where a = 〈k〉A is the mean node degree of A, and

G̃A(z) = G′A(z)
G′A(1) = exp [a(z − 1)] = GA(z).

Similarly,

GB(z) = G̃B(z) = exp [b(z − 1)] ,

where b = 〈k〉B is the mean node degree of B.
The functions gA and gB can then be written as

gA(y) = 1−GA0(1− y(1− fA))
= 1− exp [ay(fA − 1)] ,
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where fA = exp [ay(fA − 1)], and

gB(x) = 1− exp [bx(fB − 1)] ,

where fB = exp [bx(fB − 1)].
Accordingly, the system (3.11) becomes{

x = p(1− fA),
y = p(1− fB),

(3.12)

where fA and fB satisfy {
fA = exp [ay(fA − 1)] ,
fB = exp [bx(fB − 1)] .

Eliminating x and y using the equations in (3.12) gives{
fA = exp [−ap(1− fA)(1− fB)] ,
fB = exp [−bp(1− fA)(1− fB)] .

(3.13)

Note that fA
1
a = exp [−p(1− fA)(1− fB)] = fB

1
b . Introducing the variable

r = fA
1
a = fB

1
b , we write

r = exp
[
−p(ra − 1)(rb − 1)

]
, (3.14)

and this equation can be solved graphically.
Solutions for r occur at the intersections of the line y = r with the curve

y = exp
[
−p(ra − 1)(rb − 1)

]
. For any value of p, there is a trivial solution

at r = 1. This might be the only possible solution, but as p varies, the
trivial solution might be accompanied by one or two alternative solutions, as
can be seen in Fig. 3.4. The figure shows that for p = 0.3, the curve y =
exp

[
−p(ra − 1)(rb − 1)

]
and the line y = r intersect only at r = 1. However,

as the value of p increases, the curve crosses the line, producing multiple addi-
tional solutions to Eq. (3.14). The critical value pc of p is the value at which
a non-trivial solution is first possible. This occurs when the curve and the line
are tangent to each other (which happens at about p = 0.409 in the example in
Fig. 3.4). Therefore, at pc, the line and the curve have equal derivatives, so

1 = d
dr

[
e−p(r

a−1)(rb−1)
]

= −p
[
ara−1(rb − 1) + brb−1(ra − 1)

]
e−p(r

a−1)(rb−1)

= −p
[
ara(rb − 1) + brb(ra − 1)

]
= −p

[
(a+ b)ra+b − ara − brb

]
.

In combination with Eq. (3.14), this gives the following simultaneous equations:{
r = e−p(r

a−1)(rb−1),

1 = p
[
ara + brb − (a+ b)ra+b] . (3.15)
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Figure 3.4: A graphical solution to Eq. (3.14), for coupled Erdős-Rényi networks
with equal mean degrees (a = b = 6). We plot the curve y = exp

[
−p(ra − 1)2]

for p = 0.3, 0.409, and 0.6; and we consider the points of intersection with the
line y = r.

The second equation in (3.15) shows that the critical point is

pc =
[
arac + brbc − (a+ b)ra+b

c

]−1
,

so rc satisfies

rc = exp
[
− (rac − 1)(rbc − 1)
arac + brbc − (a+ b)ra+b

c

]
.

Using the equations in (3.12), the fraction µ∞ of the nodes of A that are included
in the surviving cluster can be expressed as

µ∞ = xgB(x) = ygA(y) = p(1− rac )(1− rbc).

We now make a further simplification and suppose that the two Erdős-Rényi
networks A and B have the same mean node degree, a = b, so that f = fA = fB .
The value fc of f at the critical point then satisfies

fc = exp [ay(fc − 1)]
= exp

[
apc(1− rbc)(fc − 1)

]
= exp

[
−apc(fc − 1)2] .

When a = b, note that

pc = (2afc − 2af2
c )−1

= (2afc)−1(1− fc)−1,
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so the expression for fc can be simplified to obtain

fc = exp
(
−a(fc − 1)2

−2afc(fc − 1)

)
= exp

(
fc − 1

2fc

)
. (3.16)

Equation (3.16) can be solved numerically (see Appendix A), to give critical
values of fc ≈ 0.28467, and pc ≈ 1

a (2.4554). The corresponding expected size
of the surviving cluster, as a fraction of the size of the original graph, is µ∞ ≈
1
a (1.2564).

3.5 Simulations

3.5.1 Erdős-Rényi Networks

I used MATLAB to check the results derived above against simulations of pairs
of interdependent Erdős-Rényi networks. I wrote functions (shown in Appendix
A) to replicate the cascade process on coupled Erdős-Rényi networks, with given
size and mean degree, for different values of p (recall that 1−p is the fraction of
nodes that are removed in the initial failure). Figures 3.5 and 3.6 were produced
by considering networks with sizes N = 500, 1000, 2000, and 5000, all with mean
degree 〈k〉 = 6.

Figure 3.5: Simulations of the cascade process for coupled Erdős-Rényi networks
with equal mean degree, a = b = 6. The size of the largest surviving mutually
connected cluster is given as a fraction µ∞ of the size of the full network. The
curves plotted are averages, taken over 50 simulations.

First, we note that for each of the values of N that we considered, the curve
is close to zero when p is small. The surviving cluster is very small in comparison
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Figure 3.6: A more detailed version of Fig. 3.5. The curves for N = 500 and
N = 1000 are averages over 120 simulations; the curve for N = 2000 is an
average over 70 simulations, and the curve for N = 5000 is an average over 50
simulations.

to the size of the original network, because the cascade of failures has reduced
most clusters to one or two nodes.

There is a sudden increase at about p = 0.4, after which the size of the
surviving cluster is approximately the same as the number of nodes that survive
the initial failure. If only a small fraction of nodes are removed in the initial
failure, the network is unlikely to become disconnected, so the cascade process
does not cause the failure of any additional nodes, beyond the first group of
nodes that failed.

To investigate the existence of a giant cluster, we compare the curves as the
size N of the network increases. As N increases, the parts of the curves that
approach zero correspond to the values of p for which there is no giant cluster.
The parts of the curves that tend to a non-zero value correspond to values of p
for which there is a giant cluster.

In section 3.4, we showed that for coupled Erdős-Rényi networks with equal
mean degree 〈k〉 = a, we expect a giant cluster to exist whenever p > 1

a (2.4554).
When a = 6, this suggests a critical value of pc ≈ 0.409, which matches well
with the simulations shown in Fig. 3.5. Figure 3.6 gives a more detailed look at
the behaviour of the curves in this area. As it is only possible to simulate finite
networks, we do not get the immediate transition at p = 0.409 that section 3.4
predicts. Instead, there is some rounding of the curves, which is more noticeable
for the smaller networks. However, even with the limited simulations performed
here, we can see how the transition becomes more sudden as the size of the
networks increases. Buldyrev et al. carry out simulations for much larger values
of N , and their results confirm this trend (Fig. 3 in [6]).
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3.5.2 Scale-Free Networks

I also ran simulations of the cascade process for coupled scale-free networks
(MATLAB code in Appendix A), and the results are shown in Fig. 3.7. The
curves in Fig. 3.7 are not as smooth as the curves in Fig. 3.5, as the averages
were taken over fewer simulations. If more time was available, the curves could
be made smoother by averaging over more simulations.

In contrast to the simulations for Erdős-Rényi networks, there is no sudden
transition from very small surviving clusters to surviving clusters that occupy
a more significant fraction of the network. There is a region, for small p (e.g.
p < 0.4), where the network is entirely broken into small clusters, but for p > 0.4,
the size of the surviving cluster appears to grow almost linearly with p, from
approximately 0 to 1.

Single-layer scale-free networks are very resilient against the removal uni-
formly at random of nodes [10]. It is necessary to remove a very large fraction
of the nodes in order to destroy the giant component. In Fig. 3.7, we see that
this is not the case for the coupled scale-free networks in our simulations. In ev-
ery simulation, removing 70% of the nodes resulted in the complete destruction
of the network into small clusters. This is a much smaller fraction of nodes than
the fraction required for single-layer scale-free networks [1]. Therefore, when
dealing with a scale-free network it is crucial to take account of any dependency
the network has on other networks. If not, a coupled network might be mistak-
enly treated as a single-layer network, and expected to be more robust than it
is.

Figure 3.7: Simulations of the cascade process for coupled scale-free networks.
For each value of N , the curves are averages over 20 simulations.
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4. Targeting by Node
Degree

4.1 The Targeted Attack Problem

In the previous chapter, we analysed how a pair of interdependent networks
behaved following an initial failure of nodes chosen uniformly at random. In
some situations, a constant probability of failure is a reasonable assumption
to make. However, it does not allow cases where failure is related in some
way to the ‘importance’ of a node. For example, attackers targeting the World
Wide Web might choose to focus their attacks on the websites that have the
most connections to other websites. In this chapter, we will consider how the
cascade of failures is affected when the probability of initial failure of a node is
determined by the degree of the node.

The approach in this section is closely based on the approach described in
[16]. We aim to reduce the problem to an equivalent problem where the initial
nodes are removed uniformly at random. We can then make use of the results
that we have presented in Chapter 3.

To begin, define a family of probability distributions

Wα(ki) = ki
α∑N

i=1 ki
α
, α ∈ R, (4.1)

whereWα(ki) is the probability that the node i, which has degree ki, is removed
in the initial attack.

Varying the parameter α allows us to specify the nature of the initial attack.
For α > 0, nodes with higher degree are more likely to be attacked; for α < 0,
nodes with lower degree are more vulnerable (e.g., if nodes with high degree are
better protected). In the α = 0 case, nodes fail independently at random with
constant probability W0(ki) = 1

N . If we take α → ∞, then nodes are removed
in exact order of decreasing degree. When α < 0, it is necessary to first remove
all nodes of degree 0 from the network. As these nodes cannot form part of the
giant cluster, this will not affect our results.

As in Chapter 3, we consider two networks A and B with equal size |A| =
|B| = N , where every node is in one-to-one dependency with a node from the
other network. We follow the same cascade process, except that we remove
(1− p)N nodes according to the probabilities Wα(ki) during the initial attack,
rather than removing nodes uniformly at random.
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We seek a network A′ such that the targeted attack problem on A and B is
equivalent to the problem with failure uniformly at random on networks A′ and
B.

4.2 Reducing to the Uniform Random Failure
Problem

First, it is necessary to find the degree distribution of the nodes that survive
the initial attack on A. We consider the network after the initial removal of
(1 − p)N nodes but before the removal of any newly disconnected edges. We
call this network Ā0. The degree of any surviving node remains unchanged in
Ā0, as illustrated in Fig. 4.1.

Figure 4.1: The formation of Ā0 from A. The first diagram shows a network
A, and the second shows A0, where nodes that are removed are represented by
empty circles.

Let Pp(k), for k ∈ {0, 1, . . .}, be the degree distribution of the nodes in Ā0,
and let Ap(k) be the number of nodes in Ā0 with degree k. As Ā0 has size pN ,
it follows that

Pp(k) = Ap(k)
pN

. (4.2)

We now remove one additional node, so that pN − 1 = N(p − 1
N ) nodes

remain in the network. The probability that the node chosen has degree k is
proportional to Pp(k)kα, where kα = kα(p), which we normalise to obtain

Pp(k)kα

〈kα〉
= Pp(k)kα∑

j

Pp(j)jα
.

Therefore, the expected number of nodes with degree k in the modified
network is

A(p− 1
N )(k) = Ap(k)− Pp(k)

〈kα〉
, (4.3)
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which we rearrange to give

Ap(k)−A(p− 1
N )

1
N

= NPp(k)kα

〈kα〉
. (4.4)

By taking the limit N →∞, Eq. (4.4) yields

d
dp [Ap(k)] = NPp(k)kα

〈kα〉
. (4.5)

A second expression for d
dp [Ap(k)] is obtained by differentiating Eq. (4.2) with

respect to p:

d
dp [Ap(k)] = d

dp [pNPp(k)]

= NPp(k) + pN
d
dp [Pp(k)] . (4.6)

Setting the two expressions (4.5) and (4.6) equal to each other gives

−p ddpPp(k) = Pp(k)− Pp(k)kα

〈kα〉
. (4.7)

To solve Eq. (4.7), we define Gα(x) =
∑
k P (k)xkα , where P (k) = PA(k), and

set h = G−1
α (p). Therefore, Gα(h(p)) = p, and differentiating both sides of (4.7)

yields
h′(p) = 1

Gα
′(h)

.

Taking Pp(k) = P (k) hk
α

Gα(h) = 1
pP (k)hkα , with 〈kα〉 = hGα

′(h)
Gα(h) , gives a solution

to Eq. (4.7), as we can see with the following calculation:

−p ddpPp(k) = −p ddp

[
1
p
P (k)hk

α

]
= −p

[
− 1
p2P (k)hk

α

+ 1
p
P (k)kαhk

α−1h′(p)
]

= 1
p
P (k)hk

α

− 1
p
P (k)hk

α kαp

hGα
′(h)

= Pp(k)− Pp(k)kα

〈kα〉
.

Therefore, the degree distribution of the nodes in Ā0 is generated by

GĀ0
(x) =

∑
k

Pp(k)xk = 1
p

∑
k

P (k)hk
α

xk. (4.8)

We will now calculate the degree distribution of the nodes in the network
A0, where A0 is formed from Ā0 by removing any edge that is only connected
at one of its endpoints. We write P0(k) for this degree distribution.
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Consider the set of edges from a node v in Ā0. When we form the network
A0, the edges that are removed are the edges that do not lead to another node
in Ā0. Therefore, on average we keep a fraction p̃ of the edges from each vertex,
where p̃ is the expected fraction of the original edges of A that have at least one
endpoint in Ā0.
The value of p̃ is

p̃ = |E(Ā0)|
|E(A)| = pN〈k(p)〉

N〈k〉
=
∑
k P (k)khkα∑
k P (k)k ,

where 〈k〉 is the expected degree of a node in A, and 〈k(p)〉 is the expected degree
of a node in A0. It is now possible to find the generating function GA0(x) for
P0(k), by conditioning on the degree of a node in Ā0. We obtain

GA0(x) =
∞∑
k=0

P0(k)xk

=
∞∑
k=0

∞∑
m=k

Pr(dA0(v) = k | dĀ0
(v) = m) Pr(dĀ0

(v) = m)xk

=
∞∑
m=0

Pp(m)
m∑
k=0

(
m

k

)
p̃k(1− p̃)m−kxk

=
∞∑
m=0

Pp(m)(1− p̃+ p̃x)m

GA0(x) = GĀ0
(1− p̃+ p̃x). (4.9)

Recall from Eq. (3.1) that for a network X, the degree distribution after the
removal — uniformly at random — of a fraction 1− p of the nodes is generated
by GX(1 − p + px). Therefore, we seek a network A′ with degree distribution
generated by GA′(x), such that

GA′(1− p+ px) = GĀ0
(1− p̃+ p̃x). (4.10)

Suppose that GA′(z) is of the form GA′(z) = GĀ0
(f(z)). If we can find a

function f(z) that satisfies f(1 − p + px) = 1 − p̃ + p̃x, then GA′(z) satisfies
Eq. (4.10). From this condition on f(z), it follows that

z = 1− p+ px ⇔ x = z − 1 + p

p
,

f(z) = 1− p̃+ p̃x ⇔ x = f(z)− 1 + p̃

p̃
,

so

x = 1
p̃

(f(z)− 1 + p̃) = 1
p

(z − 1 + p),

f(z) = 1− p̃+ p̃

p
(z − 1 + p) = 1 + p̃

p
(z − 1).

Therefore, GA′(x) = GĀ0
(1 + p̃

p (x − 1)) satisfies our conditions. The problem
has been reduced to the problem studied in Chapter 3, and it can be solved
using the same methods.
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4.3 Example: Solving the Reduced System for
Erdős-Rényi Networks

Once again, we consider a pair of coupled Erdős-Rényi networks. In [16], Huang
et al. use an analytic method to find the critical value pc in the case when
the initial attack removes nodes from both networks in the pair. In order to
remain consistent with the rest of this report, we will continue to work with
an asymmetric initial attack, where nodes are only removed from the network
A. The following section makes use of a combination of the techniques from
section (3.4), and ideas from [16], to solve a targeted attack problem on coupled
Erdős-Rényi networks with equal mean degrees. We consider the example when
α = 1, and observe in this case that Gα(z) =

∑
k PA(k)zk = GA(k), so Eq. (4.8)

can be written

GĀ0
(z) = 1

p

∑
k

PA(k)hkzk = 1
p
GA(hz), (4.11)

where h = G−1
A (p). The generating function GA′(z) can therefore be written in

terms of GA(z) as follows:

GA′(z) = GĀ0

(
1 + p̃

p
(z − 1)

)
= 1
p
GA

(
h

[
1 + p̃

p
(z − 1)

])
, (4.12)

where
p̃ =

∑
k PA(k)khk∑
k PA(k)k = hG′A(h)

G′A(1) .

In our example, A and B are Erdős-Rényi networks, each with mean degree
a. It then follows that GA(z) = exp[a(z− 1)], so h = 1

a log(p) + 1. Additionally,
G′A(z) = a exp[a(z − 1)] = aGA(z), so we can calculate

p̃ = ahGA(h)
aGA(1) = ph.

We can now simplify GA′(z) even further:

GA′(z) = 1
p
GA

(
h+ p̃

p
h(z − 1)

)
= 1
p
GA(h+ h2(z − 1))

= 1
p

exp[a(h− 1 + h2(z − 1)]

= 1
p
GA(h) exp[ah2(z − 1)]

GA′(z) = exp[ah2(z − 1)].

The probability generating function uniquely determines a distribution, so
we have shown that A′ has the same degree distribution as an Erdős-Rényi
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network with mean degree ah2. The equivalent equations to (3.13) are{
fA′ = exp[−ah2p(1− fA′)(1− fB)],
fB = exp[−ap(1− fA′)(1− fB)].

(4.13)

Observe that fA′ = fh
2

B , so the substitution f = fB yields

f = exp[−ap(1− fh
2
)(1− f)], (4.14)

which we solve graphically to find the critical values of f = fB and of fA′ .

Figure 4.2: A graphical solution to Eq. (4.14), for coupled Erdős-Rényi networks
with equal mean degrees (a = b = 6). We plot the curve y = exp[−ap(1 −
fh

2)(1− f)] for p = 0.3, 0.46 and 0.6; and we consider the points of intersection
with the line y = f .

We proceed in the same way as in Chapter 3. For any value of p, a trivial
solution to Eq. (4.14) is given by f = 1. We wish to find the critical value pc of
p, when non-trivial solutions first become possible. The critical value pc is the
value of p for which the line y = f and the curve y = exp[−ap(1− fh2)(1− f)]
meet at a tangent. When the mean degree is a = 6, Fig. 4.2 suggests that pc
is about 0.46. At pc, the derivatives of the line and the curve are equal, so we
have

1 = d
df

[
exp[−ap(1− fh

2
)(1− f)]

]
= exp[−ap(1− fh

2
)(1− f)]× d

df

[
−ap(1− fh

2
)(1− f)

]
= −apf

[
−h2f (h2−1)(1− f)− (1− fh

2
)
]

1 = ap
[
h2fh

2
+ f − (h2 + 1)f (h2+1)

]
. (4.15)
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Simultaneously solving Eq. (4.14) and (4.15) numerically, when a = 6, yields
the approximate solution pc ≈ 0.4711. The corresponding value of µ∞ is approx-
imately 0.2386. For other values of a between 3 and 8, the numerical solutions
for pc and f , along with the corresponding values of µ∞, are shown in Fig. 4.3
(for MATLAB code, see Appendix B).

Figure 4.3: Numerical solutions of Eqs. (4.14) and (4.15).

4.4 Simulations

I simulated the cascade process that follows from an initial attack where nodes
are targeted with probability proportional to their degree (i.e. α = 1 in Eq. (4.1)).
In this section, we restrict the value of p to between 0.1 and 1. This is to ensure
that there are always enough nodes with non-zero degree to carry out the initial
attack. My MATLAB code is included in Appendix B.

4.4.1 Erdős-Rényi Networks

The results for a targeted attack on coupled Erdős-Rényi networks look very
similar to the results for cascades caused by the failure of nodes uniformly at
random. As in the previous chapter, when p is small the network tends to
break into small clusters, and when p is larger a giant cluster survives. As
before, there is a sudden transition between the two states, but in this case
the transition happens at a slightly larger value of p, at about p = 0.46. This
agrees with the critical value pc derived in section 4.3, and suggests that, for
coupled Erdős-Rényi networks, a targeted attack is more effective than an attack
uniformly at random, but not by very much. The reason for this is that the
degree distribution in an Erdős-Rényi network is not very broad, so even the
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highest degrees are relatively close to the mean degree. Therefore, choosing
nodes based on their degrees is quite similar to choosing nodes uniformly at
random.

Figure 4.4: Simulations of the cascade process for an attack targeted by node
degree on coupled Erdős-Rényi networks with equal mean degree (a = b = 6).
All curves are averages of 20 simulations.

4.4.2 Scale-Free Networks

Figure 4.5 (page 33) shows that attacks where nodes are targeted with proba-
bility proportional to their degree are extremely effective on coupled scale-free
networks. This is not surprising, since a necessary condition for the existence
of a giant mutually connected component in a pair of interdependent networks
is the existence of a giant component in each of the networks. It has been
shown that targeted attacks can quickly destroy the giant component in single-
layer scale-free networks [9], which would clearly make it impossible for a giant
mutually connected component to exist in a coupled system.
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Figure 4.5: Simulations of the cascade process for coupled scale-free networks.
All curves are averages of 20 simulations.
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5. Targeting by Number of
Second-Neighbours

Node degree is not the only measure of a node’s importance in a network. We
call quantities that measure the importance of a node centrality measures (page
9, [23]). When attacking a network, one can choose to target nodes according
to any centrality measure. A natural extension to the work in Chapter 4 is to
ask how robust interdependent networks are against an attack where nodes are
targeted according to how many “second-neighbours” they have. If it is effective
to base an attack on the degree of nodes, it might be even more effective to base
an attack on the 2-degree of nodes.

Definition 5.1. In a network A, a node u is a 2-neighbour of a node v if
u 6= v and u and v have a shared neighbour. The 2-degree of v is

d2
A(v) = |{u ∈ A | u is a 2-neighbour of v}|.

Figure 5.1: The neighbours and 2-neighbours of a node v. In the network made
up only of the solid edges, the degree and the 2-degree of v are both 3. If the
dotted edge is included, the degree of v is 4, and the 2-degree of v is also 4,
since the two nodes that make up the triangle with v count both as neighbours
and as 2-neighbours of v.

For example, in a friendship network, the degree of a person is the number
of friends they have, and the second degree is the number of individuals who
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are “a-friend-of-a-friend”. In addition to the degree of a node, the 2-degree gives
extra information about the “reach” of a node in a network, whilst still being
simple to calculate. As is shown in Fig. 5.1, it is possible for a node to be both a
neighbour and a 2-neighbour of another node. However, this only occurs when
there are small loops in the network. Therefore, if a network is locally tree-like
(see footnote on page 16), we can assume that the set of neighbours of a node
v and the set of 2-neighbours of v are disjoint sets.

In this chapter, we modify the method from [16], seen in Chapter 4, to model
the cascade of failures that results from an initial attack that targets nodes based
on their 2-degrees. In the previous chapter, the analysis was reduced to a system
of equations in terms of the generating functions GA(z), GB(z) for the degree
distributions of the coupled networks A and B. In this chapter, we instead
require the generating functions for the distributions of 2-degrees in the two
networks.

5.1 Generating Functions for the Distribution of
2-Degrees

We aim to reduce the targeted attack case to a case of the failure of nodes
uniformly at random. Therefore, we first consider the generating function for
the 2-degrees in a network A.

Figure 5.2: Calculating the 2-degree of a node. The node v has edges {e1, e2, e3},
that lead to nodes with excess degrees kex

1 = 4, kex
2 = 2, and kex

3 = 3.

Let GsX(z) be the generating function for the distribution of 2-degrees in a
network X. We suppose that the network A has size N , and we consider the
2-degree of a node v ∈ A. Suppose that v has edges {e1, e2, . . . , ek}, where
k = dA(v), and let kex

j be the excess degree of the node reached by following
the edge ej , as illustrated in Fig. 5.2. Observe that in locally-tree-like networks,
the variables (kex

i ; i ≥ 1) are independent and identically distributed, with
probability generating function G̃A(z), and the collection is independent of the
degree of v. The 2-degree of v is then given by d2

A(v) =
∑k
j=1 k

ex
j . We can write

35



the generating function GsA(z) in terms of GA(z) and G̃A(z), using the random
sum property of generating functions (page 11).

GsA(z) = GA(G̃A(z)). (5.1)

We can now calculate the generating function for the 2-degrees in the network
A0, which is formed (as in Chapter 4) by removing a fraction 1− p of the nodes
of A, uniformly at random. We write GsA0

(z) in terms of GsA(z), which yields
an equivalent expression to Eq. (3.1).

GsA0
(z) =

∞∑
m=0

zm Pr
(
d2
A0

(v) = m
)

=
∞∑
m=0

∞∑
r=m

zm Pr
(
d2
A0

(v) = m | d2
A(v) = r

)
× Pr

(
d2
A(v) = r

)
=
∞∑
r=0

r∑
m=0

zm
(
r

m

)
pm(1− p)r−m Pr

(
d2
A(v) = r

)
=
∞∑
r=0

Pr
(
d2
A(v) = r

)
(1− p+ pz)r

GsA0
(z) = GsA(1− p(1− z)). (5.2)

5.2 Modifying the Method, for Initial Attack
According to 2-degree

We modify the method given in Chapter 4, to analyse the effect of carrying
out an initial attack in which nodes are targeted according to their 2-degree.
We define a family of probability distributions Yα(si) (the equivalent of the
distributions Wα(ki) on page 25) as follows:

Yα(si) = sαi∑N
i=1 s

α
i

, α ∈ R,

where si is the 2-degree of the node i. As before, if α < 0, we ignore any nodes
with si = 0.

We will follow the method, hoping to find an equivalent to Eq. (4.7). Equa-
tion (4.7) is in terms of Wα(ki), and has a solution that is based on the degree
distribution of the network A. If we could find an equivalent equation, it would
most likely be in terms of the distribution Yα(si), so we expect any solutions to
be based on the distribution of 2-degrees in A. Such a solution would give an
expression for Gs

Ā0
(z), from which we can derive an expression for GsA0

(z).
The final step in the method is to find a network A′, with |A′| = N , such

that the generating function GsA′(z) satisfies

GsA′(1− p(1− z)) = GsA0
(z).
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At this stage, if it is possible to find a degree distribution (and therefore an
excess degree distribution) for A′ that satisfies GA′

(
G̃A′(z)

)
= GsA′(z), then

the problem can be solved using the same techniques as in the case of the failure
of nodes uniformly at random.

5.3 Applying the Method

The network Ā0 is defined as the network formed from A by randomly removing
a fraction 1− p of the nodes, according to the probabilities Yα(si), but leaving
the edges incident to the removed nodes. Let P sp (s) be the 2-degree distribution
of the nodes in Ā0, and let Asp(s) be the number of nodes in Ā0 with 2-degree
s, so P sp (s) = Asp(s)

pN .
We remove one additional node, say node u, according to the probabilities

Yα(si). The probability that u has 2-degree s is normalised as

P sp (s)sα∑
r
P sp (r)rα =

P sp (s)sα

〈sα〉
.

For s ∈ {1, 2, . . . , N−1}, the expected number of nodes with 2-degree s remain-
ing in the modified Ā0 is given by

As(p− 1
N ) = Asp(s)−

P sp (s)sα

〈sα〉
− δ−s + δ+

s ,

where δ−s is the expected number of nodes that have 2-degree s before the
removal of u, and 2-degree less than s after the removal of u; and δ+

s is the
expected number of nodes that have 2-degree larger than s before the removal
of u, and 2-degree equal to s after the removal of node u. In Eq. (4.3), when
we only considered the degrees of nodes, there were no equivalent quantities to
δ−s and δ+

s . This is because — as illustrated in Fig. 4.1 — removing nodes, but
not their edges, from a network does not change the degrees of the remaining
nodes (although it does change the degree distribution of the modified network).
In contrast, Fig. 5.3 (on page 38) demonstrates how removing a node from a
network can affect the 2-degrees of remaining nodes, even before any edges are
removed.

If our method is going to work for initial attacks based on 2-degree, we will
have to deal with the extra terms δ−s and δ+

s . However, these quantities are not
simple to calculate, and it is not obvious how to proceed analytically. Therefore,
we will instead consider computer simulations of attacks based on 2-degree, in
the hope that we can observe empirically how the system behaves.

5.4 Simulations

As in previous chapters, we simulate the cascade process on coupled Erdős-Rényi
and scale-free networks. The code for an attack targeted by 2-degree is shown
in Appendix C.
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Figure 5.3: Removing a node from the network can affect the 2-degrees of the
remaining nodes. Panel (a) shows a network A, and panel (b) shows the network
after the removal of node u, but before removing any edges that were joined to
u. In A, the node v has degree 3 and 2-degree 6. After removal of u, the degree
of v is unchanged, but v now has a 2-degree of 3.

We have seen that an attack targeted by node degree on coupled Erdős-Rényi
networks has a very similar effect to the failure of nodes uniformly at random.
The simulations whose results are depicted in Fig. 5.4 (page 39) show that
an attack targeted by 2-degree is practically equivalent to an attack targeted
by degree. The plots in Figs. 4.4 and 5.4 are almost identical, discounting
differences in the smoothness of the curves that are due to the different numbers
of simulations performed. This is because in Erdős-Rényi networks, degree and
2-degree are strongly correlated, as we can see in Fig. 5.6 (page 40).

The figure for scale-free networks (Fig. 5.5, page 39) also looks similar to the
corresponding figure in the previous chapter (Fig. 4.5), and this indicates that a
targeted attack based on 2-degree is an effective way to destroy the giant cluster
in coupled scale-free networks. However, the transition from the non-existence
to the existence of a giant cluster takes place at lower values of p in Fig. 5.5
than in Fig. 4.5, so it would usually be more effective to target nodes based on
their degree, rather than their 2-degree.

The reason for this behaviour is as follows. There are two main ways that
a node v can have a high 2-degree. The first way is if the node itself has high
degree, so it has many neighbours that each contribute their own neighbours to
the 2-degree of v. In Fig. 5.7 (page 40), these are the points in the top right of
the scatter plot. The second way is if the node itself has a low degree, but it
has a neighbour with a high degree. These are the points on the left-hand side
of Fig. 5.7, that have degrees of 1,2 or 3, but 2-degrees of about 100. In the first
case, the node v is likely to play an important role in the connectedness of the
network, and removing it could cause the network to become fragmented. In
the second case, however, there is no reason that the removal of v would have
a significant impact on the connectedness of the network. Therefore, an attack
targeted by 2-degree can be seen as a weakened form of an attack targeted by
degree, and this is reflected in Fig. 5.5.
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Figure 5.4: Simulations of the cascade process for an attack targeted by 2-
degree on coupled Erdős-Rényi networks, with mean degrees a = b = 6. 100
simulations were carried out for N = 500, 50 for N = 1000, and 20 each for
N = 2000 and N = 5000.

Figure 5.5: Simulations of the cascade process for an attack targeted by 2-degree
on coupled scale-free networks. All curves are averages over 20 simulations.
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Figure 5.6: Scatter diagram of node degrees and 2-degrees in an Erdős-Rényi
network with 500 nodes, and mean degree 6.

Figure 5.7: Scatter diagram of node degrees and 2-degrees in a scale-free network
with 500 nodes.
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6. Conclusion

In this dissertation, I have investigated the robustness of pairs of interdependent
networks against the removal of nodes chosen in three ways: uniformly at ran-
dom, randomly according to degree, or randomly according to 2-degree. I used
probability generating functions to examine the problem, applied analytic meth-
ods for specific examples, then performed simulations for coupled Erdős-Rényi
and scale-free networks.

In the case where nodes initially fail uniformly at random, I calculated the
critical value pc of p (where p is the fraction of nodes that survive the initial
failure) for coupled Erdős-Rényi networks with equal mean degree a, and found
that the critical value decreases as we consider larger mean degrees. Simulations
showed that coupled scale-free networks are more vulnerable than single-layer
scale-free networks to the removal of nodes uniformly at random, though there
was no sudden jump in the size of the largest surviving cluster, as seen in the
simulations for coupled Erdős-Rényi networks.

When the initial attack removes nodes with probabilities proportional to
their degrees, the cascade of failures behaves very similarly to the failure uniformly-
at-random case on coupled Erdős-Rényi networks. In contrast, I showed that for
coupled scale-free networks, an attack targeted by degree is much more effective
than an attack that removes nodes uniformly at random.

Although the generating function method from Chapter 4 was not successful
in the study of an initial attack targeted by 2-degree, simulations showed that
for both coupled Erdős-Rényi networks and coupled scale-free networks, the
cascade of failures behaves in a similar way to the cascade resulting from an
initial attack that is targeted according to degree. In the Erdős-Rényi case, the
two types of targeted attack were practically equivalent, whereas for scale-free
networks, targeting based on 2-degree was shown to be a little less effective.

The simulations that I performed were limited by time and computer power.
Averaging over a larger number of simulations would reduce the impact of fluc-
tuations in the data, producing smoother, clearer plots. Running simulations
on graphs with more nodes would require more computing power, but would
allow better comparisons to be made between simulations and analytic results.
The code that I used to simulate scale-free networks did not have an option to
specify the parameters of the distribution. If the simulations were repeated, it
might be instructive to consider scale-free networks with a variety of parameter
values.

There are several possible extensions to the work in this dissertation. We
have assumed that in a pair of coupled networks, the structures of the two
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networks are independent from each other. However, it is reasonable that in
some situations there would be a level of correlation between the degrees of a
node in each of the layers. Lee et al. consider this problem, for Erdős-Rényi
networks, in [20].

Considering attacks that are targeted by degree allowed us to use a generat-
ing function method to investigate the cascades of failures. However, it could be
interesting to target attacks based on other centrality measures. This is covered,
for single-layer networks, in [18].

Finally, in the investigation of attacks targeted by 2-degree, a natural ques-
tion is whether the high-degree nodes tend to be connected to other high-degree
nodes (a property known as assortative mixing [23]). By considering networks
with different levels of assortative mixing, we could gain further insights into
the behaviour of this type of targeted attack.
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Appendix A

MATLAB Code for
Chapter 3

A.1 Solving Eq. (3.16) Numerically

A.1.1 findf.m

The MATLAB script findf.m solves Eq. (3.16) numerically to obtain the critical
value fc of f . The first part of the script plots the line y = x and the curve
y = exp(x−1

2x ). From this plot, we spot a suitable starting value (x = 0.3), then
use the built-in function, “fzero”, to find a numerical solution.

% FINDF.M
% Plot graph to f i nd approximate s o l u t i o n :
fplot ( ’ x ’ , [ 0 , 1 ] )
hold on
func1 = @(x ) exp ( ( x−1)/(2∗x ) ) ;
fplot ( func1 , [ 0 , 1 ] , ’ r ’ )

% Find s o l u t i o n numer ica l l y :
syms x ;
func2 = @(x ) exp ( ( x−1)/(2∗x))−x ;
f = fzero ( func2 , 0 . 3 )
atimesp = 1/(2∗ f ∗(1− f ) )
atimesmu = atimesp∗(1− f )^2

A.2 Simulating Random Node Failure in Erdős-Rényi
Networks

A.2.1 buldyrevGraph.m

When applied to the parameters (t,N ,edgeprob,linecolour), the function buldyrev-
Graph.m simulates t pairs of interdependent Erdős-Rényi networks with size
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N , where each edge exists with probability edgeprob. The function simulates the
cascade process, as described in Chapter 3, for 100 values of p between 0 and
1. Finally, the function plots the average size of the largest surviving mutually
connected cluster, as a fraction of the size of the full network, against p (recall
that p is the probability that a node is not removed in the initial failure).

% BULDYREVGRAPH.M
function [X,Y] = buldyrevGraph ( t ,N, edgeprob , l i n e c o l o u r )

t ic
X = linspace ( 0 , 1 ) ;
Y = arrayfun (@(p) simBuldyrev ( t ,N, edgeprob , p ) ,X) ;
plot (X,Y, ’ c o l o r ’ , l i n e c o l o u r )
xlabel ( ’ P robab i l i t y ␣p␣ o f ␣ i n i t i a l ␣node␣ su r v i v a l ’ )
ylabel ( ’ S i z e ␣ o f ␣ l a r g e s t ␣component , ␣ as ␣ f r a c t i o n ␣ o f ␣ s i z e ␣ o f ␣graph ’ )
toc
end

A.2.2 simBuldyrev.m

When applied to parameters (t,N ,edgeprob,p), the function simBuldyrev.m
simulates the cascade process with probability of initial node failure 1 − p on
t pairs of interdependent Erdős-Rényi networks, each with N nodes, and edges
that exist independently with probability edgeprob. The function returns the
average size of the surviving cluster, as a fraction of the full network. This func-
tion uses the function “makerandCIJ_und” from the Brain Connectivity Tool-
box ([5]), which, when given parameters (N ,noOfEdges), creates an Erdős-Rényi
random graph with N nodes and noOfEdges edges.

% SIMBULDYREV.M
function avg s i z e = simBuldyrev ( t ,N, edgeprob , p)

possEdges = nchoosek (N, 2 ) ;
largeComps = 1 : t ;

for j = 1 : t ,
numberOfEdges1 = binornd ( possEdges , edgeprob ) ;
numberOfEdges2 = binornd ( possEdges , edgeprob ) ;
graph1 = sparse (makerandCIJ_und (N, numberOfEdges1 ) ) ;
graph2 = sparse (makerandCIJ_und (N, numberOfEdges2 ) ) ;

endgraph = cascadeP ( graph1 , graph2 , p ) ;
sizeLargeComp = length ( largest_comp ( endgraph ) ) ;
largeComps ( j ) = sizeLargeComp ;

end

avg s i z e = (sum( largeComps ) ) / ( t ∗N) ;

end
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A.2.3 cascadeP.m

When applied to (graph1,graph2,p), the function cascadeP.m removes a frac-
tion 1 − p of the nodes of graph1 uniformly at random, then runs the cascade
process described in Chapter 3. The output of the function is the resulting
network.

% CASCADEP.M
function endgraph = cascadeP ( graph1 , graph2 , p )

q = 1−p ;
N = s ize ( graph1 , 1 ) ;

s = f loor ( q∗N) ;
f a i l edNodes = randsample (N, s ) ;

f i r s t f a i l s 1 = removeNodes ( fa i l edNodes , graph1 ) ;
f i r s t f a i l s 2 = removeNodes ( fa i l edNodes , graph2 ) ;

endgraph = runCascades ( f i r s t f a i l s 1 , f i r s t f a i l s 2 ) ;

end

A.2.4 runCascades.m

The function runCascades.m carries out steps 1–3 of the cascade process,
stopping when no more edges are removed. The function returns the network
that remains after step 4 of the process.

% RUNCASCADES.M
function endgraph = runCascades ( graph1 , graph2 )

d = 1 ; % Any non−zero w i l l do .
next1 = graph1 ;
next2 = graph2 ;

while d~=0,
[ n1 , n2 , d1 ] = cascadespar s e ( next1 , next2 ) ;
[ next2 , next1 , d2 ] = cascadespar s e (n2 , n1 ) ;
d = d1+d2 ; % Ind i c a t e s i f edges have been removed .

end

next1 ;
next2 ;
endgraph = next1 ;
end
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A.2.5 cascadesparse.m

When applied to (graph1,graph2), the function cascadesparse.m checks each
edge of graph2 to see whether the endpoints of the edge are in the same con-
nected component of graph1. If not, the edge is deleted from graph2. The
function returns graph1, the updated version of graph2, and a variable which
indicates whether or not edges were deleted. This function uses the function
“get_components” from the Brain Connectivity Toolbox ([5]), which takes a
graph as input, and returns a vector with one entry for each node, indicating
which connected component the node is part of.

% CASCADESPARSE.M
function [ newg1 , newg2 , noDel ]= cascadespar s e ( graph1 , graph2 )

comps = get_components ( graph1 ) ;
n = s ize ( graph1 , 1 ) ;
[ i s , j s , e lems ] = find ( graph2 ) ;

mask = comps ( i s )==comps ( j s ) ;

newis = i s (mask ) ;
newjs = j s (mask ) ;
newelems = elems (mask ) ;

d e l s = length ( i s )−length ( newis ) ;
newg2 = sparse ( newis , newjs , newelems , n , n ) ;

newg1 = graph1 ;
noDel = de l s ;

end

A.2.6 largest_comp.m

The function largest_comp.m returns the largest connected component of a
graph, in the form of a vector of nodes.

% LARGEST_COMP.M
function nodes = largest_comp ( graph )

[ comps , s i z e s ] = get_components ( graph ) ; .
[ s , c ] = max( s i z e s ) ;
l = length ( comps ) ;
elems = 1 : s ;
i = 1 ;

for j = 1 : l ,
i f comps ( j ) == c

elems ( i ) = j ;
i = i +1;
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end
end

nodes = elems ;
end

A.2.7 removeNodes.m

Given a list of nodes and a graph, the function removeNodes.m removes each
node in the list from the graph, and removes all edges incident to the removed
nodes.

% REMOVENODES.M
function newgraph = removeNodes ( nodes , graph )

sortNodes = sort ( nodes ) ;
l = length ( nodes ) ;

for i =0:( l −1) ,
nextgraph = removeNode ( sortNodes ( l−i ) , graph ) ;
graph = nextgraph ;

end

newgraph = graph ;

end

A.2.8 removeNode.m

Given a node i and a graph, the function removeNode.m removes i from the
graph, and deletes any edges incident to i. The remaining nodes in the graph
are renumbered after node i is removed.

% REMOVENODE.M
function newgraph=removeNode ( i , graph )

newgraph = graph ( [ 1 : ( i −1) ,( i +1):end ] , [ 1 : ( i −1) ,( i +1):end ] ) ;

end

A.3 Simulating Random Node Failure in Scale-
Free Networks

Most of the MATLAB code that I used to simulate the failure uniformly at
random of nodes in coupled scale-free networks is the same as the code for
Erdős-Rényi networks. The only difference is the way that the coupled networks
are first generated.
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A.3.1 buldyrevGraphSF.m

The function buldyrevGraphSF.m is the equivalent of buldyrevGraph.m,
for coupled scale-free networks. Instead of taking the two parameters N and
edgeprob, the function just takes the parameter N , which is the size of the
networks that are generated.

% BULDYREVGRAPHSF.M
function [X,Y] = buldyrevGraphSF ( t ,N, l i n e c o l o u r )

t ic
X = linspace ( 0 , 1 ) ;
Y = arrayfun (@(p) simBuldyrevSF ( t ,N, p ) ,X) ;
plot (X,Y, ’ c o l o r ’ , l i n e c o l o u r )
xlabel ( ’ P robab i l i t y ␣p␣ o f ␣ i n i t i a l ␣node␣ su r v i v a l ’ )
ylabel ( ’ S i z e ␣ o f ␣ l a r g e s t ␣component , ␣ as ␣ f r a c t i o n ␣ o f ␣ s i z e ␣ o f ␣graph ’ )
toc
end

A.3.2 simBuldyrevSF.m

The function simBuldyrevSF.m is the equivalent of simBuldyrev.m. The
function “pref.m”, from the CONTEST toolbox for MATLAB [28], is used to
generate random scale-free networks of size N , represented as sparse matrices.

% SIMBULDYREVSF.M
function avg s i z e = simBuldyrevSF ( t ,N, p)

largeComps = 1 : t ;

for j = 1 : t ,
graph1 = pre f (N) ;
graph2 = pre f (N) ;

endgraph = cascadeP ( graph1 , graph2 , p ) ;
sizeLargeComp = length ( largest_comp ( endgraph ) ) ;
largeComps ( j ) = sizeLargeComp ;

end

avg s i z e = (sum( largeComps ) ) / ( t ∗N) ;

end
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Appendix B

MATLAB Code for
Chapter 4

B.1 Solving Eq. (4.14) Numerically

B.1.1 degFindf.m
The script degFindf.m solves Eqs. (4.14) and (4.15) numerically, for 100 values
of a between 3 and 8, then calculates the corresponding values of µ∞. The initial
guess of p = 0.5, f = 0.3 is taken from Fig. 4.2. The quantities pc, f and µ∞
are plotted on one figure, as functions of the mean degree a.
% DEGFINDF.M

as = linspace ( 3 , 8 ) ;
ps = linspace ( 3 , 8 ) ;
f s = linspace ( 3 , 8 ) ;

for i =1:100
a = as ( i ) ;
aSimEqs = @(X) SimEqs ( [X( 1 ) ;X( 2 ) ; a ] ) ;
X0 = [ 0 . 5 ; 0 . 3 ] ; % I n i t i a l gue s se s f o r p and f .
[ x , f v a l ] = f s o l v e ( aSimEqs ,X0 ) ;
p = x ( 1 ) ;
ps ( i ) = p ;
f = x ( 2 ) ;
f s ( i ) = f ;

end

plot ( as , ps , ’b ’ )
hold on
plot ( as , f s , ’ r ’ )

mus = ps .∗(1− f s . ^ ( ( ( 1 . / as ) . ∗ log ( ps ) + 1) .^2) ) .∗ (1 − f s ) ;
plot ( as ,mus , ’m’ )
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B.1.2 SimEqs.m

The script SimEqs.m defines Eqs. (4.14) and (4.15) as a MATLAB function of
a vector X, where the first entry of X is p, the second entry is f , and the third
entry is the mean degree a.
% SIMEQS.M
function F = SimEqs ( X)
% X(1) −> p , X(2) −> f , X(3) −> a
F = [X(2)−exp(−X(3)∗X(1)∗(1−X(2 )^ ( ( ( 1/X(3 ) )∗ log (X(1))+1)^2))∗(1−X( 2 ) ) ) ;
1−X(3)∗X(1 ) ∗ ( ( ( ( 1 /X(3 ) )∗ log (X(1))+1)^2)∗X(2 )^ ( ( ( 1/X(3 ) )∗ log (X(1))+1)^2)
+X(2)−(((1/X(3 ) )∗ log (X(1))+1)^2+1)∗X(2 )^ ( ( ( 1/X(3 ) )∗ log (X(1) )+1)^2+1)) ] ;
end

B.2 Simulating Attacks Targeted by Degree
The simulations of an attack targeted by degree, as described in Chapter 4,
use the same MATLAB code as the code in Appendix A, except for a modifi-
cation which changes the nature of the initial node failure. The modification
is in the function degreeCascadeP.m, which takes the place of the function
cascadeP.m.

B.2.1 degreeCascadeP.m

Given input (graph1,graph2,p), the function degreeCascadeP.m removes a
fraction 1 − p of the nodes of graph1, where the probability that each node is
removed is proportional to the degree of the node. Nodes with zero degree are
ignored. The function then performs the cascade process on the two graphs
graph1 and graph2, and returns the resulting graph as output.
% DEGREECASCADEP.M
function endgraph = degreeCascadeP ( graph1 , graph2 , p )

q = 1−p ;
n = s ize ( graph1 , 1 ) ; % Number o f nodes .
degs = sum( graph1 ) ; % Vector o f node degrees .
mask = degs >0; % To i d e n t i f y nodes wi th non−zero degree .
nodes = 1 : n ;
e l i g i b l e n o d e s = nodes (mask ) ;
ws = degs (mask ) ; % Degrees o f non−zero−degree nodes .

s = f loor ( q∗n ) ; % Number o f nodes to remove .
f a i l edNodes = datasample ( e l i g i b l e n od e s , s , ’ r e p l a c e ’ , f a l s e , ’ we ights ’ ,ws ) ;

f i r s t f a i l s 1 = removeNodes ( fa i l edNodes , graph1 ) ;
f i r s t f a i l s 2 = removeNodes ( fa i l edNodes , graph2 ) ;

endgraph = runCascades ( f i r s t f a i l s 1 , f i r s t f a i l s 2 ) ;

end
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Appendix C

MATLAB Code for
Chapter 5

C.1 Simulating Attacks Targeted by 2-Degree
The simulations of the cascade of failures caused by an initial attack targeted
by 2-degree use the same code as the simulations for cascades caused by failure
uniformly at random, except for a modified version of cascadeP.m.

C.1.1 sndDegreeCascadeP.m

Given input (graph1,graph2,p), the function sndDegreeCascadeP.m removes
a fraction 1− p of the nodes of graph1, where the probability that each node is
removed is proportional to the 2-degree of the node. Nodes with a 2-degree of
zero are ignored. The function then performs the cascade process on the two
graphs graph1 and graph2, and returns the resulting graph as output.
% SNDDEGREECASCADEP.M
function endgraph = sndDegreeCascadeP ( graph1 , graph2 , p )

q = 1−p ; n = s ize ( graph1 , 1 ) ;
twopaths = graph1∗graph1 ;
reduced2paths = twopaths >0; % Replace any non−zero element wi th 1 .
twodegs = sum( reduced2paths )−1; % Vector o f node 2−degrees .
mask = twodegs >0; % To i d e n t i f y nodes wi th non−zero 2−degree .
nodes = 1 : n ;
e l i g i b l e n o d e s = nodes (mask ) ; % Nodes wi th non−zero 2−degrees .
ws = twodegs (mask ) ; % 2−degrees o f non−zero−2−degree nodes .

s = f loor ( q∗n ) ; % Number o f nodes to remove .
f a i l edNodes = datasample ( e l i g i b l e n od e s , s , ’ r e p l a c e ’ , f a l s e , ’ we ights ’ ,ws ) ;
f i r s t f a i l s 1 = removeNodes ( fa i l edNodes , graph1 ) ;
f i r s t f a i l s 2 = removeNodes ( fa i l edNodes , graph2 ) ;
endgraph = runCascades ( f i r s t f a i l s 1 , f i r s t f a i l s 2 ) ;
end
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