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Abstract

Network science is a novel method of investigating the structure and function

of the brain. We used network analysis in an attempt to distinguish between brain

graphs constructed from fMRI data from patients and controls. The nodes in the

brain graphs are spatial regions of interest and the strength of their connection

is the correlation of the blood oxygen level-dependent (BOLD) signal of pairs of

nodes. The first data set contained little temporal information, so we performed

a spectral clustering method on the communicability networks generated from

the data. We found that there was some distinction between healthy and brain-

damaged individuals. The second data set contained time-series data, which

allowed us to construct time-dependent adjacency matrices. The patients were

diagnosed with schizophrenia, and the data was taken with the patients and

controls taking the drugs Aripiprazole, Sulpiride, or a placebo. We performed

time-dependent community detection on the multilayer networks and the mean

flexibility of the network was found. We found that for all drugs, the controls

had a higher mean network flexibility than the patients.

1 Introduction

The application of network science to neuroscientific data offers a novel way of in-

vestigating the structure and function of the brain. A benefit of network science is

that it can be used as a framework to study a variety of disciplines. It has been found

that graphs constructed from data from disparate scientific fields can have similar

organisational properties and parameters, and so network science has been success-

fully applied to information science, biology, and many other areas [4]. Brain graphs

can be constructed from a wide range of modalities including neuroimaging data

(MRI and fMRI), electroencephalography (EEG) data, and magnetoencephalography

(MEG) data. The abstract tools of network science are useful for summarising often

large data sets to identify key features and important brain regions [17].

This report details an investigation on brain graphs constructed from fMRI data

from healthy and unhealthy individuals. The first data set contains no temporal

information, and I apply the graph measure of communicability [8]. The second

data set contains temporal information and I apply dynamic community detection

[18]. Such measures of the organisation of a brain graph allow the geometry of one

functional brain graph to be compared to another. Communicability is a measure

of the ease of information flow around a network that takes into account the non-

shortest paths between nodes as well as the geodesics [6]. Spectral clustering on

communicability networks has been shown to distinguish between fMRI data from

stroke victims and healthy individuals [7], and has also revealed the brain regions

responsible for the dissimilarity in networks.
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Communities are mesoscopic structures in the network that are defined as groups

that contain nodes that are more densely connected amongst themselves, with sparser

connections between groups. This measure has been developed in order to investigate

the evolution of community structure in time dependent and multiscale networks

[18].

1.1 Transforming neuroimaging data to brain graphs

Graph data is presented in the form of nodes that are associated by edges, the mag-

nitude of which describes the connection between the nodes, such as the coherence

or correlation. This connectivity can be summarised in the form of an adjacency ma-

trix A, where Aij ∈ [0, 1] and is the strength of the edge between node i and node j.

Various processing steps must take place to represent real-world neuroscientific data

as a structural or functional brain graph [4].

A structural brain graph that represents the anatomy of the brain can be gen-

erated by modalities such as diffusion tensor imaging and histology. A functional

brain graph measures the functional connectivity of the brain and EEG, MEG and

fMRI are used as modes of data acquisition [5]. In this report we will be focussing

on functional brain graphs. Graph representations of human brains are only an ap-

proximation of the underlying system, as these methods do not detect the activity of

single neurons. The term coined for the complete map of structural and functional

neural connections in vivo is the connectome [22]. The only species to have a complete

connectome is C. elegans, which has around 300 neurons and 7,600 synaptic edges [5].

The human connectome by comparison has been estimated to have 1011 neurons and

1014 synapses [25].

Nodes represent brain regions, and ideally they should be independent and inter-

nally coherent in terms of anatomy or function, depending on whether a structural

or functional network is being created. Functional nodes are defined from fMRI data

using brain mapping methods and parcellation schemes. This is the delineation of the

brain into parcels using a common approach or set of criteria [9]. The choice of par-

cellation scheme is influential on the resulting network properties, as is the choice in

defining the connectivity between nodes [5]. The data used in this study has defined

nodes as spatial regions of interest (ROIs). The activity at each node is measured as

blood oxygen level-dependent (BOLD) signals.

The edges between nodes are generated by measuring the association between

nodes, which could be by measuring the correlation or coherence between time series

of pairs of nodes. Choices can also be made when producing the adjacency matrix.

Once the connectivity between the nodes has been found, the connection between

nodes can be tested for significance and then thresholded such that Aij < τ = 0. It

is also possible to have binary adjacency matrix such that Aij ≥ τ = 1[5]. Although
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Figure 1: Multiple steps are needed to go from data acquisition to producing the final

functional brain graph, and each choice has effects on the final network. Once the method

of brain measurement has been chosen, the next step is to define the network nodes. In the

case of fMRI, this can be done using parcellation schemes. This is the delineation of the brain

into parcels using a common approach or a set of criteria [9]. The association between nodes

must be calculated; with fMRI data this can be done by measuring the pairwise correlation in

BOLD (Blood Oxygen Level-Dependent) signal. The resulting network can be presented in

a weighted form or be thresholded to produce a binary matrix. This figure is from Ref. [17]

and is used with permission.

this simplifies the adjacency matrix, it also results in a loss of information. The data

sets used in this study have been thresholded and kept as weighted. Since the edges

were defined through measuring correlation, the resulting matrices are symmetric,

but there are ways of measuring the connectivity that results in a directed network,

such as Granger causality and Bayes net methods [24].

The potential for the modality of the neuroscientific data, the experimental design,

preprocessing steps, and network construction to affect the resulting brain graph

means that comparison between results from analysing brain graphs from different

data sets must be treated with caution.[14]

1.2 Dynamic communities

The brain is a dynamic complex system that evolves over multiple time scales. It

exhibits phase-locked electromagnetic oscillations over a range of frequencies [5]. To

put the time scales into perspective, the firing of an action potential in a neuron takes
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about 100ms, while plastic change in synaptic strength operates over time scales of

minutes to hours, and repair in cognitive function after brain damage occurs over

a duration of years. It is therefore necessary to measure the dynamics of the brain

over different time scales to gain a more complete understanding of the system. A

necessary prospect for brain graph analysis is to model how brain functional network

topology and geometry changes over time [4].

One method for investigating the time evolution of networks is to quantify how

community structure changes over time. Communities can be defined as groups in

a network that contain nodes that are more densely connected amongst themselves,

with sparser connections between groups. One way to estimate community structure

in a network is through optimising a quality function. Although community struc-

ture was initially applied to static networks, the methodology has been extended to

find community structure in time dependent and multiplex networks [18]. These are

networks that consist of layers of adjacency matrices. In this case, the quality function

is optimised through considering interlayer and intralayer couplings between nodes.

Intralayer couplings are connections between different nodes on the same network

layer. Interlayer couplings are those between the same node on different network

layers. The network layers can encode connections of a different type, of different

scales, or of different time points.

Figure 2: Community detection in multilayer networks. By introducing interlayer couplings,

communities can be found that span network layers. The network layers can represent con-

nections at different time points or of a different type. This figure is from Ref. [18] and is

used with permission.

To quantify fluctuations in community structure in a network, a measure of flexi-

bility can be used. This can be defined as the number of times that each node changes

allegiance to a community [17]. It has been found that flexibility of a brain graph
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from fMRI scans is a predictor of human learning [17].

2 Background on the data sets

2.1 Cornell data set

The first data set I used for this report was provided by the lab of Dr. Nicholas Schiff,

Cornell University. It contains correlation matrices from the time series of a BOLD

signal for 90 ROIs (regions of interest) from resting fMRI scans from 7 individuals, 5

of whom were healthy and 2 of whom had brain damage. Each individual had image

acquisition taken at 2–4 different points in time, with some of the time intervals as

large as a year. There are therefore 2–4 sets of correlation matrices per individual.

There were between 88–90 nodes in each correlation matrix. However, because com-

parative network analysis is difficult for graphs containing different nodes, I used

only the common ROIs (84 in total). Both patients regain some cognitive function in

their later respective time points [1].

2.2 Cambridge data set

The second data set came from the group of Ed Bullmore at the University of Cam-

bridge. The data set consisted of BOLD fMRI time series data taken at 498 time

points for 471 ROIs from 15 healthy individuals and from 12 patients diagnosed with

schizophrenia [16]. There were 3 different time series for each individual correspond-

ing to 3 types of medication: Aripiprazole, Sulpiride, or a placebo. Aripiprazole and

Sulpiride are anti-psychotic drugs.

The notion of flexibility suggests a hypothesis for the Cambridge data. Symptoms

of schizophrenia include difficulties in working and long-term memory, attention,

executive functioning, and speed of processing. It could therefore be hypothesised

that the brain graphs of Schizophrenic patients exhibit less flexibility.

3 Methodology

3.1 Core-periphery Structure

The Core-periphery algorithm was applied to the Cornell data, although no mean-

ingful result was found. The identification of a network into a core and periphery

is to define a densely connected mesoscale core, and a sparsely connected periphery,

where the nodes in the core are also well connected to the periphery. A more detailed

method can be found in Ref. [23].
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3.2 Communicability and Spectral clustering on static networks

Communicability is a measure of information flow in a network. It takes into ac-

count the transmission of information along the non-shortest paths as well as the

geodesics. It can also be seen as a way of quantifying the "connectedness" between

two nodes through the existence of shared neighbours, even if an edge between the

the two nodes does not exist [8]. Because the adjacency matrices used in this study

are weighted, I used a method that was adapted from the method for the binary case.

This is the method formulated by Crofts & Higham [6], which builds on a commu-

nicability measure for binary adjacency networks by Estrada & Hatano [8]. In order

to derive a measure for communicability it is first useful to note that for a binary

adjacency matrix,

(

Ak
)

ij
= the number of walks of length k between node i and j

where walks is defined as a traversal along edges in a network, and the length is

defined as the number of edges in the walk. This result is useful if we choose to see

the communicability between two nodes as a function of the number of walks length

k = 1, 2, 3, etc. Estrada & Hatano noted that if one uses a penalisation factor of 1/k!

for walks of length k, then the communicability between nodes i and j is

( ∞

∑
k=1

Ak

k!

)

ij

=
[

exp(A)
]

ij
, (1)

where A is a binary adjacency matrix. The communicability matrix is defined as

exp(A). Crofts & Higham noted that this function does not give the desired results

when applied to a weighted adjacency matrix. This is because a node with high

connectivity and weights can have a disproportionate influence on the resulting com-

municability matrix. They therefore implemented a normalisation factor for each

edge Aij of
√

didj, where di =
N

∑
k=1

Aij is the strength of node i. The communicability

for a weighted network can then be defined as,

[

exp
(

D− 1
2 AD− 1

2

)]

ij
, (2)

where D is the N × N diagonal degree matrix D := diag(di). The resulting matrix

exp
(

D− 1
2 AD− 1

2

)

gives a symmetric communicability network.

3.2.1 Spectral clustering

Once the communicability matrices have been defined, they can be partitioned with

an unsupervised clustering algorithm such as spectral clustering method specified in

the paper by Higham et. al [13]. The output of the method groups the inputs based
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on their similarity to each other. This method can also be applied to adjacency and

degree matrices, but Crofts & Higham suggest that the that communicability matrix

gives the most effective results [7].

The first step is to use the communicability matrix to build a new matrix V so

that the communicability matrix data for each subject is formatted in columns. For

example, if there were S communicability matrices containing M nodes, then the

new data matrix V would have S columns of length M(M − 1)/2 since an M × M

communicability matrix contains M(M − 1)/2 communicability weights. One can

then construct an S× S matrix of the form W = VTV, where Wij can be considered

the similarity between network i and network j. The method proceeds by performing

eigenvalue decomposition on the Laplacian of the weight matrix. The Laplacian is

defined as,

L = D̃−W, (3)

where D̃ is an N×N diagonal matrix of the form D̃ := diag(d̃i) and d̃i :=
S

∑
j=1

Wij. The

resulting Laplacian is a positive semi-definite matrix. When eigenvalue decomposi-

tion is performed on the Laplacian, the smallest eigenvalue is 0, with corresponding

eigenvector of~1, the vector where all elements are equal to 1. Assuming that the sec-

ond smallest eigenvalue is unique, the eigenvalues can be ordered in increasing order

as 0 = λ1 < λ2 < λ3 ≤ ... ≤ λN with orthonormal eigenvectors v[1], v[2], ..., v[N]. The

vector v[2] is known as the Fiedler vector. The Fiedler vector compresses the network

data for each individual into one dimension and has the potential to differentiate

between individuals. The sum of all components in the Fiedler vector must equal 1.

3.3 Time ordered community structure

3.3.1 Constructing a correlation matrix from time-series

The Cambridge data set consisted of time-series data. This can be consolidated into

adjacency networks that summarise the correlations between pairs of nodes over a

time window ∆. The data is presented as a set values for N ROIs {X1,X2, ...,XN} at

time points {t1, t2, ..., t f } and can be converted into a set of correlation matrices by

measuring the relative similarity of pairs of nodes at mutual time points over a time

window ∆ = [t1, t f ]. The method used is adapted from the method used in [21]. The

ROIs in the data set yield the nodes in the final adjacency matrix. Defining Xi(t) as

the signal of ROI i at time t, one constructs for each time window of width ∆ the

matrix component

Bij(t) =
t+∆

∑
τ=t

Xi(τ)Xj(τ).
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Implementing a normalisation factor gives an adjacency matrix with component

Rij(t) =
Bij(t)

√

Bii(t)Bjj(t)
. (4)

This produces a symmetric correlation matrix with elements lying in the interval [-

1,1]. The Cambridge data set contains 471 ROIs with BOLD signal measured at 498

time points. The values chosen for ∆ in the study are 10, 20, 25, 30, and 40. None of

these values are factors of 498, and so some of the data points were not used when

constructing the adjacency matrices. For example, for ∆ = 10 there are 49 adjacency

matrices with 8 data points remaining that are not used.

3.3.2 Constructing a brain graph from correlation matrix

The values in the correlation matrix may not represent statistically significant func-

tional relationships. To find the significant correlations, I followed the method from

Ref. [17]. This involved calculating the p-value Pij for each element in the correlation

matrix Rij using the corrcoef function in MATLAB. I then tested p-values for signif-

icance using a false discovery rate (FDR) [11] of p < 0.05. Any elements in Pij that

did not pass the FDR threshold would have the corresponding value in Rij set to 0,

and the resulting matrix was set to be the adjacency matrix A.

3.3.3 Community structure

Before we consider communities in multilayer networks, we begin by considering

modularity in static networks. The quality function Q for the partitioning of nodes

into communities is defined as [18],

Q =
1

2m ∑
ij

(

Aij − Zij

)

δ(gi, gj). (5)

where δ(gi, gj) = 1 if nodes i and j are assigned to the same community, and 0

otherwise. 2m is the number of ends of edges in the entire network. Zij is the

expected connection strength between nodes i and j under a null model. A common

measure for the null model is Zij = kikj/(2m), where ki = ∑j Aij. Zij is the expected

connection strength between node i and j if the strength of each node in A is to

remain the same but the connections between nodes are made at random [19]. This

gives the Newman-Girvan model of modularity, defined as,

Q =
1

2m ∑
ij

(

Aij −
kikj

2m

)

δ(gi, gj). (6)

To generalise equation (6) to multilayer networks of layers s = 1, 2, ...T, the in-

terlayer couplings and the intralayer couplings must be considered. The intralayer
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couplings between node i and j on layer s is defined as Aijs. The interlayer cou-

pling that connects node j in layer r to itself in layer s is denoted as Cjrs [17]. The

generalised version of the modularity for multilayer networks is then,

Qmultilayer =
1

2µ ∑
ijsr

[(

Aijs − γ
kiskjs

2ms

)

δsr + δijCjsr

]

δ(gis, gjr), (7)

where 2µ = ∑ijs Aij(s) + ∑srj Cjsr and is the sum of all of the edge weights in the

multilayer network. The values gis , ms, and kis are generalisations of the parameters

gi, m, and ki in equation (6) to refer to a specific layer s. There is a new parameter

γ, which is a resolution parameter that can have a different value for each layer but

in this study was a constant for all slices. It can be seen as γ = 1/t, where t is

the duration of a random walk across the network [15]. Small values of γ result in

larger communities and larger values of γ result in smaller communities. The choice

of γ = 1 is the default resolution for modularity. Cjsr can take the binary values of

{0,ω}, and is a value of the strength of the coupling between interlayer links [18].

3.4 Computation

3.4.1 The GenLouvain algorithm

The generalized Louvain MATLAB code GenLouvain1.2 [18] was used to perform

community detection. The algorithm was obtained from NetWiki, http://netwiki.

amath.unc.edu/GenLouvain/GenLouvain. This method is an adaption of the "Lou-

vain" method, which is a greedy optimization method and returns high quality com-

munity detection quickly [3].

3.4.2 Calculating flexibility

The flexibility of a node can be defined as the number of times that a node changes

allegiance to communities in successive time layers [2]. An alternative definition is

to count how many different communities the node has belonged to. For example, a

node that belongs to communities 1 and 2 in successive layers in the order "1, 2, 1, 2,

1" has flexibility of 4 by the first definition and a flexibility of 2 by the second. The

flexibility of the entire network is then defined as the mean flexibility for all nodes.

For clarity we will call the first definition of flexibility flexibility 1 and the second

definition flexibility 2.
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4 Results

4.1 Spectral clustering on Cornell data

I constructed a communicability matrix for each subject from the Cornell data as

given in equation (2). I then followed the spectral clustering procedure as specified

in section 3.2.1 for the communicability and adjacency matrices. The Cornell data

set consisted of 21 subjects and 84 common nodes between them. The data matri-

ces Vi contained either the communicability data or the adjacency data and had the

dimensions of ((842 − 84)/2 = 3846)× 21.

Eigenvalue decomposition was performed on the Laplacian (eq. 3) and the result-

ing components from the Fiedler vector v[2] are shown in fig. (3). Spectral clustering

is partially successful at classifying healthy (’+’) individuals and brain-damaged (’o’)

individuals, but it does not appear to completely distinguish them, as one of the com-

ponents for a brain damaged subject in v[2] lies amongst the healthy subjects. The

method is also unable to show the improvement in cognitive ability for the brain-

damaged subjects. For an ideal result, the v[2] components for the later time points

from the Fiedler vector from brain-damaged subjects would be clustered near the

healthy individuals. It is also unclear why there is such a large jump between the

vector component values for individual 15 and 16.

The results from performing spectral clustering (section 3.2.1) on the adjacency

matrix is shown in fig. (4). It can been seen that the method was unsuccessful at

distinguishing between healthy and brain-damaged individuals. Crofts et. al have

also found that the communicability matrix works as a more successful input than

the adjacency matrix when using the spectral clustering method used in this report

[7].
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Figure 3: Components of the Fiedler vector v[2] after performing spectral clustering as specified in

Ref. [13] on communicability matrices from healthy and brain-damaged individuals. Brain-damaged

individuals are shown as ’o’ and healthy individuals as ’+’. The method is somewhat successful in

that it gives some distinction between healthy and brain-damaged. However this method fails to show

that the patients increased in their cognitive ability at later time points. Spectral clustering presents

one of the patients at time point 1 as being more similar to the healthy individuals
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Figure 4: Components of the Fiedler vector v[2] after performing spectral clustering as specified

in Ref. [13] on adjacency matrices from healthy and brain-damaged individuals. Brain-damaged

individuals are shown as ’o’ and healthy individuals as ’+’. Unlike spectral clustering for the commu-

nicability matrix, applying spectral clustering to the adjacency matrix does not distinguish between

healthy and brain-damaged individuals.

4.2 Community structure of time-series data

I converted the time-series data into adjacency matrices by using different time win-

dows ∆ to measure the correlation between ROIs. Time windows were chosen of

∆ =10, 20, 30, and 40 time points. I then ran the GenLouvain algorithm with parame-

ters ω = 0.5 and γ = 0.5 and calculated the mean flexibility of the multiplex network

for each patient and control on Aripiprazole, Sulpiride and placebo. Both definitions

of flexibility as defined in section 3.4.2 were used. I plot the results in fig.s (5) and

(6). The results show that for both definitions of flexibility and for every choice of

∆, the controls have a higher flexibility than the patients. What is unexpected is that

the antipyschotic drugs do not seem to decrease the gap in difference of flexibility

between controls and patients. In fact, the largest difference in flexibility between

patient and control is with the drug Aripiprazole, and this is seen most clearly with

the second definition of flexibility (fig. (6)). It is interesting that controls taking Arip-

iprazole have a higher flexibility than when they are on a placebo, while patients on

Aripiprazole show at certain values of ∆ (∆ = 20, 30 in fig. (5) and fig. (6)) have a

lower flexibility than when they are on a placebo.
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Figure 5: Mean flexibility (flexibility measure 1) per node from multilayer networks created

from time-series with time windows of width ∆ =10, 20, 30, 40. Patients and controls have

been treated with the antipyschotic drugs Aripiprazole, Sulpiride or a placebo. It can be seen

that regardless of the choice of time window width ∆, the controls have a higher flexibility

that the patients

4.3 Robustness of flexibility

I found the mean flexibility from one multiplex network over a range of values of γ

and ω in order to see how robust the value of flexibility is. The adjacency matrices

were constructed from the time-series data from a control taking a placebo and a time

window of ∆ = 20 was used. It is important to check whether values of flexibility

are robust or are instead an artefact of the values of γ and ω. The values of ω used

were in the range [0,1] and the values of γ used were in the range [0.5,10]. These

were found to be values that give a reasonable community structure, for example,

γ was not so small as to have each node in an isolated community or too big as to

have communities that would span a network layer. Similarly, ω was large enough

to have some coupling between layers but not so large that all layers were grouped

into communities. I plot the results in fig. (7). It can be seen for both measures of

flexibility that the value of flexibility is robust over all values of ω, while the measure

flexibility 2 is not robust for γ ∈ [0.5, 4].

This explains why there is a large difference between the two measures of flexibil-

ity shown in fig. (5) and fig. (6)). I used the value of γ = 0.5 in community detection,
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Figure 6: Mean flexibility (flexibility measure 2) per node from multilayer networks created

from time-series with time windows of width ∆ =10, 20, 30, 40. Patients and controls have

been treated with the antipyschotic drugs Aripiprazole, Sulpiride or a placebo. It can be seen

that regardless of the choice of time window width ∆, the controls have a higher flexibility

that the patientsIt can be seen that the difference in flexibility between patients and controls

is always greater with the drug Aripiprazole.

which we now know to be a value within which the second measure of flexibility is

not robust.
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Figure 7: I tested the robustness of both measures of flexibility over a range of values of

γ and ω. These are parameters in the multilayer model of community detection [18]. I

chose values of γ and ω that gave reasonable community structure. It can be seen for both

measures of flexibility that the value of flexibility is robust over all chosen values of ω, while

the measure flexibility 2 is not robust for γ ∈ [0.5, 4].
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5 Discussion

The results in Section 4 compare brain graphs from healthy versus unhealthy indi-

viduals in order to attempt to distinguish patients from controls. This was more

successful with the Cambridge data because the data sets contained temporal infor-

mation which allowed the more powerful tool of multilayer community detection to

be used. The Cornell data, by contrast, contained correlation matrices without time

series data and there were at most 4 time points per individual. This was not suf-

ficient to distinguish between patients from controls and most vitally show that the

patients regained some cognitive function at later time points. The measure of com-

municability could only go as far as giving some distinction between brain-damaged

and healthy individuals. What is more interesting to neuroscience would be to find

measures that robustly characterise a brain graph and can be used to inform what is

happening in the physical system.

The was more scope for analysing the data with the Cambridge data set. Temporal

adjacency matrices were constructed from the time-series data and then community

detection for multilayer networks was used to assign nodes to communities. I then

measured the flexibility of the nodes. Analysing time-series data opened up more

complications, however, as many parameters were used in each step of the analysis

- the length of time window ∆ for measuring the correlation between pairs of nodes

and the values of ω and γ used in multilayer community detection. It is hard to say

which regions of parameter space give the most accurate reflection of the subjects

undergoing fMRI scans. γ can be interpreted as the inverse time for a random walk

across the network, so there is some natural intuition for how γ affects community

detection. The effects of ω are harder to discern. A value of ω = 0 means that there

is no coupling between the network layers. A value of ω = ∞ is the mean-field

description in which there is an average coupling between the same node over all

layers. What effects ω has on the network at values in between is less certain. Ideally

a more thorough investigation on how the choice of ∆, γ and ω influences the results

should be conducted.

The results from the Cambridge data show that controls have a higher flexibility

than patients regardless of which medication they are on (Sulpiride, Aripiprazole, or

placebo). Additionally, the difference in flexibility between patients and controls was

consistently larger for those on Aripiprazole compared to those taking Sulpiride or

a Placebo. Aripiprazole has been prescribed to patients in the US for over 10 years

[10], whereas Sulpiride is a comparatively newer drug. Sulpiride has been found

in studies to have fewer extrapyramidial side effects, such as dystonia, parkinson-

ism, and akathisia, than older antipsychotic drugs [12]. The extrapyramidial system

is defined group of structures in the brain that are involved in motor function [20].

This is something to consider when analysing fMRI data from patients taking Arip-
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iprazole. What could be useful when analysing such a data set like the one from

Cambridge would be some accompanying documentation detailing any side effects

that the subjects may be experiencing.

5.1 Further work

My work included only a preliminary look into how the choices of parameters ∆, γ

and ω affect the results. Future work should focus on this in order to discern which

results are robust, rather than artefacts of the parameters used.

I conducted time ordered community detection on the Cambridge data by com-

paring time-dependent network layers taken from the same individual. Another ap-

proach would be to consider couplings between individuals (a multiplex network).

If both the time dependent inter-individual and intra-individual couplings are in-

cluded, then the community detection would have to be reformulated to deal with

rank-4 tensors.

6 Conclusion

This report details an investigation on fMRI BOLD signal data from healthy and

unhealthy individuals using network science. I found that temporal information was

necessary for characterising the data, which is a consequence of the brain being a

dynamic system. Analysis of temporal data is more complicated than that on a static

network, since there is more methodological choice and the parameter space in the

methods used is large. Correlation matrices were constructed from the time series

data of time windowwidth ∆, and the GenLouvain algorithmmade use of parameters

γ and ω that can vary from [0,∞). More research is needed to clarify how the values

of ∆, γ, and ω affect the brain graph analysis before any definitive conclusions can

be made. From the preliminary studies in this report it was found that the flexibility

of a network is a way of distinguishing between schizophrenic patients and controls

regardless of whether they are on an antipsychotic drug (Aripiprazole or Sulpiride)

or a placebo.
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