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Abstract

We study the quantization of a free particle coupled linearly to a harmonic oscillator. The classical
system, which has clearly separated chaotic and regular regions, is ideal for studies of the quantization
of mixed systems. In this work, we detect signatures of chaos in the quantum system by investigating
properties such as avoided crossings of eigenvalues as the coupling parameter is varied. We also study
Husimi distributions to compare the quantum dynamics to phase portraits of its classical counterpart.
These comparisons help in identifying key signatures of the classically chaotic/regular portions in the
quantum system.

This paper examines the quantization of a

free particle linearly coupled to a harmonic

oscillator. Unlike generic mixed systems, the

phase portrait of the classical system has

clearly separated regular and chaotic regions,

making its quantization ideal for studying the

quantization of systems with mixed dynam-

ics. By examining avoided level crossings and

Husimi distributions, we demonstrate that as

the chaotic fraction of classical phase space in-

creases, the overall Husimi structure becomes

mixed and delocalized.

1 Introduction

In recent decades, there has been a great deal of re-
search on dynamical systems that do not follow reg-
ular and predictable patterns. In classical mechan-
ics, such “chaotic” systems have well-defined trajec-
tories, but they are extremely sensitive to their ini-
tial conditions (i.e., nearby trajectories can diverge
exponentially). Extensive studies of such systems
have opened new doors in understanding the natu-
ral world, as most systems exhibit chaotic dynam-

ics rather than the simple regular behavior typically
studied in the classroom.

However, it is not clear how to understand the
notion of chaos in quantum mechanics. Wavefunc-
tions evolve linearly in time. Hence, sensitive depen-
dence on initial conditions and exponentially diverg-
ing trajectories–key components for defining classi-
cal chaos–cannot be used to define quantum chaos.
Nevertheless, identifying features of quantum ana-
logues of classically chaotic systems exist, so that
they can be distinguished from quantum analogues
of integrable (regular) systems.1–4 The study of such
identifying features using carefully chosen examples
enables one to better understand the manifestations
of chaos in quantum systems.

2 The Classical System

The interaction of two of the simplest quantum sys-
tems, the one-dimensional free-particle and the one-
dimensional harmonic oscillator, arises in studies of
dissipation in Hamiltonian systems, electron-phonon
interactions in solids, and quantum decoherence.5

Recently, De Bièvre, Parris, and Silvius, analyzed the
classical counterpart of this system as a first step to-
ward understanding its quantization.
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These authors considered a classical particle of
mass m, position x(t), and momentum p0(t) moving
on a ring divided into two sections. In one section
(of length L) the particle is free and in the other (of
length 2σ) the particle interacts with a harmonic os-
cillator of mass M , position X(t), momentum P (t),
and frequency ω. The classical Hamiltonian is

H =
p0

2

2m
+
P 2

2M
+

1

2
Mω2X2 − F0Xρ(x), (1)

where F0 describes the strength of the interaction,
which is linear in X. The quantity ρ(x) determines
the range of the interaction: ρ(x) is unity on the
region |x| ≤ σ and zero when |x| ∈ (σ, σ + L

2 ). In
non-dimensional form, Equation (1) is

H =
1

2

(

p2 + Π2 + Φ2
)

− αΦχ(q), (2)

where p and Π are, respectively, the particle and os-
cillator momenta, q and Φ are the particle and oscil-
lator coordinates, α is the particle-oscillator coupling
parameter, and χ(q) is a function that is unity in the
interaction region and vanishes elsewhere. Here the
interaction region and uncoupled regions are respec-
tively defined by q ∈ [−1, 1] and q ∈ (1, 2+L); so the
length of the uncoupled region is L. The only system
parameters that can be varied are α and L.

The equations of motion resulting from (2) are

q̇ = p, ṗ = αΦ[δ(q + 1) − δ(q − 1)], (3)

Φ̇ = Π, Π̇ = −Φ + αχ(q),

where dots denote time derivatives. Equation (3) in-
dicates that the particle behaves freely in both the in-
teraction and free regions. The classical dynamics be-
come interesting when the particle arrives at bound-
aries between the two regions (i.e., when q = ±1).
Here, the particle reaches a potential barrier of height
±αΦ, where the sign depends on whether it is com-
ing from the interaction region (+) or the free region
(−). The particle bounces off the boundary elasti-
cally if its kinetic energy p2 is less than the barrier
height; otherwise, it overcomes the barrier and en-
ters the new region with a kinetic energy of p2 ∓αΦ.
Because the barrier height depends on the oscillator

coordinate Φ, it is easy to see how the dynamics can
become complicated.

A particularly interesting facet of this system is
the clean separation of integrable and chaotic re-
gions in its phase space. Phase portraits of the os-
cillator coordinate and momentum possess an inte-
grable region for system energies varying from the

ground state energy Eg = − F0
2

2Mω2 to a critical pos-
itive energy Ec = |Eg|. However, for small positive
energies outside this region, the motion appears to
be fully chaotic without any additional KAM struc-
tures near the boundary between the two regions.5

The clean separation helps simplify comparisons be-
tween the classical and quantum system and makes
the present example a very illuminating one. Such
simple comparisons are not possible for generic sys-
tems with mixed dynamics, as they possess a hierar-
chy of KAM structures with intricately mixed chaotic
and integrable regions. This could lead to great in-
sights in quantum chaotic systems and, in particular,
the quantization of mixed systems; this is the main
motivation in this paper.

3 The Quantum System

Using the canonical quantization procedure (see Ap-
pendix I), we arrive at the quantization of (2):

H =
1

2

(

− ∂2

∂q2
− ∂2

∂Φ2
+ Φ2

)

− αΦχ(q) (4)

For the uncoupled case (α = 0), the time-
independent Schrödinger equation H|ψ〉 = E|ψ〉 is
separable; the problem reduces to determining the
eigenstates of the harmonic oscillator and the free
particle confined to a ring of length 2 + L as sep-
arate problems. The exact solutions for these two
problems can be easily obtained. If {|ψpartk 〉}∞k=0

and {|ψoscl 〉}∞l=0 are eigenstates of the particle and
the harmonic oscillator, respectively, then {|ψpartk 〉 ⊗
|ψoscl 〉}∞k,l=0 are eigenstates for the uncoupled sys-

tem†. In fact, these states form a basis for the Hilbert

†Formally, |ψpart

k
〉⊗|ψosc

l
〉 is an element of the tensor prod-

uct space Hpart⊗Hosc, where Hpart and Hosc are the particle
and oscillator Hilbert spaces, respectively. Readers unfamil-
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Figure 1: The first 55 energy levels as a function of α

for Equation (4) with uncoupled region length L = 2.
This plot was calculated using a 2025 × 2025 truncated
Hamiltonian matrix.
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Figure 2: Avoided crossing of the 13th and 14th levels with
L = 2. The inset shows a magnification of the avoided
crossing. Labels designate where Husimi distributions are
calculated and displayed in Figure (see Section 5 and Fig-
ure 7)
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Figure 3: The first 72 energy levels as a function of α

for Equation (4) with uncoupled region length L = 12.
This plot was calculated using a 4900 × 4900 truncated
Hamiltonian matrix.
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Figure 4: Broad avoided crossings between levels for
Equation (4) with L = 12.
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Figure 5: Broad avoided crossings between levels for a
system with L = 20. Note the increased density of energy
levels and avoided crossings compared to Figure 4.

space of either the coupled or uncoupled system. By
representing the Hamiltonian (4) as an infinite ma-
trix using this basis (see Appendix II), we can ap-
proximate the eigenvalues and eigenstates by finding
the eigenvalues and eigenvectors of a truncation of
the matrix.

4 Avoided Crossings

As the coupling parameter α is varied, the eigenval-
ues of (4) may come very close to one another or
even cross. If the Hamiltonian is invariant under a
symmetry transformation‡ for a certain range of α,
it can be block-diagonalized by exploiting this sym-
metry§. Energy levels belonging to different blocks
can cross as α is varied.3,4, 6 On the other hand, if a

iar with the tensor product may think of |ψprt

k
〉 ⊗ |ψosc

l
〉 in

terms of its coordinate-space wavefunction ψpart

k
(q)ψosc

l
(Φ) =

〈q,Φ|{|ψpart

k
〉 ⊗ |ψosc

l
〉} or appeal to the references.26

‡The Hamiltonian is invariant under a symmetry transfor-
mation S if [H,S]=0.

§We do this by choosing each block to be invariant under
the symmetry transformation. In physical situations, a contin-
uous symmetries may correspond to a conserved quantity by
Noether’s theorem.9
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Figure 6: Broad crossing between the 63rd and 64th lev-
els. Here the 62nd and 61st levels are shown as upper
and lower bounds, respectively. Note that the 63rd level
begins to come into a broad avoided crossing with the
62nd level before it totally exchanges slope from its previ-
ous encounter. Labels designate where Husimi plots are
calculated and displayed in Figure 8.

quantum Hamiltonian has no symmetries other than
time reversal, then such a level crossing is called an
“accidental degeneracy” and requires two arbitrary
parameters to exactly coincide.4 In this case, most
levels that approach another level end up avoiding
one another instead of crossing.

Classically chaotic systems have fewer constants
of motion than degrees-of-freedom and thus usually
have fewer symmetries than integrable systems with
the same degrees-of-freedom. Similarly, one expects
the quantization of a classically chaotic system to
possess fewer symmetries than degrees-of-freedom.7,8

Thus, for the quantization of a chaotic system, one
expects fewer level crossings to than for the quantiza-
tion of an integrable system. Hence, an abundance of
avoided crossings between levels may be a signature
of chaotic regions in the classical system.

Figure 1 shows the first fifty-five energy levels as
a function of α in a system with L = 2 using an α-
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step size † of 2.5 × 10−3. Apparent level crossings
seem to occur along smooth curves which appear as
“light” regions in Figure 1. Refining the numerical
computation at some of the apparent crossings on
these curves shows that these are actually avoided
crossings in which the slopes of the energy level curves
are exchanged. Avoided crossings of this nature are
described as “sharp” avoided crossings.4,10 Through
such crossings, the participating levels act as if they
have entered a level crossing, merely exchanging their
eigenstates.6 We have verified this numerically for
our system (see the Section 5), and this has also been
noted in other systems such as a sinusoidally driven
particle in a square potential well10 and a hydrogen
atom under strong magnetic fields.11

Figure 2 displays the first avoided crossing be-
tween the 13th and 14th levels in Figure 1 using the
refined α-step size 7.5 × 10−6. In general, the α-
step size at which the avoided crossings in Figure 2
can be resolved is O(10−6). As a result, it is time-
consuming to numerically verify that all of the appar-
ent crossings are actually very sharp avoided cross-
ings. However, the coupled Hamiltonian seems to
possess no physically obvious symmetries other than
time-reversal‡. Assuming this is true, level crossings
would be accidental degeneracies, which are rare (see
the discussion above). Rigorously proving the Hamil-
tonian has no other symmetries is a difficult problem
in general.12

Another notable feature of Figure 1 is that rela-
tively smooth, widely-spaced energy curves form the
first nine levels. This is unsurprising, as in the un-
coupled system with L = 2, the first nine levels of
the oscillator have less energy than the ground-state
of the particle. This gives the levels of the system
their wide spacing, which is preserved as α increases.
The wide spacing prevents as many avoided crossings
between these levels as one observes for higher levels.
As L increases, however, the ground-state energy of
the particle drops quadratically in L and one would

†The α-step size is the distance between successive values
of α where eigenvalues and eigenvectors are calculated. The
α-step size required to resolve sharp avoided crossings such as
in Figure 2 is O(10−6)

‡All symmetries of the uncoupled Hamiltonian are broken:
there is no parity and [H, p] 6= 0 for α 6= 0.

not expect this behavior to hold.

Figure 3 displays the energy curves of the first
seventy-two levels with L = 12. Our numerical
computations verify that the smooth nature of the
first few levels is increasingly destroyed as L grows.
Of greater interest, however, are the much broader
avoided crossings, which become more prevalent as
α increases . Figure 4 shows energy curves for
α ∈ (5.6, 7.2); the α-step size in which this figure’s
avoided crossings can be resolved is O(10−3), One-
hundred times larger than the α-step size required
to resolve the sharp avoided crossings in Figure 1.
These broader avoided crossings make it more diffi-
cult to identify patterns of their occurrence, as with
the “light” regions in Figure 1. In most of the broader
avoided crossings, the energy curves are unable to ex-
change slopes completely before they meet another
avoided crossing. Hence, one would not necessar-
ily expect a complete exchange of eigenstate struc-
ture for these avoided crossings. Indeed, a study of
such crossings for a sinusoidally driven particle in a
square potential well shows a superposition of eigen-
state structure in “broad” avoided crossings rather
than a complete exchange;10 we will refer to such a
superposition as mixing.

Figure 5 displays the energy curves for a system
with L = 20 using the same window as in Figure
6. Note the increased density of levels and broad
avoided crossings. Because of this, it is more likely
that a level in an avoided crossing will encounter an-
other before slopes are completely exchanged. As
the ground-state energy of the free particle is pro-
portional to 1/(2 + L)

2
, the density of levels in the

ground-state should increase with L. Hence, as long
as this increased density is loosely preserved with α
(which seems to hold in our numerical computations),
then one would expect more broad avoided crossings
with increasing L.

5 Husimi Distributions

5.1 Introduction

Although there is no equivalent of classical phase
space trajectories in quantum mechanics, there are
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Figure 7: Husimi plot structure exchange through the
sharp avoided crossing displayed in Figure 2. The left
and right columns are the Husimi plots of the 13th and
14th levels, respectively. Π is on the vertical axis and Φ on
the horizontal axis. Lighter regions correspond to higher
probabilities.

suitable analogues. In particular, the Husimi distri-
bution is often used in the study of quantum chaos.2

Given a quantum state |ψ〉, its Husimi distribution
Hψ(p, q) is defined by the projection of |ψ〉 onto a
coherent state |ψ(p,q)〉 localized around (p, q) so that
Hψ(p, q) ∝ |〈ψ(p,q)|ψ〉|2. For a system with a Eu-
clidean topology, a coherent state localized at (p, q) is
a Gaussian state whose position-space representation
is localized around q and whose momentum-space
representation is localized around p. The system pos-
sesses a cylindrical phase space topology†. We con-
struct the coherent state for this topology from the
Euclidean coherent state13 (see Appendix III).

Coherent states provide excellent quantum ana-
logues of classical particles when visualized as wave-

†In (4), p ∈ R and q ∈ (2+L)S1, where S1 is the unit circle.
This gives a phase space [(p, q)-space] topology of (2+L)S1×R,
which is a cylinder.
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Figure 8: Husimi plot mixing through the broad avoided
crossing displayed in Figure 6. The left and right columns
are the Husimi plots of the 63rd and 64th levels, respec-
tively.

packets that minimize the position-momentum uncer-
tainty product‡. The projection onto these particle-
like states thus can be viewed intuitively as a sort
of classical smearing. The Husimi distribution is
then interpreted as a probability distribution in phase
space,15 so that it provides a quantum analogue of
a phase portrait. Determining the Husimi distribu-
tion for the eigenstates of a particular Hamiltonian
thereby allows one to understand the dynamics of
a quantum system in an analogous way to phase
portraits its classical counterpart. The references
provide a rigorous definition of the Husimi distribu-
tion,15 as well as various applications.15–18

‡For a one-dimensional system with position x and mo-
mentum p, the Gaussian wave-packet minimizes the product
∆x∆p.

6



5.2 Exchange and Mixing of Husimi

Structure at Avoided Crossings

5.2.1 Sharp Avoided Crossings

The Husimi distributions for the 13th and 14th eigen-
states are depicted in Figure 7. The sequence of
plots shows the change in their structure as the two
eigenstates encounter the avoided crossing in Figure
2. The middle panels are snapshots near the closest
point of the encounter. Note that the plots seem to be
in the midst of exchanging the zero from the 13th to
the 14th eigenstate and appear to be a superposition
of the structures of the initial Husimi plots. The bot-
tom panels, taken further away from the encounter,
show that the two eigenstates have almost completely
exchanged their structure through the avoided cross-
ing. This is an example of the “exchange of char-
acter” in a sharp avoided crossing described above,
which has also been observed in other dynamical sys-
tems.10,14 Movies of the encounters† reveal a smooth
structural exchange.

5.2.2 Broad Avoided Crossings

As described in Section 4, the energy curves in broad
avoided crossings typically do not exchange slopes
completely before another avoided crossing occurs.
This generally leads to Husimi structure mixing,10

rather than a complete exchange, which we have ver-
ified is the case for (4). Flr example, Figure 8 dis-
plays such a mixing between the 63rd and 64th levels
in the avoided crossing from Figure 6. The exchange
of structure is interrupted as the lower eigenstate en-
counters another avoided crossing. The levels clearly
leave the crossing with Husimi structures that appear
as a mix between the initial Husimi structures, rather
than the exchange of initial structures depicted in
Figure 7. Furthermore, this mixing causes the Husimi
distribution of the 63rd eigenvalue to delocalize af-
ter the avoided crossing. Thus, in contrast to sharp
avoided crossings, broad avoided crossings play a sig-
nificant role in modifying the overall Husimi structure
as α increases;10 in particular, broad avoided cross-

†These movies are available online at http://www.its.

caltech.edu/~mainiero/Husimimovies.

Husimi Distribution of 45th eigenstate (L=20 and α=1.8)
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Figure 9: A highly delocalized Husimi distribution whose
structure is spread throughout the available phase space
and whose zeros do not lie on a smooth curve. The plot
corresponds to a classical surface of section with a large
chaotic region.

ings seem to mix and delocalize the Husimi struc-
ture of individual eigenstates. Because broad avoided
crossings tend to dominate the spectrum with in-
creasing L, one expects the overall Husimi structure
to depend more strongly on α for increasing L.

6 Signatures of Chaos

As ergodicity and exponential divergence of phase
space trajectories often characterize classically
chaotic systems, it has been suggested that delocal-
ization in the Husimi distributions of a quantum sys-
tem is a possible signature of chaos in its classical
counterpart.19 This signature has been quantified
and studied in numerical investigations10,20 and is
relevant as well for the system investigated here. The
fraction of phase space with chaotic dynamics in the
classical system (2) increases with L.5 Thus, the delo-
calization and mixing of Husimi structures, which be-
come more prominent as the number of broad avoided
crossings increases with L, seem to be signatures of
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Husimi Distribution of 1000th eigenstate (L=12 and α=4)
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Figure 10: A Husimi distribution displaying anti-scarring
as it localizes around an integrable region in Figure 13

this observation in the classical system.

6.1 Localization around Classical Fea-

tures

The Husimi structure of a quantized system is of-
ten compared to corresponding classical Poincaré sur-
faces of section in order to detect the impact of
chaotic and integrable features on the quantized sys-
tem.10,15,16 One manifestation is scarring (anti-
scarring), in which an eigenstate tends to localize
around unstable (stable) periodic orbits.2 Also of
interest are the zeros of the Husimi distribution. For
states localized mainly in integrable regions, the ze-
ros usually lie along smooth curves, while functions
localized on chaotic regions usually have zeros dis-
persed almost uniformly throughout the available
phase space.23–25

Figure 9 shows the Husimi distribution of the 45th

eigenstate for (4) with L = 20 and α = 1.8. The zeros
seem to be dispersed uniformly throughout the plot
rather than lying along smooth curves. Furthermore,
the Husimi structure is distributed throughout the
entire available phase space, so it is highly delocal-
ized. Thus, this Husimi distribution corresponds to
a classical surface of section such as Figure 12, where

Husimi Distribution of 200th eigenstate (L=12 and α=4)
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Figure 11: A Husimi distribution displaying both scarring
and anti-scarring on the features of Figure 13.

the available phase space is entirely chaotic, .

We observe anti-scarring in many Husimi distribu-
tions of (4); the Husimi structure tends to localize in
the integrable region which exists for energies varying

from Eg = − F0
2

2Mω2 to Ec = |Eg| (described in Section
1). Figure 10 shows such localization near the inte-
grable region visible as the white region in the center
of Figure 13. On the other hand, Figure 11 displays
an example of both scarring and anti-scarring. The
depicted Husimi structure is localized mainly around
the unstable periodic orbits, which are visible as dark
arcs in the right half of the classical surface of sec-
tion. However, other portions of the structure local-
ize around the integrable region in the center of Fig-
ure 13. Note that the zeros of Figures 10 and 11 lie
along smooth curves, in contrast to the Husimi distri-
bution corresponding to a completely chaotic phase
space (see Figure 9).

7 Conclusions

In this paper, we examined the quantization of a
system with mixed chaotic-regular dynamics: a one-
dimensional free particle on a ring coupled to a
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Figure 12: Classical surface of section with a large chaotic
region for the same parameters L and α as the Husimi dis-
tribution in Figure 9. The dark arcs are unstable periodic
orbits.

one-dimensional harmonic oscillator. By examining
eigenenergies as a function of the system parameters
(coupling strength and the size of the uncoupled re-
gion) and Husimi distributions, we studied the quan-
tum signatures of the mixed dynamics. We showed in
particular that some apparent level crossings in the
eigenenergies are actually very sharp avoided cross-
ings and suggested why most (and perhaps all) other
apparent crossings are also avoided crossings. We
demonstrated numerically that the Husimi distribu-
tion structure between the two participating states in
such crossings is completely exchanged.6,10,14 This
simple exchange helps preserve the overall Husimi
structure as the coupling strength is varied.

As the size of the uncoupled region is increased, on
the other hand, the avoided crossings broaden and
their density increases. This increases the number of
avoided crossings in which the participating energy
curves do not fully exchange slope before encounter-
ing another avoided crossing. We show numerically
that such broad avoided crossings mix the Husimi
structure between participating states rather than ex-
change them fully as in the sharp avoided crossings
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Figure 13: Classical surface of section with the same L

and α as the Husimi distribution in Figure 9. The dark
arcs are unstable periodic orbits.

observed more frequently when the uncoupled region
is small. Such mixing tends to promote delocalization
in the eigenstates as the coupling strength increases
and shows that the overall structure of phase space
depends on the coupling strength. Hence, as the size
of the uncoupled region increases so that the number
of broad avoided crossings increase, this dependence
becomes stronger. In the corresponding classical sys-
tem, the chaotic portion of phase space increases with
the size of the uncoupled region. Thus, the appear-
ance of broad non-adiabatic crossings, eigenstate de-
localization, and the mixing of overall phase space
structure seem to be signatures of chaos in the quan-
tum system.
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Appendix I: Canonical Quantiza-

tion

In this paper we use the canonical quantization pro-
cedure found in introductory quantum mechanics
texts.26,27 We assume the particle and oscillator act
as bosons with no internal degrees-of-freedom and im-
pose the following commutation relations:

[p, q] = i, [p,Π] = 0, (5)

[Π,Φ] = i, [q,Φ] = 0,

[p, φ] = 0, [Π, q] = 0.

We also use the coordinate-space identifications

p = −i ∂
∂q

Π = −i ∂
∂Φ

. (6)

This yields Equation (4),

H =
1

2

(

− ∂2

∂q2
− ∂2

∂Φ2
+ Φ2

)

− αΦχ(q).

Appendix II: The Hamiltonian

Matrix

Let H1 = Hpart be the Hilbert space for a free
particle constrained to a ring of length 2 + L and
H2 = Hosc be the Hilbert space for the uncoupled
harmonic oscillator. Define |n〉1 = |ψpartn 〉 and E1

n,
respectively, as the nth eigenstate and corresponding
eigenenergy for this system. We calculate the coordi-
nate projections {ψpartn (q)}∞n=1 of {|n〉1}∞n=1 and their
eigenenergies from the Schrödinger equation with pe-
riodic boundary conditions,

∂2

∂q2
ψpartn (q) = −E1

nψ
part
n (q),

ψpartn (q + k(2 + L)) = ψpartn (q), k ∈ Z,

which has the normalized solutions

ψpartn (q) =
1√

2 + L
exp

(

− 2πn

2 + L
i

)

(7)

E1
n =

4π2n2

(2 + L)
2

The ground state energy of the particle is E1
1 =

4π2/ (2 + L)
2
.

Define |k〉2 = |ψosck 〉 and E2
k as the kth eigenstate

and corresponding eigenenergy, respectively. Here
E2
k = k + 1/2 and E2

0 = 1/2 is the ground-state en-
ergy.26,27 (The coordinate projection for the eigen-
states will not be given here, as it is easier to work
with the abstract state vector |k〉2.)

Using the operator definitions (6) in Appendix I,
we write

a† =
1√
2

(Φ − iΠ) , a =
1√
2

(Φ + iΠ) ,

which are the creation and annihilation operators, re-
spectively, for the harmonic oscillator.26,27 Equation
(4) becomes

H =

(

a†a+
1

2

)

− p2

2
− α√

2

(

a† + a
)

χ(q). (8)

The matrix representation of (8) in the uncoupled
basis |n〉1 ⊗ |k〉2∞n=1,k=0 is

H = E1 ⊗ I + I ⊗ E2 − αW1 ⊗ W2, (9)

where I is the identity matrix and

(E1)nn′ = 〈n|−p
2

2
|n′〉1,

(E2)kk′ = 〈k|
(

a†a+
1

2

)

|k′〉2,

(W1)nn′ = 〈n|χ(q)|n′〉1,

(W2)kk′ = 〈k| 1√
2

(

a† + a
)

|k′〉2.

By the definition of the uncoupled basis,

(E1)nn′ =
4π2n2

(2 + L)
2 δnn′ , (10)

(E2)kk′ =

(

k +
1

2

)

δkk′ . (11)

10



Also, using the coordinate projections for the free
particle eigenstates,

(W1)nn′ =

∫ 2+L

0

ψpartn (q)
∗
ψpartn′ (q)χ(q) dq

=

∫ 2

0

ψpartn (q)
∗
ψpartn′ (q) dq

Hence, with (7), we obtain

(W1)nn′ =







1
2π(n−n′)

(

−i+ ie
4πi(n−n

′)
2+L

)

if n 6= n′,

2
2+L if n = n′.

(12)
Finally, the creation/annihilation operator identities

a†|k〉2 =
√
k + 1|k + 1〉2, a|k〉2 =

√
k|k − 1〉2 (13)

yield

(W2)kk′ =
1√
2

(√
k′ + 1δk,k′+1 +

√
k′δk,k′−1

)

.

(14)

Appendix III: The Husimi Dis-

tribution

The Husimi distribution Hψ(p̄, q̄, Φ̄, Π̄) of a state |ψ〉
of the two-dimensional quantum mechanical system
(4) is

Hψ(p̄, q̄, Φ̄, Π̄) = N |〈ψ(p̄,q̄,Φ̄,Π̄|)|ψ〉|2, (15)

where |ψ(p̄,q̄,Φ̄,Π̄)〉 is a coherent state localized around

(p̄, q̄, Φ̄, Π̄) and N is a normalization constant. We
construct a coherent state for our system as

|ψ(p̄,q̄,Φ̄,Π̄)〉 = |ψ(p̄,q̄)〉1 ⊗ |ψ(Φ̄,Π̄)〉2, (16)

where |ψ(p̄,q̄)〉1 is the coherent state for the uncoupled
particle and |ψ(Φ̄,Π̄)〉2 is the coherent state for the
uncoupled harmonic oscillator. The latter coherent
state is26,27

|ψ(Φ̄,Π̄)〉2 = e−
1
2 (Φ̄

2+Π̄2)
∞
∑

k=0

(

Φ̄ + iΠ̄
)k

√
k!

|k〉2. (17)

Because q ∈ (2 + L)S1 (i.e., the uncoupled parti-
cle system is 2 + L periodic in q) and p ∈ R, our
phase space is cylindrical. We will use the procedure
of Spina and Skodje13 to define |ψ(p̄,q̄,Φ̄,Π̄)〉 for this
topology. We require the coherent state |ψ(p̄,q̄)〉1 to
satisfy

〈q|ψ(p̄,q̄)〉1 = 〈q + k(2 + L)|ψ(p̄,q̄)〉1, k ∈ Z. (18)

One can define the coherent states |ψ(p̄,q̄)〉1 using the

Euclidean phase space coherent states |ψ̃(p̄,q̄)〉 as

〈q|ψ(p̄,q̄)〉1 = C
1
2

∞
∑

k=−∞

〈q + k(2 + L)|ψ̃(p̄,q̄)〉, (19)

which satisfies (18) and converges because 〈q+ k(2+
L)|ψ̃(p,q)〉 is Gaussian. In (19), C is a normaliza-
tion constant to be determined by the condition
〈ψ(p̄,q̄)|ψ(p̄,q̄)〉1 = 1.

The projection of |ψ(p̄,q̄)〉1 onto the uncoupled par-
ticle basis {|n〉1}∞n=1 is

〈n|ψ(p̄,q̄)〉1 =

∫ 2+L

0

〈n|q〉1〈q|ψ(p̄,q̄)〉1 dq

= C
1
2

∞
∑

k=−∞

∫ 2+L

0

〈n|q + k(2 + L)〉×

× 〈q + k(2 + L)|ψ̃(p̄,q̄)〉 dq.

The coordinate space projection of the Euclidean
space coherent states is

〈q|ψ̃(p̄,q̄)〉 =

(

1

π

)
1
4

exp

(

−1

2
(q − q̄)

2
+ ip̄

(

q − q̄

2

)

)

.

(20)
Because 〈n|q+k(2+L)〉 = ψpartn (q+k(2+L)), using
(7), (19), and (20) gives

〈n|ψ(p̄,q̄)〉1 = C
1
2

(

1

2

)
1
4

exp

(

−1

2
(n− p̄)

2 − iq̄
(

n− p̄

2

)

)

.

(21)
With the normalization condition 〈ψ(p̄,q̄)|ψ(p̄,q̄)〉1 = 1,
we determine from (21) that

C =
√
π

∞
∑

n=−∞

e−(n−p̄)2 (22)
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Thus, if a state |ψ〉 is expressed in the
uncoupled basis |n〉1 ⊗ |k〉2∞n=1,k=0 as |ψ〉 =
∑∞
n=1,k=0 ank|n〉1 ⊗ |k〉2, we obtain from (15),(17),

and (21) that

Hψ(p̄, q̄, Φ̄, Π̄) =
C√
2
|

∞
∑

n=1,k=0

a∗nk

(

Φ̄ + iΠ̄
)k

√
k!

×

× exp

(

−1

2

[

Φ̄2 + Π̄2 + (n− p̄)
2
]

− iq̄
(

n− p̄

2

)

)

|2 .

(23)

In practice, (23) is used as a truncated sum to deter-
mine the Husimi distribution for eigenstates calcu-
lated using a truncated Hamiltonian matrix for (4).
To compare with the classical Poincaré sections, we
take q̄ = 1 and p̄ =

√
2E − Φ̄2 − Π̄2 − αΦ̄ for an

eigenstate with energy E. The first condition arises
from a convention in choosing the Poincaré section
for the classical system,5 and the latter arises as a
slice along the classical energy shell.
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