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Familiar: ODEs and PDEs

® Example: a toy model for a biological epidemicin a
well-mixed population (SIR)
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e Can incorporate space by adding diffusion terms (A).



Dgnamics on Networks

® Incorporate which people (nodes)
interact with which other people via
their ties (edges).

® This yields a dynamical system on a
network.

® Basic question: How does network
structure affect dynamics (and vice
versa)?



Cascades on Networks: Whg Rother?

Randomization to Conditions

® Math

Provide interesting and tractable
examples to study effects of
network structure on dynamical
systems

® RealWorld

“It's a nice place to visit.”

“ComFIex contaglons Versus
“simple contagions”

® Social reinforcement

e E.g.Centola, Science, 2010
Social influence

e E.g. mass movements

® E.g. memes on Facebook and
Twitter

e E.g. Adoption of Facebook apps
(Onnela and Reed-Tsochas,
PNAS, 2010)

Epidemics on networks
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Fig. 2. Time series showing the adoption of a health behavior spreading through dustered-lattice (solid
black drdes) and random fopen triangles) social networks. Six independent trials of the study are
shown, including (N N=98 Z=6,(BtoD) N =128, Z = 6,and (E and F) N = 144, Z = 8. The success
of diffusion was measured by the fraction of the total network that adopted the behavior. The speed of
the diffusion process was evaluated by comparing the time mquired for the behavior to spread o the
greatest fraction mached by both conditions in each trial



Cha”enge I Mode”ing Social Influence

® Given a possible “social contagion” (e.g. the spread of
obesity studied by Fowler & Christakis) based on empirical
data, how does one distinguish among the following:
® 1. Genuine spread via social influence
® Note also: social learning
e 2. Homophily
® Agents do the same thing due to common traits
® 3. Environment
e Common external influence on agents

e Control strategies (e.g. legislation) depend on whether it's
1, 2, 3, or a mixture of them.

e Efforts date back at least to the 1970s: E.g., DeGroot,
Friedkin, Granovetter, etc.



How to Gain lnsights on Social Influence?

® 1. Well-controlled experiments and careful data analysis
(and statistics)

® 2. Simple, tractable generative mathematical models
e Ourapproach!

® Approach 1and its relatives are far more common in this
field. (Id like to convince some of you to help with #2!)

® A general goalis to advance models of social influence.

® Develop and study new generative models (as opposed to
statistical models) and then ultimately combine them with
data to estimate parameter values, improve models, etc.
e (Canone emulate the success of models of biological

epidemics (with e.g. their empirically estimated basic
reproductive numbers)?



Watts Threshold Model

D. S. Watts, PNAS, 2002

Each node j has a (frozen) threshold R, drawn from some distribution
and can be in one of two states (o or 15

Choose a seed fraction p(o) of nodes (e.g. uniformly at random) to
initially be in state 1 (“infected”, “active”, etc.)

Updating can be either:
® Synchronous: discrete time; update all nodes at once

® Asynchronous: “continuous” time; update some fraction of nodes in
time step dt

Update rule: Compare fraction of infected neighbors (m/k;) to R;.

Node j becomes infected if m/k; 2 R;. Otherwise no change

e Variant (Centola-Macy): Compare number of active neighbors (m) rather
than fraction of active neighbors

Monotonicity: Nodes in state 1 stay there forever.



Watts Model: “Responsc Function”

* Nodes have binary states:

S0 - inactive (don't influence neighbors)
S1 - active (influence neighbors)

« At each time step, a node becomes S1-active if
the fraction of its S1-active neighbors exceeds its threshold:

: m - number of S1-active nbrs.
>
F(m,k)= {]’ i m_/k > R k - total number of nbrs.
0, otherwise R - threshold for switching to St
Response function F(m,k) describes the probability
that a k-degree node becomes S1-active when m of

its neighbors are S1-active.



Equilibrium Levels of Adoption

Example: all nodes have threshold R=0.3
(A node having 230% of its neighbors active will become active itself)

@ - active
@® - inactive
=0.31
Fraction of active
nodes p_ =

p.=0.13

Typically we need to run many
realizations (of seed nodes and
networks).



Schematic: Watts Model

Below
Barely above threshold
threshold

S,

Strongly above
threshold




Single—-Stage VS Multi~5tage

(a) Single-stage case (b) Multi-stage case
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S. Melnik, J. A.Ward, J. P. Gleeson, & MAP, "Multi-Stage Complex Contagions”, Chaos,
23(1), 013124 (2013)



THPCS of Nodes

Passive (S,) Active (S,) Hyper-active (S.)

No influence Influences neighbors Influences neighbors,
but with bonus influence
Note: S, €S _butS. €S fori>o compared to Active

nodes



Peer Pressure and ResPonse Function

® Peer pressure = total influence experienced by a
degree-k node
® P=(m,+PBm,/k
® m_=number of neighborsinS,
e m,=numberof neighborsin$,
® [ =bonusinfluence (B=0=»onlyS, andS_; noS, state)

® Update step: Node j becomes S-active if P, 2 R;;

e 2 different thresholds for each node; chosen from some
distributions

e IfR;=R;forallj(i.e. same threshold for all nodes),
then the response function F. is written:
1, if (my+ Bma)/k > R,

0. otherwise

Fiy(my,ma, k) = {



S, Cascades can Facilitate S, Cascades

Example: Facebook network of students at the University of Oklahoma.
All nodes have identical thresholds R,=0.15, R,=0.3, about 2% of nodes are

initially S1-active.

Fi(my1,mo, k) =

(1={12})
Single-stage case (8=0)

Below
B?;fgﬁg&ve threshold
Strongly above
threshold

10
10

10 0 5 10 15 20 25 30

t

Activations do not spread

1, (mi1+pPm2)/k>R;
0, otherwise

Multi-stage case (8=0.5)

Regular influence
S,
Additional S
Influence 2

0 5 10 15 20 25 30
t

All nodes eventually become
S1- and S2-active



5, Cascades can Facilitate S, Cascades

Example: Facebook network of students at the University of Oklahoma.
B=0.3, and about 2% of nodes are initially S2-active.

F;(my,mo, k) = { (1)a (m1 + Bma2)/k > R;

(i={1.2)) otherwise

Single-stage case Multi-stage case
All nodes have All nodes have
thresholds R,=R,=0.2, thresholds R,=0.15, R,=0.2
l.e. S1 dynamics are slaved to
S2 dynamics.

0 5 10 15 10 0 5 10 15

Activations do not spread All nodes eventually become
S1- and S2-active



(zbzz%Regular Random Graphs

® A useful random graph ensemble to study the dynamics in
more detail.

® Precise knowledge of when nodes have state changes

® Fix degree distribution P(k) and possibly also fix joint
degree-degree distribution P(k,k")
® Otherwise connect uniformly at random

® Example:
e Half of nodes have degree z, = 4 and the other half have
degree z, = 24
® Ensemble in which each node has on average all but one
neighbor from its own degree class

® Assume all nodes have identical thresholds R, =0.2andR, =
0.8

e Considerthe case in which S, activations drive S, activations.



Dynamics on (z,,2,)-Re ular
9 Ranc?om (]’Jrzyip sg

F.(m,m,, k)=
(i, 17, K) 0, otherwise

Single-stage case (8=0)

overall S1

X
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Some Ana@tics

e Consider dynamics on uncorrelated (z,,z,)-reqgular random
graphs
® Fix degree distribution P(k) [but don't fix P(k,k’)] and connect

stubs uniformly at random (i.e. special case of configuration
model)

® One can derive analytical expressions for final fraction of
S,-active and S,-active nodes as well as temporal evolution
of S,-active and S,-active nodes

® Analytical approach: a tree-based mean-field theory

® Assumes network is “locally tree-like” and ignores both
structural correlations and dynamical correlations

® SM, A. Hackett, MAP, PJM, & JPG, PRE 83(3), 036112 (2011)
e JPG,SM, JAW, MAP, & PJM, PRE 85(2), 026106 (2012)



Analytical approach

Generalization of results for single-stage model (Gleeson PRE’08, 77,
046117) to two stages.

Advantages:

* intuitive

» readily generalizable to the study of other cascade-type problems on
networks (e.g. site and bond percolation, k-cores)

 should work for any Fy(m,, m,, k)<F,(my, m,, k), both non-decreasing with m,
and ms,.

Limitations:

» works for monotone dynamics only (note: S2 was defined as a subset of S1)
« gives the expected active fraction, not the whole distribution

| will explain this approach using the single-stage case as an example...



Analgtical /—\Pproach

Main idea: pick a node A at random and calculate its probability of
becoming active. This will give the average fraction of active nodes.

« Start at level 0 (bottom of the tree)

« Examine the propagation of activity from level n to
level n+1, proceeding one level at a time

* Non-seed nodes at level n+1 are inactive unless
their children cause them to become active

q,.1 = Po+ (seed: active)

qn+1
d,

(1-p,)x (non-seed: initially inactive)

ZEPI( x  (has degree k; k-1 children)

k=1 <

Syt
k-1 children

k-1 :
q, - probability that a node on level Z Jq;" = q, )"‘"'" F(m,k)
| nis active, conditioned on its parent m=0\ M
(on level n+7) being inactive.

_/

'
(m out of k-1 (activated by m
children active) active neighbours)




Analytical approximation (single-stage case)

Degree distribution of the network: £,
Fraction of initially active nodes: g, = p,

oo k k-1
Auxiliary variable: G, = Py + (1= pg)> —F, >
k=1 < m=

0

k—1
( ]q;"(l—q,,)"“""F(m,k)
m |

The expected fraction o0 k i
ofactive nodesat |0, =P +(U—=p)Y B | lg"(1—q,) " F(m.k)
k=1 m=0

k
time step n: A

Note: different F can be used for other
dynamical processes, for example:

Bond percolation: F(m,k)=1-(1—p)"

(0,if m=0
Q. if m>0

0. if m<k-K
L if m>k-K

Site percolation: F (m,k )=+

J. P. Gleeson, PRX, Vol. 3, 021004 (2013) K-core sizes: F(m.k)=-1




nterlude. .



Loca”g Tree-Like APProximation?

e SM, AH, MAP, PJM, & JPG, “"The unreasonable effectiveness of
tree-based theory for networks with clustering”, PRE 83(3),
036112 (2011)

® Fun Fact: The use of "The” at the beginning of an article title is
against official Physical Review policy (but we got away with it).

: the tree-based theory I've discussed can yield
extremely accurate results even for many networks with very
large clustering (high value of clustering coefficient). It tends to
work well when the mean inter-node distance is sufficiently small
(soif it's a “sufficiently small” small world; not just a small world)

® Results for quantities like effective fraction of infected nodes at
equilibrium, size of largest connected component in percolation, etc.

® “Locally tree-like” means that cycles have zero measure as the
number of nodes N = . (So you want the clustering coefficient
C =>» o as N =, and you want few small cycles for finite N.)



Example: Watts Model

lmoootoro.
: (a) Facebook Oklahoma
0.8+ 05l : .
1
1
061 1 06} :
-
|
04+ 1 oal :
r |
0.2F 1 02+ : ¢ ]
1
(a) Facebook Oklahoma L““.‘M :
0 . L 1 1 0 - .\1 ... 203

Gaussian distributed threshold values with mean p and standard deviation o
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Mean-Field Theories

JPG, SM, JAW, MAP, & PJM, “Accuracy of mean-field theory for
dynamics on real-world networks”, PRE 85(2), 026106 (2012)

Loosely, one can think of mean-field theories as (possibly sophisticated)
ways of assuming some form of being well-mixed.

Mean-field theories are typically derived under the following
assumptions:

® 1. Absence of local clustering (i.e. locally tree-like)

® 2. Absence of modularity

® => E.g.all degree-k nodes are well-described by the same equation (obtained by
averaging over all degree-k nodes)

® 3. Absence of dynamical correlations

® |.e.the state of nodeiand those of its neighbors can be treated as independent
when updating node i

® (Can be relaxed by considering pair approximations or moment closure at even
higher moments

e Contrast: Structural correlations, like degree-degree correlations in P(k,k’) theory



And now back to our regular progran,
“Multi~5tage ComP|e>< Co ﬁtagons” e




Analytical approximation for multi-stage contagion model

Degree distribution of the network: £, n+2 not Si-active
Fraction of initially Si-active nodes: C](()') = ) ot

n
k-1 children of which —

m, children are S1-active of which—>

Auxi|iary variables m, children are S2-active —*

(1

qn_ >
k-1

(2)

9,

A

| ——— m7

"M, m-m,>

o0 k-1 (2)
For S1: ¢ =" +(1- 3”)2511 > ,,;‘( “’)Zb’"{ (DJF my,my, k)
k=1 < m=0 :
© I k-1 CI(Z)
For S2: g =p +(-p")> =R Y B, N ,ﬁ")ZB’ '{ ?I)J
=1 < m=0 m=0

(=) By o, my k) + g Fyom +1my k)] where

k |
Bf,(q)=( }7"’(1—61)‘ s
n

Fraction of Si-active
nodes at time step n

P =p0 +1-p"Y R ZB‘( o)y

(i={12}) =

3




Time evolution
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Final fraction of active nodes
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Final fraction of active nodes
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Model Features that will Necessitate

Generalization of our Ana 9tica| APProach

Some areas where improved analytical methodology is needed...
® \We haven't yet developed this.

“June Bug"” effect

® Believing one’s own gossip: An S_-active node j influences neighboring S,
nodes to become S_-active, which subsequently influence node jto S, -
active

® Dynamical correlation

e Final fraction of S,-active nodes is correct, but the theory
underestimates number of S,-active nodes in the temporal dynamics

State Segregation (*You hang up first!” *"No, you hang up first!”)

® Anode jhas a sufficiently high threshold R, to become S, -active that it
needs all neighbors to be S_-active for this to happen, but one of those
neighbors can't become S, -active unless jis S,-active.

® Dynamical correlation

e Final fractions again correct, but theory overestimates observed
fractions of active nodes in temporal dynamics



Dynamics on Modular Networks with

Heterogeneous Correlations

SM, MAP, PJM, & JPG, “"Dynamics on Modular Networks with
Heterogeneous Correlations”, arXiv: 1207.1809

We develop an ensemble of random graphs in which degree-
degree correlations can be different in different modules.
® E.g. coupled social networks from different social circles (or

different social media), such that the degree homophily differs
across them

We examine binary monotonic dynamics (e.g. Watts model) on
such networks.

Similar type of theory as before, but the random graph ensemble

is more complicated

® P(i,i’;k k') theory: joint distribution of a pair of nodes with
degrees k and k', and located in modulesiand i’



Popularity Cascades on Facebook

e Data analysisin Onnela and Reed-Tsochas, PNAS, 2010

® A model for popularity cascades

e JPG, D. Cellai, MAP, J.-P. Onnela, & F. Reed-Tsochas, “A
Simple Generative Model of Collective Online Behaviour”,
arXiv:1305:7440

® \We develop and analyze a generative model that has a
good quantitative match to the time-dependent statistical
characteristics of adoption of Facebook apps from
Facebook’s Cambrian era (a couple of months in 2007).

e We find several models that fit the long-time statistics very
well, but they can be distinguished with the temporal
behavior.

® Features: Local information (friends’ behavior as opposed to
global top-app lists) and long memory window.

® Note: No network structure in this model



Conclusions

Modeling social influence is an excellent playground for applied
mathematics. | hope some of you will be interested in taking on
this challenge!

There are subtleties regarding when tree-based and mean-field
theories are valid, and some results are valid even when the
hypothesis used to derive them are violated fantastically.

® Open problems: Derive the “deeper” theories that use different
(and, for the most part, somewhat weaker hypothesis).

| introduced an analytically tractable model of multi-stage
complex contagions.

® Much more work to do!

Paper in preparation from my group on using ideas from
algebraic topology to study complex contagions (D. Taylor, et al.)
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