The Geometry of Flows

Thomas Prince

Imperial College London

01 October 2016
What does the word *geometry* mean to you?
Introducing Geometry

What does the word *geometry* mean to you?

Can you think of any results in Geometry you’ve covered in class?
Introducing Geometry

What does the word *geometry* mean to you?

Can you think of any results in Geometry you’ve covered in class?

- Pythagorus’ theorem,
- Circle theorems,
- Trigonometry.
A little history

The geometry you will have seen in classes is some of the most ancient material taught in schools (including in history classes).
A little history

The geometry you will have seen in classes is some of the most ancient material taught in schools (including in history classes).

- There is a clay tablet from around 1800BC listing a collection of triples a, b, c such that $a^2 = b^2 + c^2$.
- Euclid’s Elements written around 300BC contains many results on circles, cones and cylinders that are well known to you.
A little history

The geometry you will have seen in classes is some of the most ancient material taught in schools (including in history classes).

- There is a clay tablet from around 1800BC listing a collection of triples a, b, c such that $a^2 = b^2 + c^2$.
- Euclid’s Elements written around 300BC contains many results on circles, cones and cylinders that are well known to you.

Here are some faces associated to results you will know...
Today I want to be quite ambitious: we’ll see an area of Geometry up to 1000 years younger than the material you’ve seen before, and then discuss one of the most important results in that subject. Before that, here are some more bearded men.
Today I want to be quite ambitious: we’ll see an area of Geometry up to 1000 years younger than the material you’ve seen before, and then discuss one of the most important results in that subject. Before that, here are some more bearded men.
Flows and the Geometry of Surfaces

Today I want to be quite ambitious: we’ll see an area of Geometry up to 1000 years younger than the material you’ve seen before, and then discuss one of the most important results in that subject. Before that, here are some more bearded men.

Towards 19th Century mathematics

By the 19th Century advances in Physics and Engineering in fields including Electromagnetism and fluid dynamics required mathematical tools for to study them systematically.
Where now?

We’re headed for a result due to Poincaré–Hopf which, very roughly, says:
We’re headed for a result due to Poincaré–Hopf which, very roughly, says:

Poincaré–Hopf

You can identify a shape by studying the ‘fluid flows’ that run on the surface of that shape.
Where now?

We’re headed for a result due to Poincaré–Hopf which, very roughly, says:

Poincaré–Hopf

You can identify a shape by studying the ‘fluid flows’ that run on the surface of that shape.

We’ll start building up a some of the ideas that will go into this, including the notion of a flow in fairly abstract terms, before looking at what I mean by a ‘surface’ and a little bit of a related subject called *topology* before we finally get to the result!
Contour plots are used to represent a (scalar) quantity varying over 2-dimensional space. This is often shown as height, but it need not be literally so; it might show temperature, pressure, etc. Remember that curves in a contour plot show collections of points at the same level: if I travel around a contour I move neither 'up' nor 'down'.

Thomas Prince (Imperial College London)
Warm-up: Contour maps

Contour plots are used to represent a (scalar) quantity varying over 2-dimensional space. This is often shown as height, but it need not be literally so, it might show temperature, pressure...
Contour plots

Contour plots are used to represent a (scalar) quantity varying over 2-dimensional space. This is often shown as *height*, but it need not be literally so, it might show temperature, pressure... Remember that curves in a contour plot show collections of points at the *same level*: if I travel around a contour I move neither ‘up’ nor ‘down’.
Some Contour Maps
We can see if we can construct contour maps with certain properties.

Exercises
Exercises

We can see if we can construct contour maps with certain properties.

Can you construct...

- a contour plot with precisely two points such that if a ball was placed there it would not roll?
- a contour plot with three such points?
- a contour plot with infinitely many such points?

More on stationary points

- Can I make a stationary point such that if I move a little I always roll away?
- ... or always roll back?
- ... or roll away in some directions and back in others?
Stationary points

As we saw in the second question, there are three main types of stationary point.
Flow diagrams

We can represent our contour map in a different way by plotting its flow. Rather than drawing curves of points at the same height, we draw curves which show how a point will move in this ‘landscape’.
Flow diagrams

We can represent our contour map in a different way by plotting its flow. Rather than drawing curves of points at the same height, we draw curves which show how a point will move in this ‘landscape’.

Examples

Maybe you’ve seen these types of pictures before...

- Weather patterns
- Electric/magnetic fields.
- Others?
Flow diagrams

We can represent our contour map in a different way by plotting its flow. Rather than drawing curves of points at the same height, we draw curves which show how a point will move in this ‘landscape’.

Examples

Maybe you’ve seen these types of pictures before...

- Weather patterns
- Electric/magnetic fields.
- Others?
A flow diagram is simply a collection of curves which shows the trajectory of a small ball placed at that position, usually decorated with arrows to show the direction of the flow. Just as with contour maps we have a number of stationary points where a ball placed there will not move. Here is an example, taken from a demonstration of movement in an electric field.
A *flow diagram* is simply a collection of curves which shows the trajectory of a small ball placed at that position, usually decorated with arrows to show the direction of the flow. Just as with contour maps we have a number of *stationary points* where a ball placed there will not move. Here is an example, taken from a demonstration of movement in an electric field.
Exercises

Now we can try and turn our own contour plots into flow diagrams.
Exercises

Now we can try and turn our own contour plots into flow diagrams.

Can we do this for our own plots we’ve drawn? Remember to keep contours and flow lines at right angles!
Contours from flows?

In fact we shall see that flows are a more general concept than contours, and for us the more important one.
Contours from flows?

In fact we shall see that flows are a more general concept that contours, and for us the more important one.

The Vortex

Hurricane Isabel gave us a striking example of a vortex. A vortex is simply a region where the flow ‘goes around’ in closed loops around a fixed point. Can you draw its flow diagram? Discussion: can we draw a contour map which produces this flow diagram?
In fact we shall see that flows are a more general concept that contours, and for us the more important one.

The Vortex

Hurricane Isabel gave us a striking example of a vortex. A vortex is simply a region where the flow ‘goes around’ in closed loops around a fixed point. Can you draw its flow diagram? Discussion: can we draw a contour map which produces this flow diagram?
Index of a stationary point

We need one final idea about flows for our result, the notion of the index of a stationary point.
Index of a stationary point

We need one final idea about flows for our result, the notion of the index of a stationary point.

Index of a stationary point

Imagine yourself standing in a flow near a stationary point holding a needle which always points in the direction of the flow. Walk in a circle clockwise around the stationary point and count the number of times the needle spins round clockwise (this might be a negative number!)
Index of a stationary point

We need one final idea about flows for our result, the notion of the *index* of a stationary point.

Index of a stationary point

Imagine yourself standing in a flow near a stationary point holing a needle which always points in the direction of the flow. Walk in a circle clockwise around the stationary point and count the number of times the needle spins round clockwise (this might be a negative number!)
Index of a stationary point

Now let’s see if we can calculate the indices of the following stationary points.
Break
An Introduction to Topology

We now make a short diversion into another important area of modern mathematics, *topology*.
We now make a short diversion into another important area of modern mathematics, *topology*.

Topology

Topology is the abstract study of shape, which is very much an active field of research today. To a topologist shapes are ‘the same’ if they can be deformed into each other by any ‘smooth’ process (no cutting or tearing), if you open a book these deformations are called ‘homotopies’.

Fig. 2
Euler Number

We need one important idea from topology, that of the *Euler number* of a shape. I won’t present a technical definition, but we’ll get a feel for the idea through some properties and examples (this is a common research practice).
Euler Number

We need one important idea from topology, that of the *Euler number* of a shape. I won’t present a technical definition, but we’ll get a feel for the idea through some properties and examples (this is a common research practice).

Rule 1: Euler number of a polygonal shape

We’ve already seen some examples of shapes made up of polygons (tetrahedron, cube, ...). In those cases we saw that the number:

\[V - E + F \]

Was the same for all the Platonic solids. In fact given *any* shape made up of polygonal faces we say the number \(V - E + F \) is the Euler number.
Euler Number

We need one important idea from topology, that of the *Euler number* of a shape. I won’t present a technical definition, but we’ll get a feel for the idea through some properties and examples (this is a common research practice).

Rule 1: Euler number of a polygonal shape

We’ve already seen some examples of shapes made up of polygons (tetrahedron, cube, ...). In those cases we saw that the number:

\[V - E + F \]

Was the same for all the Platonic solids. In fact given *any* shape made up of polygonal faces we say the number \(V - E + F \) is the Euler number.

\[
e \left(\begin{array}{c}
\text{triangle} \\
\text{with one shaded}
\end{array} \right) = 1 \
e \left(\begin{array}{c}
\text{triangle} \\
\text{with no shaded}
\end{array} \right) = 0
\]
Euler numbers

We’ll use two more rules to compute Euler numbers.

Rule 2: Topological invariance
If two shapes can be deformed without tearing into each other, they have the same Euler number.

Rule 3: Cut and Paste
If I cut a shape into two pieces, which were attached along a shape, then the Euler number of the whole can be computed as:
$$e(\text{Left}) + e(\text{Right}) - e(\text{Middle})$$
Euler numbers

We’ll use two more rules to compute Euler numbers.

Rule 2: Topological invariance

If two shapes can be deformed without tearing into each other the have the same Euler number.
Euler numbers

We’ll use two more rules to compute Euler numbers.

Rule 2: Topological invariance

If two shapes can be deformed without tearing into each other the have the same Euler number.

Rule 3: Cut and Paste

If I cut a shape *Whole* into two pieces *Left* and *Right* which were attached along a shape *Middle*, then the Euler number of *Whole* can be computed as

\[e(\text{Left}) + e(\text{Right}) - e(\text{Middle}) \]

\[
e^{\big(\text{\includegraphics[width=0.1\textwidth]{circle.png}}\big)} = 0 \\
\]
\[
e^{\big(\text{\includegraphics[width=0.1\textwidth]{torus.png}}\big)} = 2
\]
Exercises

We’ll use our three rules to compute some Euler numbers. Remember our three rules.

- If my shape is made up of polygons I can use $V - E + F$.
- If two shapes can be deformed into each other they have the same Euler number.
- If I cut a shape into two I can compute the Euler number of the original shape by adding the euler number of the two pieces and subtract the shape they are glued along.
Flows on a sphere

We can now tie everything together. What do fluid flows have to do with Euler numbers? On the face of it they come from different areas of geometry, flows are really geometric, and you can have many very different flows on the same surface. Consider the following flow on a sphere:
Flows on a sphere

We can now tie everything together. What do fluid flows have to do with Euler numbers? On the face of it they come from different areas of geometry, flows are really geometric, and you can have many very different flows on the same surface. Consider the following flow on a sphere:

On this sphere we have a flow shown with 4 vortices and 2 saddle points. We worked out the indices of these earlier, what is the sum of the indices of the stationary points?
As well as the sphere shown above your sheet contains a number of examples of flows to think about.
Exercises

As well as the sphere shown above your sheet contains a number of examples of flows to think about.

We might start to guess a remarkable result.

The Poincaré–Hopf theorem

The sum of the indices of the stationary points of a smooth surface is the Euler number of the surface.
The kind of work we have been doing is an essential component of Mathematical research, you play around with some new ideas, try some examples and notice patterns or connections between different areas. The final stage is to prove that what you think is the case is actually true. This can sometimes be very easy (even for important results) or sometimes require a great many new ideas and technical work.
The kind of work we have been doing is an essential component of Mathematical research, you play around with some new ideas, try some examples and notice patterns or connections between different areas. The final stage is to prove that what you think is the case is actually true. This can sometimes be very easy (even for important results) or sometimes require a great many new ideas and technical work.

Proof of Poincaré–Hopf

This proof has two main parts, one rather more difficult than the other.

- The easier part is to construct a flow on a closed surface for which the sum of the indices is the Euler number.
- The harder part is to show that whatever flow you choose you get the same answer.
The End