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Abstract

We consider a general calibration problem for derivative pricing mod-

els, which we reformulate into a Bayesian framework to attain posterior

distributions for model parameters. It is then shown how the posterior

distribution can be used to estimate prices for exotic options. We apply

the procedure to a discrete local volatility model and work in great de-

tail through numerical examples to clarify the construction of Bayesian

estimators and their robustness to the model specification, number of cal-

ibration products, noisy data and misspecification of the prior.

1 Introduction

Since the model proposed by Black and Scholes in their seminal 1973 paper
[10], the variety and complexity of financial models has grown dramatically.
Typically, agents will want to use a model to price or hedge an instrument in
the market. But before they can do this, they must first mark the model to
market — that is, calibrate the model to observable prices. Most commonly,
vanilla instruments such as European calls or puts are used. This calibration is
necessary to avoid introducing arbitrage into the market by making the agent
vulnerable to other agents creating riskless profits from the first agent’s incorrect
prices.

In the original Black-Scholes model, there is one scalar volatility parame-
ter to be estimated. In contrast, in some of the commonly used models today,
entire functions have to be calibrated, which raises questions not just of nu-
merical complexity but of identifyability of the model from a restricted set of
observations (market data) and their robust and stable estimation.

Calibration can be classed as an inverse problem: a parametrised model
has been specified, we then observe market prices and try to find the model
parameter which gives those prices. Put abstractly, the calibration problem
often fails one or more of Hadamard’s criteria for well-posedness (see for example
[17]), which are:
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i. For all admissible data, a solution exists.

ii. For all admissible data, the solution is unique.

iii. The solution depends continuously on the data.

We assume the first criteria is true, i.e. there exists a parameter for which the
model reproduces market prices, for otherwise our model is poorly designed and
introduces arbitrage into the market. In reality, the calibration instruments, to
which we try to mark our model, are only observable in the market upto some
bid-ask spread, which is the interval of values between what an agent is willing
to pay for the instrument (at the lower end) and what an agent is willing to sell
the instrument for (at the upper end).

The latter two conditions are not certain to be satisfied by the calibration
problem. It is clear that picking the wrong solution (by condition ii.) or choosing
a solution that is not stable (by condition iii.) can have disastrous effects on
the pricing and hedging of an instrument.

For illustration, we consider here the local volatility model, in which the
underlying asset price S is assumed to follow

dSt/St = µ dt+ σ(St, t) dZt, (1)

where the drift µ is the expected growth rate and the volatility σ a function
of both the asset price and time, and Z is a standard Brownian motion. The
function σ(·, ·) is a priori unknown and must be inferred from observed prices.
Dupire [15] derives an explicit formula, expressing this function in terms of
European call prices and their sensitivities with respect to strike and maturity.
Hindering the direct practical application of the formula, it requires prices for
a continuum of strikes and maturities, which are not quoted in reality, making
additional assumptions necessary, in practice by interpolation and discretisation.
The formula illustrates two fundamental facts: that a discrete set of observation
prices is not sufficient to pin down the functional parameter, and even if a
continuum of prices was available, the solution of the inverse problem is unstable.

To address the difficulties of calibrating the local volatility model, authors
such as Jackson et al. [26], Lagnado & Osher [28] and Coleman et al. [12]
have developed minimisation techniques and penalty functions for finding the
‘best-fit’ local volatility surface with a certain regularity. Further analysis of
these methods and their improvement has been detailed by Chiarella et al. [11].
Crepey [14] and Egger & Engl [16] show that a carefully (Tikhonov) regularised
problem is well-posed in the above sense, and rates for the convergence of the
regularised solution can be derived for vanishing data noise and regularisation
parameter. This approach has been extended to American calibration options
by Achdou and Pironneau [1, 2].

Choosing a regularising functional restricts the solution to a more well-
behaved class, but the resulting solution does not contain information on its
uncertainty.

Given that financial models typically make very specific assumptions on the
processes they are describing, we would like to add robustness as signifying

iv. insensitivity to small deviations from the assumptions

to our list of desiderata. In the context of this study on financial model cal-
ibration, the main assumptions made are: the assumed class of models which
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are being calibrated; approximation of these models, e.g. via discretisation of a
local volatility function; any regularising assumptions, e.g. smoothing penalty
terms; the choice of calibration instruments. As any financial market model will
only be an approximation to the true data generating process, the main require-
ment of a robust method is that the predictions made from the estimated model
chosen out of the ‘wrong’ model class are a sufficiently accurate approximation.
We will assess this property by numerical tests in synthetic (i.e. the calibration
data are generated by a model) and real markets later on.

A different viewpoint is taken by Avellaneda et al. [5, 6] and Lyons [29].
Rather than imposing a detailed discription of the term-structure and leverage
of instantaneous variance, only an upper and lower bound is assumed. Upper
and lower price bounds for derivatives (the sub- and superhedging prices) are
obtained by solving a stochastic control problem, where quoted market prices
form contraints and can narrow the no-arbitrage price bands for other contracts
considerably. Using relative entropy regularisation introduced by Avellaneda et
al. [4], Samperi [32] shows that the infimum of a regularised error function is
continuous (in fact, differentiable) with respect to calibration prices. Extending
this to uncertain volatility function bounds, He et al. [25] obtain more realistic
bid and ask prices than for constant bounds.

The Bayesian approach of this paper demonstrates a shift in philosophy of
the aforementioned approaches. Acknowledging that the calibration problem is
ill-posed, we no longer focus on finding a best-fit solution, but we are interested
in finding a distribution of solutions. The essential idea behind the Bayesian
approach is to begin with some prior distribution for the unknown parameter
and update this distribution using the observable market prices to give a poste-

rior distribution for the model parameter. So instead of finding a model which,
in some measure, best replicates prices, we seek all models which sufficiently

replicate prices to within a pre-decided tolerable level of error. This is not dis-
similar from uncertain parameter models so far, and related to an approach that
more recently Hamida & Cont [24] have adopted as part of their investigation
into model risk, to obtain a spread of possible prices of exotic options which
are all consistent with those of calibration options. Where this paper differs
from [24] is by recasting the problem into a Bayesian framework, while [24] use
a prior distribution only to generate initial populations for an evolutionary opti-
misation algorithm. The Bayesian approach to calibration has been used before
by authors such as Jacquier & Jarrow [27] in Black-Scholes models, Bhar et
al. [9] for the calibration of instantaneous spot and forward interest rates, and
Monoyios [30] in the context of drift parameter uncertainty. The specification of
a prior corresponds to the regularising penalty in Tikhonov regularisation and
opens the possibility of incorporating prior information in a rigorous framework,
although this does mean that the impact of prior assumptions has to be assessed
critically.

In this paper we concentrate on providing a practical method for constructing
prior and likelihood functions and on exploring the robustness of the Bayesian
posteriors, especially with the view towards pricing exotic options using Bayesian
estimates. This is to be seen as “proof of concept” for a challenging example (of a
high-dimensional parameter), and improvements to the computational strategy
would aid the practical application in this setting. A marked advantage of the
Bayesian approach, which this work highlights, is that the posterior distribution
can be translated into price spreads for derivatives, in the spirit of the model
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uncertainty measures in [13, 24]. We also demonstrate by case studies that the
Bayesian mean yields reliable predictions of exotic derivative prices, which are
more robust than those based on parameters obtained by Tikhonov regularisa-
tion, and much more accurate also than suggested by model uncertainty bounds
not taking into account information of the posterior distribution.

The paper is divided as follows. In Section 2 we formalise the calibration
problem and review relevant results from Bayesian theory. In Section 3, we
discuss the construction of the prior and likelihood function as applied to the
local volatility model. Section 4 provides details of its discretisation and on
the tailoring of Metropolis sampling to this application, and give calibration
examples in Section 5. Finally in Section 6 we present some case studies which
demonstrate the robustness of the proposed calibration method for pricing other
contracts. Section 7 concludes.

2 Set-up of the Calibration Problem

We consider financial derivatives on an asset whose price process is modelled
by S(θ) = (St(θ))t≥0 over time t, where the possible models are labeled by
a parameter θ ∈ Θ, chosen out of a set Θ of parameters (models). The per-
haps simplest example is the constant volatility parameter in the Black-Scholes
model. In the example of local volatility, which will be studied extensively in
the following sections, θ = σ(·, ·) is a function of two arguments (the stock price
S and time t), chosen out of a suitable class of functions to be specified later.

Now consider an option over a finite time horizon [0, T ] written on S and
with payoff function h. We write the time t value of this option under the
above model for S as ft(θ). The price building mechanism which leads to this
functional form is of course important (e.g., a replication argument in a complete
arbitrage free market), but we will leave this open for chosen applications. We
include the argument θ in f to emphasise the dependence of this price on the
model (parameter).

Suppose at time t ∈ Υn([0, T ]) = {t1, . . . , tn : 0 = t1 < t2 < . . . < tn ≤ T}
we observe market quotes V

(i)
t for these options, where i ∈ It an index set.

These could be European call options with different strikes and maturities. The
common approach to calibration is to find a value of θ consistent with the

observed prices V = {V (i)
t : i ∈ It, t ∈ Υn}.

In practice, instead of a single V
(i)
t one usually has quotes available for a

bid price V
(i)bid
t , and an ask price V

(i)ask
t , the best prices for which agents are

willing to buy and sell the option, respectively. A calibration is therefore only

arbitrage-free if the model price lies in the interval [V
(i)bid
t , V

(i)ask
t ], but without

the input of additional information one cannot distinguish between models which
calibrate within the bid-ask spread.

To this end, we cast this problem in a Bayesian framework. Assume we have
some prior information for θ (for example that it belongs to a particular subset
of the original parameter space, e.g. represents a positive constant or smooth
function), summarised by a prior density p(θ) for θ. We then observe data

V = {V (i)
t : i ∈ It, t ∈ Υn}, for instance

V
(i)
t =

1

2

(

V
(i)bid
t + V

(i)ask
t

)

,
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and write their relation to the ‘true’ prices (identical to the model prices with
‘true’ parameter θ∗) by

V
(i)
t = f

(i)
t (θ∗) + e

(i)
t (2)

with additive noise {e(i)t : i ∈ It}. A possible interpretation of (2) is that there
is an underlying true model, unknown to the observer, under which the market
is complete and arbitrage-free (i.e. derivatives can be hedged perfectly knowing
the model); the bid-ask spread reflects the model uncertainty which causes the
buyer/seller to demand a risk premium. The existence of a true model is not
necessary for the definition of the calibration procedure in this paper as such,
as long as the observed market prices are attainable within the class of assumed
models subject to the assumed noise. It would clearly become relevant if we
were to address questions of consistency of Bayesian estimators and hedging
based on those parameters.

Then p(V |θ), the probability of observing the data V given θ, is determined
by the distribution of the noise e and is called the likelihood function. We will
discuss a complete specification of the noise in 3.2.

An application of Bayes rule gives that the posterior density of θ is given by

p(θ | V ) =
p(V |θ) p(θ)

p(V )
=

p(V |θ) p(θ)
∫

p(V |θ) p(θ) dθ .

If the noise is modelled such that observations only have positive likelihood if
the model price lies within the bid-ask spread, we can turn this around to say
that any parameter with positive posterior density gives model prices for the
calibration options within the bid-ask spread.

The estimator
θMAP (V ) = argmax

θ∈Θ
{p(θ|V )},

the maximum a posteriori (MAP) estimator, is the value which maximises the
posterior density. A family of estimators θL(V ) can be defined as

θL(V ) = arg min
θ′

{
∫

Θ

L(θ, θ′) p(θ|V ) dθ

}

,

where L : R2M → R is a loss function with the property

{

L(θ, θ′) = 0 if θ′ = θ,
L(θ, θ′) > 0 if θ′ 6= θ.

The minimiser θL(V ) is not necessarily unique. L1(θ, θ
′) = ‖θ−θ′‖22 gives the

Bayes estimator θL1
(Y ) = E[θ|V ], which is the mean value of θ with respect to

the Bayesian posterior density p(θ|V ). The MAP estimator does not correspond
to a non-negative bounded loss function.

We discuss possible interpretations of the result of such a calibration further.
In an ideal world, the following is given: even if we do not a priori know

the true model (data generating process), we know that the model belongs to
a certain class of models, parametrised by θ, and the observations allow us to
differentiate between the true model and any other model from this class.

In the reality of financial markets, a class of candidate models can only be
assumed. Most certainly, the observed data are generated by a process outside
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the assumed model class. It can therefore not be expected that the estimator
reproduces the values of all financial instruments outside the class of calibration
instruments exactly (or within bid and ask). A robust estimator will have the
property that if the true model is in some sense close to the assumed class of
models, predictions made from the estimated parameter, say values of exotic
derivatives or hedge parameters, will be close to the value of those derivatives
under the true model and can be hedged accurately by a trading strategy based
on the estimated parameter.

In the example of the local volatility model, θ is an infinite dimensional
(functional) parameter. This means on the one hand that any finite number of
observations will be insufficient to identify the parameter exactly. Moreover, one
will only be able to compute a finite-dimensional (discretised) approximation.
So even if the market is governed by a local volatility model, this function will
almost certainly lie outside, albeit close to, the assumed (computable) class of
local volatility models, which is necessarily part of a finite-dimensional space.

The relation of the number and type of parameters to the number and type
of calibration instruments then becomes relevant. If the number of data is
smaller than the number of parameters, the parameter will generally be under-
determined and regularisation, here via the Bayesian prior, favours particular
parameters over others. As Wasserman [33] remarks, we should desire that the
Bayesian posterior is not dominated and led astray by the priors, so care has to
be taken with its construction.

There are two routes to increasing the available information in this context:
to observe the value of different financial derivatives, e.g. vanilla options with
different strikes and maturities, and/or to observe the prices of the same finan-
cial derivatives at different times, in which case past calibrations provide prior
information for re-calibrations. We will later give examples for both. As the
number of calibration products, and/or the re-calibration frequency, increase,
a relevant property of Bayesian estimators is consistency. Ghosal [21] points
out that consistency is crucially important for parameter estimation since the
violation of consistency puts serious doubts against inferences based on the
inconsistent posterior distribution. We note that there is a vast body of liter-
ature on Bayesian consistency in a more general and more advanced setting,
see e.g. [22] and the references therein. It ensures that the estimator converges
to the ‘true’ parameter, if such a ‘true’ parameter exists, i.e. on the assump-
tion that the data are indeed generated by the assumed model. This cannot be
assumed to be the case in financial applications.

We discuss these points by numerical illustrations in Sections 5 and 6, after
introducing the construction of Bayesian posteriors and their numerical realisa-
tion in the following two sections.

3 Bayesian Estimation of Local Volatility

In this section, we discuss the main ingredients of the Bayesian set-up. Recall
θ is the unknown parameter in the model for the evolution of the asset price
S(θ), which we take as local volatility function in our running example. A
contention of this paper is that certain features such as positivity or certain
asymptotic behaviours might be expected of θ and that these prior views should
be incorporated into the calibration procedure. To this end the Bayesian theory
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previously introduced serves as a useful rigorous framework.

3.1 Prior Distribution (Regularisation)

We identify key characteristics expected of the local volatility surface that can
be recast into a Bayesian prior. We encapsulate the information available of σ
at the outset in the following three properties:

Positivity: Since the squared price variation σ2 > 0 we adopt the convention
σ > 0.

Asymptotics: For small values of t especially, σ should be close to today’s
at-the-money volatility σatm; at-the-money volatility is usually equated
with the Black-Scholes implied volatility for a European call option with
strike equal to the current price of the underlying and for a short maturity.
Today’s at-the-money volatility will roughly determine the position of the
local volatility surface in R

3. A more refined asymptotic shape of the
local volatility for small times and in the wings can be deduced from the
implied volatility skew for short maturities and far in- and out-of-the-
money options, as detailed in [7].

Smoothness: We exclude sharp spikes or troughs in the surface; we do not
argue that sudden changes could not happen, but follow Jackson et al. [26]
to point out that a small set of currently observed prices will not be capable
of accurately predicting abrupt changes in future volatility.

The following approach is to reformulate prior beliefs of θ into a norm cost

functional ‖·‖ of θ so that parameters which better satisfy the prior beliefs have
smaller norm. Then the natural Gaussian prior is

p(θ) ∝ exp
{

− 1
2 λ̃‖θ − θ0‖2

}

, (3)

where λ̃ is a constant which quantifies how strong our prior assumptions are: a
higher value of λ̃ indicating greater confidence in our assumptions. 1/λ̃ can be
thought of as the prior variance of θ. From (3) we see that those θ which better
satisfy prior beliefs have greater density.

To illustrate a possible choice of norm ‖ · ‖, we continue our example of the
local volatility model. In light of the assumptions presented earlier, we choose
volatility functions from the set

{σ ∈ H1(R2
+ ∩K), σ > 0 a.e., ‖ log σ‖1,K < ∞ for all compactly contained K},

where H1 is the Sobolev space of weakly differentiable functions and ‖ · ‖1,K
the standard H1 norm on K. The restriction to compact sets allows different
behaviour of the volatility in the tails at this stage.

Following the regularisation functional used, for example, by Fitzpatrick [18],
we choose for the prior

plv(σ) ∝ exp
{

− 1
2λp‖ log(σ)− log(σatm)‖2κ

}

, (4)

where
‖u‖2κ = (1− κ)‖u‖20 + κ‖|∇u|‖20, (5)
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and here ∇ =
(

∂
∂t
, ∂
∂S

)

is the grad operator, ‖ · ‖0 is the standard L2 norm on
a suitable domain, and κ ∈ (0, 1) is a pre-specified constant.

Using the logarithm penalises σ approaching zero. The first part of the
norm is to ensure greater prior density is attached to σ that are closer to the
ATM volatility. The second part ensures that the volatility is locally linear
in its arguments — once discretised on a grid, this will ensure that the prior
covariance of volatilities at neighbouring grid nodes approaches one if the grid
points are close.

3.2 Likelihood Function (Calibration Error)

Recall from Section 2 that V
(i)
t is a market-observed price at time t of a calibra-

tion option, written on underlying S taking value St at time t, and f
(i)
t (θ) is the

model price for the same derivative when the model parameter is θ. Typically,
one will choose liquidly traded options for the calibration, such as European
calls with a range of strikes and maturities.

The definition of a likelihood relies on assumptions on the data noise. We

shall use the observations V
(i)
0 = 1

2 (V
(i)bid
0 +V

(i)ask
0 ), and define δi =

104

S0
|V (i)ask

0 −
V

(i)bid
0 | as the basis point bid-ask spread for the ith option at time 0. In the

first instance, we model the basis point error for the ith option by a normal
distribution

104

S0
(f

(i)
0 (θ∗)− V

(i)
0 ) ∼ N(0, δ2i ), (6)

which we assume independent across data. To avoid introducing arbitrage for
calibration options, one may truncate the density, e.g. attach zero density to all
observations for which the model values lie outside the bid-ask spread.

It is important that inferences are not sensitive to the noise model, which
influences the shape of the posterior distribution for finite sample size and has
implications for asymptotic properties such as consistency. Assumption of the
normal distribution (6) implies that the likelihood of the bid-ask mid-point is
largest close to the ‘true’ value, and that the bid-ask spread is a measure for
the width of the distribution. As we truncate the distribution outside an inter-
val around the mid-price, the tails of the assumed (un-truncated) distribution
become irrelevant. We shall see in the numerical examples that the impact of
the (assumed) standard deviation of the price error on the calibration is small
within a relevant range.

The assumption of independent noises is made for simplicity, and may have
to be revised especially for observations for very similar strikes or maturities.
We comment on re-calibration at different times tn later.

For computational purposes, we will modify the above definition slightly.
Using the terminology of Jackson et al. [26], we define the basis point square-
error function for a calibration at time t = 0 as

G(θ) = 108

S2
0

∑

i∈I

wi |f (i)
0 (θ)− V

(i)
0 |2, (7)

where the wi are pre-specified weights summing to one, and are chosen depend-
ing on relative volumes likely to be traded (so, for instance, at-the-money calls
or puts are weighted more heavily).
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Then we shall only attach positive Bayesian posterior weight to parameters
θ which on average reproduce prices to within the average basis point bid-ask
spread. In other words, we will attach positive likelihood under θ only if

G(θ) ≤ δ2, (8)

where δ2 =
∑

i∈I wiδ
2
i is the pre-specified average basis point square-error tol-

erance. Additionally, the smaller the value of G(θ), the more likely the obser-
vation. Hence, for the Bayesian likelihood we will take

p(V |θ) ∝ 1G(θ)≤δ2 exp
{

− 1
2δ2G(θ)

}

. (9)

So those parameters (surfaces) σ which reproduce prices closest to the market
observed prices V (the bis-ask mid-point) give the greatest likelihood values.

Note that we could modify the likelihood so that every price is calibrated

to within its tolerance, i.e. (104/S0)|f (i)
0 (θ) − V

(i)
0 | ≤ δi for all i ∈ I. This

would be computationally more intense because it requires greater exploration
of the parameter space to find sufficiently many acceptable candidate solutions.
Satisfaction of (8) is the approach also taken by Hamida & Cont [24], however,
they consider all surfaces σ satisfying the constraint (8) equally well calibrated,
whereas in this study we will differentiate between different degrees of calibra-
tion, which subsequently leads to different weight in the posterior distribution.

3.3 Posterior Distribution

Combining prior and likelihood functions, we get the posterior explicitly as

p(θ|V ) ∝ 1G(θ)≤δ2 exp
{

− 1
2δ2

[

λ‖θ − θ0‖2κ +G(θ)
]}

, (10)

where λ = δ2λ̃. From this, estimates for θ and other predictions can be derived
as discussed in Section 2.

Observe that maximising the posterior (10) is equivalent to minimising the
expression

λ‖θ − θ0‖2κ +G(θ) (11)

over the set {θ : G(θ) < δ2}, and (11) is precisely the form of function authors
such as Lagnado & Osher [28] and Jackson et al. [26] seek to minimise to find
their optimal calibration parameter. This shows how the Bayesian approach
reformats and generalises traditional Tikhonov regularisation methods into a
unified framework, as is already noted by Fitzpatrick [18].

The posterior density, however, contains more information than the MAP
estimator and we will use this in Section 6 for the robust pricing of further
options.

4 Numerical Method

This section outlines the numerical approach leading to samples from the pos-
terior distribution.
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4.1 Parameter Discretisation and the Value Function

We first restrict θ to a finite-dimensional space, and represent the local volatility
surface σ(S, t) by a grid of nodes whose positions are given by: Smin = s1 <
. . . < sj < . . . < sJ = Smax in the spatial direction and 0 = t1 < . . . < tl <
. . . < tL = tmax in the temporal direction. Following the ordering convention
σj+(l−1)J = σ(sj+1, tl), the discrete representation of σ(S, t) is defined by the
parameter vector

θ = (log σ1, . . . , log σm, . . . , log σM ),

and a spine interpolant Θ(·, ·) of θ. We emphasise this dependence by writing
σ(·, ·; θ).

For each time tl we construct the unique natural cubic spline through the
nodes (s1, tl), . . . , (sJ , tl) to give all values Θ(S, tl). Then for (S, t) ∈ [sj , sj+1]×
[tl, tl+1] the value of Θ(S, t) is found by linear interpolation of the two values
Θ(S, tl) and Θ(S, tl+1). Then σ(S, t) = exp(Θ(S, t)). By interpolating the
logarithm of the volatility and then exponentiating we ensure that σ > 0.

With this discretisation, the norm function in (4) can be written as

‖Θ− θ0‖2κ = (θ − θ0)
TC(θ − θ0),

where θ0 = log(σatm) and C is the inverse covariance matrix induced by the
norm. This follows because the spline basis coefficients are linear in the nodal
values θ, and the squared Sobolev norms of the splines are quadratic in the
splines. With the norm given by (5), C is non-singular so for the sake of con-
vention write A−1 ≡ C.

This is similar to the approach taken in [26].
Finally, to calculate the likelihood value (9) for each θ, using (7), we must

price all calibration options, say European call options, f
(i)
t (θ) for i ∈ It, using

the model parameter θ. For the local volatility model, we follow the method
of [24] of solving the Dupire PDE [15] with appropriate boundary conditions:

∂f

∂T
+K(r − d)

∂f

∂K
− K2σ2(K,T ; θ)

2

∂2f

∂K2
= 0 ∀K,T ≥ 0,

f(S,K, 0) = (S −K)+ ∀K ≥ 0.

To solve this PDE numerically, we use a Crank-Nicolson finite difference scheme
to give all the prices for the range of K and T simultaneously. This is compu-
tationally more efficient than solving Black-Scholes PDEs (in S and t) for all
combinations of K and T separately.

4.2 Metropolis Sampling

Given the price data V , we are interested in the posterior distribution p(θ|V )
given by (10). However, because of the high dimensionality of θ it is unfeasible to
analytically find p(θ|V ) or a numerical, e.g. grid-based, representation. Instead,
the best we can do is try to draw samples from this distribution and draw
conclusions based on these samples.

First of all observe that the form of the posterior given by (10) makes direct
sampling slightly difficult. It will be computationally more efficient to first
generate a set of sample from the non-truncated (normal) density

g(θ|V ) ∝ exp
{

− 1
2δ2

[

λ‖θ − θ0‖2κ +G(θ)
]}

, (12)
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say {θ1, . . . , θn}. Then {θi : G(θi) ≤ δ2} is a set of samples from p(θ|V ) given
by (10).

We now concentrate on generating samples from g(θ|V ). To do this we
will use the Markov Chain Monte-Carlo (MCMC) Metropolis algorithm which
proceeds as follows (see [19] for further detail):

1. Select a starting point θ0 for which g(θ0|V ) > 0.

2. For r = 1, . . . , n, sample a proposal θ# from a symmetric jumping distribution

J(θ#|θr−1) and set

θr =

{

θ# with probability min
{

g(θ#|V )
g(θr−1|V ) , 1

}

,

θr−1 otherwise.

Then the sequence of iterations θ1, . . . , θn converges to the target distribution
g(θ|V ).

To optimise the routine we run m parallel chains, each starting from a differ-

ent point θ
(j)
0 such that the set of starting points {θ(1)0 , . . . , θ

(m)
0 } is an overdis-

persed sample of the target distribution. By overdispersed we mean that the
samples are more widely distributed than the target distribution (see [20]). We
also discard the first b iterations of the run (known as the burn-in) since it
takes some exploratory time for the algorithm to settle on the target distribu-
tion. And we only keep every kth draw from the remaining iterations (known
as thinning) of the sequence to reduce the correlation between samples.

Authors such as Beskos & Stuart [8] and Hairer et al. [3] have recommended
associating the jump function with a random walk for which the transition
kernel is associated with the prior density (3). Let A−1 be the inverse non-
singular covariance matrix introduced in the previous section. By Cholesky
decomposition we can find a matrix B such that A = BBT . Then the jump
function J(θ′|θ) is given by

θ′ = θ +
√
2duBξ,

where ξ ∼ N(0, IM ) and du is the step size of our random walk. The value of
du is chosen so that the acceptance rate of jumps is close to the optimum value
of 23% found by Gelman et al. [19].

The values for n, m, b, k, du for each numerical example are given in Ap-
pendix A.

4.3 Monitoring Convergence of Metropolis Sampling

Convergence can be assured by checking that the potential scale reduction factor

(PSRF) [19] of estimands of interest, the calibration prices for example, is close
to 1 — and at least less than 1.1 in particular. Full details of the calculation
and explanation of the procedure are set out below.

Suppose we have found m chains of length n (after discarding the burn-
in and using thinning). For each calibration price v we notate by vij the ith

draw from the jth simulated chain, for i = 1, . . . , n and j = 1, . . . ,m. Then
we compute the between-sequence variances, B, and within-sequence variances,
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W , as follows:

B =
n

m− 1

m
∑

j=1

(v.j − v..)
2 and W =

1

m

m
∑

j=1

s2j ,

where

v.j =
1

n

n
∑

i=1

vij v.. =
1

m

m
∑

j=1

v.j s2j =
1

n− 1

n
∑

i=1

(vij − v.j)
2.

Convergence is then assessed by estimating the factor by which the scale of
the current distribution for v might be reduced if the length of the chain was
allowed to continue in the limit n → ∞. The potential scale reduction factor
(PSRF) is estimated by

PSRF (v) =

√

1− 1

n

(

1− B

W

)

, (13)

which tends to 1 as n → ∞. If the PSRF is high, a lot greater than 1.1 for
example, then it is likely that continuing simulation will improve inferences
based on the target distribution.

The estimate works because B usually overestimates posterior variance as-
suming the starting distribution is overdispersed. Whereas W usually under-
estimates the posterior variance because within chain samples have not had
sufficient time to range over all the target distribution. But the longer we run
the chain, the closer B gets to W and so the closer the ratio B/W gets to 1 and
the PSRF estimate for v given by (13) goes to 1 also.

See [20] or [19] for further references on PSRF values.

5 Calibration Examples

Using raw data cited by other papers, we attempt to calibrate the local volatility
model. We use a Markov Chain Monte-Carlo (MCMC) Metropolis algorithm to
sample the posterior distribution of calibrated parameters.

5.1 Two Datasets

We first calibrate to prices generated using the local volatility surface used
in [26]. Hence, it is a synthetic market where the true model is known and of
the same class as the model we try to calibrate. Then we repeat the procedure
using S&P 500 data taken from [12]. The datasets are as follows.

1. We price 66 European call options on the local volatility surface given
in [26] (4.4) with 11 strikes and 6 maturities. Similar to [26], we take
S0 = 5000, interest rate r = 0.05, dividend rate d = 0.03. To each of
the prices we add Gaussian noise with mean zero and standard deviation
0.1% of the original price [24] and treat these as the observed prices,
similar to the approach in Coleman et al. [12]. We take the calibration
error acceptance level to be δ = 3 basis points following the results of [26].
The prices are given in Appendix A.
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2. We take real S&P 500 implied volatility data with 10 strikes and 7 matu-
rities used in [12] to determine the prices of 70 corresponding European
call options. The spot price of the underlying at time 0 is S0 = 590, the
interest rate is r = 0.060 and dividend rate d = 0.026. The prices are
given in Appendix A.

In both examples, the local volatility is discretised as explained in 4.1.
For the first example, we take nodes positioned on the grid given by

s = 2500, 4000, 4500, 4750, 5000, 5250, 5500, 7000, 10000, (14)

t = 0.0, 0.5, 1.0,

so J = 9, L = 3 and there are a total of M = J ×L = 27 free parameters (cf. 66
calibration prices).

For the second example, we take nodes positioned on the grid given by

s = 300, 500, 560, 590, 620, 670, 800, 1200,

t = 0.0, 0.5, 1.0, 2.0,

so J = 8, L = 4 and there are a total of M = J ×L = 32 free parameters (cf. 70
calibration prices).

Clearly, discretisation provides another form of regularisation, and specifi-
cally the number of options used here is greater than the number of calibration
parameters. However, tests in Section 6 will show that the methodology is ro-
bust with respect to an increase in model parameters, and the present choice is
a compromise between resolution of the surface and computational tractability.

5.2 Calibration Results for a Simulated Dataset

Using the MCMC Metropolis algorithm, 16 chains of 10000 surfaces each were
generated, which, after burn-in removal and thinning (see Appendix A), resulted
in 90 surfaces per chain. Out of these 1440 surfaces, 479 were accepted as
samples for the local volatility surface, i.e. gave G(θ) ≤ δ2 (cf. the 50 found by
Hamida & Cont [24]). The chains were run in parallel using Matlab on four
Dual-Core 2.8GHz AMDs with 32 GB RAM, where the computational time of
a single chain on a single processor was about 5 minutes.

To check the convergence of Metropolis Sampling, we compute the PSRF
numbers for the European call prices to which we are trying to calibrate. From
Table 1 we see that almost all prices have PSRF value 1.0 which indicates
excellent sampling. Only some short dated far out-of-the-money options have
values slightly greater than 1.1; but these options had smaller weights wi in our
algorithm so we would expect slower convergence.

The resulting surfaces for prior confidence parameter λ = 1 are plotted in
Figure 1. Figure 1 clearly demonstrates the variety of surfaces which can be
calibrated to the same set of prices. We see that, especially for stock values far
from S0 the volatility becomes very uncertain and varied.

Using this distribution of surfaces we can construct confidence intervals (or
‘credible sets’) of the value of the local volatility surface σ(S, t) at any point
(S, t). Figure 2 shows the 95% and 68% pointwise confidence intervals. Close
to the spot price S0, the bounds are very tight, but the further away-from-the-
money we go, the looser these bounds become. However, we see that the true
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Maturity Strike (units of S0)
0.80 0.90 0.94 0.98 1.00 1.02 1.06 1.10 1.20

0.083 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.039 1.140
0.167 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.022 1.156
0.250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.012 1.160
0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.071
0.750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.009
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.001

Table 1: For the simulated dataset: PSRF values for the calibration call prices
(using [26]).

Figure 1: For the simulated dataset, using Metropolis Sampling, 479 surfaces
from the posterior distribution were sampled and are plotted with the same
degree of transparency. The true surface is plotted in opaque black.
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Figure 2: For the simulated dataset: using the 479 sampled surfaces (where
λ = 1), 95% and 68% confidence intervals are found pointwise. The true surface
is plotted in opaque black.

surface is almost captured within the 68% confidence interval and completely
captured by the 95% confidence interval. This result could, for example, be
used to find lower and upper volatility function bounds for implementation of
the uncertain volatility model studied by He et al. [25]. Similarly, one could
deduce confidence intervals for the integrated variance and use conservative
hedging as proposed by Mykland [31]. Using only marginal distributions of
the volatility values at specific points in time and asset values, however the
dependence structure of the values on the surface, encoded in the posterior
distribution, is lost.

5.3 Recalibration and Consistency

We can also look at verifying convergence of the posterior by checking that for
an increasing number of calibration data the posterior concentrates around the
true underlying model. To this end, we simulate a stock price path over 12 weeks
on the assumed surface and price the same 66 European call options at the start
of each week. We recalculate the error functional G(θ) and update the Bayesian
posterior to incorporate the new observed prices every week. To update the
Bayesian posterior we implement importance sampling by using the new error
function to update the posterior density of the surfaces we have already sampled
via the Metropolis algorithm. Instead of updating the Bayesian weights of the
surfaces we found at time 0, we could resample the Bayesian posterior each week
or each day using the Metropolis algorithm. Then for the first re-sampling, we
are calibrating to 66+66 = 132 prices and 198 prices on the second re-sampling
which makes sampling much harder and takes longer to converge.

The results of the change in Bayesian posterior are illustrated in Figure 3. In
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the Bayesian mean calculation (15) at the first calibration time, the ‘Bayesian

weights’ are y
(i)
0 = 1/N for each surface θi for i = 1, . . . , N — hence in Figure 1

all plotted surfaces have the same degree of transparency. However, after the
first recalibration, the new Bayesian mean calculation for a function f will be

N
∑

i=1

y
(i)
1 f(θi)

for some Bayesian weights y
(1)
1 , . . . , y

(N)
1 summing to 1. However, the weights are

no longer equal. And to reflect this in Figure 3 we have varied the transparency
of the plotted surfaces to reflect the weight. A surface with greater Bayesian
weight will be more opaque.

Figure 3 shows that after about 5 weeks, the Bayesian posterior has settled
and only a handful of surfaces have significant weight. Moreover, these surfaces
are close to the true surface (plotted in opaque black). At recalibration time
tk, say, the section of the local volatility surface corresponding to {σ(S, t) : 0 ≤
t < tk} no longer contributes to the observed calibration prices so the section
{σ(S, t) : 0 ≤ t < tk}, for small tk, is very different to the true surface for some of
the heavily weighted surfaces. This is especially noticeable in the wings for very
small S and very large S. We must remember that we have only sampled the
Bayesian posterior and hence if none of our samples is the true surface (which
it is not) then we will never settle on this true surface, but settle on the closest
few, as Figure 3 shows. Nevertheless, using the proxy updating procedure, we
still see a clear sense of convergence to the true surface.

5.4 Calibration to S&P 500 Dataset

For the second test case, we try to calibrate to 70 S&P 500 European call prices.
We give the PSRF values in Table 2 below. Again we see that most options
have PSRF value 1.0 indicating that the Metropolis sampling routine has been
allowed to run for a sufficient time. Only some short dated far out-of-the-money
calls have have values just above 1.1 which is again attributable to their smaller
weights wi in the error function (7).

Maturity Strike (units of S0)
0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30 1.40

0.175 1.000 1.000 1.000 1.000 1.002 1.022 1.105 1.177 1.166 1.119
0.425 1.000 1.000 1.000 1.000 1.000 1.001 1.025 1.130 1.218 1.169
0.695 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.015 1.123 1.188
0.940 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.018 1.106
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.011 1.088
1.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.022
2.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.002

Table 2: For S&P 500 dataset: PSRF values for the calibration call prices
(using [12]).

Figure 4 gives a plot of 600 samples from the posterior (so satisfiedG(θ) ≤ δ2,
this time for δ = 4.5 basis points). Again we see that, especially in the wings
and for short times, the spread of volatilities is enormous.
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(a) week 1 (b) week 2 (c) week 3

(d) week 4 (e) week 5 (f) week 6

(g) week 7 (h) week 8 (i) week 9

(j) week 10 (k) week 11 (l) week 12

Figure 3: For the simulated dataset: a path is simulated on the true local
volatility surface and the Bayesian posterior is updated using the newly observed
prices each week for 12 weeks. The transparency of each surface reflects the
Bayesian weight (see main text) of the surface. The true surface is plotted in
opaque black.
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Figure 4: For S&P 500 dataset: using Metropolis Sampling, 600 surfaces from
the posterior distribution were found and are plotted (where λ = 1).

6 Robust Pricing of Other Options

The posterior distribution of local volatility surfaces obtained in 5.2 and 5.3 can
be used to price other contracts and assess the spread of possible prices.

6.1 Estimating Option Values

For a new, say, exotic option, each local volatility surface with positive posterior
gives a possible value of this option. The Bayesian posterior distribution of local
volatility surfaces therefore translates into a probability density of prices.

The Bayesian model average price of such a new contract is given by

1

N

N
∑

i=1

f(θi) ≈
∫

θ

f(θ) p(θ|V ) dθ, (15)

where f is the pricing function and θ1, . . . , θN are the surfaces found by Metropo-
lis sampling. Note that, because the parameters θ1, . . . , θN are samples, the
Bayesian weighting of each in the sum (15) is 1/N rather than p(θi|V ).

We assess this price estimate, where possible, against the true value f(θ∗) as
priced on the correct (assumed) surface θ∗, where the bid-ask spread is estimated
by [f(θ∗)− δS0/10

4, f(θ∗) + δS0/10
4].

A short remark on arbitrage is due here. If the market under the model with
parameter θ∗ is assumed complete, any price of the new contract different from
the model price under θ∗ could potentially be arbitraged (i.e. someone could
make a risk-free profit by dynamically trading the underlying and a bond) by
someone who knew the true parameter. Based on the information contained
in the (noisy) calibration prices alone (bid-ask spreads), however, prices with
positive posterior weight cannot normally be arbitraged.
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The MAP price is taken to be f(θMAP ), where θMAP is the sample that has
greatest posterior density, i.e. p(θMAP |V ) ≥ p(θi|V ) for all i = 1, . . . , N . Note
that the MAP price does not correspond to the maximum density of f(θi), but
that of θi. We noted earlier that the MAP parameter corresponds to the value
calculated on the surface which gives the smallest regularised calibration error
and is therefore identical to the classical Tikhonov solution.

The MAP estimator we use will not maximise the posterior density (10)
precisely, due to the finite sample size. However, we observe for the example
of Section 5.2 that our MAP estimator gives a weighted average basis point
calibration error (7) of 1.84 for 66 prices, compared with the 2.65 for 10 prices
achieved by Jackson et al. [26]. Hence, our density sampling has found a MAP
surface which gives optimisation comparable to that found by papers using
different optimisation routines.

In Figure 5 we highlight this pricing method on the example of an up-and-
out barrier call option. The barrier option is path dependent and, as such, much
more sensitive to changes in the local volatility surface. In the graph we plot
the Bayesian posterior probability density of prices, true, MAP, Bayes prices
and estimated bid-ask spread of the true price.
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Figure 5: For simulated dataset: prices for up-and-out barrier call option strike
5000 (S0 = 5000), barrier 5500 and maturity 3 months. Included are the true
price (found on the true surface) with an assumed bid-ask spread of 6 basis
points as per 5.1, the MAP/Tikhonov price, and the Bayes price with its asso-
ciated posterior pdf of prices.

Figure 5 shows that the barrier price obtained with the surface with the
smallest regularised calibration error for European options can lie many basis
points away from the true price. The Bayesian price on the other hand reflects
the entire distribution and the incorporated prior information (i.e. regularisa-
tion) to give a much closer price, which lies well within the bid-ask spread.

Recall that the Bayesian posterior we calculate depends on, besides the data
and model used, the form of the (subjective) prior and the level of the data
noise. In the following subsections, we conduct some robustness tests on the
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datasets studied in the previous sections to quantify how much the solution
varies with respect to model assumptions and changes in both the form of the
prior and the observed prices.

6.2 Robustness with Respect to Discretisation

As discussed at the end of Section 2 and detailed in Section 4.1, we are com-
puting an approximation to a two-dimensional function, and it is hoped that
the choice of representation, e.g. the type of splines, number and placement of
spline knots, does not influence inferences from this estimate significantly.

We first analyse the robustness with respect to the placement of the spline
knots, by repeating the computation leading to Fig. 5, but for a re-arrangement
of the spline knots from (14). Fig. 6 shows the result for one example, (a),
where the spline knots are denser around the spot than in the original choice
(14), and one where the knots are more evenly spread out, (b). Although the
shape of the posterior distribution of barrier prices is to some extent affected by
the spline knots, the standard deviation and most notably the Bayesian mean
price are very robust. We conducted further tests with a variety of placements,
including e.g. some where the knots where shifted by ±100 and ±300, and the
results were very similar.

Secondly, in Fig. 7, we investigate the robustness of estimators with respect
to the number of spline knots. For three different sets of knots, we plot the
estimated barrier option value for an increasing number of calibration options.
The prices were generated by starting with noisy realisations of the model prices
on the assumed surface, for 16 maturities and 64 strikes (total 1024 prices) and
then reducing by a factor 2 (alternating) the maturities and strikes to get 512,
256, 128, 64, 32 data. The knots picked were 27 (3 times x 9 spatial, the original
ones from earlier), 56 (4 times x 14 spatial) and 108 (6 times x 18 spatial).

The plot does not indicate that the estimators converge to the true value.
This is explained by the fact that computations were carried out with a finite
sample of calibrated surfaces for each set of knots, which in particular does
not contain the true surface. As a consequence, the posterior settles around a
small number of calibrated surfaces in the vicinity of the true surface, similar
to what is seen in Fig. 3. These surfaces determine the estimated price. The
main limitation at present is the computation time. As the dimension of the
parameter increases with the number of knots, exploration of the parameter
space requires longer and more MCMC chains and becomes computationally
costly. The number of calibrated surfaces is further reduced as the number
of prices to match is increased. So for 108 knots, 2000 calibrated surfaces were
found for 32 calibration options, but only 15 for 512 options and 4 for 1024 (this
compares, e.g., to 534 surfaces for 27 knots and 1024 options). For applications
where calibration of a high-dimensional parameter to a very large number of
prices is needed, further work is needed to improve the efficiency of the MCMC
algorithm.

The positive result in terms of robustness is that the magnitude of the error
depends only weakly on the number of spline knots for both estimators, while
the Bayesian average gave more robust results than the MAP for all examples
considered. We repeated the tests for different parameters (strikes, maturities,
barriers), and the results were similar. Bayesian averaging appears to have an
additional regularisation effect on top of the smoothing of surfaces dictated by
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(a) s = 4700, 4800, 4900, 5000, 5100, 5200, 5300
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(b) s = 3500, 4000, 4500, 5000, 5500, 6000, 8000

Figure 6: Same plots as Fig. 5, for different placement of the spline knots, with
the lowest (s = 2500) and highest (s = 10000) as in (14), but with higher (a)
and lower (b) density around the spot.
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Figure 7: For the simulated data set: Prices for an up-and-out barrier call option
with strike 5000 (S0 = 5000), barrier 5500 and maturity 3 months for different
number of calibration options and different number of spline knots.
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the prior.

6.3 Robustness with Respect to the Prior

The choice of prior contains a degree of subjectivity, parallelling the arbitrari-
ness of the regularising functional in Tikhonov regularisation. For the latter,
the literature on local volatility estimation proposes various combinations of
smoothness norms (see, e.g., [1, 2, 11, 14, 16, 26, 28]), and the choice of one over
the other cannot be made (solely) based on objective market observations.

To test robustness to these assumptions, we adjust the form of the prior by
changing the value of κ defined in (5). In each case, we hold all other parameters
fixed, in particular the confidence parameter at λ = 1, and recalculate the
distribution of prices for the same up-and-out barrier call option. In Figure 8
we plot the graph equivalent to Figure 5 of the previous section, but for different
values of κ.
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Figure 8: Prices for an up-and-out barrier call option with strike 5000
(S0 = 5000), barrier 5500 and maturity 3 months for different parameters
κ ∈ {10−2.00, 10−1.75, 10−1.50, 10−1.25, 10−1.00, 10−0.75, 10−0.50, 10−0.25, 10−0.1},
corresponding to different priors. Included is the true price with its bid-ask
spread, MAP prices, and Bayes prices with Bayesian posterior pdfs of prices.
The thickness of the lines increases with κ, their length corresponds to the
maximum of the corresponding posterior, so they can be optically identified.

Figure 8 shows that the distribution of prices is fairly robust to changes in
κ since the peaks are roughly at the same prices and the tails exhibit simi-
lar behaviour. More encouraging even is the robustness of the Bayes estimate
which lies in the bid-ask spread for all values of κ. This is in contrast to the
MAP/Tikhonov estimate, which tends to fall outside of the bid-ask spread for
several values of κ. These graphs provide satisfactory evidence for the robust-
ness of Bayes price estimators to changes in the prior.

6.4 Robustness with Respect to the Noise Level

The regularising functional (prior) is designed – and shown, see e.g. [14,16] – to
give continuous dependence of the parameters on the data. To put this to the
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test quantitatively, next we plot the graphs for the same experiments but for
the case where we hold κ = 10−1 fixed and instead add Gaussian noise e with
different standard deviation ε to the observed market prices quoted in Appendix
A. We consider noise levels of

ε ∈ {10−4.0, 10−3.5, 10−3.0, 10−2.5}

and run the calibration procedure for 100 independent noise additions for each
ε. These levels compare to assumed bid-ask data of ±δ = ±3 · 10−4 ≈ ±10−3.5

as per Section 5.1. For each value of ε we plot in Figure 9 the 100 MAP
and Bayes estimates of the price and posteriors for the same barrier options
previously used. First of all we see that as the noise is increased the closeness
of the distributions of prices deteriorates and for ε = 10−2.5 few surfaces have
been calibrated so the distributions become non-smooth and irregular. The
MAP prices are even more sensitive to the noise and can miscalculate the price
by up to 10-15%. In contrast, the Bayes prices prove to be very robust. For
the barrier option for ε = 10−3.5 only one out of a hundred Bayes estimates is
slightly outside the bid-ask spread and for ε = 10−2.5 only a handful of Bayes
estimates fall slightly below the bid price.

We also conducted tests varying the weights of calibration options in the er-
ror functional, and again the Bayes average was very insensitive to these changes
while the MAP estimator moved by an amount equalling several bid-ask spreads.

6.5 Pricing an American Option on the S&P 500

We conducted a similar robustness test for the second test case of real market
data, and report here a summary of the results.

Figure 10 shows the distribution of prices for an American put option written
on the S&P 500 corresponding to the Bayesian posterior distribution for different
numbers of spline knots. Again the MAP and Bayes prices are marked on the
graph. However, in this case, we have used real data so we do not know the
real local volatility surface (or even if one exists) so cannot compare with true
results. The Bayes prices are (by construction) still closer to the centre of the
distribution than the MAP prices, but the spread of prices is similar between
the two estimates.

This impression is reinforced by Fig. 11, the equivalent of Fig. 7 in the
previous example, which shows the estimates of American option prices over
the number of calibration options, for different spline configurations. The Bayes
average price shows a similar variation to the previous example. Different from
before, the MAP has now also a similar variation. A possible interpretation
of this is that the American option value depends on similar properties of the
volatility surface as the European (calibration) options, and therefore the MAP
estimates are more benign than in the earlier barrier option example, which
exhibits stronger tail dependence.

7 Conclusions and Extensions

In this paper we introduced the Bayesian framework for calibrating the pa-
rameters of finanical models to market prices. We then gave a practical method
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(a) ε = 10−4.0
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(b) ε = 10−3.5
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(c) ε = 10−3.0
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(d) ε = 10−2.5

Figure 9: Prices for up-and-out barrier call option with strike 5000 (S0 = 5000),
barrier 5500 and maturity 3 months. Each graph corresponds to a different
value of ε and shows the estimators for 100 different noise additions. Included
is the true price (found on the true surface) with its bid-ask spread, the MAP
price, and the Bayes price with its associated posterior pdf of prices.
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Figure 10: For S&P 500 dataset: prices for American put option with strike $590
(S0 = $590) and maturity 1 year. Included are the MAP prices and the Bayes
average prices with the associated posterior pdfs of prices, for three different
spline bases for the local volatility with 32, 66 and 128 knots, respectively.
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Figure 11: For S&P 500 dataset: prices for American put option with strike $590
(S0 = $590) and maturity 1 year for different number of calibration options and
different number of spline knots.

for formulating the prior and likelihood functions necessary for the Bayes proce-
dure and applied it to the case of the local volatility model. Numerical examples
were presented and showed the improvement in pricing of the Bayesian proce-
dure over common maximum a posteriori methods. Moreover, we highlighted
the robustness of the pricing method to inaccuracies in the model and prior,
and mispricings in observed market data.

The Bayes average is more robust than the MAP in the examples consid-
ered, often significantly so. This comes at the expense of high computational
cost. While the MAP estimator is equivalent to a Tikhonov regularised solution
and could be found by any of a number of efficient deterministic optimisation
algorithms (see, e.g., [12]), the Bayes average requires information of the whole
high-dimensional posterior distribution.

The flip side of this is that the Bayesian posterior density p(θ|V ) can be
used as the basis for a variety of further useful analysis. A natural thing to do
would be to use the posterior to derive a measure for the model uncertainty of a
contract. For any payoff, a distribution of prices can be found (as we showed in
Section 6 for American and barrier options), and this distribution can be used
to assign a model uncertainty value to the contract in the spirit of [13] and [23].
Such measures would be important for a risk manager and for an agent trying
to decide between different products.

A second, perhaps more important, use of the Bayesian posterior would be
to use it to develop better hedging strategies. This is more fundamental than
pricing as typically a trader will be more interested in the hedging strategy (the
price of which will then correspond to the trader’s price for the contract) than
a stand-alone price. The technique described in this article gives accurate and
robust prices, but it is not immediately clear which model (parameter) should
be used for hedging. One possible way to use the posterior density for hedging
would be to deduce prediction sets for the spot volatility or integrated vari-
ance, and then hedge conservatively within these sets. This corresponds to the
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approaches proposed in [5] and [31] respectively. In particular, Mykland finds
conservative bid and ask prices as the superreplication cost under the assump-
tion that the prediction set is realised. In an alternative approach, motivated by
the analysis of this paper, the Bayesian loss functions introduced in Section 2
could be designed to correspond to hedging losses so that the Bayes estimator
is that parameter θ which minimises the expected hedging loss.
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A Constants & Datasets

Constant Description Test 1 Test 2

S0 time 0 asset price 5000 590
r rate of interest 0.05 0.06
d dividend yield 0.03 0.0262

σatm time 0 ATM volatility 0.15 0.14
I # of calibrating options 66 70
δ calibration tolerance (b.p.) 3 4.5
M # of nodes (J × L) 27 32
λp strength of prior (for sampling) 1 1
κ Sobolev norm (LV model) 0.1 0.1
n # of iterations in each MCMC chain 25000 25000
m # of MCMC Metropolis chains 16 16
b length of burn-in 1000 1000
k frequency of thinning 100 100
du jump function step size 0.00015 0.00013

Table 3: Numerical examples constants for calibration process.
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Maturity Strike (units of S0)
0.80 0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10 1.20

0.083 1.003 0.507 0.312 0.219 0.136 0.070 0.030 0.010 0.003 0.000 0.000
0.167 1.010 0.518 0.332 0.246 0.168 0.104 0.058 0.029 0.012 0.001 0.000
0.250 1.012 0.531 0.352 0.270 0.196 0.132 0.083 0.048 0.025 0.004 0.000
0.500 1.029 0.577 0.414 0.337 0.265 0.200 0.146 0.102 0.068 0.024 0.000
0.750 1.052 0.623 0.469 0.396 0.327 0.264 0.208 0.160 0.119 0.059 0.004
1.000 1.079 0.671 0.525 0.457 0.390 0.329 0.274 0.224 0.180 0.110 0.021

Table 4: For the simulated dataset: European call prices (units of 103) (using
[26]).

Maturity Strike (units of S0)
0.80 0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10 1.20

0.083 0.002 0.009 0.012 0.014 0.015 0.017 0.015 0.014 0.012 0.008 0.002
0.167 0.003 0.010 0.014 0.015 0.017 0.019 0.017 0.015 0.014 0.010 0.003
0.250 0.005 0.012 0.015 0.017 0.019 0.021 0.019 0.017 0.015 0.012 0.005
0.500 0.007 0.014 0.017 0.019 0.021 0.022 0.021 0.019 0.017 0.014 0.007
0.750 0.009 0.015 0.019 0.021 0.022 0.023 0.022 0.021 0.019 0.015 0.009
1.000 0.010 0.017 0.021 0.022 0.024 0.026 0.024 0.022 0.021 0.017 0.010

Table 5: For the simulated dataset: Weights for calibration options.

Maturity Strike (units of S0)
0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30 1.40

0.175 91.3 62.8 35.2 12.9 2.1 0.1 0.0 0.0 0.0 0.0
0.425 96.3 69.0 44.0 23.3 8.5 2.3 0.4 0.2 0.0 0.0
0.695 101.8 76.1 52.6 32.6 16.4 5.9 1.9 0.6 0.1 0.0
0.940 106.8 82.2 59.9 39.9 23.8 11.3 4.7 1.8 0.2 0.0
1.000 108.0 83.6 61.6 41.6 25.4 12.8 5.5 2.1 0.2 0.1
1.500 117.2 94.4 73.1 54.0 37.3 23.7 14.3 7.7 1.9 0.3
2.000 125.7 104.0 83.6 64.9 48.2 34.2 23.6 14.7 5.6 1.8

Table 6: For the S&P 500 dataset: European call prices ($) (using [12]).
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