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0.1 Introduction

Many models in financial mathematics and financial engineering, particu-
larly in derivative pricing, can be formulated as partial differential equations
(PDEs). Specifically, for the most commonly used continuous-time models of
asset prices the value function of a derivative security, that is the option value
as a function of the underlying asset price, is given by a PDE. This opens
up the possibility to use accurate approximation schemes for PDEs for the
numerical computation of derivative prices.

As the computational domain is normally a box, or can be restricted to
one by truncation, the construction of tensor product meshes and spatial
finite difference stencils is straightforward (see, e.g., [21]). Accurate and stable
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splitting methods have become standard for efficient time integration (see, e.g.,
[9]).

Notwithstanding this, the more common approach in the financial industry
appear to be Monte Carlo methods. This is partly a result of the perception
that PDE schemes, although highly efficient for simple contracts, are less
flexible and harder to adapt to more exotic features. In particular, the wide-
spread belief is that PDE schemes become too slow for practical use if the
number of underlying variables exceeds three.

Indeed, the increase in computational time and memory requirements of
standard mesh based methods with the dimension is exponential, and has
become known as the “curse of dimensionality”. Various methods, such as
sparse grids ([18], [12]), radial basis functions ([14]) and tensor approaches
([11] for an application to finance and [4] for a literature survey) have been
proposed to break this curse. These methods can perform remarkably well
for special cases, but have not been demonstrated to give accurate enough
solutions for truly high dimensions in applications (larger than, say, five).

In conversations about numerical methods for high-dimensional PDEs in-
evitably the question comes up: “How high can you go?”. This is a meaningful
question if one considers a specific type of PDE with closely defined character-
istics. But even within the fairly narrow class of linear second-order parabolic
PDEs which are most common in finance, the difficulty of solving them varies
vastly and depends on a number of factors: the input data such as volatili-
ties and correlations, the boundary data (payoff), and the quantity of interest
(usually the solution of the PDE at a single point).

It is inherent to the methods presented in this paper that it is not the nom-
inal dimension of a PDE which matters. A PDE which appears inaccessible to
numerical methods in its raw form, may be very easily approximated if a more
adapted coordinate system is chosen. This can be either because the solution
is already adequately described by a low number of principal components (it
has low “truncation dimension”), or because it can be accurately represented
as the sum of functions of a low number of variables (it has low “superposition
dimension”).

To exploit such features, we borrow ideas from data analysis to represent
the solutions by sums of functions which can be approximated by PDEs with
low effective dimension. More specifically, the method is a ‘dynamic’ version of
the anchored-ANOVA decompositions which were applied to integration prob-
lems in finance in [5]. A version which is equivalent in special cases has been
independently derived via PDE expansions by [18]; a detailed error analysis
is found in [16] and also in [7]; an efficient parallelisation strategy is proposed
in [20]; and the method is extended to complex derivatives in [17] and to
CVA computations in [2]. The link of these methods to anchored-ANOVA
is already observed in [15] and [19]. We present here a systematic approach
which extends [16] from Black-Scholes to more general models, and analyse
the accuracy of the approximations by way of carefully chosen numerical tests.

In the remainder of this section, we describe the mathematical framework.
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Then, in Section 0.2, we describe the standard approximation schemes. In
Section 0.3, we define and explain in detail a dimension-wise decomposition.
Section 0.4 summarises known theoretical results for the constant coefficient
case, and offers a heuristic argument for the accuracy of a variable coeffi-
cient extension. Section 0.5 gives numerical results for test cases. We draw
conclusions in Section 0.6.

Throughout this chapter, we study asset price processes of the form

dSi
t = µi(St, t) dt+ σi(St, t) dW

i
t , i = 1, . . . , N, t > 0, (1)

Si
0 = si, i = 1, . . . , N, (2)

where W is an N -dimensional standard Brownian motion, s ∈ RN a given
initial state, the drift µi and local volatility σi are functions RN × [0, T ]→ R,
and we will allow the correlation between the Brownian drivers also to
be ‘local’, i.e. given St at time t the instantaneous correlation matrix is
(ρij(St, t))1≤i,j≤N . We consider European-style financial derivatives on ST

with maturity T > 0 and payoff function h: RN → R, whose value function
V : RN × [0, T ]→ R can be written as

V (s, t) = E[exp(−∫ T
t
α(Su, u) du)h(ST )|St = s],

where α is a discount factor, possibly stochastic through its dependence on S,
and V satisfies the Kolmogorov backward PDE (see, e.g. [13])

∂V

∂t
+

N∑
i=1

µi
∂V

∂si
+

1

2

N∑
i,j=1

σiσjρij
∂2V

∂si∂sj
− αV = 0,

V (s, T ) = h(s).

For simplicity we consider functions defined on the whole of RN , but it will
become clear how to deal with bounded domains.

Let p(y, t; s, 0) be the transition density function of St at y given state s
at t = 0. Then if α does not depend on S, we can write

V (s, 0) = exp(−∫ T
0
α(u) du)

∫
RN

p(y, T ; s, 0)h(y) dy.

Here, p satisfies the Kolmogorov forward equation

−∂p
∂t
−

N∑
i=1

∂

∂yi
(µip) +

1

2

N∑
i,j=1

∂2

∂yi∂yj
(σiσjρijp) = 0,

p(y, 0; s, 0) = δ(y − s),

where δ is the Dirac distribution centred at 0.
Most commonly, one is interested in approximating the value of V (s0, 0)

for a given, fixed s0 ∈ RN , and derivatives of V with respect to s0.



4 Contents

As a first step, we change the time direction to time-to-maturity, t→ T−t,
to obtain

∂V

∂t
=

N∑
i=1

µi
∂V

∂si
+

1

2

N∑
i,j=1

σiσjρij
∂2V

∂si∂sj
− αV, (3)

V (s, 0) = h(s), (4)

where we keep the symbols t and V for simplicity. We now transform the
PDE into a standard form by using a rotation and subsequent translation
of the spatial coordinates. For a given orthogonal matrix Q ∈ RN×N , define
β: RN × [0, T ]→ RN componentwise by

βi(x, t) ≡
N∑
j=1

Qji

∫ t

0

µj(x, T − u) du (5)

for 1 ≤ i ≤ N . We then introduce new spatial coordinates x via

x(s, t) = QTs+ β(s0, t) (6)

and set

a = QTs0 + β(s0, T ). (7)

We write s(x, t) = Q(x− β(s0, t)) for the inverse transform.
A simple calculation shows that the PDE (3–4) transforms into

∂V

∂t
= LV :=

N∑
k,l=1

λkl
∂2V

∂xk∂xl
+

N∑
k=1

κk
∂V

∂xk
− αV, (8)

V (x, 0) = g(x) := h(s(x, 0)), (9)

for a function V : RN × [0, T ]→ R, T > 0, where we still call the transformed
function V by slight abuse of notation, and

λkl(x, t) =
1

2

N∑
i,j=1

QikQjlσiσjρij ,

κk(x, t) =

N∑
i=1

Qik [µi − µi(s0, T − t)] , (10)

where σi and ρij are functions of (s(x, t), T − t).
For a constant (i.e., independent of time and the spatial coordinates),

positive semidefinite coefficient matrix Σ = (Σij)1≤i,j≤N = (σiσjρij)1≤i,j≤N ,
we can choose Q to be the matrix of eigenvectors of Σ sorted by eigenvalue
size1, i.e.,

Q = (q1, . . . , qN ),
1

2
Σqi = λiqi, λ1 ≥ . . . ≥ λN ≥ 0, (11)

1If Σ has eigenvectors with multiplicity larger than 1, then this decomposition is not
unique. In that case, we can simply choose any such matrix Q.
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and get (λkl)1≤k,l,≤N = diag(λ1, . . . , λN ) a constant diagonal matrix.
If µ does not depend on the spatial coordinates x but only on t, then

the difference under the sum in equation (10) vanishes identically and thus
κ(x, t) ≡ 0.

Moreover, if α is also only a function of t, the zero order term can be

eliminated from (8) by considering exp
(∫ t

0
α(T − u) du

)
V .

If all this is satisfied, then L simplifies to the N -dimensional heat operator
in (12). Keeping the symbol V for the transformed value function and L for
the operator for simplicity, we obtain

∂V

∂t
= LV =

N∑
k=1

λk
∂2V

∂x2k
, (12)

V (x, 0) = g(x), (13)

for x ∈ RN , t ∈ (0, T ), λ = (λ1, . . . , λN ) ∈ RN
+ .

In all other cases, i.e. if Σ is not constant and µ depends on s, a trans-
formation to a diagonal diffusion without drift is generally not possible. By

translation to s = s0 +
∫ T

0
µ(s0, u) du and choosing Q as the eigenvectors

of Σ(s, T ), one obtains λkl(a, 0) = 0 for k 6= l and κk(a, 0) = 0, but these
coefficients are non-zero for other (x, t).

0.2 Finite difference schemes

In this section, we describe the finite difference schemes used for the one-
and two-dimensional versions of (12) and (8) which we will need to con-
struct the dimension-wise splitting introduced in Section 0.3. We choose the
Crank-Nicolson scheme for the one-dimensional equations, Brian’s scheme [1]
for multi-dimensional PDEs without cross-derivatives, and the Hundsdorfer-
Verwer (HV) scheme [8] for PDEs with cross-derivative terms. These are es-
tablished techniques from the literature which are routinely used in financial
institutions for derivative pricing, and can be replaced by a method of choice.
As such, this section can be skipped without loss of continuity.

We follow standard procedure (see, e.g., [21]) to define a finite difference
approximation Vh to V , where h = (∆t,∆x1, . . . ,∆xd) contains both the time
step size ∆t > 0 and the spatial mesh sizes ∆xi > 0, i = 1, . . . , d, where d is
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the dimension of the PDE. We first define basic finite difference operators

δtVh(·, t) =
Vh(·, t+ ∆t)− Vh(·, t)

∆t
,

δixVh(·, t) =
Vh(·+ ∆xi, t)− Vh(· −∆xi, t)

2∆xi
,

δi,ix Vh(·, t) =
Vh(·+ ∆xi, t)− 2Vh(·, t) + Vh(· −∆xi, t)

∆x2i
,

δi,jx Vh = δixδ
j
xV, i 6= j,

and then an approximation to L by

L(t) =

d∑
i=1

κi(·, t) δix +

d∑
i,j=1

λij(·, t) δi,jx − α(·, t),

where the operator κi(·, tn)δix, applied to Vh, at a point x = (xj1 , . . . , xjd) is

((κi(·, tn)δix)Vh)j1,...,jd = κi(x, tn)
Vh(x+ ∆xiei, tn)− Vh(x−∆xiei, tn)

2∆xi
,

ei the ith unit vector, and similar for the σ and α terms.
Ignoring spatial boundaries for the time being, Vh is defined for all (x, t) ∈

Rd × {0,∆t, . . . , T} by the scheme

δtVh = θL(t+ ∆t)Vh(t+ ∆t) + (1− θ)L(t)Vh(t), (14)

Vh(x, T ) = φ(x),

where θ ∈ [0, 1]. Here, ∆t = T/Nt, where Nt is the number of timesteps.
In practice, the scheme and solution need to be restricted to a bounded

domain, and for simplicity we restrict ourselves here to a box where xi,min ≤
xi ≤ xi,max. These may be given naturally, e.g., xmin = 0 if x is a positive
stock price, or by truncation of an infinite interval at suitably large values,
e.g., a certain number of standard deviations away from the spot. Then with
Ni the number of mesh intervals in coordinate direction xi, ∆xi = (xi,max −
xi,min)/Ni, the mesh points are xi,j = xi,min + j∆xi for j = 0, . . . , Ni, i =
1, . . . , d. We denote the numerical solution on this mesh by Un, this being the
vector (Vh((xi,ji)i=1,...,N , tn))ji=0,...,Ni

.
Let Ln ≡ L(tn) be the discretisation matrix at time step tn, then this

matrix is first decomposed into

Ln = Ln
0 + Ln

1 + . . .+ Ln
d ,

where the individual Ln
i , 1 ≤ i ≤ d, contain the contribution to L stemming

from the first and second order derivatives in the ith dimension,

Ln
i = κi(·, tn)δix + λii(·, tn)δi,ix −

1

d
α(·, tn),
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and, following [9], we define one matrix F0 which accounts for the mixed
derivative terms,

Ln
0 =

∑
i6=j

λij(·, tn)δi,jx .

For Ln
0 = 0, which contains the discretisation of (12) as a special case, a

simple splitting scheme is given by the Douglas scheme [3],

Y0 = Un−1 + ∆tLn−1Un−1,

(I − θ∆tLn
j )Yj = Yj−1 − θ∆tLn−1

j Un−1, j = 1, . . . , d,

Un = Yd. (15)

The scheme is unconditionally stable for all θ ≥ 1/2 and of second order in
time for θ = 1/2 (otherwise of first order, see [10]).

A second order modification of the above scheme was proposed by Brian
[1], where the first two steps are as above with θ = 1 and step size ∆t/2, and
the last step (15) is replaced by a Crank-Nicholson-type step

Un − Un−1

∆t
=

d∑
j=1

1

2
(Ln

j + Ln−1
j )Yj .

For Ln
0 6= 0, i.e. with cross-derivative terms present as in the general case

of (14), second order gets lost and an iteration of the idea is needed. The
Hundsdorfer-Verwer (HV) scheme [8],

Y0 = Un−1 + ∆tLn−1Un−1,

(I − θ∆tLn
j )Yj = Yj−1 − θ∆tLn−1

j Un−1, j = 1, 2, 3,

Ỹ0 = Y0 +
1

2
∆t
[
LnY3 − Ln−1Un−1)

]
,

(I − θ∆tLn
j )Ỹj = Yj−1 − θ∆tLn

j Yj , j = 1, 2, 3,

Un = Ỹ3,

defines a second order consistent ADI splitting for all θ, and can be shown to be
von Neumann stable for θ ∈

[
1
2 + 1

6

√
3, 1
]
, see [6]. We use θ = 1

2+ 1
6

√
3 ≈ 0.789

in the computations.
A severe computational difficulty arises for d larger than approximately

three, as the total number of operations is proportional to NtN1 . . . Nd, i.e.,
grows exponentially in the dimension. In the numerical tests, we will use
N1 = N2 = 800 and Nt = 1000 for the two-dimensional equations. These
involve 6.4× 108 unknowns. In [16], for a second-order extension, N1 = N2 =
N3 = 500 and Nt = 50 are used for the three-dimensional equations involved,
i.e., 6.25 × 109 unknowns. It is clear that within this framework a further
increase in the dimension will only be practically feasible by reducing the
number of mesh points in each direction and consequently sacrificing accuracy.
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0.3 Decomposition methods

In order to accurately approximate derivative prices with N > 3 fac-
tors, we define an approximate dimension-wise decomposition, in the spirit
of anchored-ANOVA decompositions. Here, the starting point a of the trans-
formed process, from (7), serves as an ‘anchor’. We show the basic concept in
a static setting in Section 0.3.1, and its application to constant and variable
coefficient stochastic processes and PDEs in the subsequent sections.

We assume in this section that a suitable rotation and translation (see end
of Section 0.1) has taken place, so that

λij(a, 0) = 0, i 6= j, (16)

κi(a, 0) = 0. (17)

We then denote for simplicity

λi(x, t) ≡ λii(x, t),

For brevity, we set α = 0 in this section, but the extension to α 6= 0 is
straightforward.

0.3.1 Anchored-ANOVA decomposition

We follow here [5] to define the anchored-ANOVA decomposition of a func-
tion g : RN → R, with a given “anchor” a ∈ RN . For a given index set
u ⊂ N = {i : 1 ≤ i ≤ N}, denote by a\xu the N -vector

(a\xu)i =

{
xi i ∈ u,
ai i /∈ u.

Then gu(a; ·) defined for all x ∈ RN by gu(a;x) = g(a\xu) is a projection of g,
where we make the dependence of gu on the anchor a explicit in the notation.

We proceed to define a difference operator ∆ recursively through ∆g∅ = g∅
and, for u 6= ∅,

∆gu = gu −
∑
w⊂u

∆gw =
∑
w⊆u

(−1)|w|−|u|gw.

An exact decomposition of g is then given by the identity

g =
∑
u⊆N

∆gu =

N∑
k=0

∑
|u|=k

∆gu. (18)

This enables the definition in [5] of successive dimension-wise approxima-
tions to the integral of g by truncation of the series.
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0.3.2 Constant coefficient PDEs

We start by considering the N -dimensional heat equation

∂V

∂t
= LV =

N∑
k=1

λk
∂2V

∂x2k
, (19)

V (·, 0) = g, (20)

with constant λ.
Given an initial-value problem of the form (19) and (20), and an index set

u ⊆ N , define a differential operator

Lu =
∑
k∈u

λk
∂2

∂x2k
,

and an approximation Vu of V as the solution to

∂Vu
∂t

= LuVu, (21)

Vu(·, 0) = g. (22)

The definition in (21) is equivalent to saying

∂Vu
∂t

= LVu,

Vu(x, 0) = g(a\xu),

i.e., projecting the initial condition, but it is not normally true that Vu from
(21) is the projection of the solution V of (19) in the sense of Section 0.3.1.

From here on, we can proceed as in Section 0.3.1 to set

∆Vu = =
∑
w⊆u

(−1)|w|−|u|Vw.

To approximate V by lower-dimensional functions, we truncate the series in
(18) and define

V0,s =

s∑
k=0

∑
|u|=k

∆Vu =

s∑
k=0

ck
∑
|u|=k

Vu, (23)

where ck are integer constants which depend on the dimension N and s. The
point to note is that Vu is essentially a |u|-dimensional function as it only
depends on the fixed anchor and |u| components of x.

In situations where one or several coordinates play a dominant role, it will
be useful to consider a generalisation of (23) to

Vr,s =

s∑
k=0

ck
∑
|u|=k

Vu∪{1,...,r}, r + s ≤ N. (24)

Here, all components Vu∪{1,...,r} depend on all the x1, . . . , xr.
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0.3.3 Variable coefficients – full freezing

The simplest way to deal with variable coefficients is to“freeze” them at a
constant value and then apply the methodology from Section 0.3.2. As we are
interested in the PDE solution at the anchor point a, the obvious choice is to
approximate κi and λij by κi(a, 0) and λij(a, 0).

For a given subset u ⊆ N , we then define (note that in this case κi(a, 0) = 0
and λij = 0, i 6= j)

∂Vu
∂t

=
∑
i∈u

λii(a, 0)
∂2Vu
∂x2i

,

Vu(x, 0) = g(x).

0.3.4 Partial freezing

The full freezing approximation in Section 0.3.3 throws away more infor-
mation than needed. In the following extension, we keep as much as possible
of the original dynamics of the process in the low-dimensional cross-section
the process is restricted to.

For given subset u ⊆ N , we now define

∂Vu
∂t

=
∑
i∈u

κi(a\xu, t)
∂Vu
∂xi

+
∑
i,j∈u

λij(a\xu, t)
∂2Vu
∂xi∂xj

,

Vu(x, 0) = g(x).

Given the variability of the coefficients, there is generally no static co-
ordinate transformation which reduces the PDE to the heat equation. The
difference to the localized problem in the previous section is that since the
PDE coefficients λ(x, t) and κ(x, t) change with spatial and time coordinates,
the PDE will in general contain first order and non-diagonal second order
terms.

0.3.5 Partial freezing and zero-correlation approximation

Here, motivated by λij(a, 0) = 0 for all i 6= j, we make the additional
approximation that this holds for all x and t. So we define now

∂Vu
∂t

=
∑
i∈u

κi(a\xu, t)
∂Vu
∂xi

+
∑
i∈u

λii(a\xu, t)
∂2Vu
∂x2i

,

Vu(x, 0) = g(x).

This extra approximation in addition to Section 0.3.4 does not give any
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further dimension reduction, but simplifies the PDEs somewhat, i.e., no cross-
derivative terms are present, which simplifies the construction of numerical
schemes.

0.4 Theoretical results

In this section, we review the rigorous error analysis from [16] for the
constant coefficient case in Section 0.3.2, and give a novel, more heuristic
extension of this analysis to the variable coefficient setting of Section 0.3.4.

What is essential in the analysis is clearly the size of the diffusion and
drift coefficients in the various directions, as well as the variability of the
initial data jointly with respect to different sets of variables. The relevant
measure of variability is defined in the following.

Definition 1 Let

Cj,k,mix =
{
g ∈ Cb : ∂ji1 . . . ∂

j
ik
g ∈ Cb, ∀1 ≤ i1 < . . . < ik ≤ N

}
,

Cb =
{
g : RN → R continuous : |g(x)| ≤ c for all x for some c > 0

}
.

The spaces of functions in Definition 1 allow us to measure whether a func-
tion is truly multi-dimensional by its cross-derivative with respect to sets of
variables. The growth condition ensures well-posedness of the PDE.

0.4.1 Constant coefficients

We follow here [16]. Let V̂r,s = Vr,s−V be the approximation error of Vr,s
from (24). Then the following holds.

Theorem 2 (Theorems 5 and 14 in [16]) 1. Assume g ∈ C2,2,mixed

in (19–20). Then the expansion error V̂r,1 satisfies∥∥∥V̂r,1(·, t)
∥∥∥
∞
≤ t2

∑
r<i<j≤N

λkλi

∥∥∥∥∥ ∂4g

∂x2i ∂x
2
j

∥∥∥∥∥
∞

. (25)

2. Assume g ∈ C2,3,mix in (19–20). Then the expansion error V̂r,2 satisfies∥∥∥V̂r,2(·, t)
∥∥∥
∞
≤ t3

∑
r<i<j<k≤N

λiλjλk

∥∥∥∥∥ ∂6g

∂x2i ∂x
2
j∂x

2
k

∥∥∥∥∥
∞

. (26)

The analysis in [16] derives PDEs for the error itself, and then makes use
of standard maximum principle-type arguments to estimate the size of the
error.
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For instance, by using the PDEs satisfied by V and V{1,...,r,i} for different
i, it can be shown that

∂

∂t
V̂r,1 = L{1,...,r}V̂r,1

+

N∑
i=r+1

[
L{1,...,r,i} − L{1,...,r}

]
V{1,...,r,i} +

[
L{1,...,r} − L

]
V

=

r∑
k=1

λk
∂2

∂x2k
V̂r,1 +

N∑
k=r+1

λk
∂2

∂x2k

[
V{1,...,r,k} − V

]
. (27)

This is an inhomogeneous heat equation for V̂r,1 with zero initial data and a
right-hand side which can be shown to be small. As a consequence, the solution
itself is small. Informally, the terms on the right-hand side V {1,...,r,k} − V are
of order O(λr+1 + . . . + λN − λk), and hence the right-hand side is of order
O(
∑

r<i<j≤N λiλj). A slightly more careful argument gives the precise bound
(25), and a similar but lengthier argument for Vr,2 gives (26).

A number of comments are in order regarding the smoothness requirements
dictated by the error bounds. First, most option payoffs are non-smooth, have
kinks and discontinuities. This would appear to render (25) and its higher-
order versions meaningless. A re-working of the derivation shows that g can
actually be replaced by Vr,0, which is the solution to

∂Vr,0
∂t

=

r∑
k=1

λk
∂2Vr,0
∂x2k

,

Vr,0(x, 0) = g(x).

So even if g itself is not smooth, Vr,0 will be smooth except in degenerate
situations which are analysed in detail in [16]. Roughly speaking, as long as
the location of kinks and discontinuities is not parallel to all of the first r
coordinate axes, Vr,0 is smooth enough for the expansion error to be well-
defined.

The second important point is that as (25) contains only mixed derivative
terms, for any payoffs which depend only on, say, x1 and xk for some k > 1,
the decomposition of the option price is exact. Moreover, the value of any
derivative that can be statically replicated by options with such simple payoffs
is found exactly. Again, a more detailed discussion is found in [16].

0.4.2 Variable coefficients

The transformation (6) with appropriate Q (see the discussion at the end
of Section 0.1) ensures (16) and (17) but this is only true at t = 0 and
x = a. However, using arguments similar to [16] and Section 0.4.1, we can
still derive a PDE for the expansion error even for non-constant coefficients.
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Straightforward calculus yields an expression similar to equation (27), namely

∂

∂t
V̂r,1 =

r∑
k,l=1

λkl(x, t)
∂2

∂xkxl
V̂r,1 +

r∑
k=1

κk
∂

∂xk
V̂r,1

+

N∑
k=r+1

[
λkk

∂2

∂x2k
+ 2

r∑
l=1

λkl
∂2

∂xkxl

] [
V{1,...,r,k} − V

]
(28)

−
N∑

k,l=r+1,k 6=l

λkl
∂2

∂xkxl
V (29)

+
N∑

k=r+1

κk
∂

∂xk

[
V{1,...,r,k} − V

]
. (30)

This equation contains three source terms, which determine the error size:

• The first term, (28), is similar to the source term appearing in the con-
stant coefficient case. It is essentially a restricted differential operator
applied to the difference between full and partial solution.

• The second term, (29), consists of the non-diagonal terms not captured
at all in the expansion applied to the full solution. It contains the full
solution rather than the difference between full and partial ones, but the
λkl involved are zero for t = 0 and x = a.

• The third term, (30), where κk(a, 0) = 0, captures the changes in κ and
again acts on the differences between partial and full solutions.

At t = 0 and x = a all three source terms are zeros, because

V{1,...,r,k}(x, 0)− V (x, 0) = 0 ∀x ∈ RN and λkl(a, 0) = 0, k 6= l.

Away from these initial coordinates the terms grow slowly and drive a non-zero
error.

Instead of investigating this further theoretically, we give quantitative ex-
amples in the next section.

0.5 Numerical examples

In this section, we analyse the numerical accuracy of the decomposition
from Section 0.3 for the approximation of European basket options, where the
model for the underlying stock has variable coefficients. We list six “base”
cases of how the PDE coefficients can be variable in Table 0.1.
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TABLE 0.1: Different base cases with non-constant parameters.

Non-constant component Parameter Example
Time-dependent drift µ = µ(t) Exactly described by (5)–(6)
Time-dependent volatilities σ = σ(t) Sections 0.5.3 and 0.5.4
Time-dependent correlation ρ = ρ(t) Sections 0.5.1 and 0.5.2
Asset-dependent drift µ = µ(S) LIBOR market model in [17]
Asset-dependent volatilities σ = σ(S) Local vol – not considered
Asset-dependent correlation ρ = ρ(S) Section 0.5.5

Consider assets whose dynamics for the prices of S1
t , . . . , S

N
t is given by

d(logSi
t) = −1

2
σ2
i (St, t) dt+ σi(St, t) dW

i
t , 1 ≤ i ≤ N,

under the risk-neutral measure with zero interest rates. By considering log
prices as primitive variable in (1), in a Black-Scholes setting, i.e., if σ and
ρ are constant, the PDE coefficients are constant. Generally, the Brownian
motions W i are correlated according to the correlation matrix

(ρij(S, t))1≤i,j≤N .

We consider two possible correlation structures:

ρsimple(γ) =


1 γ γ · · · γ
γ 1 γ · · · γ
...

. . .
...

γ γ γ · · · 1


for γ ∈ (−1, 1) and

ρexp,ij(γ) = exp(−γ|i− j|)

for γ > 0, where we replace γ by a function γ : RN × [0, T ] → R, possibly
being asset- and time-dependent. The covariance matrix Σ(S, t) is then fully
characterised via Σij(S, t) = σi(S, t)σj(S, t)ρij(S, t). Due to the asset- and
time-dependency of correlations and volatilities, the asset distributions are
no longer log-normal and hence a transformation of the pricing PDE to the
standard heat equation is generally not possible.

As a test case, we choose a European arithmetic basket option with N =
10. The payout at maturity T = 1 is

h(S) = max

(
N∑
i=1

ωiSi −K, 0

)
,

with strike K = 100 and weights ωi ∈ R, i = 1, . . . , N . We will examine the
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value at the point S0,i = 100 for all i. As payout weight vectors ω we consider

ω1 = (1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10),

ω2 = (4/30, 4/30, 4/30, 4/30, 4/30, 2/30, 2/30, 2/30, 2/30, 2/30),

ω3 = (1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4,−1/4,−1/4,−1/4).

Using V1,1 as approximation to V , we expect that the accuracy will be best
for ω1 and worst for ω3, because ω1 is parallel to the principal component of
Σ and ω3 closer to orthogonal.

The numerical parameters chosen were N1 = N2 = 800 and Nt = 1000,
corresponding to a time step of size ∆t = 0.001. For the reference Monte
Carlo estimator VMC we used 108 paths. This set-up reduces the discretization
and simulation errors sufficiently for us to determine a good estimate of the
expansion method’s accuracy.

We implemented and tested two numerical algorithms for the solution of
the PDE problems. One algorithm is the diagonal ADI method from Sec-
tion 0.3.5 (with result denoted by V diagADI

PDE ), where we updated the diffusion
coefficient values at every time step, and the PDE is solved numerically by
Brian’s scheme. The second method from Section 0.3.4 does incorporate the
off-diagonal terms in the lower dimensional problems (denoted V HV

PDE), where
the numerical PDE solution is based on the Hundsdorfer-Verwer (HV) scheme.

We also compute the results for the fully frozen model from Section 0.3.3,
i.e. with covariance matrix fixed at Σ(s0, T ), both for the expansion (V loc

PDE)
and a full Monte Carlo estimator (V loc

MC). This allows us to understand what
contribution to the error comes from the variability of the coefficients, com-
pared to the decomposition error already present for constant coefficients.

Our primary intention here is to give a proof of concept, rather than an
in-depth study of the performance and convergence. We want to demonstrate
that and how expansion methods can be used for variable coefficients.

0.5.1 Time-dependent simple correlation

For time-dependent simple correlation ρ(t) = ρsimple(t) the eigenvalues
change over time. However, the lower N − 1 eigenvalues are identical and the
subspace spanned by their eigenvectors does not change.

The following Table 0.2 shows results for σi = 0.2 and

ρ(t) = ρsimple(0.8− 0.8 · (t/T − 0.5)2) ∈ [ρsimple(0.6), ρsimple(0.8)].

PDE/ADI and PDE/HV results were almost identical and very close to
the MC results. Only in the third case of ω3 did they even differ in a statis-
tically significant way, i.e., relative to the standard error σMC , from the MC
computation. It is worth noting that the errors are even slightly larger in the
fully frozen case, implying that the variable coefficients present no particular
problem in this model.
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TABLE 0.2: Time-dependent simple correlation.

VMC V diagADI
PDE V HV

PDE V loc
MC V loc

PDE

ω1 6.9463 6.9451 6.9451 6.3784 6.3715
σMC 0.0011 0.0010
∆abs -0.0012 -0.0012 -0.0069
∆rel -0.02% -0.02% -0.11%
∆abs/σMC -1.06 -1.06 -6.73

ω2 6.9602 6.9584 6.9584 6.3991 6.3932
σMC 0.0011 0.0010
∆abs -0.0018 -0.0018 -0.0059
∆rel -0.03% -0.03% -0.09%
∆abs/σMC -1.57 -1.57 -5.75

ω3 7.5631 7.5816 7.5816 7.3585 7.4069
σMC 0.0012 0.0012
∆abs 0.0185 0.0185 0.0484
∆rel 0.24% 0.24% -0.66%
∆abs/σMC 14.96 14.96 -40.58

0.5.2 Time-dependent exponential correlation

For a time-dependent exponential correlation ρ(t) = ρexp(t), the eigenval-
ues and eigenvectors change substantially over time, resulting in a significant
contribution from non-zero off-diagonal elements in λ(t).

Table 0.3 shows results for σi = 0.2 and

ρ(t) = ρexp(0.25− 0.6 · (t/T − 0.5)2)) ∈ [ρexp(0.1), ρexp(0.25)].

PDE/ADI results are again close to the MC results. The PDE/HV results
differ somewhat more, against the expectation, but note that both solutions
are significantly more accurate than the constant coefficient approximation.
The third case, ω3, is again the most challenging one for the dimension-wise
method.

0.5.3 Time-dependent volatilities, simple correlation

For time-dependent σi = σ(t), i.e., the case where all volatilities are time-
dependent but equal, the eigenvalues λ1, . . . , λN of Σ are simply scaled up or
down over time and the matrix of eigenvectors stays constant. This means
that all non-diagonal terms of λ vanish and the transformation to the heat
equation is exact. This case is simple: it merely requires the solution of a heat
equation with time-dependent diffusion coefficients.

For time-dependent σi = σi(t), i.e., the case where the volatilities vary
differently over time, the eigenvectors change with t. This in general leads to
the appearance of non-zero off-diagonal terms. With no dependency on the
asset values S, the initial PDE transformation means that those terms vanish
at time t = 0 and then grow over time for t > 0.
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TABLE 0.3: Time-dependent exponential correlation.

VMC V diagADI
PDE V HV

PDE V loc
MC V loc

PDE

ω1 6.0662 6.0738 6.0590 6.8534 6.8477
σMC 0.0010 0.0011
∆abs 0.0076 0.0885 -0.0057
∆rel 0.13% 1.46% -0.08%
∆abs/σMC 7.82 90.88 -5.11

ω2 6.1646 6.1695 6.1547 6.9109 6.9085
σMC 0.0010 0.0011
∆abs 0.0049 -0.0099 -0.0024
∆rel 0.08% -0.16% -0.03%
∆abs/σMC 4.92 -10.00 -2.15

ω3 9.6062 9.5346 9.7786 9.2907 9.3279
σMC 0.0015 0.0015
∆abs -0.0716 0.1724 0.0372
∆rel -0.75% 1.80% -0.40%
∆abs/σMC -46.34 111.54 24.44

Table 0.4 shows results for ρ = ρsimple(0.7) and

σi(t) = 0.1(1 + t/T )

(
1 +

i− 1

N − 1

)
∈ [0.1, 0.2]

(
1 +

i− 1

N − 1

)
.

Both the PDE/diagonal ADI and PDE/HV results are fairly accurate for the
first two test cases. They both struggle with the third one, producing errors
of 2.42% and 2.66%. Given that a similar error is present in the fully localized
case, i.e., for the model with constant coefficients, we conclude that this error
is primarily due to the expansion method being applied to the challenging
payout direction ω3, rather than the non-constant nature of the coefficients.

0.5.4 Time-dependent volatilities, exponential correlation

Table 0.5 shows results for

σi(t) = 0.1(1 + t/T )

(
1 +

i− 1

N − 1

)
∈ [0.1, 0.2]

(
1 +

i− 1

N − 1

)
and

ρ(t) = ρexp(0.25− 0.6 · (t/T − 0.5)2)) ∈ [ρexp(0.1), ρexp(0.25)].

By combining time-dependent volatilities with time-dependent correlation
we have created a challenging scenario for our method. The PDE/diagonal
ADI approach starts to be insufficient for the more complicated cases, differ-
ing by more than 4% for ω3. The PDE/HV algorithm produces a relatively
constant error of about 2% in all three test cases.

Contrasting with the fully frozen approximation it is evident that this is



18 Contents

TABLE 0.4: Time-dependent volatilities, simple correlation.

VMC V diagADI
PDE V HV

PDE V loc
MC V loc

PDE

ω1 7.7987 7.7947 7.8234 5.1128 5.1123
σMC 0.0013 0.0008
∆abs -0.0040 0.0248 -0.0005
∆rel -0.05% 0.32% -0.01%
∆abs/σMC -3.10 19.19 -0.57

ω2 7.3183 7.3151 7.3416 4.7972 4.7961
σMC 0.0012 0.0008
∆abs -0.0032 0.0233 -0.0011
∆rel -0.04% 0.32% -0.02%
∆abs/σMC -2.67 19.39 -1.41

ω3 6.2074 6.3579 6.3723 4.0555 4.1658
σMC 0.0010 0.0006
∆abs 0.1504 0.1649 0.1103
∆rel 2.42% 2.66% -2.72%
∆abs/σMC 150.26 164.72 174.38

TABLE 0.5: Time-dependent volatilities, exp. correlation.

VMC V diagADI
PDE V HV

PDE V loc
MC V loc

PDE

ω1 6.9951 7.0905 7.1454 5.1602 5.1595
σMC 0.0012 0.0008
∆abs 0.0955 0.1503 -0.0007
∆rel 1.36% 2.15% -0.01%
∆abs/σMC 83.12 130.87 -0.86

ω2 6.5570 6.7953 6.7047 4.8380 4.8382
σMC 0.0011 0.0008
∆abs 0.2383 0.1477 0.0002
∆rel 3.63% 2.25% 0.00%
∆abs/σMC 223.82 138.71 0.27

ω3 9.6494 10.0537 9.8383 5.6868 5.7252
σMC 0.0015 0.0009
∆abs 0.4042 0.1889 0.0384
∆rel 4.19% 1.96% 0.67%
∆abs/σMC 265.62 124.13 43.29
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TABLE 0.6: Asset-dependent correlation.

VMC V diagADI
PDE V HV

PDE V loc
MC V loc

PDE

ω1 6.7937 1.4032 6.7393 7.2138 7.2147
σMC 0.0108 0.0010
∆abs -5.3905 -0.0544 -0.0009
∆rel -79.35% -0.80% -0.01%
∆abs/σMC -497.65 -5.02 -0.75

ω2 6.7910 6.7910 6.7534 7.2232 7.2239
σMC 0.0109 0.0010
∆abs -5.3660 -0.0376 -0.0008
∆rel -79.02% -0.55% -0.01%
∆abs/σMC -494.23 -3.47 -0.64

ω3 7.4977 2.4238 7.3838 7.6708 7.6663
σMC 0.0122 0.0010
∆abs -5.0739 -0.1139 0.0045
∆rel -67.67% -1.52% 0.06%
∆abs/σMC -416.90 -9.36 3.56

the first scenario in which the variability of the coefficients creates a major
contribution to the overall error.

0.5.5 Asset-dependent correlation

Table 0.6 shows results for σi = 0.2 and

ρ(S) = ρsimple

(
0.6 + 0.2 exp

(
− 1

N

N∑
i

|Si − 100|
10

))
∈ [ρsimple(0.6), ρsimple(0.8)].

Because of the added computational complexity of having to calculate the
correlation for every vector of asset values encountered, these calculations
were done with 106 Monte-Carlo paths, J = 400 grid points and M = 400
time steps.

Clearly, the PDE/diagonal ADI approach is insufficient and the non-
diagonal PDE terms are necessary for the solution. The PDE/HV approach,
which incorporates them, correspondingly gives fairly accurate results for ω1

and ω2, relative to the MC variance. As before, the accuracy decreases for the
ω3 case, which coincidentally depends only weakly on the chosen correlation
dynamics.
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0.6 Conclusions

This chapter describes a systematic approach to approximating medium-
to high-dimensional PDEs in derivative pricing by a sequence of lower-
dimensional PDEs, which are then accessible to state-of-the-art finite differ-
ence methods. The splitting is accurate especially in situations where the dy-
namics of the underlying stochastic processes can be described well by a lower
number of components. In such situations, the decomposition can loosely be
interpreted as a Taylor expansion with respect to small perturbations in the
other directions.

To complement the theoretical analysis of the method in the constant
parameter setting in earlier work, we describe here various extensions to vari-
able parameters and analyse their accuracy through extensive numerical tests.
Although the examples are necessarily specific, they are chosen to cover a
spectrum of effects which occur in derivative pricing applications. As the ap-
proximation errors are determined locally by the variability of the solution
and the parameters with respect to the different coordinates and time, the
examples are to some extent representative of a wider class of situations.

Specifically, we designed test cases where different parameters varied with
respect to spatial coordinates and time, and where the payoff varied most
rapidly in different directions relative to the principle component of the co-
variance matrix. Across all cases, the ω1 case, where the payout vector is
parallel to the first eigenvector of Σ, showed the best accuracy, while the ω3

case showed the worst. This was expected from the theoretical analysis and
the results for constant coefficients, see Section 0.4.1.

Overall, our computations demonstrate that expansion methods can in
principle be applied in this fashion to some variable coefficient asset models.
Higher order methods or other extensions might be necessary to reduce the
error sufficiently for real-world financial applications.
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