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“I am an old man now, and when I die and go to heaven there are two matters
on which I hope enlightenment. One is quantum electrodynamics, and the
other one is the turbulent motion of fluids. And about the former one I am

rather optimistic.

Horace Lamb, 1932



Preface

This thesis forms the theoretical background for the initial stage of an industrial project
on flow simulation in combustion engines. An overview over the entire solution procedure
from the development of the model to the numerical solution of the discretised system is
given.

The underlying model that we use consists of the Navier-Stokes equations coupled with
a common two-equation turbulence model, the k-¢ model. The aim of the first chapter is
to give a derivation thereof, in great part following the presentation of Mohammadi and
Pironneau [MP94]. We add suitable boundary conditions, and particularly the behaviour
at solid walls is studied in great detail. As the k-e¢ model fails in close vicinity to solid walls,
we exclude these boundary layers from the computational domain and set up conditions
at the new boundary using a well-established boundary-layer model.

The second chapter is devoted to existence and uniqueness questions of the system,
particularly the Navier-Stokes system with turbulent diffusion supplemented with a wall-
law (which leads to a non-linear boundary condition of third order) and various inflow
and outflow conditions. The general statement is that the same results as for the Navier-
Stokes system with constant viscosity and homogeneous Dirichlet conditions are still valid
in the stationary case. In an earlier paper Parés [Par92] investigated Smagorinsky’s model
and succeeded to show strong regularity results due to the special structure of the eddy
viscosity. To our knowledge, time-dependent problems are still an open problem, as there
are difficulties in estimating the energy entering through the inflow duct — and so is the
analysis of the k-e system, although several attempts have been made (see [MP94]).

The numerical solution procedure presented in the third chapter is based on a finite
element discretisation of both the Navier-Stokes part and the k-e-system. A stabilising
technique for the conforming P;-P; element is used for the Navier-Stokes equations, the
convection term is stabilised by the streamline diffusion method. For the k- and e-equations
we employ a stable semi-implicit multi-step scheme in combination with upwinding, in order
to guarantee positivity of the solutions.

The numerical tests give satisfactory results for simple geometries and not too high
Reynolds numbers, but for strongly dominating convection the nonlinear coupling of both
parts leads to bad convergence.

We want to thank our thesis advisor Prof. Zulehner for many fruitful suggestions
and countless interesting discussions, but also continuous encouragement throughout the
project. Our special thank also goes to Ferdinand Kickinger for his helpfulness and sup-



port during the work with his mesh generator and AMG solver NAOMI. Finally we thank
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Christoph Reisinger Markus Wabro
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Notation

We generally use standard characters for scalar values and scalar functions (p, ¢, ... ) and
boldface characters for vectors and vector valued functions (u, v, ... ). The components
of vectors are denoted by (ui,...,uy)?T = u, where N is the space dimension (generally
N = 2,3). For matrices we use boldface capital letters (A, ... ).

G is an open, connected subset of RV, G its boundary.

Operators

u-v = YN wv; (scalar product).

u®v (u,v]) ,j 1,...n (tensor product).

A:B = E e LA

d;p = 6p (partlal derlvatlve of p with respect to z;).
5j11 = (5jui)i:1,...,zv-

Op = % (partial derivative of p with respect to t) .
du = (atui)izl,...,N-

Vp = (0;p)i=1,.. v (gradient of p).

Vu = (0;u;)i j=1,..,N-

V-u =YY 8u; (divergence of u).

Vxu = (0us— Os3us,dsu; — Oug, Ouy — Grui1), (curl of u in three dimensions).

u-Vo =37 u;0;0.

u-Vv = (Z;\Tzl ’U,jaj’l)z')izlj___’]v.

Dy = 0;¢ + u - Vo (total derivative of scalar ¢ in a flow field u).
Dyv =0wv+u-Vv.

Function spaces

g) space of continuous functions on G.

C’k(g) space of functions with continuous k-th derivative on G .
C°(G) space of infinitely smooth functions with compact support in G.
(g‘) space of infinitely smooth functions on G.
g)

=

Lebesgue space of measureable functions ¢ with finite norm ||¢||o, = (fg qP)”.
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Sobolev space of functions with k-th derivatives in L?(G).
= W3 (G).

space of traces of functions in H'(G).

the closure of C$°(G) in H'(G).

the dual space of H}(G).
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Chapter 1

Physical modelling

In a typical case of the problems we want to solve we are facing the following situation: A
fluid (e. g. a mixture of air and petrol) enters an experimental setup (e. g. the piston of
an engine) through an aperture (e. g. driven by a specified pressure drop), moves through
the setup in turbulent motion and exits again at one or more outflow ducts.

The aim of this chapter is to develop a closed set of equations together with appropriate
boundary conditions, which govern the turbulent flow of this fluid. The system of under-
lying equations — namely the Navier-Stokes equations — is well-known and well-studied,
but the high degree of irregularity for strongly turbulent flows still doesn’t allow reason-
able ‘direct’ numerical simulations for high Reynolds numbers. That’s when turbulence
modelling gets involved.

We first give a short summary of typical properties of turbulent fluid flow, which we
shall then use to derive the k-¢ model, first introduced by Launder and Spalding [LS72],
which is a reasonably good approximation in many practical cases and more suitable for
numerical computation than the original problem, because small scale fluctuations have
been ‘filtered out’. In the derivation we basically follow the approach of Mohammadi and
Pironneau, [MP94]. At solid walls the model has to be coupled with a so called wall law —
analytical expressions describing the flow — in order to ‘bridge’ boundary layers, for which
the model hypotheses are not valid. Finally we supplement our equations with inflow and
outflow conditions corresponding to various physical scenarios, which we believe to be of
interest in technical applications.

1.1 Discussion on turbulent flow

1.1.1 General properties

At a quick glance turbulent flow is characterized by chaotic movement of particles as
opposed to the ordered structure of laminar flow. This occurs, when inertial forces are
large compared to viscous forces so internal friction is no longer able to damp out chaotic
fluctuations origining in - ever present and inevitable - disturbances (e. g. at the inflow,



boundary, etc. ).
The transition from laminar flow to turbulence was first investigated on a systematic
basis by Osborne Reynolds (1842-1912). To this end he introduced the dimensionless

Reynolds number

L
Rezﬂ,
W

where p is the density of the fluid, L and V' a characteristic length and velocity, respectively,
and p the viscosity of the fluid. In his famous experiments he observed that

1. flow through a geometrically similar setup is physically similar, if and only if Re is
identical (cf. 1.1.2) and

2. turbulence occurs, when Re exceeds a specific threshold (depending on the geometry).
Qualitatively, turbulent flow has several characteristic features, such as

e a large range of frequencies and wave lengths,

disparity in length scales,

irregularity,

e energy cascades,

dissipation,
e mixing.

It is observed that large eddies brake into smaller eddies and at the end of the spectrum
energy is dissipated by internal friction. On the macroscopic level, diffusion is increased
— compared to the laminar case — as a result of ‘virtual stresses’ caused by small scale
fluctuations. Reynolds conjectured that turbulent flow can be described similar to laminar
flow with the (constant) viscosity replaced by a variable term — this is indeed the case, as
we shall see later.

Turbulence is called homogeneous, if all moments (and particularly means) of the ve-
locity and its gradients are spatially constant. It is called isotropic, if all moments are
invariant by rotation.

As our starting point for a mathematical description we take the Navier-Stokes equa-
tions for incompressible flow. A mathematically rigorous derivation from fundamental
physical principles and conservation laws can be found in [Fei93].

10



1.1.2 Navier-Stokes equations

We denote by u the velocity of the fluid, p is the static pressure. Then the instationary

flow of incompressible, Newtonian fluids is governed by

0

pau +pu-Vu = —Vp+ pAu, (1.1)
V-u = 0. (1.2)

(1.1) expresses Newton’s law of motion, (1.2) the conservation of mass. The underlying
physical assumption for these equations to hold are incompressibility and Stokes” hypothesis
for the stress tensor,

T(u,p) = —pI + p (Vu+ Vu'),

for incompressible Newtonian fluids. A ‘good’ turbulence model should preserve fundamen-
tal principles of Newtonian mechanics and similarity properties of Navier-Stokes equations.

Physical similarity

With the choice of scales u = Vu*, x = Lx*, t = L/Vt* and p = V?pp* we get the
dimensionless formulation

Opu*+u*-V'u" = —Vp"+rvA*u", (1.3

Vi-ut = 0,

=~
~— —

where

1 1%
vi= — = ——.
Re pLV

For simplicity in notation we will omit the stars again in the following.

Frame invariance

Navier-Stokes equations arise from Newtonian mechanics, which is frame invariant. Con-
sequently they are invariant under

e translations x =y +z, z € RY const.,
e Galilean transformations x = y + wt, w € R" const., and
e time independent rotations x = My, M € RV*¥ where M = M~

Standard boundary conditions for Navier-Stokes are no-slip conditions u = 0 at solid
walls, which ‘close’ the system (1.3), (1.4) and the existence of (for two space dimensions
and under stronger assumptions also in three dimensions unique) solutions can be shown.

11



1.1.3 Why turbulence modelling?

Navier-Stokes equations describe correctly the flow for all values of v. However, if v
becomes very small, regularity of the solution is lost. In numerical simulations todays
computers cannot handle as many grid points as are necessary to resolve small eddies.

To see why, we study the distribution of turbulent kinetic energy to the different modes,
i. e. we look at the kinetic energy density FE as a function of the wave number x = |k|,
the modulus of the wave vector. For homogeneous isotropic stationary turbulence and
in the initial range Vv < k < ¢iy~1 dimensional analysis gives Kolmogorov’s law

wolor

E(k) =~ 1.5e3K"

with the dissipation rate of turbulent kinetic energy €. Viscosity affects only the end of
the spectrum, initial conditions the beginning. According to this, the smallest eddies are
of order of magnitude 1/%, and the number of grid points that is necessary to resolve these
structures is

3N
n~ Re+1,

when N is the space dimension. In many important applications Re = O(10°) yielding
n = 0(10"39).

Anyway, often it is not the motion of each and every small eddy, which is interesting,
but only the effect of turbulence on quantities of engineering significance is relevant. The
idea is now to calculate some sort of averaged flow field that is smoother than the actual
flow, which drastically reduces the number of grid points required — the effects of small
scale fluctuations are estimated by different ad hoc models, the derivation of which we will
be concerned with in sections 1.2 and 1.3.

1.1.4 Boundary layers

For high Reynolds numbers the behaviour of the flow is dominated by the convective part.
Near the wall, however, the velocity is small due to interaction with the wall (no-slip
conditions) yielding a small ‘local Reynolds number’, and the properties of the flow in this
region are very different from the main stream.

In a thin boundary layer with width 6 ~ v the flow passes from one regime to the other.
This gives two major computational difficulties, namely

e different simplifications are required for near wall and other regions and
e strong gradients appear in close vicinity of the wall.

We will circumvent these difficulties by excluding the boundary layer from the compu-
tational domain and set up an auxiliary boundary condition at the interface using an
appropriate boundary layer model (see 1.4).

12



1.2 Eddy viscosity models

As we pointed out before, the aim of turbulence modelling is to gain regularity for the
solution of our problem. Now the idea is to decompose the velocity (pressure) field via

u=u+u, p=p+p,

where u’ is the non relevant (non computable) part, @ the mean part and to look for
instead of u. The interactions between u’ and u’, u’ and @ etc. have to be modeled.

So far, so good. But how do we get the decomposition? And which equations does @
fulfil? The answers to these questions are found in 1.2.1 resp. 1.2.2. It will be seen that the
equations for @1 are similar to the original equations for u with additional stresses, which
are usually modeled proportional to the original stresses with a turbulent ‘eddy viscosity’,
which gives name to this class of models.

1.2.1 Filters

We first need a suitable rule (.) defined on an appropriate function space, say W, to obtain
a ‘filtered’ quantity w from its actual values w via

for any w € W. Several approaches are at hand, which give rise to the following definitions:

1. Space averaging: In a first attempt one might think of eliminating small spatial
fluctuations by replacing the actual value of w at a specific point by the average over
a ball with radius r around this point,

1
w)px) = 3 [ wiyt)dy.
| | B(x,r)
where 7 is large compared to turbulent length scales, but small with respect to the

macroscopic dimensions of the setup.

2. Time averaging: Similarly we can integrate in time over an interval of length 77,

(w)p (x,t) = L / w(x,7) dr,

T Jim

with 77 considerably larger than turbulent time scales, but small in comparison to
the overall duration of the process.

3. Space-time averaging: Combining these ideas leads to

{{w)) = (w)p)r = (W)r)p -

13



4. Fourier (low pass) filter: Another possibility to cut off small wavelengths in the
spectrum is to leave out these components in a Fourier decomposition,

(w), = FlayF(w).
F' denotes the discrete Fourier transform, 7y the truncation operator.

5. Statistical average: Finally one might take into account that turbulent fluctuations
origin in small disturbances in the initial conditions and study the average over
the evolution of random initial data, i. e. t is viewed as the expected value of the
distribution of u due to a (given) distribution of initial data. So let w be the induced
probability measure, then

(W) (x,t) = /w(x, t,w) dw.

We will expect several properties of filters:
(a) Linearity:
(v+Aw) = (V) + A (w) Yv,weW,AeR
(b) (.) maintains differentiability and
(OQw)y = 0O {w) YweW,
(Vwy = V{(w) YweWw.

(c) Double averaging gives average, i. e.
((w)) =(w) YweW.
Remark. This is necessary for (w') = 0.
More generally we may require
(d)
(v{w)) = (v) (w) Yv,weW.

Unfortunately the simple space and time filters do not fulfil properties (c) and (d). We
summarize the results about the properties of the listed filters as stated in [MP94] (see
also Appendix A) (‘X’ stands for ‘fulfils’, ‘O’ for ‘does not fulfil’) :

L @0 ][()][(d]

o | ol o] —
sikslksikails
sikalkaikais
siksliellelle
~| O|O|O|O




1.2.2 Averaged equations — the Reynolds stresses

We will now apply a filter, for which all four properties hold, to the Navier-Stokes equations
to obtain equations for the averaged quantities. Due to (a) - (c) we can just replace p by p
and u by @ in the linear terms (mixing is only an effect of the non-linearity). Furthermore

(u-Vu)=((a+u')-Va+
=u-Va+ua-V{)+ (W) Va+ (u'-Vu')
=a-Va+V-(ueu),

so the averaged equations read
du+u-Va = —Vp+vAa—V .U au) :
V-u = 0. (1.6)

Turbulence modelling is the problem of approximating the term (u’ ® u’) in Reynolds’
equation (1.5) in terms of known or at least computable quantities, particularly without
the use of u’, which we intended to get rid of in the first place. Common to all models
is the assumption — based on experiments and symmetry — that the additional virtual
Reynolds stresses only depend on the original stress tensor,

—(u®u') =R(Va+ Vva’). (1.7)

Reasonable models have to retain the invariance properties of the Navier-Stokes system.
Translation and Galilean invariance are automatically fulfilled. For rotational invariance
we notice that with x = My

Vyu+V,ul =M (Vyv + Vva) MT,
so it is obviously necessary (and also sufficient) for invariance that
R (M (Vyv + Vyv ) MT) = MR (Vyv + Vyv') M7,
Definition 1.1. A function A : RV — RV*¥ ig called invariant, iff it transforms as
A(My) = MA(y)M"

under rotations. M is an arbitrary rotation matrix, A the transformed matrix (more
precisely: the representation of A with respect to the transformed basis).

Theorem 1.2. If A : RY — RM*N s symmetric and invariant under rotations, then
R o A is invariant for R : RVXN — RVXN 4 ff

R(A) =) a;A/, (1.8)

=0

where all a; are invariant under rotations.

15



Proof. 1t is obvious that all functions of the form (1.8) are invariant. For the ‘only if’ part
we assume that R o A is invariant and proceed in two steps:

1. The eigenspaces of A and R(A) are identical: We define two sets of rotation matrices
Q® and Q) by

(i) _ O L #1

tm —Om =1

and

6lm m ¢ {Zaj}
6lj m=1
oy m=7j

(i) _
Im —

Now if M is a matrix of normalized orthogonal eigenvectors of A with corresponding
eigenvalues )\, then for Q = Q® also MQ is such a matrix. If \; = A; then this is
also valid for Q = Q). This means (MQ)TA(MQ) = MTAM = A and

Q"M"R(A)MQ = R(Q"M"AMQ) = R(M"AM) = M"R(A)M. (1.9)

We want to show that D := MTR(A)M is diagonal and the elements on positions i
and j are equal for A\; = \;. This is pretty straightforward: From (1.9), QODQY =
D, and

m | =Dy, else

we get that D has non-zero entries in the i-th row and column only in the diagonal.
Since this is valid for all 4, D is diagonal, e. g. D = diag(y;), and now from

3 N Mz‘5jm =y
(Q(Z])DQ(ZJ))lm = ,U'jéim l =1
W0 else

we get that p; = pj, if Ay = A;.

2. Let p; be the eigenvectors of A resp. R(A) corresponding to eigenvalues \; resp. p;,
then

N d—1 N (N-1 .
W=l = San =3 (San) ool
i=1 J=0

i=1 \j=0

and
N
R(A) =) uipip; -
=1

Consequently a; can be found by solving the linear system ij;ol aj)\g = u;, which
has a solution because of 1. (A; = A\j = p; = ;).

16



Corollary 1.3. It is a necessary consequence of invariance that
e in 2D
R(Va+ Va") = a(|Va+ Vi NI+ p(|Va + Va’|)(Va + vi')
and
e in 3D
R(Va+ Val) = al + p(Va + Vil) + \(Va + vaTl)?,
where a, u, A are functions of |Vu + Vu’| and |(Vu+ Vu®)?| only.

Proof. We apply Theorem 1.2 to A := Vu+ Vu”. The coefficients a; in the proof depend
on the eigenvalues \;, hence on N independent invariants of A, which can also be trA, |A|
and (for N=3) |A?|. The desired results follow immediately with trA =2V -1a = 0. O

1.2.3 Eddy viscosity models and the turbulent kinetic energy

Fundamental for this class of models is Boussinesq’s assumption (neglecting the quadratic
term in 3D)

2
R = —ckl+ur (Va+ via') (1.10)
with the turbulent viscosity vr and the turbulent kinetic energy
1
ki=g ([u'f*). (1.11)

Remark. The first term is necessary for the model to be consistent in the three dimensional
case in the sense that

trR = —tr(u’ @ u') = — (Ju']*) = —2k.

In fact we should replace %k by %k in general (and particularly by &k in two dimensions),
but this is not done usually.

This leads to the following equation for i

2
du+u-Vu=-V (]3+ §k> + V- [(v+vr) (Vu+ Va")] (1.12)
Remark. 1. So far the only simplification inherent to the model is Boussinesq’s assump-
tion (1.10), which — for two space dimensions — can be deduced from assumption

(1.7).

17



2. k can formally be included in the pressure term, but it has to be noticed that in that
case boundary conditions in j (e. g. if we want to specify a pressure drop) have to be
formulated in p+ %k, which is the static pressure augmented with turbulent dynamic
pressure.

The remaining problem is to find an expression for vr, and there is a cascade of models
with a wide range of complexity. A popular representative of the class of eddy viscosity
models is the k-e¢ model, which forms a compromise between generality and complexity.

1.3 The k-¢ model

The k-€ model is based on the ansatz

vr =y, (1.13)

where

¢ :=v(Vu : Vu') :u;<<gzj)2> (1.14)

is the dissipation rate of turbulent kinetic energy. For homogeneous turbulence it is assumed

(see [MP94]) that
o), Ou;
!, T\ _ k=79 \ _
<Vu : Vu >— ;k <8acj8xk> 0

and hence

¢ = v((vu+vu'): V)
)

. Z ! 1T
= 2 <‘Vu +Vu
= v{(|Vxu'|’).

The last equation is obtained by (e;x = ei(e; X ex))

2
|V X l.ll|2 = Z (Zéijkglj>

i gk J
Ouy, Ouy,,
= E E Gijkﬁz’lm—a 5

Jedam i T3 o
r\ 2 / !
- Y () -y
- I
ik 83:]- ik 8.Ij 6xk

18



where we have used the identity ). €;x€im = 0;i0km — 6jmOki-

Contrary to algebraic models (0-equation models), where algebraic expressions for k
and possibly € are used and no additional partial differential equations need to be solved,
and I-equation models, where one equation is added to the original system, the k-e model
employs PDEs for both k£ and €. 2-equation models are nowadays state-of-the-art.

1.3.1 Derivation of the equation for k

Subtracting the averaged momentum equation from the original one gives an equation for
the fluctuations,

ou'+u' -Va+ (u+10)-Vu' +Vp —vAu' — V- (W' ®u') =0. (1.15)
Multiplying with u’, inserting the identities
u'(u-va) = (Wed): Vi,
u[(a+u)-Vd] = (a+d) -V%u’2
and applying (.) leads to

12

0, <u7l2> + @ ®u): Va+ <(u +u') - Vu?> + V- Py —v(WAd) = 0.

With the definition of £ and Reynolds’ hypothesis this yields

12

ok+u-Vk=R:Vu-— <u' : V%> — V- {puy+v(uAd). (1.16)

The first term on the right side of (1.16), which is referred to as production rate P of
turbulent kinetic energy, is given by

2
R:Vu = —okl: Va+ur (Va+va'): Vu
= S |va+va|.
The next terms are modelled as a diffusion process, i. e.
u”
- <“' ' V7> — V- () =V - (1 VE),

where py is the dimensionally correct combination ck%. Experiments show that ¢, = ¢,

approximately and therefore we replace it right away. Finally the last term can be rewritten
by
v(u'Au’) = g <Au’2> —v(Vu' : Vu') = vAk —e.
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Rearranging we get

_ k2 Cﬂk2 _ _T12
Ok+u-Vk=V" (cu?+u)Vk +5?‘Vu+Vu "¢,

where € is the dissipation rate of turbulent kinetic energy, an equation for which has yet
to be derived.

1.3.2 Derivation of the equation for ¢

Here we will need to utilize a very strong instrument for modelling certain terms: ergodicity.
Heuristically this means that under certain conditions (e. g. a strongly mixing process) it
is allowed to replace statistical averaging with spatial or time averaging, thus we can use
partial integration in space. Unfortunately the applicability of ergodicity to the Navier-
Stokes equations is still an open problem, we are not able to prove it formally, but take it
as a modelling hypothesis.

We start again with (1.15)

ou'+u'Va+ (W' +u)Vu' + Vp' —vAd' — V- ('@ u') = 0.
Taking the curl leads to

oV xu' +V x (uVa)+V x[(a+u)Vu]+ V x Vp'
0
vV XxAU -V xV-{uau)=0. (1.17)
————

AV xu’

With easy but lengthy calculation we can show that

Vx@WVa)+Vx[(u+ud)Vu] = (W'V)Vxua—(VxuV)a
+(@+u)VV xu' -V x (a+u)Vu'.

We now denote

Ww'oi= Vxd,

w = Vxu,
and get from (1.17)
ow'+u'Vw —uw'Va+ (u+u)Vu' — (w4 )V —vAL' + V x V-R = 0.
Multiplying with 2vw’ and applying (.) leads to
2V (W'(Ow' + (@ +u )V +u'Vw — (w+ w)Vu' — 'V — vAL')) = 0.

We now simplify some of the terms above.
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(2uw'Oyw'y = 0y <1/w’2> = Ok

o 2 (i +u) Vo' = v(a+ u')Vw'

[ ]
Vx (U xw)=wVu —u'Vw
= W'V XU xw)=dwVu -uw'u'Vw
= 2ww'u'Vw — 2wV’ = 'V x (1 x w)
e A simple calculation shows a(a-Vb) =(a®a): Vb

—2v0'W'Vu' = —2v(w' @ W') : V'
=
—2v'w'Va = -2v(w' ®@uw') : Va

Combining these results we get

o€ + <(ﬁ + u')V(Vw'2)> — 20 {W'Vx (U xw))—2v{w @uw'): Vu
—2{(w @) : Vu') — 202 (W' AW') = 0. (1.18)

Ergodicity yields
(WAW) = = (V')

Analogously to the k-equation, <u’ V' 2> is modelled as a diffusion term —V - (. Ve) with

He = Ce™-
Furthermore we have (intensively using ergodicity, referred to as ‘erg’)

WV x (0 xw)) 2 (0 xw)V xw) 2 —(u xwAu')

Uhws — Ujwo Au
— ! ! !
= — sy — Ujws Au,
uwy — uHwy Aul

= wy (upAuy — upAub) + wo (us A — uiAug) + ws (U] Aub, — usAul)

Using

1 ou ou!
’A 1 IA ! erg,green P22 1 =0 1.19
<u1 Uy — Uy U1> |B(x, 7“)| DB ) Uy on Uo on ( )

we get

(W'V x (u' x w)) =0.
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The last equality in (1.19) holds, because we assume isotropy of u’ to neglect all odd
boundary integrals after integration by parts. ! Thus we have

de+ Ve —2v (W ®w') : Vi — V- (uVe) — 2v (' @w') : VU') + 27 (|[VW']?) = 0.

Analogously to R the term —2v (W' ® w') is modeled — using a Reynolds-type hypothesis
— by al — c;k(Va + Va®). This leads to

20 (W' W) :Via=(a¥ - G-ck(Va+Va'): Va).
0

Lvatvar 2
The previous to last term is neglected as a third order moment,

(W ®@w'):Vu')=0.
Finally 202 (|Vw'|?) is assumed to be a function of £ and € only and is chosen proportional
to the (dimensionally correct) combination €2/k. Inserting everything in (1.18) gives the
desired equation for € as

_ k‘2 (&1 o T2 62
de+u-Ve=V- CC?VG +§k|Vu+Vu \ —e

1.3.3 Choice of constants

The model contains four undetermined constants c,, ci, ¢z and ¢, which are chosen to fit
the model to experiments of well understood cases.

Measurements of the decay of homogeneous turbulence (e. g. behind a grid) — i. e. in
the absence of turbulent production — and shear layers in local equilibrium (e. g. behind
a backward facing step) — i. e. where production and dissipation balance — yield

¢, =009, ¢ =0126, c=1.92.

For more details we refer the interested reader to [MP94].
Finally ¢, is chosen for the model to reproduce the logarithmic behaviour of the velocity
2
near solid walls (c. f. 1.4.2) with E =} |Vu + VI_IT‘2 = =5 and

K2y

3
€= &, k=

Ky /Cu

which is experimentally well established. ¥ is the normal distance to the wall, the pa-
rameters are explained in 1.4.2. For flow parallel to the wall (say in z-direction) and k

independent of x the k-e¢ equations reduce to

k* Ok k?
8( 0 )—cu—E—i-e = 0,

, (1.20)

Ty \* e by P

0 k? Oe €2
—— (=) —ckE+ o= = 0.
8y <C p ay) C1 +621€ 0

'In fluids with large Reynolds numbers, turbulence has a locally isotropic structure (except near bound-
aries). This means, that the turbulent oscillations (u') in small regions have no preferred direction.
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The first equation is fulfilled identically for solutions of the form (1.20) for all values of ¢,

the second equation if and only if (k = 0.41)

c
Ce = Q(CQCN —¢1) ~ 0.084.

K2

Today most often — and also here — ¢, = 0.07 is used.

1.3.4 Summary and discussion

Using physical reasoning we have derived the system of equations
2
duu-Va = V5V (s ) (Va+ V) - 29,
V-a = 0,

where v > 0,

with ¢, = 0.09. k, e satisfy

2 2
Ok +u-Vk = %%\Vu+VuT|2+V- (cﬁ%Vk) — €

_ 1 _ 2 k? €2
ode+u-Ve = Ek‘Vu—f-Vu | + V- cc?Ve _CQE

with ¢; = 0.126, ¢o = 1.92 and ¢, = 0.07.

Justification

We have used the following hypotheses.
1. Reynolds hypothesis for (u’ ® u’) (function of Vi + Vil &, € only).
2. Convection by random fields produces diffusion for the mean.

3. Ergodicity to replace means by spatial averages when necessary.

4. Tsotropy of u’ to neglect all odd boundary integrals after integration by parts.

5. Reynolds hypothesis for (W' ® w') (function of Vi + Val, k, € only).
Quasi Gaussian turbulence so as to neglect ((w’' @ w') : Vu').

A closure hypothesis to model v? ([VW'|?) by co€®/k.

® N &
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(1.25)

The “coefficient of proportionality” between (u’ ® u’) and Va+Vu® is vy = ¢,k?/e.



1.4 Boundary conditions — solid boundary

It is easily observed that viscous fluids have velocity 0 at solid walls. The problem is that
some assumptions used to derive the k-e-equations are not fulfilled in these near wall regions
and indeed the model fails. Now obviously we can either modify the equations appropriately
in these parts of the domain to be able to use the same boundary conditions at the same
boundary anyway, or we introduce a new boundary inside the original area, where the
model is assumed valid and derive new boundary conditions there. Both approaches are
found in the literature.

Some authors use so called Low-Reynolds-Number-Models. They replace the constants
Cu, C1, c2 and ¢, with functions f,, fi, f2 and f.. These functions should be chosen in a way
to reflect the right behaviour of the flow near the wall. A comparison of different approaches
can be found in [FLB93|. The problems with these models consist in the fact that there
are strong velocity gradients in near-wall regions, which requires adaptive refinement, but
then again it might happen that all the refinement is done is this region alone. The result
would be a dissatisfying level of accuracy in the interesting inner region.

Therefore we take the second way. We will develop an algebraic relation between the
velocity and the normal distance to the wall, a so called wall function or wall law. This
will be used to establish a nonlinear boundary condition of the third kind at the interface
between the inner domain and the boundary layer.

Our considerations will be based on a special ansatz described in the following section.

1.4.1 Prandtl’s mixing length ansatz

Prandt!l’s mixing length ansatz is a simple model for the Reynolds stresses in the turbulent
boundary layer. We explain the case of flow parallel to the z-axes. To model 7, := —puu}

Y

Figure 1.1: Fluctuating fluid-element O and profile of velocity.
we look at a fluid-element O in Figure 1.1, which is currently at position y and moves with

mean velocity 4;(y). (It should be noticed, that because of the structure of turbulent flow
such an element should not be viewed as a particle, but more as a ‘lump’.) Because of the
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fluctuation ul, the element covers a distance of £/ in y direction until it is mixed with the
layers at y 4 £.2

If we assume that it keeps its impulse, we get a measure for the fluctuation velocity in
x-direction as

A’U,l = ﬂl(y + E) — ﬂl(y)
With Taylor-expansion and truncation after the linear term we get

Aul ~ E%
Iy

We now look at two different fluid elements, which fluctuate from the positions y + /¢
resp. y — £ to position y. If the faster element lies behind the slower, they collide and drift
to the sides. In the other case the elements immedeatly move away from each other. In
both cases fluid mass has to fill the arising gap, and because of continuity we can assume
that v/ and u} have the same order of magnitude and get |u)u}| = (Auy)2.

Thus we set

Note that the sign has been chosen in a way that the Reynolds stress points in the direction
of the positive velocity gradient.

£ has to be modelled depending on the specific situation, e. g. £ = ky near solid walls,
where y is the normal distance to the wall and k = 0.41 the von Karman constant.

More details about this ansatz can be found in [Tru80].

1.4.2 Derivation of a wall law
We start with Reynolds’ equations
du+ (a-Vu+Vp—rvAu+V-(u®u') =0, (1.26)

which, as has to be noticed, do not contain any simplifications yet. If we look at the first
coordinate we get (omitting bars for the means)

(Opur) + (u101u1 + ugBouy + uzdsuq) + @ﬁ)
- V(811U1 + (922u1 + 833’&1) —+ ((91u'12 + 82u’1u’2 =+ (93u’1ug) =0

We now consider stationary flow in the positive z-direction parallel to the wall according to
Figure 1.2. Thus the time derivatives vanish and so do the derivatives in z and z direction
and the velocities in y and z direction. What’s left is

—l/aggul + agu’lu’z = 0,

2¢ corresponds to the mean free path in kinetic gas-theory.
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Y Flow

Figure 1.2: Parallel stationary flow

which expresses the balance of viscous and turbulent stresses. Integration and multiplica-
tion with p leads to

Oruy —pulul, =: 7, = const.
——
=Ty Tt

with viscous stress 7,, turbulent stress 7, and wall shear stress 7,,. We now look at three
regions.

1. Viscous sublayer (0 <y < &): Here the first term dominates and we have

u u
pudouy = pu’ = o _ Py

U

ut gt

2. Transition zone (0g < y < d&;): Complicated models are required to give accurate
approximations. For small/large distances these expressions asymptotically turn into
the two other cases (Figure 1.3). We refer the reader to [SG97] and do not go into
details here (see the remark below).

3. Turbulent wall layer (6; <y < §): Here the second term dominates. Prandtl’s mixing
length ansatz (see section 1.4.1) yields

Tt = P€2|52U1|32U1,
where ¢ = ky. kK = 0.41 is the von Karman constant. Using this we get
(ky)?(Bour)? = u? (1.27)
== u = % Iny + 3

U1 1. pury

= — =-—In +4. (1.28)
Ur K u
N~~~ SN~
ut gt

The integration constant 3 depends on the roughness of the wall. Typical values are
in between 5 for smooth and about 7 for rough walls.

Combining these results we get u™ as shown in Figure 1.3.
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Figure 1.3: u™ plotted against y*. The triangles and circles mark results of experiments.
(Courtesy of [SGI7])

Remark. We assume a two-layer structure of the boundary layer and switch from the linear
law to the logarithmic wall-law at some value y;. For continuity of the velocity we have
to require

1
y&’z;lng{#—ﬂ = yi =11.45

for 3 = 5.5. In fact the linear law is a good approximation only for y* < 5, the logarithmic
law only for 20 < y* < 100.

Some authors work with more complicated wall-laws, which are obtained from more
sophisticated models for 7; (see for example [SG97]). However it can not be expected that
much improvement (in accuracy) is achieved as a boundary condition for the k-e¢ model,
because the model is not suitable to simulate flows in regions closer to the wall than the
logarithmic layer — indeed it has been constructed to turn into the logarithmic wall law
in this limit.

1.4.3 2D boundary condition

We will now use the results from the previous section to set up boundary conditions for u,
k and € at the interface.

Boundary condition for u
The wall-function

yt 0<yt <y

+(a) —
v )_{ Ling* + 5 yf <yt <100 (1.29)

with ut = u; /u,, y* = yu, /v and y§ = 11.45 contains the unknown parameter u,, which
will be different at every point of the boundary. Thus we use (1.27) to express u, in terms
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of %—7;1 and insert this in (1.28) for the log-layer, which gives

aul 1 szQ 8“1
=ky— | - In| — |— . 1.30
Uy /fyay<ﬁn<y 3 +8 (1.30)
Expressing the interval of validity of (1.30) in 66—1;1 gives
20w
v < —2 < 100.
v
In the sub-layer obviously
8u1
=y— 1.31
hm=yg (1.31)
which is valid for
2 Ju1
0< 0 <y

Note that these intervals have non-empty intersection. Introducing the abbreviations x :=
Kye P ky2erP duq

=, 2= =G gives the relations
z 0<z< Ky e
x = —
zlnz yie < 2 <100e”

which are shown in Figure 1.4 (thick lines). In order to set up appropriate boundary condi-
tions we need to express z as a function of x. Considering Figure 1.4 a natural choice would
be to take the linear law for z < zo = Ky, 2enb , otherwise the logarithmic law. However
this function is not continuous, which is physically not sensible and gives mathematical
difficulties. Sophisticated boundary layer models interpolate smoothly between the viscous
sub-layer and the log-layer, but are more complicated to deal with (practically). Therefore
we extend the logarithmic wall function also to smaller values of x and switch to the linear
law at the point of intersection (z1,x1) with z; = z; = e & 2.72. For large z it is impossible
to find a general expression for z, as there cannot be an universal law at large distances
from the wall, but still we have to prescribe values in order to pose boundary conditions.
For analytical convenience we linearise the wall-law at z4 = 100e*#. This seems justified,
if we check a posteriori that the artificial boundary has been chosen in the logarithmic
region.

So far we have only considered flow in the positive z-direction, but for the general case
we just have to extend z to an odd function on R. Hence we define ¢/ : R — R by

2 |z] < 2

zIn|z| 72 <|z] <z
zelnzg+ (Inzg +1)(z2 —24) 22> 24 ’
—zglnzg+ (Inzg+1)(z+21) 2< —2

W(z) = (1.32)
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Figure 1.4: Relation between z and z.
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which is also seen in Figure 1.4.
Since 1 : R — R is one-to-one, we can define ¢ : R —+ R by

v

)
o(z) == @e_nﬂw_l (%e’“‘ﬁz).

For a more general (curved) boundary we have to use local orthogonal coordinates. Due
to the smoothness of the boundary I" there exist n, s orthogonal respectively parallel to the
boundary. We assume that if we replace u; — u- s, %—’;1 — —2us the above considerations

on
are still valid. Particularly we assume
a-n=0 (1.33)
in the entire boundary layer, for the viscous sub-layer
ou-s
s = —§
us on
and for the log-layer
ou-s (1 k6% |0u - s
4-s = — ZIn| — ) 1.34
u-s K,éan (nn<1/ on )-i—ﬂ) (1.34)

0 is the normal distance to the wall.
The complete boundary condition takes the form

ou-s
on

which is a non-linear boundary condition of the third kind.

+¢(a-s)=0,

Remark. In [MP94] we find a different approach, namely (1.34) is replaced by

u- 1 1
lus 1 (5 1
0| K v
vaﬂ
We believe that this boundary condition is not consistent with the model in the way that
(if viewed as an ODE for u - s) it does not lead to a logarithmic law.

ou

on

)+ﬂ:0. (1.35)

Boundary conditions for k£ and ¢

For k£ and € we have seen in 1.3.3 that

1 a - 2 _1
k = c¢,?Kk%6? 8gns =, 2 Kk*8%p(Ju - s])?,
2¢2 ou-s ’ 2¢2 = 3
€ = ) on = r"0"¢(|a-s|)”.
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1.4.4 General formulation of boundary condition
Boundary condition for u

For high Reynolds numbers experiments of flow over a flat plate show that the streamlines
above a specific point are nearly parallel in near wall regions and therefore it is possible to
extend the above considerations to the three dimensional case also. In analogy to (1.32)
we define ¥ : RN — RV by

z

U(z) = P(|z])

z|
Lemma 1.4. VU is continuous and one-to-one in RY .

Proof. Continuity is obvious. 1 : |z| — |¥(z)| is well defined and strictly increasing on
[0, 0o], limy, o [¥(2z)| = co. Since ¥(z) has the same direction as z, the result follows. [

Hence we can define ® : R — RN by

V. pa1,K0 s
(D(Z) = W@ \\ (76 Z)
and demand
n-T(a,p)s; + (v +vr)®(a) -s; =0, (1.36)
where {s; :i=1,..., N — 1} is a set of orthonormal tangential vectors of I" and

T(u,p) = —pI+ (v +vr) (Vu+ Vu')

the stress tensor. It is easily seen that (1.36) is equivalent to the wall law, if T is represented

in local coordinates n, s; and u is split up via u = u, + ug, where ug - n = 0. Note that

dun __
D5, = 0.

Boundary conditions for k£ and ¢

Again we express the boundary conditions for £ and € as
1

k= c,’k%6%¢(Ju))?, (1.37)
e = k*6*¢(|al)?. (1.38)
1.5 Boundary conditions — artificial boundaries

Since the fluid enters and leaves the domain through some openings in the wall, we have to
cut off the outer regions by artificial boundaries in order to concentrate on the interesting
part. Hence we have to supply information about the behaviour at these sections. We
will discuss three major types of boundary conditions, but all sorts of combinations are
possible. To this end we divide the boundary 0¢2 into distinct sections I', which denotes
the solid boundary, and S; to S3 for Dirichlet, pressure and natural boundary conditions,
respectively.
From now on we will omit bars, since we are only dealing with averaged quantities.
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1.5.1 Dirichlet conditions

At an inflow boundary, here Si, a natural choice would be to specify the velocity of the
incoming fluid,

ulg, = uo.
The same seems sensible for £ and e,

k|,5'1 = kO;

€lg, = o

1.5.2 Natural boundary conditions

Following [HRT94] one might consider natural boundary conditions (also referred to as ‘do
nothing’ boundary conditions) for the velocity of the form

n-T(up =0

in the static pressure formulation or similarly in the total pressure formulation, in compo-
nents

1.
Ju-n
[p—?(y—i-VT) on ]53 = 0,
Ju-s; Ou-n _ 0
on 0s; S5 B
or (with total pressure)
2.
1, 5 2 Ju-n .
[p+§|u| +§k—2(V+I/T) o }S = 0,
ou-s; L+ Ju-n -
on Jsi |g, -

This has the physical interpretation that the normal stresses vanish at the (e. g. outflow)
boundary.

Natural boundary conditions for k£ and € (i. e. for the Laplace operator) are homogeneous
Neumann conditions

o _
8n53
el _
5n53
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1.5.3 Pressure drop problems

In some situations it might also be interesting to specify a certain pressure drop between
several parts of the boundary, say Ss = Uj S9j, 7 =0,...,7.

1. Static pressure drop: We require

ou-n
p—2(v+vr) = P,
on S
u-sifg, = uw+s;, i=1,...,N-1
with given pressures P;,j = 0,...,r, given tangential velocities u; and an orthonor-

mal set of tangential vectors s;.
2. Total pressure drop: The same with p replaced by p + 3|u|® + 2k.

We note that this is a combination of Dirichlet conditions for the tangential component
and natural conditions for the normal component. For orthogonal intersections of Sy; with
the solid boundary and for vy = 0 P; is the average pressure over So;. This is seen from

ou -
/ un:_ Vs'us:_/ us.,u:()
Saj on Saj 8S;

with the normal vector p on 055;.
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Chapter 2

Analysis of the model

In this chapter we present a partial analysis of the model. More precisely, we will analyse
stationary Navier-Stokes equations with variable viscosity and boundary conditions as
discussed in the previous sections.

In a first step we look at the associated Stokes problem, because the properties of the
Stokes operator derived there can be used later, but also stronger results can be shown
here — we will be able to prove existence and uniqueness.

For Navier-Stokes ellipticity of the problem can only be shown (in the general case) for
sufficiently small data, which results in restrictions on the boundary conditions and the
right hand side.

2.1 Definition of the steady state problem

We assume that Q is an open, connected subset of RY, N = 2 3 with its boundary
0Q € C% made of four smooth (e. g. C!) subsets ', S;, S, S3, such that

00 = TuS;US,US;,
measgn-1(I'US;) > 0
rns; = 0 vi=1,2,3,
SiNS; = 0 Vi,j=1,2,3,i#j.

The connected components of Sy are denoted by Sy; for j =0,...,r.

2.1.1 Classical formulation

We will be concerned with the following problems: For given k € C'(Q) N C°(Q), vr €
C'(Q), find u € C2(Q¥ NCHQ)N, p e C1(Q) N C°(N), such that

u-Vu = -Vp+V.((v+vr) (Vu+Vu')) - V;k (2.1)
V-u = 0 (2.2)
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S

Sy
Figure 2.1: Flow region and computational domain.
with the wall-law
u-n=20
n- T(p’ u) -S; + (l/ + VT)(D(U) .8 = 0 } on F (23)
(n is the outward unit normal to the boundary and {s; : ¢ =1,... , N — 1} an orthonormal
set of tangential vectors) and
u =1y on Sl, (24)
_ dun _ p
p 2(1/+ VT) on PJ } on S2j, i=1,20<j<r, (25)
u-S; =u;-S;
T(p,u)-n=0 on Sj. (2.6)
An equivalent formulation of (2.1) is
T Lo, 2 T
u-Vu—u-(Vu)’ = -V (p+ §|u| +§k +V - ((v+vr) (Vu+Vu")) (2.7)
=7

with the total pressure p. The respective boundary conditions are obtained by replacing p
by p in the above formulae.
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2.1.2 Weak formulation
Assumption: There exists g € Hz(0Q)", such that

g =g on Sy,
g5 =u;"5; OnS?jai:1a2aOSj§Ta .
g-n=0 on I’ (2.10)

and the compatibility condition

/ g-n=0 (2.11)
o9
holds. This implies (cf. 2.2.2) the existence of Uy € H'(Q)" with
V-Uy=0  inQ, (2.12)
UO = Uy on Sl, (213)
Uo'Si:ui'Si OIISQj,i:LQ,OSjST, (214)
Up-n=0 on I (2.15)

Conversely the trace operator maps H'(Q)" into Hz(9Q)Y and Joqu-n=0,if V-v =0,
so it is natural to assume that the boundary conditions can be fulfilled. Now let

X = {veH' Q)" :v.n=0onI,v=00n S;,v-s; =0 on Sy} (2.16)
V = {veX:V-v=0in Q} (2.17)
and
X(Ug) = {veH ()Y :v-Uye X} (2.18)
V(Up) = {veX(Up):V-v=0} (2.19)

Furthermore we introduce

W:={gEH%(BQ)N:g-nzOonF,gzOonSl,g-si=00n52,/ g-n =0},
)

the range of the trace operator applied on V.

1. Weak formulation with distributions
Find

u < X(Uo),
€ M,
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(where Uj is constructed as above,) such that
2
u-Vu—-V-T(u,p) = —ng in H Q)Y
V-u=0 in L*(Q)Y

with

(n-T(u,p),v)z—/F(V—FVT)CI)(u)-V—Z;:Pj/SZjV-n W € X.

n-T € W* is defined by

(n-T(u,p), ) = / (V- T(u,p))v + / T(u,p) : Vv

for y € W and v € X(Uy), such that v|sq = p.
Similarly we look for p € M, such that

u-Vu-V-T(w,p) = 0 in H}Q)N
V-u = 0 in L2(Q)Y

with appropriate boundary conditions.

(2.23)

Remark. n-T is well defined by (2.23), because from (2.20) it follows that V- T € L3 (Q)¥,
since H*(Q)" is continuously embedded in L*(2)" for N < 4, and for the same reason the
first integral in (2.23) exists and defines a continuous linear functional. Obviously both

factors in the second integral are in L2(Q)" and continuity follows easily.

For smooth solutions (2.22) is equivalent to the classical boundary conditions (2.3) to

(2.6) presented earlier.

2. Weak formulation without solenoidal functions
Find
u € X(Uy),
»p € M,
such that

ao(U, V) + (_11(11; u,V) + b(vap) = <F7V> Vv e Xa
b(u, q) = 0 Vge M

for the total pressure formulation and

ao(U, V) + al(u; ll,V) + b(V,p) = <F: V) Vv e Xa
b(u, q) =0 Vge M
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for the static pressure formulation. Here

1
ag(u,v) = 5/(1/ +vr) (Vu+vVu') : (Vv + Vv7) (2.26)
Q
+ /(V +vp)®(u) - v
r
a(w;u,v) = (w-Vu,v) (2.27)
a(w;u,v) = (w-Vu—w-(Vu)',v) (2.28)
b(u,q) = —(V-u,q) (2.29)
d 2
(F,v) = _ZPJ/ V-n—l—g Vk-v (2.30)
(F.v) = —ZP]-/ v-n (2.31)
§j=0 Saj
3. Weak formulation with solenoidal functions
Find
uc V(Uo),
such that
ao(u,v) +a(u;u,v) = (F,v) VWweV (2.32)
for the total pressure formulation and
ao(u,v) +ai(u;u,v) =(F,v) VeV (2.33)
for the static pressure formulation (with aq etc. as in 2.).
Remark. It is clear that F,F € V*, because
‘ | venl < iSulivios, < viSyllvls w0 <<
52]‘
SO e. g.
2
[Flv+ < 21kl 4+ 7]S2| max |Fy.
3 7=0,...,7
Theorem 2.1. Formulations 1. to 3. are equivalent.
Proof. We take f := —%Vk resp. f := 0 and consider the convective term in the static

pressure formulation. The other case follows analogously. We first show that every solution
of 1. is a solution of 2. Applying (2.20) to a test function v € X gives

(u-Vu,v) —(V-T(u,p),v) = (f,v).
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Inserting V - T from (2.23), using the definition of T and boundary condition (2.22) gives
1
(u-Vu,v) + 5/(1/+VT)5(u) 1 e(v) +/(V+1/T)<D(u) v —/pV-v
Q T Q
—-3on [ vent (v,
j=0 S2j

that is v solves 2.

Obviously every solution of 2. solves 3. (u € X(Uy) and b(u,q) = 0 for all ¢ implies
that u € V(Uy) and for v € V equation (2.25) reduces to (2.33)).

Finally let u be a solution of 3. Then for all v € V,

Vi={ve Hy Q)" :V-v=0},

the definition of the distributional divergence yields

(u-Vu—V-((v+vr) (Va+Vvu")) —f,v) =0,
where (.) is the duality pairing between H; and H~!. Therefore

u-Vu-V-(v+vr) (Vu+Vvu')) —fe)?
with
Vo ={fec HI QN : (f,v) =0Vv e V}.

Consequently there exists p € M, such that

u-Vu-V-(v+vr) (Vu+Vu')) —f=-Vp

in H71(Q)N, which is equivalent to (2.20). (2.21) and u € X(U,) are clear, because
uc V(Uo)
Now

(n-T(u,p), ) = / (V- T(u,p))v + / T(u,p): Vv

Q

= /Q(V-T(u,p))v-l-%/(l/-i-l/:r)g(u) re(v)

Q

for p € W and v € V(Uy), such that v|sqo = p. Inserting (2.20) (which we have shown
already) and (2.33) we get

(n-T(u,p),mZ—/Fé(u)-u—ZPj/Szju-n

for all u € W, which concludes the proof.
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2.2 Analysis of the associated Stokes problem

We will start by discussing the case of homogeneous boundary data and later reduce the
general case to this one.

2.2.1 Homogeneous case

Let V as in (2.17), then the homogeneous Stokes problem reads: For given F € V* find
u € V, such that

(VPo) a(u,v) = (F,v) Yvev,

where

a(u,v) = %/Q(l/ +vr) (Vu+Vvu") : (Vv+Vv") + /F(l/ +vr)®(u) - v.

Obviously a is well defined on V' x V' (due to the Lipschitz-continuity of ®), linear and
continuous with respect to the second argument. Hence we can define a non-linear operator
A:V > V*by

(A(u),v) =a(u,v) Yu,vevV.
Then (VPy) takes the form
A(u) =F. (2.34)

Now the plan is to apply Lax-Milgram theory to (2.34) and to this end we will show that
A has the following properties:

Definition 2.2. 1. An operator A : V — V* is called Lipschitz-continuous, if there
exists po > 0, such that

[A(u) — A(v)|

ve <pgllu—v| Vu,vev.

2. A is called strongly monotone, if there exists p; > 0, such that
(A(u) — A(v),u —v) > pi|ju —v||* Vu,veV.
Lemma 2.3. ® is Lipschitz-continuous and strongly monotone in RY .

Proof. We first note that W is differentiable everywhere except for ||x|| = e (the intersection
of the two layers, which formally should be dealt with separately in the following discussion,
but it is easily seen that the same results are still valid). From

0 (w(IIXII)m) _ 25 YD =il - o[

1] 1|2 Z
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we see that the Jacobian of U is given by

D ( (#UDIK ) xex
30 = Sl (- (S ) )

It is easily seen that

Y(€)€
»(€)

0 < pu():= —-1<1 VE>0.

From 0 < ¢ < % < ¢ < oo (for properly chosen ¢, ¢) it follows that the eigenvalues of Jy
are bounded below by ¢ and above by 2¢. Therefore Jy is invertible, which implies that
® is differentiable and its Jacobian is bounded uniformly. Consequently ® is Lipschitz-
continuous.

Furthermore there is a uniform lower bound for the smallest eigenvalue, 4\ > 0, such

that

From this we easily deduce that
1
(®(u) = @(v),u—-v) = / (u=v) - Jo (v+tu—v)),u—v)dt>Au—v|™
0

O

We will need some form of Korn’s inequality, which is a simple consequence of the
following powerful result proved in [DL76].

Theorem 2.4. Let Q) be a bounded domain with Lipschitz-continuous boundary. Given
meZZ,p>1and f € W P(Q), such that 0;f € W™ 1P(Q) fori=1,...,N, we have
that f € W™P(Q) and there exists C independent of f, such that

N
1f1f7y < C (I|f||fn_1,p + II@fIIfn_l,p) :
=1

Let us now introduce

IVIlE = V15 2r + 1IVV + VVTIIG 0

Corollary 2.5. ||| s a norm on H', which is equivalent to ||.||;.

Proof. Let

E:={ve ()" :gv) e [*(Q),1 <i,j <N}
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Now

82UZ' . 8ez~k(v) n asij(v) _ Bajk(v)
0z ;0xy, N Oz, oxy, ox;

cH ') VveE,

which yields (with Theorem 2.4) that 9;v; € L?(Q), i. e. v.€ H(Q)"N. Hence ||.|| is well
defined on E and it is easily seen that it is a norm (note that ||Vv + Vv7]|g 20 = 0 implies
that v is a rigid body rotation and together with v .= 0 on I' it follows that v = 0, if
|v|l; = 0), which turns E into a Banach space. Since H'(Q)" is embedded continuously
in E, the equivalence of the two norms follows from the Open Mapping Theorem. O

Theorem 2.6. Let v > 0,
o vp € L*>®(Q) with essinf vy > 0, such that
e vrlr € L*(T") and essinf vr|r > 0.
If
1. ® is Lipschitz-continuous and
2. ® 1is strongly monotone,
then
1. A is Lipschitz-continuous and
2. A is strongly monotone.

Proof. 1. The linear term is continuous, for all u,v,w € V,

< 2+ [lvrllso0)llu = viiwl],

/Q(I/-H/T)V(u—v) : (Vw+VwT)

and due to the Lipschitz-continuity of ®

2,7

/F (v + vr) (B(w) - B(v) - w\ < v+ lrlloor) [|9() = S(V)llor [1w]

~
<ellu—vllz,r

< W vellor)erlu = vi[wl,
where ¢ is the Lipschitz constant of ® and v comes from the trace operator. Hence

[{A(u) = A(v), w)| < 2 + [lvrlleon) + e (@ + [vrlloo,r)) llu = vil[[w].
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2. With the conditions imposed on vr we get foru,veV, w:=u—-veV
/(1/ +vr) (Vw4 VW) 1 (Vw 4+ VW) > v(e(w),e(w))
Q
and due to the strong monotonicity of ®

[+ @) = 0) - (a=v) 2 e [ (=)

T

This implies

(A - A u = v > vanin(10) { (ca - vt v) + [w-v?

where the right side is elliptic because of Corollary 2.5.
]

Remark. 1. Theorem 2.6 is still valid, if we replace ®(u) by ®(u+U,) with a L2-function
Uy on I', which is seen from

[®(u+Uy) — (v + Up)| < l(u+Up) = (v+Up)| =cju—v]|
and
(®@(u+Ug) — (v +Up),u—v) > cl[(u+Uy) = (v+Up)|? =clu—-vl|?
where |.|, (.,.) denote the Euclidean norm and inner product in RV.
2. With ®(0) = 0 it follows that A(0) = 0 and thus Ja > 0, such that
(A(v),v) > av||v|* Vv eV (2.35)

Now the following theorem establishes the well-posedness of the homogeneous Stokes-
problem.

Theorem 2.7 (Lax-Milgram). Let
1. FeVx,
2. A:V = V*

e strongly monotone and

e Lipschitz-continuous.

Then Au = F has a unique solution u € V. If uy, uy are solutions with right sides Fy
resp. Fo, then

1
lu; — wg|| < —||Fy — Fyf|.
M1

Proof. See [Zei77)]. O
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2.2.2 Inhomogeneous case

We now show that the stationary problem with non-homogeneous Dirichlet conditions can
be reduced to the homogeneous case. In [GR86], p. 24, we find

Lemma 2.8. For given g € Hz(0Q)N with J50,8 - 1 =0 there exists Uy € H'(Q)N, such
that

V-Uy, = 0,
Uolygn = &
and ||[Ugllx < C||g||%,39 with C independent of g.

Due to our compatibility assumptions (see 2.1.2) we can thus construct Uy € H*(Q)Y,
such that (2.12) to (2.15) are fulfilled. The Stokes problem then reads: Find u € V(Uy),
such that

a(u,v) =(F,v) VveV (2.36)
With u = Ug + u this gives

a(u,v) = %/ﬂ(u +vr) (Va+va"): (Vv+ Vv’ + /F(l/ +ur)®(a+Uy) - v

- v
-~

=:a(,v)

43 [ on) (TUs+ VUT) & (w4 W),
Q

So if we define

(F,v) = (F,v) — %/Q(l/ +vr) (VU + VU{) : (Vv + Vv')

we have the same formal setting as in the homogeneous case with
a(t,v) = (F,v) WYweV.

Obviously F is continuous and together with the remark after Theorem 2.6 it is easily
seen that the above theory is still applicable. We have proved the following:

Theorem 2.9. For all right hand sides the Stokes problem (2.36) with boundary conditions
(2.18) to (2.15) has a unique solution.

Remark. Dirichlet conditions at some part of the boundary, i. e. measgn-1(S;) > 0, facili-
tate the analysis and grant existence and uniqueness under weaker assumptions.
Monotonicity (instead of strong monotonicity) of the wall-law is sufficient to establish
strong monotonicity of A, since an inequality of Korn’s type can be applied directly in the
proof of Theorem 2.6.
This means that (from the mathematical point of view) we can work with the ‘original’
wall law also at large distances from the wall.
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2.3 The stationary Navier-Stokes problem

In this section we will discuss existence and uniqueness of solutions of the stationary
Navier-Stokes problems again first for the homogeneous problem and then for the general
case.

2.3.1 Homogeneous case

Let V as in (2.17). For given F € V* find u € V, such that

(VP) ao(u,v) +a;(u;u,v) = (F,v) VeV

for the problems involving total pressure or

(VP) ap(u,v) + a;(wsu,v) =(F,v) VWweV

for the problems with static pressure. ag, a;, @;, F and F are defined in(2.26) to (2.31).
We first check that the additional terms a; resp. @; make sense.

Lemma 2.10. The trilinear forms ai(.;.,.) and @,(.;.,.) are well defined and continuous
on HY(Q)N x HY Q)N x HY(Q)N.

Proof. For N < 4 H*(Q)" is continuously embedded into L*(2)", so (w - Vu)v € L!,
(w-VuT)v € L' and the integrals are well defined. Applying Cauchy-Schwarz’s inequality
twice gives [(w - Vu,v)| < |Vulgs||V]oallWlloa < culi||v][1||w][1. The same holds for
|(w - (Vu)”,v)| and continuity follows. O

As for the Stokes problem we can again define operators A:V — V* A:V — V* by
(A(n),v) = ao(u,v) + @ (u;u,v) Yu,veV
and
(A(u),v) = ag(u,v) +ai(u;u,v) Vu,vev.

Since we have added convection, Lipschitz continuity of the involved operators is no
longer given and Lax-Milgram theory (+— Banach’s fixed-point theorem) cannot be applied.
To prove existence we will first show the existence of solutions of the restriction of the
problem to finite-dimensional subspaces, where due to compactness Brouwer’s fixed-point
theorem can be applied. Then we show that a subsequence of these solutions converges
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weakly to a solution of the original problem. This requires continuity in the sense that for
alveVandueV,u,eV,neN

weak lim u, =u = {limm<4<un),v>=<,4(u>,v>

n—y00 lim, 00 (A(uy,),v) = (A1), v)
An operator A with this property is called sequentially weakly continuous.
Lemma 2.11. For allv €V (A(.),v) and (A(.),v) are sequentially weakly continuous.

Proof. Let u,, — u weakly in H'(Q)", v € C*°(Q)". Then partial integration yields
(uy, - Vu,,v) = / (u -n)(uy - v) = (- Vv,uy,)
o0

R /BQ(u-n)(u-v)—(u-Vv,u)
= (u-Vu,v),

where the limit can be taken, because due to the compactness of the embedding of H! ()"
into L2(Q)Y and L?(0Q)N u,, — u strongly in L*(Q)" and L?(09)". Because of the
continuity of the trilinear form and the density of C®°(Q)" in H'(Q)V (u,, - Vu,,v) —
(u-Vu,v) forallve H/(Q)N D V.

The same steps can be carried out to prove (u,, - (Vu,)",v) = (u- (Vu)?,v) for all
velV.

By a similar argument, again using compact embeddings, it can be shown that u —
J- ®(u) - v is sequentially weakly continuous for all v € V, because

/Fq)(u)-v—/r@(um)-v

< / ®(u) — B(uy)||v)

E/ lu — uy,||v|
r

< 7ellu = uplogr|v

IN

lo,2.7-

Since the linear terms are sequentially weakly continuous per definitionem, the desired
result follows. O

Now the analysis can be carried out as in [GR86|, pp. 278, which is based on a corollary
to Brouwer’s fixed-point theorem, which we state without proof.

Theorem 2.12. Let C denote a non-void, convex and compact subset of a finite-dimen-
stonal space and let ¥ be a continuous mapping from C into C. Then ¥ has at least one
fized point.

Corollary 2.13. Let V' be a finite-dimensional Hilbert space, ¥ : V. — V a continuous
mapping with the property

Au>0:(¥(v),v) >0 VveV:|v|]|=p
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Then Iv € V with ||v|| < p, such that
U(v) =0.

From this we deduce the following result, which is slightly more general than the one
found in [GR86], p. 280:

Theorem 2.14. Let V' be a separable Hilbert space, F € V*, A:V — V*, such that
1. dp,a>0:
(a) (A(v),v) Z allv|* Vv eV vl <p,
(b) [[Flly- < ap
and
2. Vv eV : (A(.), V) is sequentially weakly continuous.
Then there ezists u € V, such that A(u) = F.

Proof. We take a basis {w;} of V', V,,, := span{w; : 1 < i < m} to define finite dimensional
subproblems

Find u,, € V,,, such that

(Pm) (A(u),v) = (F,v) Vv € V.

In order to apply the above lemma we define ¥,, : V,,, — V,,, by
(U (v), w;) = (A(v),w;) — (F,w;) V1<i<m,
i. e. zeros of W, are solutions of (P,) (and vice versa). From

(qlm(v)’v) = <A(V)’V>_<F’V>
> (vl = [Fllv) IVl Vv e Vn:[v]<p

v+)

it follows that the preliminaries of Corollary 2.13 are fulfilled with p = ||F||y+/a < p and
so (Py) has a solution u,, € V,, with ||u,| < [|F||v+/a.

Since the sequence {u,,} is bounded, there exists a weakly convergent subsequence
{un,,} with (weak) limit u € V. Due to 2. (A(uy,),v) = (A(u),v) for all v € V as

p — oo and

(A(a), w;) = (F,w;) Vi>1.
Since {w;} is a Hilbert basis
(A(u),v)=(F,v) VveV,
i.e. A(u) = F. .
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Lemma 2.15. If, in addition to the hypothesis of Theorem 2.1/, there exists &, such that
(A(uy), u; — ug) — (A(ug),u; — up) > @llu; — wy* Vuj,uy €V (2.37)

then the solution is unique.

Proof. Let uy, uy be two solutions, then {(A(u;), u; —us) — (A(uz),u; —u) = 0 and (2.37)
yields u; = us,. O

Theorem 2.16. 1. The homogeneous problem for the stationary Navier-Stokes equa-
tions in total pressure formulation has a unique solution.

2. The homogeneous problem for the stationary Navier-Stokes equations in static pres-
sure formulation has a solution for |F|| < cv? with ¢ = ¢().

Proof. We begin with the first statement. For existence we check the prerequisites of
Theorem 2.14.

1. a1(v;v,v) = 0, so (A(v),v) = ao(v,v) > a|v||? Vv € V. Hence there are no
restrictions on F.

2. Lemma 2.11.

Uniqueness follows from Lemma 2.15.
For the static pressure formulation we get from Theorem 2.6 (or rather the proof
thereof) and Lemma 2.10

(A(v),v)

> ao(v,v) = lai(v; v, V)|
> va|lv]]? —elv|?

with ¢; = min(1,¢)cr and ¢y > 0. A simple calculation shows that
vei|[|[v[? = ellv[* > afv]? Vv eV v <p

for p = py = v5~, @ = ay = v%, which also yield an optimal upper bound for ||F|| in the

context of Theorem 2.14. Now the rest follows as above from Theorem 2.14. O

2.3.2 Inhomogeneous case

Here the homogenization requires more consideration than for the Stokes problem.
Let again u = Uy + w, where Uy € H'(QV) is a solenoidal function satisfying the
inhomogeneous boundary conditions, then

(A(u),v) = ag(w + Uq,v) + a1 (w; w,v) + a1 (Ug; w, v) + a1 (w; Ug, v) + a1 (Ug; Ug, v).
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This leads to the definitions

(Aw),v) = ao(w,v)+ a1 (w;w,v),
ao(w,v) = % /Q(l/ +vr) (Vw+Vw’) : (Vv + Vv + /F(l/ +vr)®(w+Up) - v

+ al(UO; w, V) + CL1(W; U07 V)7

&1(W;W,V) = al(W;W,V),
1
(F,v) = (F,v)— 5/(y +vr) (VUp + VU{) 1 (Vv + VvT") — a1 (Ug; U, v).
Q
Obviously F is continuous, but we have to ensure that ag is still strongly monotone.

From |a;(v; Up, v) + a1 (Ug; v, v)| < ¢||Ugl|1||v||? and Lemma 2.8 we see that for suffi-
ciently small boundary data g there will still be a (unique) solution.

Theorem 2.17. If there exists g € H2(0Q)"N, such that conditions (2.8) to (2.11) hold,
then the following existence and uniqueness results are valid:

1. The inhomogeneous problem for the stationary Navier-Stokes equations in total pres-
sure formulation has a unique solution for ||g||%,6ﬂ < v with ¢1 = ¢1(9).

2. The inhomogeneous problem for the stationary Navier-Stokes equations in static pres-
sure formulation has a solution for ||g||%7aQ < cv and ||F|| < eev? with ¢; = ¢;(2).

Remark. The condition on F means in our context of pressure drop problems that cs|k|; +

camax;g,. . |Pj| < v

2.4 The non-stationary Navier-Stokes problem

2.4.1 Classical formulation

C¥((0,T) x ), vr € C¥'((0,T) x Q), find u € C**((0,7) x Q)N N C»'([0,T) x Q)
pe CULY(0,T) x Q) NC*((0,T) x Q) with initial condition

We will be concerned with the following problems: For given k € C%'((0,7) x Q) N
N

u(0,.) = u’,
such that

du+u-Vu = —Vp+vAu+V- (v (Vu+ (Vu)')) - ng
V-u = 0

with the wall-law

u-n=>0 on T
n-T(p,u)-s;+ (v+uvr)®(u)-s; =0
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and

u=nug on Sy,
_ dun _ p
p (V+VT) on f)J(t) } on SQj, 7;:1,2,0§j§7',
u-S; =1u;-S;
T(p,u) - n=0 on S3
or equivalently
du+u-Vu—u-(Vu)" = -Vp+vAu+V- (vr (Vu+ (Vu)'))
Viu = 0

with boundary conditions as above with p replaced by p.

2.4.2 Weak formulation
For given F, F € L%(0,T;V*), vr € L*(Q), ® : RN — R" find

ue L*(0,T;V)NL®0,T; H)

with

u0)=uv’ e H:={velC®Q)N:V-v=0}
and
V::{veHl(Q)N:V-VzO,v-n:OOHF,V:OonShv-s:Oonng},

such that

(VP(t)) L(u,v) + a(u,v) + @(wyu,v) = (F,v) WweV

for the problems involving total pressure or

(VP(t)) L(u,v) + a(u,v) + a(wu,v) = (F,v) VWeV

for the problems with static pressure. ag etc. are defined in (2.26) to (2.31).
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2.5 The k-c¢ system

As for the analysis for the Navier-Stokes system (with given vr) there are attempts for the
k-e equations (with given velocity u),
ou

2
Ok +u-Vk = -~ ‘Vu+VuT|2+V-<cuk?Vk>—e,

1 T2 k? €
O +u-Ve = Ek‘Vu—i—Vu | + V. |c—Ve _CQE
€
with parameters as defined in the previous chapter.
Unfortunately the results here are not as satisfying as above.

2.5.1 Existence and uniqueness

We know no existence or uniqueness results for the k-e system itself.

Some attempts concentrate on a simpler model, which is formulated in the transformed
functions ¢ = €2/k?, @ = k/e and contains some simplifications (see also section 3.4). For
this system we find an existence result in [MP94], uniqueness is still an open problem.

2.5.2 Positivity

Positivity of £ and € is an essential physical as well as a mathematical requirement.

In [MP94] we find a proof based on a transformation to the k-0 system (with 6 defined
as above). Assuming the existence of smooth solutions, positivity of & and € can be shown
by maximum-principle-like ideas. The fact that € is greater than zero now follows directly
from € = k/6.

We think that there is a gap in an essential part of the proof, which we have not been
able to fill yet. Thus positivity of k£ and € seems to be plausible, but not guaranteed.
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Chapter 3

Discretisation and numerical analysis

The discretisation is done in two steps. First we proceed with the finite element approxi-
mation of the Navier-Stokes part

du+u-Vu = —Vp+V-((v+vr) (Vu+Vua")),
V:u = 0,

where v is assumed to be a known non-negative function, then — again with the use of
finite elements — we discretise the k- and e-equations

2 2
Ok +u-Vk = %%‘VU+VHT|2+V- (cu%Vk) — €,

1 T2 k? €2
at€+U‘V€ = 5k‘Vu+Vu | + V. CE?VG —02%

with given u.

3.1 Preliminary considerations

The finite element approximation of saddle point problems (as the Stokes system) is a
well-studied topic.

We use a triangularisation Ay, := {6, : 7 € Ry} of Q with an index set Ry and choose
finite element spaces X, and M, for the primary variables u and p (for definition of X, M
see the previous chapter). For M}, we use the space

My, ={pe M :pls € P(5,),r € Ry}

of piecewise polynomials of degree [.
For the choice of X, there are generally two possibilities

e (Conforming elements:

Xy, = {V €X: ?)i|5r € Pk(&,«),T S Rh}
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e Non-conforming elements: Here we require continuity only on Gauss points on all
triangle edges (e. g. centers of edges):

X ={v:vils, € Pc(6,),r € Rp,v-n=0o0onT,v=0o0n S;,v-s; =0o0n S,
v continuous at the Gauss points on all triangle sides}

Analogously to the continuous problem we define
Vi :=4{v € Xp, : b(v,q) = 0Vq € M}.

From the analysis of the continuous problem it is evident that the following properties of
the pairing of spaces (X}, M},) suffice to grant a unique solution for the finite-dimensional
problem and the usual approach is to verify these conditions:

1.
a(vy,vy) > a/||vh||2 Vv, € V),

and

. b(vhaph)
inf sup ——= > (.
ph€My v, ex,, || Vall[|pnl]

If 3 can be chosen independent of A, then usually (e. g. for homogeneous Dirichlet boundary
conditions) convergence can be shown.

For non-conforming elements (e. g. P;-P,) the inf-sup condition can easily be proven,
they have also some advantages from the computational point of view. Unfortunately
they cannot be used here, because in general af(.,.) is not elliptic on V},, as the following
counterexample shows.

Example 3.1. Assume that on the square [—2,2] X [—2,2] we have a special mesh as in
Figure 3.1.

We define a piecewise linear vector function u, which is 0 outside regions I to IV (and
therefore at the boundary) and

in
U1 = 9 — 1,
U = —I1 + 1,
in IT
U1 = —T9 =+ 1,
Uy = T1 + 1,
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Figure 3.1: Non-conforming finite element on square.

in ITT
Uy = 9+ 1,
Uy = —T1— 1,
in IV
Uy = —T9— ]_,
Uy = IT1— 1.

It is easy to check that u is continuous at the Gaufl points (= midpoints of the edges),
V - u = 0 piecewise and e(u) = 0 piecewise also. Hence 0 # u, but a(u,u) = 0, the
consequence of this being that no non-conforming finite elements of any degree can be
used for the stress tensor formulation of the Stokes problem.

From the computational point of view we want to keep the space dimensions — and
therefore the degree of the polynomials — low. It is known that the P;-F, element is not
stable (i. e. does not fulfil condition 2. with  independent of h), but it can be stabilised
by a least squares method. For the implementation and for algebraic multigrid methods
(c. f. section 3.6.3) it is also convenient to use the same elements for velocity and pressure,
and for that reason we choose a stabilisation technique for the conforming P;-P; element,
first introduced by [HFBS86].

Remark. We linearise the wall-law at each point of the boundary at the value of the previous
time step. Due to the monotonicity of the wall function ellipticity of the (now bilinear)
form is preserved.

In the following section we derive the method and prove convergence for the Stokes
problem.
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3.2 Spatial discretisation of the Stokes problem

In [FS91] the bilinear form associated with the saddle-point problem of the standard mixed
formulation is modified to become coercive and convergence is shown for the following
transformed systems:

Find u; € X}, and p;, € M), such that

A(up, pp;v,q) = F(v,q), Y(v,q) € Xp X My, (3.1)
with
A(u,p;v,q) = a(u,v) + b(v,p) + b(u, q) — ac(p, q),
F(v,q) = (f,v)—a Y b5 (f,Vq)s,

reRyp,

C(p, q) = Z h’(QST (Vp: VQ)Jr

reRy

This formulation is obtained by adding up the weak formulations of the mass equation
and the momentum equation (leading to an equation equivalent to the original problem)
and subtracting the strong formulation of the momentum equation on each element, tested
with Vg and weighted with the mass of each element. The second derivatives vanish for
our FEM space on each element, so if we assume element-wise constant vr the diffusion
terms vanish.

Remark. (MINI element). Another possibility for the stabilisation of the P;-P; element
leads to the so called MINI element. The discretised velocity space is extended by bubble
functions, i. e. we replace X} by

Xh = {V . V|5T = u|5r + b(jrd/gr, ue Xh,@(;T € RN},

with bs, (x) = A1 A2)3, where the ); are the barycentric coordinates of x with respect to 4.
In [BF91] we now find the interesting fact that if we eliminate the bubble functions at
element level, the resulting discretisation is equivalent to (3.1) with « fixed element-wise.
This connection gives hints for a ‘good’ choice of a and for example it is seen that «
should be of order O(1/v).

Theorem 3.2. Suppose the solution of (VPy) satisfiesu € H*(Q)N and p € H*(Q). Then
for a >0 (3.1) has a unique solution satisfying

lu—uplli + |lp — pullo < C(hluls + B|pls)- (3.2)

Remark. We have formulated the theorem in a version adapted to our problem. A more
general formulation for higher order elements can be found in [FS91]. In general « has to
be smaller than some constant C;, which comes from the inverse inequality

Cr Y W lIV-eMligs < lle@)lls, v € Xa.

reRy

In our case this inequality is fulfilled for arbitrary C7, because the left hand side is zero.

95



To prove the theorem it will be necessary to present some intermediate results. First,
we define

laln = (aclg,q))'*

and get the following estimates via scaling arguments

gl < Cllgllo, g € M, (3.3)
inf [p—q|n < Ch%pla, pe H*(Q).

qEMy,

We first show the boundedness of A with respect to the norm

1/2
1w, p)l| = (I[ul2 + [1p]2) />

Lemma 3.3. There is a positive constant C, such that for all (u,p) € X, x My and
(v,q) € X, x My, we have

A(u,p;v,q) < Cll(a,p)l - |(v, g)ll-
Proof. With the Cauchy-Schwarz inequality we get

= 1/2 1/2
A(w,p;v,q) <C ([ull? + llpll§ + Iplz) ™ - (VT + llalls + lali) ™ +

+/F(1/+1/T)<I>(u-s)v-s,

and with
/(V +ur)®(u-s)v-s < Cullv + vrflsor /(u L8)(v-s)
r B r
< Collull1]|v]x

and the Cauchy-Schwarz inequality for vectors we get

5 1/2 1/2
A(w, p;v,q) < Cs ([[ull2 + [Ipll2 + [p2)""* - (I3 + llgll3 + 1af2) .
The estimate (3.3) completes the proof. O

To show a stability inequality we first need the following lemma. The proof (even for the
restricted space, where it is assumed that homogeneous Dirichlet conditions are imposed
at some part of the boundary) can be found in [FS91].

Lemma 3.4. There exist constants C; and Cy, such that for all p € My,

sup (V-v,p)

> 01||P||0 - 02|p|h-
ozvex, vl

Now we can prove a stability lemma.
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Lemma 3.5. There ezists a positive constant Cs such that for (u,p) € X, x M}, we have

A(u,p;v,q

sup  AWPVD 5 o
vaoexaxm, (v, a)l

(v,q)#(0,0)

Proof. Let u and p be fixed. With the results of section 2.2 we immediately get
A(u, p;u, —p) > Cull(w,p)||* + Ip[3.

Now, let w € X} be a function, for which the supremum of Lemma 3.4 is attained and
assume ||wl|; = ||p[lo. We get

A(u,p; —w,0) = —%((1/ +vr)e(u),e(w)) — /(y +uvr)®(u-s)w-s+ (V-w,p)

r
> —Csllull [jwll: - / (v + v0)B(u- S)w - 5+ (V - w.p)
T

>
> ~Csllullullwll = Collulls[Iwll + Cullpllg — Callpllolpln
> =Crllullslipllo + Cillpllc = Callpllolpln-

The formula

ng + %gf >y, VB3>0,
yields
Atu,pi—w,0) 2 ~Callall — Glpl + (- 504 + €1 - 52 ) o
> ~Cullullt = Culpl} + Cualpl

with Cyo > 0, if 3 is chosen small enough. We choose v with 0 < v < min{C4/Cs,1/Cq}
and set (v,q) = (u — yw, —p). Combining the results from above gives

A(u,p;v,q) = A(u, p;u — yw, —p) = A(u, p; u, —p) + 7A(u, p; —w, 0)
> (Cy = 7Cs)l[ullf + (Cs+7Co)llpllg + (1 —vCy)lpli
> Cull(u, p)|I*.

For our special (v, ¢) we have

v, @l < (lalls +lwll)® + el < 2lull} + 291wl + [Ipllo
= 2[[ufl} + (1 +29)lpllg < Crall(w, p)II*,

which completes the proof. O
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Proof of Theorem 3.2. Existence and uniqueness follow directly from the Lemmata 3.3 and
3.5 and the theorem of Lax and Milgram. Now, let 1 € X} be the interpolant of u and
p € Mj, the L%-projection of p. From Lemma 3.5, the formula /22 +y2 > 1/1/2(z + y)
and scaling in (v, q) we get the existence of (v,q) € X}, X M, such that

[0 —uplls + [P — pullo < Alun — 0, pr — P; v, q) (3.5)
and
VI + llgll§ < Cus, (3.6)
for fixed Ci3 > V/2/Cs. With easy but lengthy calculation we can show
A(up, — 0,p — B3 v, q) < CA(u — 0,p — v, q). (3.7)
Since
Alu — i — 5 <0 =2 =2 _=12)\1/2 2 2 2\1/2
(w—1,p—5v,q) <Cis (lu—all}+p—-5l5+p—5) " - (IVIF + lall§ + lal7)
we get, using (3.3), (3.5), (3.6) and (3.7),
@ —uslls + 115 — pallo < Ci6 (lu—alls + llp — Bllo + [p — Bln) -

The estimate of Theorem 3.2 now follows from standard interpolation estimates. O

3.3 Discretisation of the total derivative

In [MP94] a method of characteristics is used for a stable discretisation of the total deriva-
tive. However, the implementation is rather complicated in our context and hence we de-
cided for a streamline upwinding scheme (SUPG = Streamline Upwinding Petrov Galerkin).

In applying the upwinding idea to finite elements, one would want to use test functions
with more weight upstream than downstream. This can be realized (and in that case we
can still work on the same elements) by testing the momentum equation on each element
with v, + Byuy - Vv, instead of vy,

(Upe + up - Vup, vy + Bpup - Vi) + a(up, v + Bpug - Vvg)+
(Vph’ Vi + Bruap - Vvh) = (f, Vi, + Bruy, - VVh)-

B is a parameter of magnitude O(h) with h the discretisation parameter. A semi-implicit

time discretisation takes the form

u, —u}

—h____h + 112 . Vuﬁ“, Vi + ﬁhuﬁ . Vvh) + a(uZ“, v+ ,Bhuﬁ . VVh)-i-
(Vopth, va) + (Voptt, Brup - Vvi) = (f*T, vi + Buujy - Vvy).

Practically it turns out that among all the additional terms only the one of the form
Br(wVu,wVv) with ‘old’ velocity w is important, which can be viewed as the weak
formulation of a diffusion term

BV - (w @ wVu)

with diffusion only along the streamline.
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3.4 The k- and e-equations

We also use piecewise linear conforming finite elements to discretise our second ‘subprob-
lem’

k? k?
Dtk = CN?E + V. (C“?Vk> — €,

k? €
DtE = ClkE + V- (CG—VE) - CQE,
€

with D, = 0/0t +u -V and given E > 0. According to some authors (and also our own
experience gained throughout the work on this thesis) it is very difficult to obtain a stable
scheme for this set of convection-diffusion equations (plus production and dissipation),
which moreover preserves positivity of k£ and e. We will follow the suggestions in [MP94].

3.4.1 First method: A semi-implicit multi-step scheme utilising
an auxiliary system

We introduce the new variables ¢ and 6 defined by
=€k 0=kl
Substitution of £ and € in the above equations leads to the ¢-0 system

D0 — diffy — E(c, — ¢1)0? +1— ¢y =0,

3.8
Dy — diff, + (3¢, — 2¢1) Epf + (2¢2 — 3)% =0, (3:8)

where diffy and diff, are complicated diffusion terms.!

We now suppose that at a given time step the Navier-Stokes equations have been solved
with the old value of vr. Now the k-e system is solved via a two step algorithm. First
we take a time step using only the convection, production and dissipation terms of the
-0 system. Production and dissipation terms are split into implicit and explicit terms to
obtain linear systems only. We notice that only positive entries are added to the diagonals
of the system matrices. Then we transform the ¢ and 6 solutions to k£ and ¢ and perform
a diffusion step. This leads to the following semi-discretised scheme.

Algorithm 3.6.

1. Compute

m __ 1.m ), m m __ _m2 m3
h o =kplen,  on =€y /Ry

'Tn [MP94] these terms are replaced by simpler ones. For this system an existence result can be derived.
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2. Solve

OO wp) + (- VO wy) + (0707 P E" wy)[er — 4] = (c — 1, wp,).

3. Solve
(B2, wp) + (u- Vgt 2, w) + (3¢, — 20| B o2 ) +
-+ ([202 3] m—|—1/2 (phm+1/2’ wh) = 0.
O
4. Compute
km+1/2 _ 1 6m—|—1/2 _ k}Ter—l/Q
h o m m 22 h B m+1/2°
o +1/2 (eh +1/2) 0,
5. Solve
km?
(O wy) + cu(:—ka;”“, Vuwy) = 0.
h
6. Solve
km?
(8,562”“, 'bUh) + Ce(:—mVGZH_l, th) =0.
h

Remark. The discretisation of the time derivatives BtQZLH/

values of #}" and 0m+1/ resp. ' and gpmH/ ®. The discretisation of the time derivatives
O,k resp. Gtem“ should use the values of km+1/ > and k" resp. e;nJr/ and €.
Nevertheless the size of dt, the discretisation parameter of time, should not be d1v1ded by
two as the two step method might indicate.

resp. 8tg0h ? should use the

3.4.2 Second method: A semi-implicit multi-step scheme in k
and ¢ only

The previous method turned out to be sensitive to small errors in the solution of the

Navier-Stokes system (e. g. due to too early interruption of the convergence process),

because they appear in the denominator of the boundary conditions for #. Therefore we

keep the multistep idea but use it on a system in £ and € only.
This leads to the following algorithm.

Algorithm 3.7.
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1. Solve

(k% wn) + (- VT2 ) + (k2 ) = e (S By ).
h h
2. Solve
(0 ;LnH/Q, wy) + (u VGZZH/Z, wy) + ¢ (eZnH/QZLm,wh) = c1 (k" E, wp)
h
3. Solve
km2
(O wp) + e (- - VEM V) = 0.
h
4. Solve
k'
(et wp) + ce(—2— o Vert!, Vauy) = 0.
h

A critical problem now is the stabilisation of the convective parts. The streamline
diffusion method used in the Navier-Stokes equations is not applicable, because it does not
guarantee the positivity of £ and e. In [Pir89] and [MP94] the method of characteristics is
used, but unfortunately its implementation is rather complicated. We use a method based
on the same idea: upwinding.

3.4.3 Upwinding

The upwinding idea for finite volume methods is adapted to finite elements. We will apply
it to conforming triangular elements in 2D, but the procedure can be extended easily to
non-conforming elements or different types of polygons or polyhedra.

A secondary net is generated in the following way. In each triangle we connect the
center of mass with the midpoints of the three edges by lines and get a box around each
vertex as in Figure 3.2.

We now discretise a convective term uVi.

(uVy,w) = /u181¢’w+uzaz¢w
/81 uh)w + O (ugt))w /@wa u

The testing function w is now ‘lumped’ on the boxes and partlal mtegration is used.
o+ rww S w(r) [ V- @)
Q : B;

= P )
;w( ) 8Bi1l)u n
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Figure 3.2: Part of a triangle-FEM net and its secondary net. B,, is the box around the
vertex P,,.

As shown in Figure 3.2 we divide 0B,, into segments I, ;, where the /; are the numbers of
the neighbouring nodes of P, and 7 = 1,2. We proceed in a way that v is approximated
with its value “against the flow”:

/ wu'nzqﬁkml/ u - Ny,
kal kal

where

Vkm1 = w(Pm) if frkml u- Ny 2 0
’(ﬁ(Pk) if frkml U-ngy <0

and n,,;; is the normal vector of I';,,; directed from P,, to P;.

The theoretical aspects of this method can be found in [Fei93] (for non-conforming
elements) and [BBF90].

Using this technique the generated matrices have an important property.

Definition 3.8. A n-dimensional matrix C = (C;;) is called M-matriz iff
1. C;; >0foralli=1,...,n and
2. Cj;<0foralls,j=1,...,n,%# j and
3. C ! exists and C! > 0 (component-wise).

Remark. The third property in Definition 3.8 is equivalent to the fact that C is inversely
monotonous, i. e.

x<y = C'x<Cly
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(component-wise). For x = 0 we see that if our convection matrices were M-matrices,
we could ensure positivity for ¢ and 6 resp. k& and € for pure convection. [BBF90| show
this property, when the centers of the circumcircles are used for the construction of the
secondary net instaed of the centers of mass.

Lumping of the production and dissipation terms preserves the M-matrix property,?
and because of a discrete maximum principle for diffusion terms (for constant vr) we can
expect positivity for £ and e.

3.5 Approximation of the boundary layer

In some implementations the outermost layer of cells of the grid is taken as approximation
of the physical boundary layer, which means, roughly speaking, that ¢, denoting the width
of the boundary layer, is set to the discretisation parameter,

d=h.

Sometimes the implementors distinct, whether h(= ¢) corresponds to the viscous sub-layer
or the turbulent wall-layer, sometimes they do not, which is particularly bad, because
in that case an additional boundary condition for the continuous problem is implicitly
assumed.

In this section we show which conditions these are. Even if they are sensible for the
velocity, this does not change the fact that the model is not valid at small distances to the
wall. We therefore choose § dependent on the point of the boundary, but independent of
the discretisation parameter.

3.5.1 No distinction of layer

We assume that § corresponds to the turbulent wall layer.

Use of boundary condition (1.34)

We have
u-n = 0,
ou-s (1 k6% |Ou-s
= —kKd —In | — :
vos " on (/-c < On >+ﬂ>
For § — 0 we get the boundary condition
u=0,

2This is indeed sensible, because the production and dissipation operators are multiplicative and not
differential operators.
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(unless Ou - s/0n — o0,) which seems reasonable at first sight. Nevertheless we get the
following contradiction: Assume (w. 1. 0. g. ) u-s > 0 near the wall and Ju - s/0n # 0.
Thus du - s/0n > 0, as for small ¢ the logarithm changes its sign and goes to —oo. This
contradicts the fact that u — 0. Consequently we would have to pose the additional
boundary condition du - s/0n = 0, which is one too much in general.

Use of boundary condition (1.35)
We have

1
u-s=—v
K

ou

on

a_u
on

ou

Van

ln(5 1 )—ﬂ
v

~
ln\/g—i—ln(s—f—% ln‘g—:

If we want the boundary conditions not to diverge to infinity for § — 0 we need to have
the additional boundary condition

ou 0
on
and also get
u=20,

which is again one condition too much.

3.5.2 Distinction of layers

For § — 0 we arrive sooner or later at the viscous sub-layer. Here we could switch to
the linear wall function (c. f. section 1.4.3) which leads to the sensible Dirichlet boundary
condition

u=_0.

From the mathematical point of view we get no problems here, but it has to be noticed
again, that in the viscous sub-layer the k-e¢ model is no longer valid and the numerical
results could contradict physical reality.

3.6 Solver for the linear systems

3.6.1 GMRES — a Krylov space method

In this section we describe the method we use to solve the arising linear systems of the
form

Ax = Db,
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where A € R(™™ is not necessarily symmetric or positive definite, x,b € R", the Gen-
eralised Minimal Residual Method, GMRES for short. We will only provide a compact
overview, details can be found in [Vos93].

In this section we use ||.|| for the Euclidean norm.

Definition 3.9. The k-th Krylov space of v and A, denoted by Kx(v, A), is defined as
Kr(v,A) ;= span{v, Av, ..., A* v}

The method is based on the Arnoldi process, which produces an orthonormal basis
{q',...,q"} of Kr(q', A) and a representation H, € R**) of the orthogonal projection of
A to Ki(q', A).

The k-th iterate of our solution procedure x*

is constructed as

Xt = X"+ Quy”,

with y* € R¥ chosen such that
||| = |b — A(x° + Qxy")|| = min.

It can be shown that this minimum can be calculated with a QR-factorisation using Givens
reflections.

GMRES is an exact method, which stops at the solution after finitely many steps,
but the serious problem is its enormous memory consumption, if we have large linear
systems because all the basis vectors q° have to be stored. Thus there are two widely
used possibilities of modification. One is to restart the GMRES method periodically after
m+ 1 steps, the other to truncate the basis, i. e. to store only the previous m basis vectors
q*,...,q* ™. A new vector q**! in the Arnoldi process is then chosen to be orthogonal
only to these m vectors. We use the second method, denoted as GMRES(m).

The following algorithm shows the full GMRES(m) method including a preconditioner
M. For the moment, let M equal I, we will describe our choice of M in sections 3.6.2 and
3.6.3.

Algorithm 3.10. Preconditioned GMRES(m). Iterative Solution of Ax = b, with
preconditioner M.

Choose starting solution x°.
q! =M (b - Ax")
z' = |dq'|
q' =q'/z!
repeat

begin

for k=1 tom do
begin
qk+1 — M—lAqk
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for:=1to k do
begin
hae = ()" "+
q" =" = hag’
end
hige = [l
qu = qk+1/hk—|—1,k
end
for k=1 tom do
begin
cc =4/ R + M1 g
¢ = hg/cc
s = hypy1k/cc
hkk = CC
fori=k+1tomdo

(rs) = (52 ()
hk+1,i S \s —c hk+1,z‘
Zk _[c S Zk
()= 6)
end
for i = m downto 1 do
Yi = (Zi =D i hz’jin) /P
x™ =x"+ 3" v’
" =M~ (b — Ax™)

X0 — r0 —rm
7
z = |||
ql — I‘O/Zl
end

until |z;| < tolerance

3.6.2 Preconditioning

If we want to solve the linear system arising from the Navier-Stokes equations using the
GMRES(m) method we face the following well known problem.

The convergence rate of an iterative solver depends strongly on the condition number
of the matrix, which gets worse as the discretisation parameter gets small. Thus we use
preconditioning, a well known technique preventing this, which can be found in any stan-
dard textbook on numerical solution of partial differential equations, e. g. [GR94]. Here
we only give an informal motivation.
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We solve
M 'Ax=M"'b

instead of solving the original system. If M is ‘similar’ to A then M~'A is ‘similar’ to I.
Thus if the inversion of M is computationally cheap, the solution procedure of the system
should get much faster.

One possibility for preconditioning is to process some steps of an iterative method for
a preconditioning matrix, e. g. A itself.

3.6.3 Algebraic multigrid

We use an algebraic multigrid method (AMG) as preconditioner for GMRES(m), but up
to now as a black-box like tool. Thus, we wont dwell upon the details but introduce the
idea roughly. The interested reader may be refered e. g. to [Hac85] and [RS87].

The multigrid idea in general is to smoothen the high frequencies of the error of a
specific iterate on a fine grid and perform a correction step on a corser grid, utilising
recursively the same idea again.

In standard multigrid methods (MGM) a priori a cascade of fine to coarse grids is
known, and the computer program has to manage them all, which leads to an additional
cost of memory.

To avoid this, AMG was developed. Here, only the finest grid is known, coarsening is
carried out no longer on grid basis but on matrix (interaction) basis. Thus, it is very pleas-
ant that we have used elements of equal order for the velocity and pressure approximation
for the Navier-Stokes equations. Otherwise the fitting of the pressure nodes to the right
velocity nodes after a coarsening step would have been a non-trivial task (actually there is
no more grid information).
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Chapter 4

Results and conclusions

4.1 Numerical results

Using the methods and techniques from the previous chapters we have developed a com-
puter program (written in C++) based on Ferdinand Kickinger’s mesh generator and AMG
solver NAOMI ([LZK99]).

We will now report about the performance of the algorithm for some classical test
problems with simple geometries. It is generally noticed that the simple iteration between
the k-e¢ equations and the Navier-Stokes system in the numerical algorithm does not lead
to satisfactory convergence for high Reynolds numbers.

Although we restrict ourselves to stationary problems for the moment, we solve a
time-dependent system with (temporarily) constant boundary data. We start with small
Reynolds numbers and gradually increase Re during the first time steps, as there are still
problems with the solver for the linear systems for small v

4.1.1 Flow between two flat plates

The computational domain is the rectangle [0, 5] x [0, 1]. We use a Dirichlet boundary with
parabolic velocity data for the inflow, the wall-law at the plates and ‘do-nothing’ at the
outflow. The Reynolds number is set to 10000. After some experiments it turned out that
0.05 is a good choice for §, the thickness of the wall layer, i. e. we checked a posteriori that
all the velocities at the boundary correspond to the logarithmic layer.

k and € at the inflow are set to small values, e. g. £ = 0.07, ¢ = 0.02, which appeared
to be the order of magnitude of stationary solutions for low Reynolds numbers far away
from the inflow boundary (independent of the inflow conditions).

Physical experiments show that the parabolic inflow velocity profile should flatten in
case of turbulent flow (it stays parabolic in the laminar case). This is also what our results
show (Figure 4.1).

From the results of £ and € in Figure 4.2 we can infer that turbulence is stronger near
the walls.
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Figure 4.1: Profile of velocity of flow between two flat plates at Re = 10000 compared
to laminar flow (parabolic). (The blip in the turbulent profile is due to a postprocessing
problem)
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Figure 4.2: Profile of k and € of flow between two flat plates at Re = 10000.

When experimenting in this case we also noticed the following effect. The pressure,
which should decrease linearly in z-direction, looses this behaviour near the boundary
and gets flatter (see Figure 4.3). We think that this is a result of the stabilising part
of our system, where we actually add Ap to the conservation of mass. Now the natural
boundary conditions for the Laplacian are homogeneous Neumann conditions, violating
the linear behaviour of the pressure. This hypothesis is also supported by the fact, that
this phenomenon disappears for finer grids (where the influence of the stabilisation term
decreases quadratically in the discretisation parameter).

4.1.2 Driven cavity

Consider a fluid in a square, which is driven by flow from left to right at Re = 550 along
the top boundary. k and e are both set to 107°. (The problem of prescribing values for k
and e could be avoided by using a wall-law at the top boundary also.)

We compare Stokes flow with homogeneous Dirichlet conditions at the remaining walls
with according Navier-Stokes flow, Navier-Stokes flow with the wall-law and the solution
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Figure 4.3: The pressure changes its linear behaviour near the boundaries. (Stokes case
without turbulence model).

of the complete k-€ system (with wall-law), all shown in Figures 4.4 to 4.7.

Again we assume constant width (§ = 0.05) of the boundary layer. This is not quite
justified because of a wide range of velocities at this artificial boundary, and consequently
some cells near the bottom corners are in the viscous sub-layer. However turbulence is weak
in the bottom part of the cavity and errors in k and e (due to the incorrect approximation
of the boundary layer) are not noticable in the momentum equations.

The eddy viscosity vy shown in Figure 4.10 is considerably larger than v ~ 0.0018
and the effect is a strong exchange of impulse across the stream lines, which seems to be
overestimated. This could be due to a general problem with eddy viscosity models, which
are based on the assumption that turbulence occurs in regions with high velocity gradients.
This is generally, but not always true. In particular there appear large gradients at the top
of the cavity for Navier-Stokes flow, but nevertheless the motion is still laminar (at least
in the middle). This leads to high production of turbulent kinetic energy yielding strong
turbulent diffusion.

4.2 Conclusions and prospects

Contrary to engineering practice, where often the continuous model and the discretisation
thereof get mixed up, which generally is not consistent for h — 0, we have shown that
it is possible to use a model, which is in agreement with the physical background, derive
mathematical theory and finally produce encouraging numerical results. In particular
this approach leads to convergence of the solutions of the discretised problems (which is
confirmed by our numerical tests) for h — 0.

Sure, there is still much to be done:

e Physical modelling: The k-e¢ model has several know weaknesses (see [MP94]), but
still it is widely used, because in many cases it produces reasonable results. Of course
there are more involved models, as for example the Reynolds stress models, but the
question is wether the considerable increase of complexity is justified.
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Figure 4.4: Stokes flow in a driven cavity.

Still we are not sure, which handling of the wall-law is the best. Maybe a ‘better’
wall-law would lead to more accurate results.

Analysis: It seems that no stronger results can be shown for the stationary Navier-
Stokes system with the techniques presented in chapter 2 in a context as general as
here. Maybe some advance could be made for the non-stationary equations.

An extensive analysis of the k-e system is still an open problem, but we are not very
optimistic about much progress in this field in the near future.

Numerics: In a next step the program should support three dimensional geometries.
The mesh generator is already capable of this, therefore we will have to deal with
an adaption of the matrix generation to this problem, which is more a matter of
technical details than of fundamental numerical principles.

Besides, we do not know how the techniques work for more complex geometries in
connection with high Reynolds numbers, which are important for practical applica-
tions. Maybe a ‘tuning’ of the solver (GMRES with AMG preconditioning) will get
essential in this case.
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Figure 4.5: Navier-Stokes flow at Re = 550 with Dirichlet conditions at the boundary.

Figure 4.6: Navier-Stokes flow at Re = 550 with a wall-law at the solid boundary.
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Figure 4.7: k-e-solution at Re = 550 with wall-law.

Figure 4.8: Turbulent kinetic energy k.
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Figure 4.9: Dissipation rate e.

Figure 4.10: Turbulent diffusion vr.
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Appendix A

Properties of filters

Some of the properties are obvious for some filters, some are by far not trivial or just not
fulfilled.
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Proof. 1. (a) trivial
(b) We first assume v € C'. Then

1 1
0 (u)y = O /B v ay= g /B Oy, 1) dy = (O

and for fixed 2o € G
1 1
Vi{ug = Vi u(y,t) dy = Vi
B |B| B(x,r) |B| B(
1 1
= — Vu(x —x9+y,t)dy = —/ Vu(y,t) dy.
‘B‘ B(xq,r) ‘B‘ B(x0,r)

u(x —x9 +y,t) dy

X0 a"‘)

(c) Counterexample: u(x,t) = |x[2. With |y|*? = |x — y|? — |x* + 2(x,y) and
my = ‘1?| fB(O,T) ly|? dy > 0

1 2
(s = /B Wy =meixe g [y dy = ma it

~
2[x[?

Hence

() ) = ma + (%) s 7 (xP) -
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(d) see (c)
2. (a) trivial
(b) Again assume u € C'. Obviously

t t
By () = Oy /t w7 dr = = [ dulx, 7)dr = (Byu),

and (Euler)

t 1 t
V (u), V u(x, 7)dr = = Vu(x, ) dr = (Vu),
Ti Ti

(c) Counterexample: u(x,t) = 3t2.
1 t
(3t%), = =~ / 3r%d T = 3t*Ty — 3T + 17
Ty Ji-m
Hence
((3t%), ), = (3t%), — BtTL + T} # (3t*) .
(d) see (c)
3. cf. (c) and (d)
4. (a) trivial

(b) For sufficiently smooth u =, uk(t)ei(k’x)

0, (u)p = 0, Z Z Byunc (1)) = (Byu)

k|<N k|<N
and
=V z )eilex) = Z uge () ike™ ™™ = (V).
KI<N <N
(c) Clear:

(W p)p = < Z uk(t)ei(k’x)> = Z uk(t)ei(k’z) = (u)p -

k| <N r o k<N

(d) For u= 3", uge!®® v =3 vei®2) in general (u), (v) contains terms up to
k| = 2N, whereas (u (v) ), only has terms with |k| < N

5. Unfortunately we are not able to contribute to this question.
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