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Summary. In this short article, we describe how the correlation of typical diffu-
sion processes arising e.g. in financial modelling can be exploited – by means of
asymptotic analysis of principal components – to make Feynman-Kac PDEs of high
dimension computationally tractable. We explore the links to dimension adaptive
sparse grids [GG03], anchored ANOVA decompositions and dimension-wise integra-
tion [GH10], and the embedding in infinite-dimensional weighted spaces [SW98].
The approach is shown to give sufficient accuracy for the valuation of index options
in practice. These numerical findings are backed up by a complexity analysis that
explains the independence of the computational effort of the dimension in relevant
parameter regimes.

1 Introduction

The motivation for this research comes from financial engineering. Often, the
value of financial derivatives is conveniently modelled by partial differential
equations. This can lead to highly efficient numerical finite difference and
finite element schemes in low to moderate dimensions, however it presents
extreme numerical challenges if the dimension is high. There are arguably
two main origins: In the first class of applications, the high-dimensionality
arises because the financial derivative depends on the whole path of a stock
(see e.g. [CMO97]); in the second class, the derivative depends on the value of
multiple stocks at a fixed future time. From the PDE perspective, these cases
are somewhat different and we focus on the latter category here.

Consider stocks S1, . . ., Sd, which are modelled in a standard Black-
Scholes setting as geometric Brownian motions with covariance matrix Σ =
(ρijσiσj)1≤i,j≤d, where σi are the volatilities and ρij the correlations.

As a running example, consider further a basket
∑d

i=1 µiSi with weights
µi ≥ 0, and a European put option on this basket with strike K and expiry
T . The value of this option satisfies the Black-Scholes equation
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+
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Si
∂V

∂Si
− rV = 0, (1)

for all Si > 0, t ∈ [0, T ], supplemented with a terminal condition

V (S, T ) = P (S) := max

(
K −

∑d

i=1
µiSi, 0

)
, (2)

where S = (S1, . . . , Sd) ∈ R
d and P is the payoff.

The Black-Scholes equation (1) has the special property that it can be
transformed to the (forward) heat equation

∂u

∂t
=

1

2

d∑

i=1

λi
∂2u

∂x2
i

, (3)

for x ∈ R
d, with appropriate initial data u(x, 0) = P̃ (x). This is a direct

consequence of the assumed log-normality of Si. Here, λi are the eigenvalues
of the covariance matrix of the underlying Brownian drivers and are found to
decay rapidly in typical applications (see Section 3). This opens the possibility
of a perturbation analysis.

The computational aspects of such an approach are discussed in [RW07];
meanwhile, this has been developed further by [HKSW10]. Here, we focus on
the underlying expansion itself, and discuss its position within recent work
on fundamentally similar ideas. Almost all of this work has been done in
the context of high-dimensional cubature problems, and we can relate these
approaches to the present context by noting that the solution to (3) can be
written as

u(x, t) =
1

td/2πd/2
∏d

i=1 λ
1/2
i

∫

Rd

exp
(
−

d∑

i=1

(xi − x′
i)

2/(2λi)
)
P̃ (x′) dx′. (4)

Principal component analysis provides a natural ordering of dimensions.
Such an ordering can also be found for options whose payoff depends on a
Brownian path, through a hierarchical (e.g. Brownian bridge) construction.
In both of these settings, the feasibility of the high-dimensional integration
problem depends on the speed of decay of the high-dimensional contributions,
as well as their regularity. A natural way to quantify this is via weighted mixed
Sobolev norms [SW98]. We will see later that the λi can be directly mapped
to those weights.

The upshot is that many applications in finance have a relatively low su-
perposition dimension [WS05], i.e. their solution can be accurately represented
by the sum of solutions to lower-dimensional problems. For integration prob-
lems, this can be exploited via quasi-Monte Carlo methods [WS05, CMO97],
dimension adaptive and generalised sparse grids [GG03, HGC07], dimension-
wise integration based on anchored ANOVA decomposition [GH10], or related
ideas.
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The rest of the article is structured as follows. In Section 2, we present
results of a simple dimension adaptive sparse grid strategy applied to PDEs
of type (1) and (3) to illustrate the dependence of the convergence speed
on the choice of coordinates. Section 3 analyses common properties of typical
covariance matrices in equity and interest rate markets, and derives an asymp-
totic expansion around a principal component, which ultimately leads to an
ANOVA-type decomposition. Section 4 shows that for exponentially decaying
weights of the higher order PCA components, as observed for index options,
the complexity can become independent of the nominal dimension. Section 5
critiques the findings and outlines directions for further research.

2 Dimension adaptive sparse grids

In this section, we investigate by numerical experiments the role of the un-
derlying coordinate systems in computations.

2.1 Construction

We explain the construction for the two-dimensional case. It is based on a
heuristic algorithm for the approximation of a numerical solution in optimal
complexity from computations on suitably chosen Cartesian grids. The can-
didate set of Cartesian grids is obtained by bisection from a coarse grid, say
the unit square [0, 1]2, such that the mesh widths in the two directions are
(hi, hj) = (2−i, 2−j), (i, j) ∈ N

2
0. We denote the corresponding numerical so-

lution by U(i, j), and have in mind pointwise evaluations of a finite difference
solution or other functionals thereof.

To assess the contribution of a particular U(i, j) to the overall solution,
we study the hierarchical surplus (see e.g. [BG04])

δU(i, j) = U(i, j)− U(i− 1, j)− U(i, j − 1) + U(i− 1, j − 1)

= δ−1 δ−2 U(i, j),

where δ−1 U(i, j) = U(i, j)−U(i−1, j) and δ−2 U(i, j) = U(i, j)−U(i, j−1) for
i, j > 0 are backward difference operators, and δ−1 U(i, j) = U(i, j) if i = 0,
δ−2 U(i, j) = U(i, j) if j = 0.

A numerical approximation on level n is defined by the choice of grids
described by an index set Mn ⊂ N

2
0 via

un :=
∑

(i,j)∈Mn

δU(i, j).

We require that Mn is convex in the sense

Mn = C(Mn) := Mn ∪
{
(i, j) ∈ N

2
0 : (i, j + 1) ∈ Mn ∨ (i+ 1, j) ∈ Mn

}
.
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For a convergent discretisation, we expect

un → u for Mn ↑ N
2
0,

where the last expression is to be understood in the sense Mn ⊂ Mn+1 and
∀ (i, j) ∈ N

2
0 ∃n : (i, j) ∈ Mn. An error bound will be given by

|u− un| ≤
∑

(i,j) 6∈Mn

|δU(i, j)|.

The following construction of Mn is dimension adaptive (see [GG03] for
a similar strategy). Start with M0 = {(0, 0)}. For given Mn, n ≥ 0, consider
candidate nodes

Cn =
{
(i, j) ∈ N

2
0 : (i, j) /∈ Mn, (i− 1, j) ∈ Mn ∨ (i, j − 1) ∈ Mn

}
.

Then refine

Mn+1 = C (Mn ∪ {(i, j) ∈ Cn : |δU(i, j)| ≥ γ cn}) ,

where
cn = max {|δU(i, j)| : (i, j) ∈ Cn} .

The idea is that we refine only in those directions where there is a signifi-
cant contribution from the refined grid. We pick γ slightly smaller than the
asymptotic ratio of the surpluses between two refinement levels.

This draws on the theoretical properties of the used discretisation. We
use below second order finite difference and finite element schemes. From the
analysis of the sparse grid combination technique, see e.g. [PZ99] or [R11], we
expect

δU(i, j) ∼ c h2
ih

2
j . (5)

Refining in one direction, i → i + 1 or j → j + 1, we expect the surplus
to decrease by a factor of 1/4. Hence we used γ = 0.2 in the numerical
computations below.

2.2 An example

In the following subsections, we illustrate the behaviour of the above strategy
on the example of the Black-Scholes model for a put option on an equity basket
consisting of BMW and Daimler. This amounts to solving the PDE (1) for
d = 2, for parameters σ1 = 0.438, σ2 = 0.616, ρ = 0.89, r = 0.05. The terminal
condition at t = T = 1 is given by (2) with µ1 = 0.384, µ2 = 0.616, K = 0.25.
We are interested in the numerical solution evaluated at (S1, S2) = (K,K) at
time t = 0.

We use a standard central difference scheme with fractional-step θ-time-
stepping. The domain is truncated at sufficiently large values of S1 and S2
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Fig. 1. The black dots correspond to indices (i, j) included in Mn at various re-
finement step n from n = 0, i.e. i = j = 0, top left box. For this example where non
of the two directions is dominant, the refinement is largely symmetric.

and then transformed to the unit square, where appropriate asymptotically
exact boundary conditions are set.

Fig. 1 illustrates the resulting adaptive refinement strategy. It shows that
the grid construction is very similar to that of a standard sparse grid, where
Mn =

{
(i, j) ∈ N

2
0 : i+ j ≤ n

}
, confirming experimentally the optimality of

the standard sparse grid [Z91, BG04].
Fig. 2 gives an indication of the efficiency of the method. Ideally, grids

100 1000 10000 100000.

0.00001

0.0001

0.001

0.01

|Mn|

|u− un|

Fig. 2. Denoting by |Mn| the number of all grid points of all grids in Mn, shown is
the approximation error for an increasing number of unknowns. The slope for large
n is consistent with asymptotic second order convergence.
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would be included in decreasing order of importance. It is seen that for large
enough n, where the grid sizes are small enough for (5) to be a valid approx-
imation, this is largely the case.

2.3 Principal components

Sparse grid solutions, and indeed all approximations based on tensor prod-
uct spaces, are by construction dependent on the choice of an underlying
coordinate system, if the underlying problem is anisotropic. We now seek to
exploit the fact that our dimension adaptive method can use this to its ad-
vantage. To this end, transform (1) to (3); then, in the above example, one
finds λ1 = 0.431, λ2 = 0.024.

Repeating the above numerical test in transformed coordinates, leads to
the refinement strategy in Fig. 3. Reassuringly, the adaptive algorithm detects

Fig. 3. Similar to Fig. 1, but now in eigenvector coordinates. Refinement is stronger
in the direction of the principal component.

the anisotropy of the operator and refines mostly in the direction where the
variation is largest.

Fig. 4 provides a different angle on this behaviour. It shows the (logarithm
of the) hierarchical surplus for different grids, indexed by (i, j). Revisiting the
derivation of the hierarchical surplus for a central finite difference scheme in
[R11], explicitly taking into account the dependence of the truncation error
on the eigenvalues, leads to
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δ−1 U(i, j) ∼ c1 λ1h
2
i , (6)

δ−2 U(i, j) ∼ c2 λ2h
2
j , (7)

δU(i, j) ∼ c0 λ1λ2 h
2
ih

2
j . (8)

This is based on the simplifying assumption that the smoothness of the so-
lution in the two directions does not depend on λ1 and λ2, which will be a
reasonable assumption for moderate timescales.

The left plot appears to confirm that the surplus is asymptotically a func-
tion of i+ j, as suggested by (8), as long as i, j > 2, i.e. excluding cases where
the solution is solely or predominantly determined by the boundary values.

The plot on the right, which takes cross-section in the first and second
directions, reveals the anisotropy of the problem. Close to the ‘edges’ of the
grid table, i.e. where j or i are small, the surplus will be similar to (6) or (7),
respectively. This determines the different ‘constant’ factors in the surplus in
these directions, and can explain the offset of the two curves in Fig. 4 (right).
As we will discuss later, the ratio of λ1/λ2, here approximately 20, is not the
only relevant factor, but also the initial data to the PDE.
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Fig. 4. Left: The surplus U(i, j) for different grids (i, j). Right: Cross-sections along
the edges (a) log

2
|δU(i, 3)|, (b) log

2
|δU(2, i)|.

An intriguing new phenomenon is observed when we go to three dimen-
sions. When we add Volkswagen to the basket from before, the eigenvalues
are estimated as λ1 = 0.653, λ2 = 0.069, λ3 = 0.023, and we solve the corre-
sponding PDE (3) in d = 3 dimensions.

At the finest computed level, 2197 grids are involved. This compares in
complexity roughly to a regular three-dimensional sparse grid on level 20,
which consists of 2023 grids. Out of these 2197 grids, 469 grids of M are at
the ‘boundary’ of the grid table described by

B =
{
(i, j, k) ∈ N

3
0 : i · j · k = 0

}
,
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i.e. for which at least one direction is unrefined, while 1728 grids are in the
‘interior’ M\B. However, the contribution from the boundary elements to the
solution is ∑

(i,j,k)∈B∩M

|δU(i, j, k)| = 0.4369,

while ∑

(i,j,k)∈M\B

|δU(i, j, k)| = 0.0035.

This suggests that the problem can be well approximated by sums of two-
dimensional approximations. We investigate this for general dimensions in
the following section.

3 PCA and asymptotic expansion

This section explores communalities of the eigensystem of important covari-
ance matrices, and their use for problem-adapted high-dimensional approxi-
mation.

5 10 15 20 25 30

- 7

- 6

- 5

- 4

- 3

- 2

-1

n

log |λn|

10 20 30 40 50 60

-14

-12

-10

- 8

- 6

- 4

- 2

n
log |λn|

Fig. 5. Shown are the (logarithms of) normalised eigenvalues of three representative
examples of covariance matrices from financial modelling. Left: Estimated covari-
ances σiσjρij from historical time series of the DAX30, i.e. d = 30, and a fitted curve
(which will be discussed in Section 4). Right: Two stylized forward rate models, both
for d = 60: (a) constant correlation ρ = 0.8 for all tenors, constant volatility; (b)
humped-shaped volatility σi = (A + B i) exp(−C i) + D with A = 0.1, B = 0.1,
C = 1, D = 0.1, and exponentially decaying correlation ρij = exp(−α|i − j|),
α = 0.025. Eigenvalues are numbered in decreasing order.

A common feature to the examples in Fig. 5 is the presence of a dom-
inant eigenvalue, which is by a factor of 10 or more larger than the rest
of the spectrum. This motivates expanding the solution to (3) in these
small parameters to obtain approximations to the high-dimensional solution
by solving low-dimensional problems. Consider therefore u as a function of
λ = (λi)1<i≤d ∈ R

d−1, where
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λi ≪ λ1, i > 1.

Assuming the dependence of u on λ is sufficiently smooth, first order Taylor
expansion gives

u(λ) = u(0) +
d∑

i=2

λi
∂u

∂λi
(0) +O(‖λ‖22). (9)

For special cases, the eigenvalue sensitivities can be calculated analytically.
An example is the value of a put option in the Black-Scholes model, where
differentiation of the integral formula (4) gives easily computable closed-form
expressions similar to the standard one-factor Black-Scholes formula [R04].
The correction terms also satisfy simple PDEs, i.e. for

u{i} :=
∂u

∂λi
(0), (10)

∂

∂t
u{i} =

1

2
λ1

∂2

∂x2
1

u{i} +
1

2

∂2u

∂x2
i

(0), (11)

where the last equation follows from application of (3) to (10).
More generally, the exact sensitivity can be replaced by a finite difference.

Writing, by slight abuse of notation, u(λi) for the solution to the problem
where all coefficients except λ1 and λi are zero,

∂u

∂λi
(0) =

u(λi)− u(0)

λi
+O(λi).

This coincides with the financial industry practice of parameter ‘bumping’.
Inserting in (9),

u(λ) = u(0) +

d∑

i=2

(u(λi)− u(0)) +O(‖λ‖22) (12)

is a second order approximation in the small parameters λi ≤ λ2 ≪ λ1,
i = 2, . . . , d.

In a sense, this formula is even ‘better’ than the one using the exact deriva-
tives, as it captures functions of superposition dimension one exactly. We dis-
cuss this in more detail below.

Moreover, the lead term u(0) requires the solution of only a one-dimensional
PDE in x1,

∂u

∂t
(0) =

1

2
λ1

∂2u

∂x2
1

(0),

and the correction terms u(λi) the solution of d− 1 two-dimensional PDEs in
x1 and xi,

∂u

∂t
(λi) =

1

2
λ1

∂2u

∂x2
1

(λi) +
1

2
λi

∂2u

∂x2
i

(λi).
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For the test example of the DAX given above, [RW07] report an error
against a Monte Carlo simulation benchmark of < 0.06% of the option value,
with an absolute error of 0.000073 at the strike K = 1, which is less than 1
basis point. Results for other (and smaller) baskets are comparable, such that
the approximation seems sufficient for practical applications.

What is more, it is not difficult to extend this expansion to higher order,
e.g. to order two and using an approximation to the cross-derivatives in λi

and λj ,

u(λ) = u(0)+

d∑

i=2

(u(λi)−u(0))+
∑

i6=j

(u(λi, λj)−u(λi)−u(λj)+u(0))+O(‖λ‖32),

where u(λi, λj) is the solution where all coefficients except λ1, λi and λj are set
zero. Hence, the additional correction terms are the solution of (d−1)(d−2)/2
three-dimensional PDEs.

Proceeding in this way to order d,

u(λ) = u(0) +
d∑

i=2

∆iu+
∑

i6=j

∆i∆ju+ . . .+∆2 . . . ∆du,

where ∆iu = u(λi) − u(0) etc. This is equivalent to an anchored ANOVA
decomposition [GH10]. The functions u(λi) have the interpretation

u(λi) = E(P̃ (XT )), (13)

dXk
t =

{
λk dW k

t k ∈ {1, i},
0 else,

(14)

Xk
0 = xk, (15)

where W is a standard Brownian motion. Similarly, u(λi, λj) corresponds to a
process as per (14), but with diffusion in directions {1, i, j}, with the obvious
extension to higher order. Writing these in integral form,

u(λi) =
1

tπ
√
λ1λi

∫

R2

exp
(
−(x1 − x′

1)
2/λ1

)
exp

(
−(xi − x′

i)
2/λi

)
P̃ (x′) dx′

1 dx
′
i,

and similar for higher order terms, leads to dimension-wise quadrature as in
[GH10].

It should be noted that this choice of coordinates does not take into ac-
count the initial data of the PDE. It is conceivable to construct a pathological
example where the approximation is arbitrarily bad, e.g. where the principal
component is parallel to a level curve of the initial data, and orthogonal to a
direction of high curvature.

Basket options are a fortunate case in this respect. The direction of steepest
change of the basket value, which determines the payoff, is roughly aligned
with the principal component of the covariance matrix. This results from
positive basket weights, and the fact that the principal eigenvector of a positive
matrix has positive entries (guaranteed by the Perron-Frobenius Theorem).
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4 A simple and some more complex complexity results

Formula (12) suggests that the complexity is linear in the dimension d of the
problem, assuming the quadratic remainder term can be neglected, and that
the effort for the eigenvalue decomposition and transformation is negligible,
which is the case in practice.

We argue in this section that it is not necessary to include all d terms, by
exploiting the decay in λi further. The empirical evidence which underpins this
analysis is already seen in Fig. 5, where the ordered and normalised (λ1 = 1)
eigenvalues of the covariance matrix are plotted together with a regression of
the set excluding the first one, which gives λn ≈ 0.108 · 0.861n−2 for n ≥ 2.
There is clear evidence of exponential decay of the eigenvalues, following a big
jump of about 90% of the first eigenvalue.

We therefore assume in the following that λi ≤ δ · λi for some δ ≪ 1 and
λ < 1, but with λ ≈ 1. In this parameter setting, it is justified to neglect
the δ2 term (we point to the fact that the residual error was negligible in
the numerical case study), but a potentially large number of first order terms
gives significant contributions if d is large. As in [SW98], and more recently
[NHMR11, G11], we embed the problem in an infinite-dimensional space as
d → ∞.

All of this, combined with (9), motivates the following limiting case as
basis for a simple complexity analysis.

Assumption 4.1 Assume that

u(λ, δ) = u0 + δ
∞∑

i=1

λiui, (16)

and there is an algorithm which finds ui with accuracy ǫ in complexity

C ≤ ǫ−1/p,

i.e. p is the order of the method.

We do not specify for this abstract result what the ui are, but clearly we have
in mind first order ANOVA terms. Then, in the above setting, we require the
numerical solution of two-dimensional heat equations, so if we use standard
linear finite elements and second order time-steping, p = 2/3.

Proposition 1. Under Assumption 4.1, there exists an algorithm, which finds

u with accuracy ǫ in complexity

C ≤ c · (ǫ/δ)−1/p · (1− λ1/(1+p))−(1+p)/p,

where c does not depend on ǫ, λ, or δ.

Proof. The proof is constructive. Let ǫi the accuracy of ui, then we min-

imise the sum of the costs ǫ
−1/p
i under the constraint that the total error

is δ
∑∞

i=0 λ
iǫi ≤ ǫ. A direct application of Lagrangian multipliers gives the

result.
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This extends straightforwardly to higher order in δ, i.e. if

u(λ, δ) = u0 + δ

∞∑

i=1

λiui + . . .+ δq
∑

i1 6=...6=iq

λi1 · . . . · λiqui1,...,iq , (17)

and the complexity for solving for ui1,...,iq is ǫ−q/p, then the total complexity

is of order (ǫ/δq)−q/p, although the constant factors become less explicitly
computable.

Ultimately, one would want to adaptively pick q to ensure the overall
error is below some desired ǫ, see e.g. [SW98, GH10, NHMR11, G11]. An
appropriate measure for the overall complexity, in the PDE setting as for
cubature, are weighted Sobolev norms.

The size and numerical approximation of ui1,...,iq depends on the regularity
of the original problem, and, as [GKS10] show, the lower-order ANOVA terms
may have higher regularity. We finish this section by outlining how such a
result may be derived in the setting of this article, where the correction terms
in (17) are essentially determined by the parameter sensitivities

u{i1,...,im} :=
∂mu

∂λi1 . . . ∂λim

.

For the example of the basket option, these are explicitly computable from
the integral formula (4), which is carried out for the first order terms in [R04].

We mention an alternative route, which is more generally applicable. Re-
peated differentiation of (11) gives

∂

∂t
u{i1,...,im} =

1

2

∑

j

λj
∂2

∂x2
j

u{i1,...,im} +
1

2

m∑

k=1

∂2

∂x2
ik

u{i1,...,im}\{ik},

which allows the recursive application of standard regularity results for
parabolic PDEs. This will give bounds on the sensitivities (ANOVA terms)
and corresponding weights for the complexity analysis, and will be the subject
of future research.

5 Conclusions and extensions

The principal component analysis of multivariate diffusion problems not only
gives an ordering of the dimensions, but allows a formal Taylor expansion in
terms of the spectrum of the covariance matrix, which leads to a decomposi-
tion equivalent to an anchored ANOVA decomposition of the solution. Model
problems from financial engineering considered in the literature show that
already a first order approximation, which corresponds to an approximation
with superposition dimension one, is sufficiently accurate for practical use.

The question arises if this strategy works equally well for models beyond
the normal (or log-normal) case. In models with non-constant volatilities and
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drift, “freezing” the coefficients at the initial value of the process reduces
the problem to the present case. The additional approximation error will be
acceptable for not too long time horizons. Jump models will be the subject
of future research, and the methodology should be transferable in spirit. An
arguably more challenging extension is to non-linear problems, e.g. free bound-
ary problems arising in American option valuation, but again the author does
not foresee any fundamental difficulties.
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