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Boundary Mesh Refinement for
Semi-Lagrangian Schemes

Athena Picarelli, Christoph Reisinger and Julen Rotaetxe Arto

Abstract. We study semi-Lagrangian schemes for the Dirichlet problem for second-order de-
generate elliptic PDEs. Like other wide stencil schemes, these schemes have to be truncated
near the boundaries to avoid “overstepping”. The various modifications proposed in the liter-
ature lead to either reduced consistency orders for those points, or even a loss of consistency
with the differential operator in the usual sense. We propose a local mesh refinement strategy
near domain boundaries which achieves a uniform order of consistency up to the boundary in
the first case, and in both cases reduces the width of the region where overstepping occurs, so
that the practically observed convergence order is unaffected by overstepping. We demonstrate
this numerically for a linear parabolic equation and a second order HJB equation.
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1 Introduction

In this paper, we investigate the convergence behaviour of semi-Lagrangian schemes
for second order degenerate elliptic equations on bounded domains.

For concreteness, we consider the Hamilton-Jacobi-Bellman (HJB) equation

ut + sup
α∈A
{−Lα[u]− cαu− fα} = 0, in (0, T ]×Ω, (1.1)

u(0, x) = ψ(0, x), x ∈ Ω, (1.2)

u(t, x) = ψ(t, x), (t, x) ∈ (0, T ]× ∂Ω, (1.3)

where QT := (0, T ]×Ω with Ω := Ω ∪ ∂Ω ⊆ Rd, A is a compact set,

Lα[u](t, x) = tr[aα(t, x)D2u(t, x)] + bα(t, x)Du(t, x) (1.4)

is a second order differential operator, and the known function ψ contains the initial
and spatial boundary values.
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Linear parabolic equations are a special case where |A| = 1, while fully-nonlinear
equations of Isaacs-type are written as min max problems. The construction of the
scheme in this paper is analogous in both of these cases.

The coefficients aα = 1
2σ

ασα,T , bα, cα, fα, and the data ψ in (1.1) take their
values, respectively, in Sd, the space of d × d symmetric matrices, Rd, R, R, and
R, σα ∈ Rd×P , such that aα is positive semi-definite. We assume the usual well-
posedness conditions, i.e. Lipschitz continuity of the coefficients in x uniformly in α,
Hölder continuity with exponent 1

2 in time and continuity in α for each (t, x) ∈ QT
(see [10]). This guarantees existence and uniqueness of the solution in the viscosity
sense (of [5]) as well as a comparison principle.

In this paper, we focus on semi-Lagrangian schemes for the approximation of (1.1)–
(1.3) as introduced in [4, 12] and analysed more recently in [3, 6, 7, 9]. For conve-
nience of the reader and to introduce the notation, we briefly describe the specific
scheme used here.

Following loosely [6], we define a non-degenerate polyhedral coverage C = {Cj}j∈J
of Ω, where J is the index set of the cells. The elements of C are chosen to satisfy

int(Cj ∩ Ci) = ∅, ∀ i 6= j,⋃
j∈J

Cj ⊇ Ω,

ν∆x ≤ sup
j∈J
{diamBCj} ≤ sup

j∈J
{diamCj} ≤ ∆x,

for some ν ∈ (0, 1), where “int” and “diam” are the interior and the diameter, and BCj

is the greatest ball contained in Cj .
We define the subset of interior cells C = {C ∈ C : C ⊆ Ω} as the ones fully

contained in the closure of the domain, and the nodes N := {xi}i∈I as the set of all
the vertices of elements in C, where we denote by I the index set of the nodes. Let
further Nx := |N |.

We assume non-negative basis functions {wi(·) : i ∈ I} associated with the mesh
nodes, such that for any continuous function φ : Ω→ R

[I∆xφ](x) =
∑
i∈I

φ(xi)wi(x),

for all x ∈ Ω, xi ∈ N . For simplicity, we focus our attention occasionally on cuboid
meshes and multilinear interpolants, defined by the standard piecewise multilinear ba-
sis. The interpolation error is then O

(
∆x2

)
for sufficiently smooth functions, and

this is the only property we will use for the consistency analysis. The non-negativity
of the basis is required only for the monotonicity of the interpolation operation and
subsequently for convergence of the scheme to the viscosity solution.

Writing σα = (σα1 , σ
α
2 , . . . , σ

α
P ) ∈ Rd×P , where σαp ∈ Rd for p ∈ {1, 2, . . . , P} is
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the p-th column of σα, by the usual arguments,

1
2

tr
[
σασα,TD2φ(x)

]
=

1
2

P∑
p=1

φ(x+ kσαp )− 2φ(x) + φ(x− kσαp )
k2 +O(k2), (1.5)

bαDφ(x) =
φ(x+ k2bα)− φ(x)

k2 +O(k2), (1.6)

for k > 0 and any smooth function φ. For brevity we write bα ≡ bα(t, x) and σα ≡
σα(t, x). When these approximations are used for points inN , the displaced points x+
k2bα and x±kσαp do not generally coincide with nodes inN . Then, φ is approximated
by its interpolant I∆xφ. In the case of linear basis functions, the resulting scheme is
referred to as the Linear Interpolation Semi-Lagrangian (LISL) scheme.

We ignore for the time being the situation where x + k2bα or x ± kσαp lies outside
any of the mesh cells (“oversteps”), which of course will be the focus of the main body
of the article.

The consistency error is easily seen to be (see [6])

O
(
k2 +

∆x2

k2

)
.

The first term is the consistency error for the finite difference approximation of the first
and second order derivatives in (1.5) and (1.6), whereas the second term corresponds
to the linear interpolation error when replacing φ by its interpolant in (1.5) and (1.6).
The optimal choice k =

√
∆x makes the consistency error proportional to ∆x.

Following the notation in [6], the LISL approximations to (1.4) can be expressed as

Lα∆x[I∆xφ](t, x)=
M∑
p=1

[I∆xφ](t, x+ yα,+p (t, x))−2φ(t, x)+[I∆xφ](t, x+ yα,−p (t, x))

2∆x

(1.7)

for x ∈ N , and some M ≥ 1. The functions yα,±· (t, x) determine the stencil of the
scheme at (t, x).

Different spatial schemes can be obtained depending on the values taken by M and
yα,±p (t, x) in (1.7). In the following, we study specifically the approximation in [6]
with M = P + 1 and

yα,±p = ±
√

∆xσαp , p ≤ P,

yα,±P+1 = ∆xbα.

Other schemes are defined similarly. The scheme above has more flexibility in defining
consistent boundary modifications, as explained in [15].

Finally, a fully discrete scheme is obtained by combining (1.7) with a time stepping
scheme. We introduce a time mesh T∆t = {tn : 0 ≤ n ≤ Nt} ⊆ [0, T ], for simplicity
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with tn = n∆t, i.e. with uniform step size ∆t > 0. We then define the standard
θ-scheme by

u(tn, x)− u(tn−1, x)

∆t
− inf
α∈A
{θLα∆x[I∆xu](tn−1, x) + (1− θ)Lα∆x[I∆xu](tn, x)} = 0,

where we have set c = f = 0 in (1.1) for simplicity. In the tests we will focus on θ = 0
(explicit Euler) and θ = 1 (implicit Euler). Although the scheme can in principle be
defined in this way for all x ∈ Ω, we restrict the scheme to x ∈ N .

2 Domain overstepping and stencil truncation
We now focus on the boundary of the domain and the definition of the scheme there.
We take Ω ⊂ Rd (for d ≥ 1) a general domain with curved boundary, but for simplicity
illustrate the method for C defined by a Cartesian mesh on Rd with uniform mesh width
∆x. Then we choose C and N as explained in Section 1. See Figure 1.

a

b

Ω

C C

Figure 1: An elliptical domain and a mesh made of square cells. In situation a, x +
yα,±p (t, x) /∈ Ω, while in situation b, x+ yα,±p (t, x) ∈ Ω, but the cell it is contained in
has vertices outside Ω. The modified stencil in Sections 2.2 and 2.4 uses values from
the boundary, while in Section 2.3 the stencil is shrunk to fit.

2.1 Overstepping

Now consider a mesh node x ∈ N in the vicinity of the boundary. In the two situations
sketched in Figure 1 the interpolation at the point x + yα,±p (t, x) fails for given t, α
and p. We say in these cases that the stencil “oversteps”. We now discuss several
possibilities to deal with these situations. They are all based on a local modification
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of the step yα,±p (t, x) and of k, combined in some cases with a modification of the
interpolation weights.

Where the stencil oversteps, we define

ŷα,±p (t, x) = µα,±p (t, x)yα,±p (t, x),

where

µα,±p (t, x) = min
{
µ ≥ 0 : x+ µyα,±p (t, x) ∈ ∂Ω

}
. (2.1)

In case a in Fig. 1 this means µ < 1, while in case b we have µ > 1.

Remark 2.1. On rectangular domains, the elements of the Cartesian mesh cover ex-
actly the domain and case b does not occur. Moreover, interior mesh points cannot be
arbitrarily close to the boundary, but are always at least ∆x away. This can be enforced
in the general case by removing the outermost layer of cells in C, such that again a dis-
tance of ∆x between non-boundary mesh points and the domain boundary is ensured.
This allows the derivation of CFL conditions for the explicit schemes as given below
(Proposition 2.4 for the scheme in Section 2.4 and similar for other schemes).

2.2 Constant extrapolation

When the stencil oversteps, constant extrapolation simply uses instead the value at the
boundary in the direction of the stencil step. This can be written as

L̄α∆x[I∆xφ](t, x)=

M∑
p=1

[I∆xφ](t, x+ ŷα,+p (t, x))−2φ(t, x)+[I∆xφ](t, x+ ŷα,−p (t, x))

2∆x
.

Note that the scheme is generally not consistent up to the boundary. A proof of con-
vergence is not available to the best of our knowledge.

2.3 Stencil cropping

The scheme in [8] shrinks the stencil so that it does not overstep. This corresponds to

L̃α∆x[I∆xφ](t, x)=
M∑
p=1

[I∆xφ](t, x+ ỹα,+p (t, x))−2φ(t, x)+[I∆xφ](t, x+ ỹα,−p (t, x))

2k̃2

with
ỹα,±p = ±k̃σαp ∀p = 1, . . . , P, ỹα,±P+1 = k̃2bα

and 0 < k̃ ≡ k̃(t, x, α) is chosen such that x+ ỹα,±p ∈ Ω, ∀p = 1, . . . ,M .
Generally this means the scheme is not consistent up to the boundary in the sense of

[1], however, [8] can still prove a generalised consistency condition and convergence
for viscosity solutions of the Monge-Ampère equation on convex domains.
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2.4 Stencil truncation

In contrast to the above two schemes, the one in [15] is designed to be consistent in
the whole of the domain. Hence, the objective is to find truncated or extended stencil
vectors ŷα,±p (t, x) and corresponding finite difference weights Aαp ≡ Aαp (t, x) and
Bα
p ≡ Bα

p (t, x), such that x+ ŷα,±p (t, x) ∈ ∂Ω and the truncated scheme

L̂α∆x[I∆xφ](t, x) = (2.2)

M∑
p=1

Aαp [I∆xφ](t, x+ ŷα,+p (t, x))−(Aαp +Bα
p )φ(t, x)+B

α
p [I∆xφ](t, x+ ŷα,−p (t, x))

2∆x

is a consistent approximation of (1.4) as ∆x → 0. If the stencil does not overstep, we
have that ŷα,±p (t, x) = yα,±p (t, x) and Aαp = Bα

p = 1.
For all p ∈ {1, . . . , P + 1} let µα,±p ∈ [0, 1] be as in (2.1), then define

AαP+1 = Bα
P+1 =

1
µα,+P+1

(
=

1
µα,−P+1

)
(2.3)

and, for p ∈ {1, . . . , P},

Aαp =
2

(µα,+p )2 + µα,+p µα,−p
, Bα

p =
2

(µα,−p )2 + µα,−p µα,+p
. (2.4)

Proposition 2.2 (Consistency, see Corollary 2.3 in [15]). For the truncated scheme
(2.2), (2.3) and (2.4), the local consistency error for points with truncation and p 6=
P + 1 is O(

√
∆x) if only one side of the stencil oversteps, and O(1) if both sides

overstep.

Remark 2.3. The scheme can be made consistent (of orderO(∆x)) for the case where
both sides of the stencil overstep by using the exact boundary value in the truncated
scheme (2.2) instead of the interpolant. We therefore assume in the following that this
is done.

Proposition 2.4 (Monotonicity and stability, see Corollary 2.5 in [15]). In the case of
overstepping and θ < 1, monotonicity requires that ∆t ≤ C1∆x3/2 if only one side of
the diffusion stencils oversteps, or ∆t ≤ C2∆x2 if both sides overstep. However, if the
stencil is not truncated, the positivity condition remains as in [6], that is ∆t ≤ C3∆x,
where C1, C2, C3 > 0 are sufficiently small constants depending on the coefficients
σα, bα and cα, but independent of ∆x and ∆t.

As the scheme is consistent up to the boundary in the classical sense, convergence
follows directly from the framework in [1]. Error estimates were obtained in [13].
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3 Local mesh refinement
We now consider a refinement of the mesh in boundary layers of widthO(

√
∆x) where

the semi-Lagrangian scheme oversteps. The objective is to improve the local consis-
tency error of the truncated stencil in Section 2.4 from O(

√
∆x) to O(∆x), and for all

schemes to reduce the width of the region where the stencil oversteps from O(
√

∆x)
to O(∆x).

For this purpose, we combine a local refinement of the mesh with appropriate
changes to the stencil step k in (1.5) in the region near the boundary.

3.1 General mesh construction

Let us consider a mesh defined by cells C and Nx nodes N ⊂ Ω with refinement
parameter ∆x > 0, as in Section 1. For simplicity, we assume that σα(t, x) = σ(x).

Since it is primarily the overstepping of the diffusion stencil that reduces the local
truncation error, this guides the split of N and C into three subsets, Ni and Ci, i ∈
{1, 2, 3}, respectively. We will subsequently define new step sizes ki for nodes in Ni,
and a refinement with mesh size hi for the cells in Ci.

Definition 3.1. Define

C1 = {C ∈ C : ∃x ∈ C, θ ∈ [0, 1], 1 ≤ p ≤ P : x± θ
√

∆xσp(x) 6∈ Ω}, *

C2 = {C ∈ C\C1 : ∃x ∈ C1, 1 ≤ p ≤ P : x+ k1σp(x) ∈ C or x− k1σp(x) ∈ C},
C3 = C\(C1 ∪ C2).

Then define N1 = C1 ∩ N the nodes of elements in C1, N2 = (C2 ∩ N )\N1, the
nodes of elements in C2 which are not already in N1, and N3 = N\(N1 ∪N2).

Therefore, C = C1 ∪ C2 ∪ C3 with Ci ∩ Cj = ∅ for i 6= j and i, j ∈ {1, 2, 3}, and
similarly for the nodes. This ensures that if k1, k2 ≤ k, all nodes that overstep are
contained in N1, and that no node in C1 steps into C3 after refinement.

We emphasise the need for the three region construction, with an overlapping layer
C2 of a fine mesh (as in C1) and wide stencil (as in C3). This prevents the situation
where a narrow stencil steps into the coarse mesh, which would spoil consistency.

Next, we refine the mesh elements in C1 and C2 with mesh refinement parameter
proportional to h1 = h2 ∼ ∆xγ , where γ > 1 is a parameter to be determined so that
the resulting local consistency error is at least O(∆x). After refinement, we remove
the cells which are not fully in Ω to create a new set of cells C′ with vertices N ′. By
refining C and then pruning the refined cells outside Ω, the space between C and ∂Ω

gets refined, which would not happen if we simply refined C.

* Extrapolation into Ω\C is not problematic as the distance between C and ∂Ω is O(∆x).
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To determine γ, we procede in reverse order starting with C3. As the stencil may
step into the finer regions C1 and C2, the consistency error there is

O
(
k2

3 +
h2

1

k2
3
+
h2

2

k2
3
+
h2

3

k2
3

)
= O

(
k2

3 +
∆x2

k2
3

+
∆x2γ

k2
3

)
,

where the first term corresponds to the consistency error of the finite difference ap-
proximation of the second order derivative and the last terms to the interpolation error
in the original and the refined regions respectively. As γ ≥ 1, we do not modify the
stencil step, i.e. k3 ∼ O(

√
∆x). Similarly, the local consistency error for nodes N2

after refinement is

O
(
k2

2 +
h2

1

k2
2
+
h2

2

k2
2
+
h2

3

k2
2

)
= O

(
k2

2 +
∆x2

k2
2

+
∆x2γ

k2
2

)
.

Choosing k2 ∼ O(
√

∆x) the local consistency error is O(∆x), for all γ ≥ 1.
Finally, the local consistency error for points in C1 after refinement is

O
(
k1 +

h2
1

k2
1
+
h2

2

k2
1

)
= O

(
k1 +

∆x2γ

k2
1

)
,

where we have assumed that the exact boundary value is used in the case of stencil
truncation (see Remark 2.3). Choosing γ = 3

2 and k1 ∼ O(∆x) the truncation error is
O(∆x).

Figure 2 shows a locally refined mesh and describes the effects of the refinement.
Figure 2 gives a distorted view for illustration purposes, where in reality C2 is substan-
tially smaller than C1, and C1 is substantially smaller than C3.

Remark 3.2. Figure 2 shows that the local refinement leaves “hanging nodes” at the
interface between C2 and C3. These nodes do not pose a problem for semi-Lagrangian
discretizations. For the interpolation, the “hanging nodes” are not used for stencil
points with any neighbours belonging to C3.

3.2 Mesh construction in one dimension

In our numerical tests we focus on one-dimensional examples, i.e. the case Ω =
(xmin, xmax) ⊂ R. The construction of the refined mesh is simpler in this case and
we report here for completeness precisely the steps implemented in the code used in
Section 4.

Let
∆max =

√
∆x‖σ‖∞,

where ‖σ‖∞ ≡ sup(t,x,α)∈[0,T ]×Ω×A |σα(t, x)|, denote the maximum step of the SL
scheme subject to the volatility σ. Defining a global maximum step is not strictly
necessary and it is only done to make the a priori definition of the sets Ci, i = 1, 2, 3
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d
e

a

b

c

C1

C2

C3

Figure 2: Locally refined mesh. The regions in Definition 3.1 are shown in different
styles: coarse black mesh for C1, fine black mesh for C2 and fine white mesh for C3.
Shown dashed is also the original coarse mesh. The stencil is shrunk for the nodes a
and b from Figure 1 earlier, which both lie in C3, and does not overstep anymore. The
stencil for the new node c oversteps in both ways that a and b did before refinement,
but by a lesser distance. The stencil is not shrunk for nodes in C1 and C2. Point
d illustrates the situation where the larger stencil steps from region C3 into the finer
region C2, which can only improve the interpolation error. In e, the larger stencil
steps from region C2 into both the fine region C1 and the coarse region C3. The latter
highlights the importance of the three-region construction, which guarantees that no
fine stencil steps into the coarse mesh. This would make the scheme inconsistent for
those points.
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easier. The width of C2 especially is not optimal here, but this does not affect the
complexity significantly. Define

xi1 = min {xi ∈ N : xmin + ∆max ≤ xi} , xi2 = min {xi ∈ N : xi1 + ∆max ≤ xi}
xi3 = max {xi ∈ N : xmax − ∆max ≥ xi} , xi4 = max {xi ∈ N : xi3 − ∆max ≥ xi} .

Then, the sets Ci are defined as follows:

C1 = [xmin, xi1 ] ∪ [xi3 , xmax], C2 = (xi1 , xi2 ] ∪ [xi4 , xi3), C3 = (xi2 , xi4).

At this point a refinement of the mesh proportional to ∆x3/2 is considered in C1 ∪ C2
(see Figure 3), defining the new mesh N ′.

xmin xi1 xi2 xi4 xi3 xmax

N ∩ C1 N ∩ C2 N ∩ C3

xmin + ∆max xi1 + ∆max xi3 − ∆max xmax − ∆max

xmin xi1 xi2 xi4 xi3 xmax

N ′ ∩ C1 N ′ ∩ C2 N ′ ∩ C3

Figure 3: Mesh refinement in one dimension. Definition of sets Ci, i = 1, 2, 3 (top)
and refined mesh (bottom).

Given that the width of the stencil isO(
√

∆x), the cardinality ofN1∪N2 is |N1∪N2| ∼
O(
√
Nx). Moreover, after the refinement, the number of nodes in this region of width

O(
√

∆x) is O(Nx).

3.3 Properties of the refined scheme with stencil truncation

Let ∆t,∆x > 0 be the time and space mesh refinement parameters, T∆t ⊆ [0, T ] and
C ⊆ Ω ⊆ C ⊂ Rd as above, with Nt = |T∆t| − 1 and Nx = |N | = O(∆x−d).

The cardinality of the refined meshN ′ in d dimensions is still O(Nx) = O(∆x−d).
Moreover, the analysis in Section 3.1 gives the following result.

Proposition 3.3 (Complexity and consistency). If we define sets of mesh cells accord-
ing to Definition 3.1 and further refine the ones in C1 ∪ C2 with mesh refinement pa-
rameter O(∆x3/2), the complexity of the method is O(NtNx) = O(∆t−1∆x−d). If for
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the nodes requiring truncation in N1 we use k1 ∼ O(∆x), then the global consistency
error of this modified scheme becomes

|1− 2θ|
2
|φtt|0∆t+ C

(
∆t2|φttt|0 + ∆x(|D2φ|0 + |D3φ|0 + |D4φ|0)

)
.

As shown in Proposition 2.4, an undesirable side-effect of stencil truncation is the
worsening of the CFL condition of the scheme. The local mesh refinement results in
a stricter CFL condition compared to the one in Proposition 2.4. The following result
follows directly by applying Proposition 2.4 with ∆x replaced by ∆x3/2, the mesh size
in the boundary region.

Proposition 3.4 (Monotonicity and stability). Provided that all the nodes areO(∆x3/2)
away from the boundary of the domain, for a scheme with θ < 1 monotonicity requires
∆t ∼ O(∆x9/4) if only one side of the stencil oversteps or ∆t ∼ O(∆x3) if both sides
of the stencil overstep.

Remark 3.5. Similar to Remark 2.1, ensuring that all nodes in the mesh are at least
O(∆x3/2) away from the boundary of the domain can be achieved by removing the
outermost layer of the cells inside the domain after refinement.

Convergence and error estimates still follow by [1, 13] as a result of consistency,
stability and monotonicity.

4 Numerical tests
We consider the HJB equation in a bounded domain Ω := (xmin, xmax). Denote by Nx

the number of mesh points, then in one dimension

∆x =
xmax − xmin

Nx − 1
.

Let (xj) be a uniform mesh on [xmin, xmax] with xj = xmin + j∆x, j = 0, . . . , Nx − 1
and tn = n∆t, n = 0, . . . , Nt, for ∆t = T

Nt
.

We are going to test both the explicit and the implicit scheme (θ = 0 and θ = 1,
respectively).

4.1 Test 1: Linear equation

We first test the scheme on a linear second order equation since, already in this simpli-
fied case, the main features of the scheme can be observed. In particular, we consider
a classical Black-Scholes equation in Ω with a smooth initial datum:

ut − 1
2(σx)

2uxx − (bx)ux = f(t, x), t ∈ (0, T ), x ∈ Ω,

u(t, x) = v(t, x), t ∈ (0, T ), x ∈ ∂Ω,

u(0, x) = sin(πx), x ∈ Ω,
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Figure 4: (Test 1) Plot of the value function at time t = 0 (left) and t = T (right).

with

f(t, x) =
(1

2
(1−t)(πσx)2−1

)
sin
(
π
(
x− t

2

))
−(1−t)

(π
2
+πbx

)
cos
(
π
(
x− t

2

))
.

The equation has the exact solution:

v(t, x) = (1− t) sin
(
π
(
x− t

2

))
.

xmin xmax b σ T

−1 1 2 1 0.5

Table 1: Parameters used in numerical experiments for Test 1.

For our numerical tests we used the parameters in Table 1. The initial condition and
the solution at terminal time are shown in Figure 4. The necessity of the CFL condition
for the explicit schemes (Nt ∼ N

3/2
x for the truncated stencil scheme without mesh

refinement, Nt ∼ N
9/4
x for the scheme with mesh refinement, see Proposition 3.4)

is confirmed by the results in Tables 2 to 5. The mesh refinement has little impact
on the performance of the scheme with truncated stencil (last column of Tables 2 and
3). Clear improvements can be observed if constant extrapolation of the boundary
conditions is performed outside the domain (Tables 4 and 5). It is worth recalling
that in this last case the scheme is not consistent and the convergence is numerically
achieved because consistency is lost only for points within a distance of

√
∆x of the

boundary, and ∆x after mesh refinement. Similar results are obtained for the implicit
scheme (Table 6). Here, no CFL condition is required and this allows us to take ∆t
proportional to ∆x, i.e., Nt proportional to Nx.
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Nx

Nt =
Nx−1

2 Nt = b(Nx − 1)3/2c Nt = b (Nx−1)5/2

20 c
L∞-error rate L∞-error rate L∞-error rate

11 3.37E-01 - 2.23E-01 - 2.40E-01 -
21 3.68E-01 -0.13 1.30E-01 0.78 1.30E-01 0.89
41 1.82E+04 -15.59 7.16E-02 0.86 7.03E-02 0.88
81 6.53E+16 -41.71 3.73E-02 0.94 3.66E-02 0.94
161 2.20E+48 -104.73 1.89E-02 0.98 1.86E-02 0.98
321 8.83E+123 -251.15 9.48E-03 1.00 9.37E-03 0.99
641 4.96E+299 -583.83 4.72E-03 1.01 4.68E-03 1.00
1281 0.00E+00 NaN 2.35E-03 1.01 2.34E-03 1.00

Table 2: (Test 1) Explicit scheme. Truncated stencil without mesh refinement.

Nx

Nt =
Nx−1

2 Nt = b(Nx − 1)3/2c Nt = b (Nx−1)5/2

20 c
L∞-error rate L∞-error rate L∞-error rate

11 3.91E+01 - 1.61E-01 - 1.77E-01 -
21 2.52E+08 -22.62 8.90E-02 0.86 8.90E-02 1.00
41 2.11E+27 -62.86 4.83E+63 -215.05 5.90E-02 0.59
81 2.55E+74 -156.40 0.00E+00 NaN 3.20E-02 0.88
161 4.57E+187 -376.22 0.00E+00 NaN 1.74E-02 0.88
321 0.00E+00 NaN 0.00E+00 NaN 9.01E-03 0.95
641 0.00E+00 NaN 0.00E+00 NaN 4.57E-03 0.98
1281 0.00E+00 NaN 0.00E+00 NaN 2.30E-03 0.99

Table 3: (Test 1) Explicit scheme. Truncated stencil with mesh refinement.

4.2 Test 2: Controlled drift-diffusion equation

The second test we propose is a HJB equation with coefficients independent of (t, x):

ut + max
a∈{a1,a2}

{
− 1

2a
2uxx − 2aux

}
= 0, t ∈ (0, T ), x ∈ Ω,

u(t, x) = ψ(t, x), t ∈ (0, T ), x ∈ ∂Ω,

u(0, x) = ψ(0, x), x ∈ Ω,
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Nx

Nt =
Nx−1

2 Nt = b(Nx − 1)3/2c Nt = b (Nx−1)5/2

20 c
L∞-error rate L∞-error rate L∞-error rate

11 4.00E-01 - 1.41E-01 - 1.52E-01 -
21 1.05E-01 1.09 1.16E-01 0.28 1.16E-01 0.39
41 7.52E-02 0.48 8.80E-02 0.40 8.86E-02 0.39
81 6.31E-02 0.25 6.73E-02 0.39 6.75E-02 0.39

161 5.38E-02 0.23 5.61E-02 0.26 5.62E-02 0.27
321 4.33E-02 0.31 4.43E-02 0.34 4.43E-02 0.34
641 3.38E-02 0.36 3.42E-02 0.37 3.42E-02 0.37
1281 2.61E-02 0.38 2.62E-02 0.38 2.62E-02 0.38

Table 4: (Test 1) Explicit scheme. Constant extrapolation of boundary conditions
without mesh refinement.

Nx

Nt =
Nx−1

2 Nt = b(Nx − 1)3/2c Nt = b (Nx−1)5/2

20 c
L∞-error rate L∞-error rate L∞-error rate

11 3.40E+02 - 1.27E-01 - 1.52E-01 -
21 3.11E+08 -19.80 6.12E-02 1.06 6.83E-02 1.16
41 2.12E+24 -52.60 4.75E-02 0.37 4.92E-02 0.47
81 2.48E+62 -126.46 3.61E+90 -305.22 2.62E-02 0.91
161 1.78E+150 -291.85 0.00E+00 NaN 1.35E-02 0.96
321 3.98E+284 -446.30 0.00E+00 NaN 6.80E-03 0.98
641 0.00E+00 NaN 0.00E+00 NaN 3.37E-03 1.01
1281 0.00E+00 NaN 0.00E+00 NaN 1.70E-03 0.99

Table 5: (Test 1) Explicit scheme. Constant extrapolation of boundary conditions with
mesh refinement.

where ψ(0, ·) is defined by

ψ(0, x) =


5x(1 + x)4 if − 1 < x ≤ 0,
5x(1− x)4 if 0 ≤ x < 1,
0 if |x| ≥ 1.

We use the parameters in Table 7. In order to compare our numerical results we use
a numerical reference solution computed in a larger domain Ω1 = (−5, 5) with zero
boundary conditions, using a second order (in time and space) BDF scheme (see [2])
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Truncated stencil Constant extrapolation

Nx Nt
No refinement With refinement No refinement With refinement
L∞-error rate L∞-error rate L∞-error rate L∞-error rate

21 2 2.15E-01 - 2.15E-01 - 2.15E-01 - 2.15E-01 -
41 4 1.18E-01 0.86 1.21E-01 0.83 1.17E-01 0.88 1.18E-01 0.87
81 8 6.38E-02 0.89 6.43E-02 0.91 8.57E-02 0.45 6.34E-02 0.90

161 16 3.30E-02 0.95 3.31E-02 0.96 6.34E-02 0.43 3.26E-02 0.96
321 32 1.68E-02 0.98 1.69E-02 0.97 4.95E-02 0.36 1.66E-02 0.97
641 64 8.43E-03 0.99 8.52E-03 0.99 3.69E-02 0.42 8.52E-03 0.96

1281 128 4.27E-03 0.98 4.23E-03 1.01 2.72E-02 0.44 4.21E-03 1.01
2561 256 2.13E-03 1.00 2.15E-03 0.97 2.03E-02 0.42 2.11E-03 1.00

Table 6: (Test 1) Implicit scheme.

withNx = 5121×5 andNt = (Nx−1)/10. The boundary value ψ(t, x) at x = ±1 is
obtained using this reference solution. The initial condition and the solution at terminal
time are shown in Figure 5.

xmin xmax a1 a2 T

−1 1 0.2 0.6 0.25

Table 7: Parameters used in numerical experiments for Test 2.

Figure 5: (Test 2) Plot of the value function at time t = 0 (left) and t = T (right).

We report here, in Table 8, only the results obtained by the implicit scheme, where
the non-linear system in each timestep is solved exactly by policy iteration. However,
under the CFL condition Nt ∼ N9/4

x , similar results can be obtained using the explicit
scheme. The truncated scheme converges with order one (first two columns in Table 8).
The scheme with constant extrapolation of boundary conditions converges with lower
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Truncated stencil Constant extrapolation

Nx Nt
No refinement With refinement No refinement With refinement
L∞-error rate L∞-error rate L∞-error rate L∞-error rate

21 2 2.61E-01 - 2.63E-01 - 2.61E-01 - 2.63E-01 -
41 4 1.75E-01 0.58 1.75E-01 0.58 1.75E-01 0.58 1.75E-01 0.58
81 8 1.05E-01 0.73 1.05E-01 0.73 1.05E-01 0.74 1.05E-01 0.73
161 16 5.62E-02 0.91 5.62E-02 0.91 5.61E-02 0.91 5.61E-02 0.91
321 32 2.88E-02 0.96 2.88E-02 0.96 2.87E-02 0.96 2.88E-02 0.96
641 64 1.41E-02 1.03 1.41E-02 1.03 1.40E-02 1.03 1.41E-02 1.03

1281 128 6.50E-03 1.11 6.50E-03 1.11 1.08E-02 0.38 6.50E-03 1.11
2561 256 3.45E-03 0.91 3.45E-03 0.91 8.58E-03 0.33 3.45E-03 0.91

Table 8: (Test 2) Implicit scheme.

order (third column in Table 8) which becomes order 1 applying the mesh refinement
(fourth column in Table 8). We point out that in this example the main contribution to
the error comes from the points where the solution changes concavity (Figure 6), which
correspond to discontinuities in the second order derivative. This explains the almost
absence of differences in Table 8 (columns 1,2,4) and the fact that the low order in the
third column, which we expect to be 1/2 asymptotically, becomes visible only after
quite a large number of mesh refinements. Figure 6 compares the error obtained using
constant extrapolation of boundary conditions (left) and the truncated stencil (right).
One can notice that the use of the constant extrapolation creates some instability at the
left-hand boundary, that is where such a scheme strongly modifies the nature of the
exact solution outside the computational domain.

Figure 6: (Test 2) Exact solution (green), numerical solution (blue) and error (red)
obtained with Nx = 161 and Nt = 16 using the constant extrapolation of boundary
conditions (left) and the truncated stencil (right).

Table 9 shows the CPU times for the computations with the implicit schemes in Test
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Nx Nt
Truncated stencil Constant extrapolation

No refinement With refinement No refinement With refinement
21 2 1.02 1.32 1.01 1.25
41 4 1.57 2.21 1.54 2.17
81 8 2.55 4.03 2.59 3.95

161 16 4.80 8.63 4.84 8.15
321 32 10.20 16.80 10.43 16.34
641 64 19.83 39.53 20.64 37.68
1281 128 46.43 97.39 47.55 98.43
2561 256 126.37 228.19 116.84 222.90

Table 9: (Test 2) Implicit scheme. CPU (seconds) time for the truncated scheme with-
out and with mesh refinement.

2. Theoretically, the complexity is proportional to Nt×Nx, times the average number
of policy iterations. Moreover, by construction, the complexity for the refined mesh is
proportional to that for the uniform mesh. In this test, the factor of proportionality is
roughly two.

4.3 Test 3: Nonsmooth initial data

Finally, let us consider the following modification of the previous problem:

ut + max
σ∈{σmin,σmax}

{
− 1

2(σx)
2uxx

}
− bxux + ru = 0, t ∈ (0, T ), x ∈ Ω,

u(t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω,

u(0, x) = ψ(0, x), x ∈ Ω,

where ψ(0, ·) is defined by

ψ(0, x) = max
(
− 2K1|x−K2|+K1, 0

)
with K1,K2 > 0. This type of equations arises in financial applications when pricing
options under the uncertain volatility model (see [11]). The initial condition ψ(0, ·)
(Figure 7 (left)) has the shape of a butterfly payoff, for which a detailed study of finite
difference approximations has been proposed in [14].
In our numerical tests we use the parameters in Table 10. As in the previous example,
in order to estimate errors and the rate of convergence, a numerical reference solution
is computed using a second order BDF scheme with Nx = 5121 and Nt = (Nx −
1)/10. The initial condition and the solution at terminal time are shown in Figure 7.
The convergence orders as reported in Table 11 are similar to those for the previous
examples.
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Figure 7: (Test 3) Plot of the value function at time t = 0 (left) and t = T (right).

Figure 8 compares the error obtained using the constant extrapolation of boundary
conditions (left) and the truncated stencil (right). The instability at the boundary cre-
ated by constant extrapolation of the boundary conditions is even more evident in this
example than in the previous ones.

xmin xmax K1 K2 r b σmin σmax T

0 2 15 1 1 0.1 0.5 0.7 0.25

Table 10: Parameters used in numerical experiments for Test 3.

Last, we test the stencil cropping presented in [8] (see Section 2.3). In order to
avoid the case where the cropped stencil falls exactly on mesh points (this would make
the scheme consistent since no interpolation would be performed), we progressively
divide the stencil by π until it fits into the domain Ω. The scheme shows first order of
convergence even without mesh refinement (Table 12). We observed the same also for
the other examples in this section (not reproduced here). However, since consistency
is not satisfied for those points where the cropping is performed, we cannot expect
this to hold in general and the observed behavior in our tests might also be related to
the fact that our solutions are almost linear close to the boundary, which makes the
contribution to the error coming from the interpolation negligible.

5 Conclusions
In this paper, we have presented and discussed a local mesh refinement strategy for SL
schemes approximating viscosity solutions to second order HJB equations in bounded
domains with Dirichlet boundary conditions. In order to test our mesh refinement, we
have considered different treatments for the “overstepping” phenomenon, which typi-
cally arises when this kind of wide stencil schemes is used. When constant extrapola-
tion of boundary conditions (Section 2.2) is applied, the local refinement of the mesh
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Truncated stencil Constant extrapolation

Nx Nt
No refinement With refinement No refinement With refinement
L∞-error rate L∞-error rate L∞-error rate L∞-error rate

21 2 1.20E+00 - 1.20E+00 - 1.20E+00 - 1.21E+00 -
41 4 5.71E-01 1.07 5.67E-01 1.08 5.74E-01 1.07 5.69E-01 1.09
81 8 2.91E-01 0.97 2.90E-01 0.97 2.93E-01 0.97 2.90E-01 0.97
161 16 1.48E-01 0.98 1.48E-01 0.97 2.03E-01 0.53 1.48E-01 0.97
321 32 7.51E-02 0.98 7.51E-02 0.98 1.62E-01 0.32 7.52E-02 0.98
641 64 3.77E-02 0.99 3.77E-02 0.99 1.26E-01 0.37 3.77E-02 0.99

1281 128 1.88E-02 1.00 1.88E-02 1.00 9.46E-02 0.41 1.88E-02 1.00
2561 256 9.41E-03 1.00 9.41E-03 1.00 6.88E-02 0.46 9.41E-03 1.00

Table 11: (Test 3) Implicit scheme.

Figure 8: (Test 3) Exact solution (green), numerical solution (blue) and error (red)
obtained with Nx = 321 and Nt = 32 using the constant extrapolation of boundary
conditions (left) and the truncated stencil (right).
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Nx Nt
No refinement With refinement
L∞-error rate L∞-error rate

21 2 1.19E+00 - 1.19E+00 -
41 4 5.72E-01 1.06 5.68E-01 1.07
81 8 2.91E-01 0.97 2.90E-01 0.97
161 16 1.48E-01 0.98 1.48E-01 0.97
321 32 7.52E-02 0.98 7.51E-02 0.98
641 64 3.77E-02 0.99 3.77E-02 0.99

1281 128 1.88E-02 1.00 1.88E-02 1.00
2561 256 9.41E-03 1.00 9.41E-03 1.00

Table 12: (Test 3) Implicit scheme. ‘Cropped’ stencil with and without refinement.

improves the observed order of convergence from about 1/2 to 1. The scheme remains
non-consistent with the differential operator in the neighborhood of the boundary and
the mesh refinement has only the role of reducing the region of non-consistency. For
the scheme with cropped stencil described in [8] (see also Section 2.3) the tests we
performed do not show any benefits due to the local mesh refinement since the scheme
alone, even if not consistent up to the boundary, already exhibits first order of conver-
gence. The effects of the mesh refinement on the scheme with truncated stencil defined
in [15] (see also Section 2.4) consist in the improvement of the global truncation error
from order 1/2 to order 1. Error estimates for the presented scheme can be obtained
from [13], but the improvement to the consistency error close to the boundary does
not improve the theoretical global convergence order.2 From the numerical point of
view, no substantial difference in the convergence rate of the truncated scheme is ob-
servable, due to the fact that the truncation error of order

√
∆x of the scheme without

mesh refinement only occurs in a region of diameter
√

∆x.
In the numerical tests presented in Section 4, only the one-dimensional case was

taken into account. Clearly, the use of non-local schemes to ensure monotonicity is
essential (only) in higher dimensions. We do not anticipate any qualitative difference
in the behaviour of the schemes there, since the considered semi-Lagrangian schemes
are built on a dimension-wise splitting and we did not exploit any specific features of
the one-dimensional case, e.g., that interpolation can be avoided. Therefore, already
in this simple setting, the main features of the scheme and the effects of the mesh
refinement can be clearly observed. Numerical experiments in more dimensions and a
deeper understanding of the numerical instabilities observed for constant extrapolation
of the boundary conditions are the subject of future research.

2 In contrast, for constant extrapolation and the cropped stencil these techniques are not applicable
due to the lack of consistency up to the boundary, and, to our knowledge, no convergence order is
available in the literature.
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