Boundary Mesh Refinement for Semi-Lagrangian Schemes

Athena Picarelli, Christoph Reisinger and Julen Rotaetxe Arto

Abstract. We study semi-Lagrangian schemes for the Dirichlet problem for second-order degenerate elliptic PDEs. Like other wide stencil schemes, these schemes have to be truncated near the boundaries to avoid “overstepping”. The various modifications proposed in the literature lead to either reduced consistency orders for those points, or even a loss of consistency with the differential operator in the usual sense. We propose a local mesh refinement strategy near domain boundaries which achieves a uniform order of consistency up to the boundary in the first case, and in both cases reduces the width of the region where overstepping occurs, so that the practically observed convergence order is unaffected by overstepping. We demonstrate this numerically for a linear parabolic equation and a second order HJB equation.

Keywords. Semi-Lagrangian schemes, wide stencils, bounded domains, local mesh refinement, Hamilton-Jacobi-Bellman equations.

AMS classification. 65M06, 65M15, 35K61.

1 Introduction

In this paper, we investigate the convergence behaviour of semi-Lagrangian schemes for second order degenerate elliptic equations on bounded domains.

For concreteness, we consider the Hamilton-Jacobi-Bellman (HJB) equation

\[u_t + \sup_{\alpha \in \mathcal{A}} \{ -L^\alpha[u] - c^\alpha u - f^\alpha \} = 0, \quad \text{in} \ (0, T] \times \Omega, \] \hspace{1cm} (1.1)

\[u(0, x) = \psi(0, x), \quad x \in \overline{\Omega}, \] \hspace{1cm} (1.2)

\[u(t, x) = \psi(t, x), \quad (t, x) \in (0, T] \times \partial \Omega, \] \hspace{1cm} (1.3)

where \(Q_T := (0, T] \times \overline{\Omega} \) with \(\overline{\Omega} := \Omega \cup \partial \Omega \subseteq \mathbb{R}^d \), \(\mathcal{A} \) is a compact set,

\[L^\alpha[u](t, x) = \text{tr}[a^\alpha(t, x)D^2 u(t, x)] + b^\alpha(t, x)Du(t, x) \] \hspace{1cm} (1.4)

is a second order differential operator, and the known function \(\psi \) contains the initial and spatial boundary values.

The third author was supported in part by the Programa de Formación de Investigadores del DEUI del Gobierno Vasco.
Linear parabolic equations are a special case where $|\mathcal{A}| = 1$, while fully-nonlinear equations of Isaacs-type are written as min max problems. The construction of the scheme in this paper is analogous in both of these cases.

The coefficients $a^\alpha = \frac{1}{2} \sigma^\alpha \sigma^\alpha T$, b^α, c^α, f^α, and the data ψ in (1.1) take their values, respectively, in S^d, the space of $d \times d$ symmetric matrices, \mathbb{R}^d, \mathbb{R}, \mathbb{R}, and \mathbb{R}, such that a^α is positive semi-definite. We assume the usual well-posedness conditions, i.e. Lipschitz continuity of the coefficients in x uniformly in α, Hölder continuity with exponent $\frac{1}{2}$ in time and continuity in α for each $(t, x) \in Q_T$ (see [10]). This guarantees existence and uniqueness of the solution in the viscosity sense (of [5]) as well as a comparison principle.

In this paper, we focus on semi-Lagrangian schemes for the approximation of (1.1)–(1.3) as introduced in [4, 12] and analysed more recently in [3, 6, 7, 9]. For convenience of the reader and to introduce the notation, we briefly describe the specific scheme used here.

Following loosely [6], we define a non-degenerate polyhedral coverage $\mathcal{C} = \{C_j\}_{j \in \mathbb{J}}$ of $\bar{\Omega}$, where \mathbb{J} is the index set of the cells. The elements of \mathcal{C} are chosen to satisfy

$$\text{int}(C_j \cap C_i) = \emptyset, \quad \forall \ i \neq j,$$

$$\bigcup_{j \in \mathbb{J}} C_j \supseteq \bar{\Omega},$$

$$\nu \Delta x \leq \sup_{j \in \mathbb{J}} \{\text{diam } B_{C_j}\} \leq \sup_{j \in \mathbb{J}} \{\text{diam } C_j\} \leq \Delta x,$$

for some $\nu \in (0, 1)$, where “int” and “diam” are the interior and the diameter, and B_{C_j} is the greatest ball contained in C_j.

We define the subset of interior cells $C = \{C \in \mathcal{C} : C \subseteq \bar{\Omega}\}$ as the ones fully contained in the closure of the domain, and the nodes $\mathcal{N} := \{x_i\}_{i \in \mathbb{I}}$ as the set of all the vertices of elements in C, where we denote by \mathbb{I} the index set of the nodes. Let further $N_x := |\mathcal{N}|$.

We assume non-negative basis functions $\{w_i(\cdot) : i \in \mathbb{I}\}$ associated with the mesh nodes, such that for any continuous function $\phi : \Omega \to \mathbb{R}$

$$[I_{\Delta x} \phi](x) = \sum_{i \in \mathbb{I}} \phi(x_i) w_i(x),$$

for all $x \in \Omega$, $x_i \in \mathcal{N}$. For simplicity, we focus our attention occasionally on cuboid meshes and multilinear interpolants, defined by the standard piecewise multilinear basis. The interpolation error is then $O(\Delta x^2)$ for sufficiently smooth functions, and this is the only property we will use for the consistency analysis. The non-negativity of the basis is required only for the monotonicity of the interpolation operation and subsequently for convergence of the scheme to the viscosity solution.

Writing $\sigma^\alpha = (\sigma^\alpha_1, \sigma^\alpha_2, \ldots, \sigma^\alpha_P) \in \mathbb{R}^{d \times P}$, where $\sigma^\alpha_p \in \mathbb{R}^d$ for $p \in \{1, 2, \ldots, P\}$ is
the \(p \)-th column of \(\sigma^\alpha \), by the usual arguments,

\[
\frac{1}{2} \text{tr} \left[\sigma^\alpha \sigma^{\alpha T} D^2 \phi(x) \right] = \frac{1}{2} \sum_{p=1}^{P} \frac{\phi(x + k\sigma^\alpha_p) - 2\phi(x) + \phi(x - k\sigma^\alpha_p)}{k^2} + O(k^2), \tag{1.5}
\]

\[
b^\alpha D\phi(x) = \frac{\phi(x + k^2b^\alpha) - \phi(x)}{k^2} + O(k^2), \tag{1.6}
\]

for \(k > 0 \) and any smooth function \(\phi \). For brevity we write \(b^\alpha \equiv b^\alpha(t, x) \) and \(\sigma^\alpha \equiv \sigma^\alpha(t, x) \). When these approximations are used for points in \(N \), the displaced points \(x + k^2b^\alpha \) and \(x \pm k\sigma^\alpha_p \) do not generally coincide with nodes in \(N \). Then, \(\phi \) is approximated by its interpolant \(I_{\Delta x}\phi \). In the case of linear basis functions, the resulting scheme is referred to as the Linear Interpolation Semi-Lagrangian (LISL) scheme.

We ignore for the time being the situation where \(x + k^2b^\alpha \) or \(x \pm k\sigma^\alpha_p \) lies outside any of the mesh cells (“oversteps”), which of course will be the focus of the main body of the article.

The consistency error is easily seen to be (see [6])

\[
O \left(k^2 + \frac{\Delta x^2}{k^2} \right).
\]

The first term is the consistency error for the finite difference approximation of the first and second order derivatives in (1.5) and (1.6), whereas the second term corresponds to the linear interpolation error when replacing \(\phi \) by its interpolant in (1.5) and (1.6). The optimal choice \(k = \sqrt{\Delta x} \) makes the consistency error proportional to \(\Delta x \).

Following the notation in [6], the LISL approximations to (1.4) can be expressed as

\[
L^\alpha_{\Delta x} \left[I_{\Delta x} \phi \right](t, x) = \sum_{p=1}^{M} \frac{[I_{\Delta x} \phi](t, x + y^{\alpha, +}_p(t, x)) - 2\phi(t, x) + [I_{\Delta x} \phi](t, x + y^{\alpha, -}_p(t, x))}{2\Delta x} \tag{1.7}
\]

for \(x \in N \), and some \(M \geq 1 \). The functions \(y^{\alpha, \pm}_p(t, x) \) determine the stencil of the scheme at \((t, x)\).

Different spatial schemes can be obtained depending on the values taken by \(M \) and \(y^{\alpha, \pm}_p(t, x) \) in (1.7). In the following, we study specifically the approximation in [6] with \(M = P + 1 \) and

\[
y^{\alpha, \pm}_p = \pm \sqrt{\Delta x} \sigma^\alpha_p, \quad \quad \quad p \leq P, \\
y^{\alpha, \pm}_{P+1} = \Delta x b^\alpha.
\]

Other schemes are defined similarly. The scheme above has more flexibility in defining consistent boundary modifications, as explained in [15].

Finally, a fully discrete scheme is obtained by combining (1.7) with a time stepping scheme. We introduce a time mesh \(T_{\Delta t} = \{ t_n : 0 \leq n \leq N_t \} \subseteq [0, T] \), for simplicity
with \(t_n = n\Delta t \), i.e. with uniform step size \(\Delta t > 0 \). We then define the standard \(\theta \)-scheme by

\[
\frac{u(t_n, x) - u(t_{n-1}, x)}{\Delta t} - \inf_{\alpha \in A} \{ \theta L_{\Delta x}^\alpha [\mathcal{I}_{\Delta x} u](t_{n-1}, x) + (1 - \theta) L_{\Delta x}^\alpha [\mathcal{I}_{\Delta x} u](t_n, x) \} = 0,
\]

where we have set \(c = f = 0 \) in (1.1) for simplicity. In the tests we will focus on \(\theta = 0 \) (explicit Euler) and \(\theta = 1 \) (implicit Euler). Although the scheme can in principle be defined in this way for all \(x \in \Omega \), we restrict the scheme to \(x \in \mathcal{N} \).

2 Domain overstepping and stencil truncation

We now focus on the boundary of the domain and the definition of the scheme there. We take \(\Omega \subset \mathbb{R}^d \) (for \(d \geq 1 \)) a general domain with curved boundary, but for simplicity illustrate the method for \(\mathcal{C} \) defined by a Cartesian mesh on \(\mathbb{R}^d \) with uniform mesh width \(\Delta x \). Then we choose \(\mathcal{C} \) and \(\mathcal{N} \) as explained in Section 1. See Figure 1.

![Figure 1: An elliptical domain and a mesh made of square cells. In situation a, \(x + y_p^{\alpha,\pm} (t, x) \notin \overline{\Omega} \), while in situation b, \(x + y_p^{\alpha,\pm} (t, x) \in \overline{\Omega} \), but the cell it is contained in has vertices outside \(\overline{\Omega} \). The modified stencil in Sections 2.2 and 2.4 uses values from the boundary, while in Section 2.3 the stencil is shrunk to fit.](image)

2.1 Overstepping

Now consider a mesh node \(x \in \mathcal{N} \) in the vicinity of the boundary. In the two situations sketched in Figure 1 the interpolation at the point \(x + y_p^{\alpha,\pm} (t, x) \) fails for given \(t, \alpha \) and \(p \). We say in these cases that the stencil “oversteps”. We now discuss several possibilities to deal with these situations. They are all based on a local modification...
of the step $y_p^\alpha,\pm(t, x)$ and of k, combined in some cases with a modification of the interpolation weights.

Where the stencil oversteps, we define

$$\hat{y}_p^\alpha,\pm(t, x) = \mu_p^\alpha,\pm(t, x) y_p^\alpha,\pm(t, x),$$

where

$$\mu_p^\alpha,\pm(t, x) = \min \left\{ \mu \geq 0 : x + \mu y_p^\alpha,\pm(t, x) \in \partial \Omega \right\}. \quad (2.1)$$

In case a in Fig. 1 this means $\mu < 1$, while in case b we have $\mu > 1$.

Remark 2.1. On rectangular domains, the elements of the Cartesian mesh cover exactly the domain and case b does not occur. Moreover, interior mesh points cannot be arbitrarily close to the boundary, but are always at least Δx away. This can be enforced in the general case by removing the outermost layer of cells in C, such that again a distance of Δx between non-boundary mesh points and the domain boundary is ensured. This allows the derivation of CFL conditions for the explicit schemes as given below (Proposition 2.4 for the scheme in Section 2.4 and similar for other schemes).

2.2 Constant extrapolation

When the stencil oversteps, constant extrapolation simply uses instead the value at the boundary in the direction of the stencil step. This can be written as

$$\bar{L}_\Delta^\alpha [\mathcal{I}_\Delta \phi](t, x) = \sum_{p=1}^{M} \left[\mathcal{I}_\Delta \phi \right](t, x + \hat{y}_p^\alpha,+(t, x)) - 2 \phi(t, x) + \left[\mathcal{I}_\Delta \phi \right](t, x + \hat{y}_p^-\alpha(t, x)) \right] \frac{2\Delta x}{2\Delta x}.$$

Note that the scheme is generally not consistent up to the boundary. A proof of convergence is not available to the best of our knowledge.

2.3 Stencil cropping

The scheme in [8] shrinks the stencil so that it does not overstep. This corresponds to

$$\bar{L}_\Delta^\alpha [\mathcal{I}_\Delta \phi](t, x) = \sum_{p=1}^{M} \left[\mathcal{I}_\Delta \phi \right](t, x + \check{y}_p^\alpha,+(t, x)) - 2 \phi(t, x) + \left[\mathcal{I}_\Delta \phi \right](t, x + \check{y}_p^-\alpha(t, x)) \right] \frac{2\Delta x}{2\Delta x}$$

with

$$\check{y}_p^\alpha,\pm = \pm \check{k} \sigma_p^\alpha \quad \forall p = 1, \ldots, P, \quad \check{y}_p^{\alpha,\pm} = \check{k}^2 b^\alpha$$

and $0 < \check{k} \equiv \check{k}(t, x, \alpha)$ is chosen such that $x + \check{y}_p^\alpha,\pm \in \bar{\Omega}, \forall p = 1, \ldots, M$.

Generally this means the scheme is not consistent up to the boundary in the sense of [1], however, [8] can still prove a generalised consistency condition and convergence for viscosity solutions of the Monge-Ampère equation on convex domains.
2.4 Stencil truncation

In contrast to the above two schemes, the one in [15] is designed to be consistent in the whole of the domain. Hence, the objective is to find truncated or extended stencil vectors \(\hat{y}_{p}^{\alpha,\pm}(t, x) \) and corresponding finite difference weights \(A_{p}^{\alpha} \equiv A_{p}^{\alpha}(t, x) \) and \(B_{p}^{\alpha} \equiv B_{p}^{\alpha}(t, x) \), such that \(x + \hat{y}_{p}^{\alpha,\pm}(t, x) \in \partial \Omega \) and the truncated scheme

\[
\hat{L}_{\Delta x}^{\alpha}[I_{\Delta x}\phi](t, x) = \frac{1}{\Delta x} \sum_{p=1}^{M} A_{p}^{\alpha}(t, x + \hat{y}_{p}^{\alpha,+}(t, x)) - (A_{p}^{\alpha} + B_{p}^{\alpha})\phi(t, x) + B_{p}^{\alpha}[I_{\Delta x}\phi](t, x + \hat{y}_{p}^{\alpha,-}(t, x))
\]

is a consistent approximation of (1.4) as \(\Delta x \to 0 \). If the stencil does not overstep, we have that \(\hat{y}_{p}^{\alpha,\pm}(t, x) = y_{p}^{\alpha,\pm}(t, x) \) and \(A_{p}^{\alpha} = B_{p}^{\alpha} = 1 \).

For all \(p \in \{1, \ldots, P \} \) let \(\mu_{p}^{\alpha,\pm} \in [0, 1] \) be as in (2.1), then define

\[
A_{P+1}^{\alpha} = B_{P+1}^{\alpha} = \frac{1}{\mu_{P+1}^{\alpha,+}} \left(\frac{1}{\mu_{P+1}^{\alpha,-}} \right) \tag{2.3}
\]

and, for \(p \in \{1, \ldots, P \} \),

\[
A_{p}^{\alpha} = \frac{2}{(\mu_{p}^{\alpha,+})^2 + \mu_{p}^{\alpha,+} \mu_{p}^{\alpha,-}}, \quad B_{p}^{\alpha} = \frac{2}{(\mu_{p}^{\alpha,-})^2 + \mu_{p}^{\alpha,-} \mu_{p}^{\alpha,+}} \tag{2.4}
\]

Proposition 2.2 (Consistency, see Corollary 2.3 in [15]). For the truncated scheme (2.2), (2.3) and (2.4), the local consistency error for points with truncation and \(p \neq P+1 \) is \(O(\sqrt{\Delta x}) \) if only one side of the stencil oversteps, and \(O(1) \) if both sides overstep.

Remark 2.3. The scheme can be made consistent (of order \(O(\Delta x) \)) for the case where both sides of the stencil overstep by using the exact boundary value in the truncated scheme (2.2) instead of the interpolant. We therefore assume in the following that this is done.

Proposition 2.4 (Monotonicity and stability, see Corollary 2.5 in [15]). In the case of overstepping and \(\theta < 1 \), monotonicity requires that \(\Delta t \leq C_{1}\Delta x^{3/2} \) if only one side of the diffusion stencils oversteps, or \(\Delta t \leq C_{2}\Delta x^{2} \) if both sides overstep. However, if the stencil is not truncated, the positivity condition remains as in [6], that is \(\Delta t \leq C_{3}\Delta x \), where \(C_{1}, C_{2}, C_{3} > 0 \) are sufficiently small constants depending on the coefficients \(\sigma^{\alpha}, b^{\alpha} \) and \(c^{\alpha} \), but independent of \(\Delta x \) and \(\Delta t \).

As the scheme is consistent up to the boundary in the classical sense, convergence follows directly from the framework in [1]. Error estimates were obtained in [13].
3 Local mesh refinement

We now consider a refinement of the mesh in boundary layers of width $O(\sqrt{\Delta x})$ where the semi-Lagrangian scheme oversteps. The objective is to improve the local consistency error of the truncated stencil in Section 2.4 from $O(\sqrt{\Delta x})$ to $O(\Delta x)$, and for all schemes to reduce the width of the region where the stencil oversteps from $O(\sqrt{\Delta x})$ to $O(\Delta x)$.

For this purpose, we combine a local refinement of the mesh with appropriate changes to the stencil step k in (1.5) in the region near the boundary.

3.1 General mesh construction

Let us consider a mesh defined by cells C and N_x nodes $N \subset \Omega$ with refinement parameter $\Delta x > 0$, as in Section 1. For simplicity, we assume that $\sigma_\alpha(t,x) = \sigma(x)$.

Since it is primarily the overstepping of the diffusion stencil that reduces the local truncation error, this guides the split of N into three subsets, N_1 and C_i, $i \in \{1, 2, 3\}$, respectively. We will subsequently define new step sizes k_i for nodes in N_i, and a refinement with mesh size h_i for the cells in C_i.

Definition 3.1. Define

$$C_1 = \{ C \in \overline{C} : \exists x \in C, \theta \in [0,1], 1 \leq p \leq P : x \pm \theta \sqrt{\Delta x} \sigma_p(x) \notin \Omega \},$$

$$C_2 = \{ C \in \overline{C_1} : \exists x \in C_1, 1 \leq p \leq P : x + k_1 \sigma_p(x) \in C \text{ or } x - k_1 \sigma_p(x) \in C \},$$

$$C_3 = \overline{C} \setminus (C_1 \cup C_2).$$

Then define $N_1 = C_1 \cap N$, the nodes of elements in C_1, $N_2 = (C_2 \cap N) \setminus N_1$, the nodes of elements in C_2 which are not already in N_1, and $N_3 = N \setminus (N_1 \cup N_2)$.

Therefore, $\overline{C} = C_1 \cup C_2 \cup C_3$ with $C_i \cap C_j = \emptyset$ for $i \neq j$ and $i, j \in \{1, 2, 3\}$, and similarly for the nodes. This ensures that if $k_1, k_2 \leq k$, all nodes that overstep are contained in N_1, and that no node in C_1 steps into C_3 after refinement.

We emphasise the need for the three region construction, with an overlapping layer C_2 of a fine mesh (as in C_1) and wide stencil (as in C_3). This prevents the situation where a narrow stencil steps into the coarse mesh, which would spoil consistency.

Next, we refine the mesh elements in C_1 and C_2 with mesh refinement parameter proportional to $h_1 = h_2 \sim \Delta x^\gamma$, where $\gamma > 1$ is a parameter to be determined so that the resulting local consistency error is at least $O(\Delta x)$. After refinement, we remove the cells which are not fully in $\overline{\Omega}$ to create a new set of cells C' with vertices N'. By refining \overline{C} and then pruning the refined cells outside $\overline{\Omega}$, the space between C and $\partial \Omega$ gets refined, which would not happen if we simply refined C.

* Extrapolation into $\overline{\Omega} \setminus C$ is not problematic as the distance between C and $\partial \Omega$ is $O(\Delta x)$.
To determine γ, we proceed in reverse order starting with C_3. As the stencil may step into the finer regions C_1 and C_2, the consistency error there is

$$\mathcal{O}\left(k_3^2 + \frac{h_1^2}{k_3^2} + \frac{h_2^2}{k_3^2} + \frac{h_3^2}{k_3^2} \right) = \mathcal{O}\left(k_3^2 + \frac{\Delta x^2}{k_3^2} + \frac{\Delta x^{2\gamma}}{k_3^2} \right),$$

where the first term corresponds to the consistency error of the finite difference approximation of the second order derivative and the last terms to the interpolation error in the original and the refined regions respectively. As $\gamma \geq 1$, we do not modify the stencil step, i.e. $k_3 \sim \mathcal{O}(\sqrt{\Delta x})$. Similarly, the local consistency error for nodes N_2 after refinement is

$$\mathcal{O}\left(k_2^2 + \frac{h_1^2}{k_2^2} + \frac{h_2^2}{k_2^2} + \frac{h_3^2}{k_2^2} \right) = \mathcal{O}\left(k_2^2 + \frac{\Delta x^2}{k_2^2} + \frac{\Delta x^{2\gamma}}{k_2^2} \right).$$

Choosing $k_2 \sim \mathcal{O}(\sqrt{\Delta x})$ the local consistency error is $\mathcal{O}(\Delta x)$, for all $\gamma \geq 1$.

Finally, the local consistency error for points in C_1 after refinement is

$$\mathcal{O}\left(k_1^2 + \frac{h_1^2}{k_1^2} + \frac{h_2^2}{k_1^2} \right) = \mathcal{O}\left(k_1^2 + \frac{\Delta x^{2\gamma}}{k_1^2} \right),$$

where we have assumed that the exact boundary value is used in the case of stencil truncation (see Remark 2.3). Choosing $\gamma = \frac{3}{2}$ and $k_1 \sim \mathcal{O}(\Delta x)$ the truncation error is $\mathcal{O}(\Delta x)$.

Figure 2 shows a locally refined mesh and describes the effects of the refinement. Figure 2 gives a distorted view for illustration purposes, where in reality C_2 is substantially smaller than C_1, and C_1 is substantially smaller than C_3.

Remark 3.2. Figure 2 shows that the local refinement leaves “hanging nodes” at the interface between C_2 and C_3. These nodes do not pose a problem for semi-Lagrangian discretizations. For the interpolation, the “hanging nodes” are not used for stencil points with any neighbours belonging to C_3.

3.2 Mesh construction in one dimension

In our numerical tests we focus on one-dimensional examples, i.e. the case $\Omega = (x_{\min}, x_{\max}) \subset \mathbb{R}$. The construction of the refined mesh is simpler in this case and we report here for completeness precisely the steps implemented in the code used in Section 4.

Let

$$\Delta_{\max} = \sqrt{\Delta x}\|\sigma\|_\infty,$$

where $\|\sigma\|_\infty \equiv \sup_{(t,x,\alpha) \in [0,T] \times \Omega \times \mathcal{A}} |\sigma^{\alpha}(t, x)|$, denote the maximum step of the SL scheme subject to the volatility σ. Defining a global maximum step is not strictly necessary and it is only done to make the a priori definition of the sets C_i, $i = 1, 2, 3$.
Figure 2: Locally refined mesh. The regions in Definition 3.1 are shown in different styles: coarse black mesh for C_1, fine black mesh for C_2 and fine white mesh for C_3. Shown dashed is also the original coarse mesh. The stencil is shrunk for the nodes a and b from Figure 1 earlier, which both lie in C_3, and does not overstep anymore. The stencil for the new node c oversteps in both ways that a and b did before refinement, but by a lesser distance. The stencil is not shrunk for nodes in C_1 and C_2. Point d illustrates the situation where the larger stencil steps from region C_3 into the finer region C_2, which can only improve the interpolation error. In e, the larger stencil steps from region C_2 into both the fine region C_1 and the coarse region C_3. The latter highlights the importance of the three-region construction, which guarantees that no fine stencil steps into the coarse mesh. This would make the scheme inconsistent for those points.
easier. The width of C_2 especially is not optimal here, but this does not affect the complexity significantly. Define

\[x_{i_1} = \min \{ x_i \in \mathcal{N} : x_{\min} + \Delta_{\max} \leq x_i \}, \quad x_{i_2} = \min \{ x_i \in \mathcal{N} : x_{i_1} + \Delta_{\max} \leq x_i \} \]

\[x_{i_3} = \max \{ x_i \in \mathcal{N} : x_{\max} - \Delta_{\max} \geq x_i \}, \quad x_{i_4} = \max \{ x_i \in \mathcal{N} : x_{i_3} - \Delta_{\max} \geq x_i \} . \]

Then, the sets C_i are defined as follows:

\[C_1 = [x_{\min}, x_{i_1}] \cup [x_{i_3}, x_{\max}], \quad C_2 = (x_{i_1}, x_{i_2}] \cup [x_{i_4}, x_{i_3}), \quad C_3 = (x_{i_2}, x_{i_4}) . \]

At this point a refinement of the mesh proportional to $\Delta x^{3/2}$ is considered in $C_1 \cup C_2$ (see Figure 3), defining the new mesh \mathcal{N}'.

![Figure 3: Mesh refinement in one dimension. Definition of sets C_i, $i = 1, 2, 3$ (top) and refined mesh (bottom).](image)

Given that the width of the stencil is $O(\sqrt{\Delta x})$, the cardinality of $\mathcal{N}_1 \cup \mathcal{N}_2$ is $|\mathcal{N}_1 \cup \mathcal{N}_2| \sim O(\sqrt{N_x})$. Moreover, after the refinement, the number of nodes in this region of width $O(\sqrt{\Delta x})$ is $O(N_x)$.

3.3 Properties of the refined scheme with stencil truncation

Let $\Delta t, \Delta x > 0$ be the time and space mesh refinement parameters, $\mathcal{T}_{\Delta t} \subseteq [0, T]$ and $\mathcal{C} \subseteq \Omega \subseteq \overline{\mathcal{C}} \subseteq \mathbb{R}^d$ as above, with $N_t = |\mathcal{T}_{\Delta t}| - 1$ and $N_x = |\mathcal{N}| = O(\Delta x^{-d})$.

The cardinality of the refined mesh \mathcal{N}' in d dimensions is still $O(N_x) = O(\Delta x^{-d})$. Moreover, the analysis in Section 3.1 gives the following result.

Proposition 3.3 (Complexity and consistency). If we define sets of mesh cells according to Definition 3.1 and further refine the ones in $C_1 \cup C_2$ with mesh refinement parameter $O(\Delta x^{3/2})$, the complexity of the method is $O(N_t N_x) = O(\Delta t^{-1} \Delta x^{-d})$. If for
the nodes requiring truncation in N_1 we use $k_1 \sim O(\Delta x)$, then the global consistency error of this modified scheme becomes

$$\frac{1 - 2\theta}{2} |\phi_{tt}||0\Delta t + C (\Delta t^2|\phi_{ttt}|0 + \Delta x(|D^2\phi||0 + |D^3\phi||0 + |D^4\phi||0)),$$

As shown in Proposition 2.4, an undesirable side-effect of stencil truncation is the worsening of the CFL condition of the scheme. The local mesh refinement results in a stricter CFL condition compared to the one in Proposition 2.4. The following result follows directly by applying Proposition 2.4 with Δx replaced by $\Delta x^{3/2}$, the mesh size in the boundary region.

Proposition 3.4 (Monotonicity and stability). **Provided that all the nodes are $O(\Delta x^{3/2})$ away from the boundary of the domain, for a scheme with $\theta < 1$ monotonicity requires $\Delta t \sim O(\Delta x^{9/4})$ if only one side of the stencil oversteps or $\Delta t \sim O(\Delta x^3)$ if both sides of the stencil overstep.**

Remark 3.5. Similar to Remark 2.1, ensuring that all nodes in the mesh are at least $O(\Delta x^{3/2})$ away from the boundary of the domain can be achieved by removing the outermost layer of the cells inside the domain after refinement.

Convergence and error estimates still follow by [1, 13] as a result of consistency, stability and monotonicity.

4 Numerical tests

We consider the HJB equation in a bounded domain $\Omega := (x_{\min}, x_{\max})$. Denote by N_x the number of mesh points, then in one dimension

$$\Delta x = \frac{x_{\max} - x_{\min}}{N_x - 1}.$$

Let (x_j) be a uniform mesh on $[x_{\min}, x_{\max}]$ with $x_j = x_{\min} + j\Delta x$, $j = 0, \ldots, N_x - 1$ and $t_n = n\Delta t$, $n = 0, \ldots, N_t$, for $\Delta t = \frac{T}{N_t}$.

We are going to test both the explicit and the implicit scheme ($\theta = 0$ and $\theta = 1$, respectively).

4.1 Test 1: Linear equation

We first test the scheme on a linear second order equation since, already in this simplified case, the main features of the scheme can be observed. In particular, we consider a classical Black-Scholes equation in Ω with a smooth initial datum:

$$u_t - \frac{1}{2}(\sigma x)^2 u_{xx} - (bx)u_x = f(t, x), \quad t \in (0, T), \; x \in \Omega,$$

$$u(t, x) = v(t, x), \quad t \in (0, T), \; x \in \partial\Omega,$$

$$u(0, x) = \sin(\pi x), \quad x \in \overline{\Omega},$$
with

\[f(t, x) = \left(\frac{1}{2} (1-t) (\pi \sigma x)^2 - 1 \right) \sin \left(\pi \left(x - \frac{t}{2} \right) \right) - (1-t) \left(\frac{\pi}{2} + \pi bx \right) \cos \left(\pi \left(x - \frac{t}{2} \right) \right). \]

The equation has the exact solution:

\[v(t, x) = (1-t) \sin \left(\pi \left(x - \frac{t}{2} \right) \right). \]

<table>
<thead>
<tr>
<th>(x_{\min})</th>
<th>(x_{\max})</th>
<th>(b)</th>
<th>(\sigma)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 1: Parameters used in numerical experiments for Test 1.

For our numerical tests we used the parameters in Table 1. The initial condition and the solution at terminal time are shown in Figure 4. The necessity of the CFL condition for the explicit schemes (\(N_t \sim N_x^{3/2} \) for the truncated stencil scheme without mesh refinement, \(N_t \sim N_x^{9/4} \) for the scheme with mesh refinement, see Proposition 3.4) is confirmed by the results in Tables 2 to 5. The mesh refinement has little impact on the performance of the scheme with truncated stencil (last column of Tables 2 and 3). Clear improvements can be observed if constant extrapolation of the boundary conditions is performed outside the domain (Tables 4 and 5). It is worth recalling that in this last case the scheme is not consistent and the convergence is numerically achieved because consistency is lost only for points within a distance of \(\sqrt{\Delta x} \) of the boundary, and \(\Delta x \) after mesh refinement. Similar results are obtained for the implicit scheme (Table 6). Here, no CFL condition is required and this allows us to take \(\Delta t \) proportional to \(\Delta x \), i.e., \(N_t \) proportional to \(N_x \).
4.2 Test 2: Controlled drift-diffusion equation

The second test we propose is a HJB equation with coefficients independent of \((t, x)\):

\[
 u_t + \max_{a \in \{a_1, a_2\}} \left\{ - \frac{1}{2} a^2 u_{xx} - 2a u_x \right\} = 0, \quad t \in (0, T), \ x \in \Omega,

 u(t, x) = \psi(t, x), \quad t \in (0, T), \ x \in \partial \Omega,

 u(0, x) = \psi(0, x), \quad x \in \bar{\Omega},
\]
\[
N_t = \frac{N_x - 1}{2}
\]
\[
N_t = \left\lfloor \frac{(N_x - 1)^{3/2}}{2} \right\rfloor
\]
\[
N_t = \left\lfloor \frac{(N_x - 1)^{3/2}}{20} \right\rfloor
\]

\[L_\infty\text{-error rate}\]

<table>
<thead>
<tr>
<th>(N_x)</th>
<th>(N_t = \frac{N_x - 1}{2})</th>
<th>(N_t = \left\lfloor (N_x - 1)^{3/2} \right\rfloor)</th>
<th>(N_t = \left\lfloor \frac{(N_x - 1)^{3/2}}{20} \right\rfloor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>4.00E-01</td>
<td>1.41E-01</td>
<td>1.52E-01</td>
</tr>
<tr>
<td>21</td>
<td>1.05E-01 1.09</td>
<td>1.16E-01 0.28</td>
<td>1.16E-01 0.39</td>
</tr>
<tr>
<td>41</td>
<td>7.52E-02 0.48</td>
<td>8.80E-02 0.40</td>
<td>8.86E-02 0.39</td>
</tr>
<tr>
<td>81</td>
<td>6.31E-02 0.25</td>
<td>6.73E-02 0.39</td>
<td>6.75E-02 0.39</td>
</tr>
<tr>
<td>161</td>
<td>5.38E-02 0.23</td>
<td>5.61E-02 0.26</td>
<td>5.62E-02 0.27</td>
</tr>
<tr>
<td>321</td>
<td>4.33E-02 0.31</td>
<td>4.43E-02 0.34</td>
<td>4.43E-02 0.34</td>
</tr>
<tr>
<td>641</td>
<td>3.38E-02 0.36</td>
<td>3.42E-02 0.37</td>
<td>3.42E-02 0.37</td>
</tr>
<tr>
<td>1281</td>
<td>2.61E-02 0.38</td>
<td>2.62E-02 0.38</td>
<td>2.62E-02 0.38</td>
</tr>
</tbody>
</table>

Table 4: (Test 1) Explicit scheme. Constant extrapolation of boundary conditions without mesh refinement.

\[L_\infty\text{-error rate}\]

<table>
<thead>
<tr>
<th>(N_x)</th>
<th>(N_t = \frac{N_x - 1}{2})</th>
<th>(N_t = \left\lfloor (N_x - 1)^{3/2} \right\rfloor)</th>
<th>(N_t = \left\lfloor \frac{(N_x - 1)^{3/2}}{20} \right\rfloor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3.40E+02</td>
<td>1.27E-01</td>
<td>1.52E-01</td>
</tr>
<tr>
<td>21</td>
<td>3.11E+08 -19.80</td>
<td>6.12E-02 1.06</td>
<td>6.83E-02 1.16</td>
</tr>
<tr>
<td>41</td>
<td>2.12E+24 -52.60</td>
<td>4.75E-02 0.37</td>
<td>4.92E-02 0.47</td>
</tr>
<tr>
<td>81</td>
<td>2.48E+62 -126.46</td>
<td>3.61E+90 -305.22</td>
<td>2.62E-02 0.91</td>
</tr>
<tr>
<td>161</td>
<td>1.78E+150 -291.85</td>
<td>0.00E+00 NaN</td>
<td>1.35E-02 0.96</td>
</tr>
<tr>
<td>321</td>
<td>3.98E+284 -446.30</td>
<td>0.00E+00 NaN</td>
<td>6.80E-03 0.98</td>
</tr>
<tr>
<td>641</td>
<td>0.00E+00 NaN</td>
<td>0.00E+00 NaN</td>
<td>3.37E-03 1.01</td>
</tr>
<tr>
<td>1281</td>
<td>0.00E+00 NaN</td>
<td>0.00E+00 NaN</td>
<td>1.70E-03 0.99</td>
</tr>
</tbody>
</table>

Table 5: (Test 1) Explicit scheme. Constant extrapolation of boundary conditions with mesh refinement.

where \(\psi(0, \cdot)\) is defined by

\[
\psi(0, x) = \begin{cases}
 5x(1 + x)^4 & \text{if } -1 < x \leq 0, \\
 5x(1 - x)^4 & \text{if } 0 \leq x < 1, \\
 0 & \text{if } |x| \geq 1.
\end{cases}
\]

We use the parameters in Table 7. In order to compare our numerical results we use a numerical reference solution computed in a larger domain \(\Omega_1 = (-5, 5)\) with zero boundary conditions, using a second order (in time and space) BDF scheme (see [2]).
Boundary Mesh Refinement for Semi-Lagrangian Schemes

Table 6: (Test 1) Implicit scheme.

<table>
<thead>
<tr>
<th>N_x</th>
<th>N_t</th>
<th>Truncated stencil</th>
<th>Constant extrapolation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No refinement</td>
<td>With refinement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L^∞-error</td>
<td>L^∞-error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rate</td>
<td>rate</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>2.15E-01</td>
<td>-</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>1.18E-01</td>
<td>0.86</td>
</tr>
<tr>
<td>81</td>
<td>8</td>
<td>6.38E-02</td>
<td>0.89</td>
</tr>
<tr>
<td>161</td>
<td>16</td>
<td>3.30E-02</td>
<td>0.95</td>
</tr>
<tr>
<td>321</td>
<td>32</td>
<td>1.68E-02</td>
<td>0.98</td>
</tr>
<tr>
<td>641</td>
<td>64</td>
<td>8.43E-03</td>
<td>0.99</td>
</tr>
<tr>
<td>1281</td>
<td>128</td>
<td>4.27E-03</td>
<td>0.98</td>
</tr>
<tr>
<td>2561</td>
<td>256</td>
<td>2.13E-03</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 6: (Test 1) Implicit scheme.

with $N_x = 5121 \times 5$ and $N_t = (N_x - 1)/10$. The boundary value $\psi(t, x)$ at $x = \pm 1$ is obtained using this reference solution. The initial condition and the solution at terminal time are shown in Figure 5.

Table 7: Parameters used in numerical experiments for Test 2.

<table>
<thead>
<tr>
<th>x_{\min}</th>
<th>x_{\max}</th>
<th>a_1</th>
<th>a_2</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 7: Parameters used in numerical experiments for Test 2.

Figure 5: (Test 2) Plot of the value function at time $t = 0$ (left) and $t = T$ (right).

We report here, in Table 8, only the results obtained by the implicit scheme, where the non-linear system in each timestep is solved exactly by policy iteration. However, under the CFL condition $N_t \sim N_x^{9/4}$, similar results can be obtained using the explicit scheme. The truncated scheme converges with order one (first two columns in Table 8). The scheme with constant extrapolation of boundary conditions converges with lower
order (third column in Table 8) which becomes order 1 applying the mesh refinement (fourth column in Table 8). We point out that in this example the main contribution to the error comes from the points where the solution changes concavity (Figure 6), which correspond to discontinuities in the second order derivative. This explains the almost absence of differences in Table 8 (columns 1,2,4) and the fact that the low order in the third column, which we expect to be 1/2 asymptotically, becomes visible only after quite a large number of mesh refinements. Figure 6 compares the error obtained using constant extrapolation of boundary conditions (left) and the truncated stencil (right). One can notice that the use of the constant extrapolation creates some instability at the left-hand boundary, that is where such a scheme strongly modifies the nature of the exact solution outside the computational domain.

Figure 6: (Test 2) Exact solution (green), numerical solution (blue) and error (red) obtained with $N_x = 161$ and $N_t = 16$ using the constant extrapolation of boundary conditions (left) and the truncated stencil (right).

Table 9 shows the CPU times for the computations with the implicit schemes in Test
Boundary Mesh Refinement for Semi-Lagrangian Schemes

Table 9: (Test 2) Implicit scheme. CPU (seconds) time for the truncated scheme without and with mesh refinement.

N_x	N_t	Truncated stencil		Constant extrapolation	
		No refinement	With refinement	No refinement	With refinement
21	2	1.02	1.32	1.01	1.25
41	4	1.57	2.21	1.54	2.17
81	8	2.55	4.03	2.59	3.95
161	16	4.80	8.63	4.84	8.15
321	32	10.20	16.80	10.43	16.34
641	64	19.83	39.53	20.64	37.68
1281	128	46.43	97.39	47.55	98.43
2561	256	126.37	228.19	116.84	222.90

2. Theoretically, the complexity is proportional to $N_t \times N_x$, times the average number of policy iterations. Moreover, by construction, the complexity for the refined mesh is proportional to that for the uniform mesh. In this test, the factor of proportionality is roughly two.

4.3 Test 3: Nonsmooth initial data

Finally, let us consider the following modification of the previous problem:

$$\begin{align*}
 u_t + \max_{\sigma \in \{\sigma_{\min}, \sigma_{\max}\}} \left\{ -\frac{1}{2} (\sigma x)^2 u_{xx} \right\} - b x u_x + ru &= 0, \quad t \in (0, T), \ x \in \Omega, \\
 u(t, x) &= 0, \quad t \in (0, T), \ x \in \partial \Omega, \\
 u(0, x) &= \psi(0, x), \quad x \in \overline{\Omega},
\end{align*}$$

where $\psi(0, \cdot)$ is defined by

$$\psi(0, x) = \max \left(-2K_1 |x - K_2| + K_1, 0 \right)$$

with $K_1, K_2 > 0$. This type of equations arises in financial applications when pricing options under the uncertain volatility model (see [11]). The initial condition $\psi(0, \cdot)$ (Figure 7 (left)) has the shape of a butterfly payoff, for which a detailed study of finite difference approximations has been proposed in [14].

In our numerical tests we use the parameters in Table 10. As in the previous example, in order to estimate errors and the rate of convergence, a numerical reference solution is computed using a second order BDF scheme with $N_x = 5121$ and $N_t = (N_x - 1)/10$. The initial condition and the solution at terminal time are shown in Figure 7. The convergence orders as reported in Table 11 are similar to those for the previous examples.
Figure 8 compares the error obtained using the constant extrapolation of boundary conditions (left) and the truncated stencil (right). The instability at the boundary created by constant extrapolation of the boundary conditions is even more evident in this example than in the previous ones.

Table 10: Parameters used in numerical experiments for Test 3.

<table>
<thead>
<tr>
<th>x_{min}</th>
<th>x_{max}</th>
<th>K_1</th>
<th>K_2</th>
<th>r</th>
<th>b</th>
<th>σ_{min}</th>
<th>σ_{max}</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.5</td>
<td>0.7</td>
<td>0.25</td>
</tr>
</tbody>
</table>

5 Conclusions

In this paper, we have presented and discussed a local mesh refinement strategy for SL schemes approximating viscosity solutions to second order HJB equations in bounded domains with Dirichlet boundary conditions. In order to test our mesh refinement, we have considered different treatments for the “overstepping” phenomenon, which typically arises when this kind of wide stencil schemes is used. When constant extrapolation of boundary conditions (Section 2.2) is applied, the local refinement of the mesh
Table 11: (Test 3) Implicit scheme.

<table>
<thead>
<tr>
<th>N_x</th>
<th>N_t</th>
<th>Truncated stencil</th>
<th>Constant extrapolation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No refinement</td>
<td>With refinement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L^∞-error</td>
<td>rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>1.20E+00</td>
<td>-</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>5.71E-01</td>
<td>1.07</td>
</tr>
<tr>
<td>81</td>
<td>8</td>
<td>2.91E-01</td>
<td>0.97</td>
</tr>
<tr>
<td>161</td>
<td>16</td>
<td>1.48E-01</td>
<td>0.98</td>
</tr>
<tr>
<td>321</td>
<td>32</td>
<td>7.51E-02</td>
<td>0.98</td>
</tr>
<tr>
<td>641</td>
<td>64</td>
<td>3.77E-02</td>
<td>0.99</td>
</tr>
<tr>
<td>1281</td>
<td>128</td>
<td>1.88E-02</td>
<td>1.00</td>
</tr>
<tr>
<td>2561</td>
<td>256</td>
<td>9.41E-03</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure 8: (Test 3) Exact solution (green), numerical solution (blue) and error (red) obtained with $N_x = 321$ and $N_t = 32$ using the constant extrapolation of boundary conditions (left) and the truncated stencil (right).
improves the observed order of convergence from about $1/2$ to 1. The scheme remains non-consistent with the differential operator in the neighborhood of the boundary and the mesh refinement has only the role of reducing the region of non-consistency. For the scheme with cropped stencil described in [8] (see also Section 2.3) the tests we performed do not show any benefits due to the local mesh refinement since the scheme alone, even if not consistent up to the boundary, already exhibits first order of convergence. The effects of the mesh refinement on the scheme with truncated stencil defined in [15] (see also Section 2.4) consist in the improvement of the global truncation error from order $1/2$ to order 1. Error estimates for the presented scheme can be obtained from [13], but the improvement to the consistency error close to the boundary does not improve the theoretical global convergence order.\(^2\) From the numerical point of view, no substantial difference in the convergence rate of the truncated scheme is observable, due to the fact that the truncation error of order $\sqrt{\Delta x}$ of the scheme without mesh refinement only occurs in a region of diameter $\sqrt{\Delta x}$.

In the numerical tests presented in Section 4, only the one-dimensional case was taken into account. Clearly, the use of non-local schemes to ensure monotonicity is essential (only) in higher dimensions. We do not anticipate any qualitative difference in the behaviour of the schemes there, since the considered semi-Lagrangian schemes are built on a dimension-wise splitting and we did not exploit any specific features of the one-dimensional case, e.g., that interpolation can be avoided. Therefore, already in this simple setting, the main features of the scheme and the effects of the mesh refinement can be clearly observed. Numerical experiments in more dimensions and a deeper understanding of the numerical instabilities observed for constant extrapolation of the boundary conditions are the subject of future research.

\(^2\) In contrast, for constant extrapolation and the cropped stencil these techniques are not applicable due to the lack of consistency up to the boundary, and, to our knowledge, no convergence order is available in the literature.
References

Author information

Athena Picarelli, Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Rd, Oxford OX2 6GG, United Kingdom.
E-mail: athena.picarelli@maths.ox.ac.uk

Christoph Reisinger, Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Rd, Oxford OX2 6GG, United Kingdom.
E-mail: christoph.reisinger@maths.ox.ac.uk

Julen Rotaetxe Arto, Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Rd, Oxford OX2 6GG, United Kingdom.
E-mail: julenrotaetxe@gmail.com