B3.2 GEOMETRY OF SURFACES - EXERCISE SHEET 2

Comments and corrections are welcome: ritter@maths.ox.ac.uk

Exercise 1. The classification of elliptic curves.
Recall from lectures that there are bijections
{ Riemann surfaces } { Quotients
homeomorphic to a torus C/(Z + Zr) with T € H
biholomorphisms biholomorphisms

The second map is C/(Z + Zt) < [7], and PSL(2,Z) = SL(2,Z)/ £ 1 acts on the upper
half-plane H = {z € C : Im(z) > 0} by Mébius maps. Although we will not need the following
fact, some easy group theory shows that SL(2,7Z) is generated by (? _01) and (§1). The
corresponding Mobius maps S(z) = —1/z and T(z) = z+ 1 are rather useful in this exercise.

For A = (%) € SL(2,Z), show that Im(Az) = m
constant K, only finitely many ¢, d € Z satisfy Im(A4z) > K.

Show that H/PSL(2,7) is a topological space homeomorphic to C, by first showing that
each point of H/PSL(2,7) has a representative inside the “strip”

{r eH: |Re(r)| £1/2,|7] > 1}

and then checking that the only remaining identifications are on the boundary of the strip.

Show that PSL(2,7) acts freely? on H except at the points in the PSL(2, Z)-orbits of e™/3
and of 4, and show that the stabilisers of those points are respectively Z/3 and Z/2.

Briefly comment on why the natural local complex coordinate from H makes H/PSL(2,Z)

into a Riemann surface except at e™/3 and 4, and explain why it is not a topological surface
near those two points (if one uses the coordinates inherited from H).

} «— H/PSL(2,7),

- Im(z). Deduce that, given a

Cultural remark. By Exercise sheet one, w?> = 423 — goz — g3 is Riemann surfaces home-
omorphic to a torus. In fact, it is biholomorphic to C/(Z + Zt) if we take coefficients
g2 = 60> (m +n71)~* and g3 = 140> (m + n7)~5 summing over all integers (m,n) # (0,0).
There is a holomorphic map H — C, 7~ j(1) = 1728 g3 /(g5 — 2793), which is PSL(2,Z)-
invariant, so it gives a well-defined map j : H/PSL(2,Z) — C, called the elliptic modular
function or Klein’s j-invariant, where T = e™/3, i correspond to j = 0, 1728 respectively. The
Riemann surfaces corresponding to those two values of T have® automorphism groups 7./3 and
Z/2. For example, for T =i, the generator of the Z/2 automorphism group of N/(Z + 7Z) is
multiplication by i. So the Riemann surface C classifies elliptic curves, up to that automor-
phism ambiguity, and it is called the moduli space of elliptic curves, M ;.

One can give H/PSL(2,7) the structure of a Riemann surface S by declaring that j is a
biholomorphism, which means that near i and e™/3 we use a local holomorphic coordinate w
different from the natural coordinate z of H. Namely, m : H — S is a branched cover near
those two points, locally z — w = 2% and z — w = 23. We will study such maps in the course.

One can now prove a big theorem in complex analysis, the Picard Theorem:

The image of a non-constant holomorphic function f : C — C misses at most one value.

Sketch proof: by translating and rescaling, we may assume by contradiction that f does not
attain the values 0,1728. Let g be the multi-valued inverse of m : H — S. Then ¢ = goj ‘o f
is locally holomorphic since g is holomorphic except at 0,1728. Now analytically continue ¢
to a well-defined holomorphic map C — H. But such maps are constant.*

Exercise 2. Conformal and area-preserving parametrizations.
In this exercise, the first fundamental form has local matriz A = <; 5)

Show that a local parametrization is conformal (i.e. angle-preserving) < f=0,e=yg

Date: This version of the notes was created on October 22, 2017.

LHint. Try to mazimize the imaginary part for the orbit of z under the action.

2A group G acts freely on X if stabilizers are trivial, explicitly: if g ¢ z = x for some z, then g = 1.

3Stric‘cly speaking, an elliptic curve is a genus one Riemann surface with a choice of a fixed marked point
in the curve (e.g.pick 0 € C/A). This choice gets rid of the continuous group of automorphisms given by the
torus action on itself by translation: ¢ € C/A acts by C/A — C/A, z — z+ c if we don’t require 0 to be fixed.

4C0mpose with the biholomorphism H 2 D to the open unit disc, to get a bounded holomorphic map
C — D, then Liouville’s theorem implies it is constant.
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Show that a local parametrization is area preserving < det (; g ) =1

Show that the stereographic projection is conformal, by considering the parametrization
given by the inverse of the stereographic projection:

C — S?\ (North Pole), (x,y) (27,2y, —1 + 2 + ),

L+a2? 492
and show that the fundamental form for the sphere in these local coordinates is
4(dx? + dy?)

Ip= ——F+—"2-.
(14 22 4 y2)2

Cultural remark: That fundamental form on the sphere is called the chordal metric. It
gives rise to another example of non-FEuclidean geometry called elliptic geometry.

Exercise 3. Nautical cartography: Mercator’s projection.
Using the parametrization

F(0,¢) = (cos 8 cos ¢, sin f cos ¢, sin ¢)

of the unit sphere $? C R3, find the first fundamental form.
To draw maps of the Earth, one often uses Mercator’s projection of the unit sphere minus

the date line:
(X,Y) = (9, log tan <(§ + Z)) € R

where (6, ¢) are the longitude and latitude coordinates on the Earth. What does the first
fundamental form of the sphere become in the coordinates (X,Y") of the plane? Deduce that
Mercator’s projection is conformal but not area-preserving.

There are pictures of this on Wikipedia: http://en.wikipedia.org/wiki/Mercator_projection

Exercise 4. Tangential derivatives and Christoffel symbols.
A vector field is a smooth family of tangent vectors v € T'S, so locally

v(z,y) = a(z,y)0: F 4 b(x,y)0y F' € Tr(z,y)5,

for some smooth functions a,b. The derivatives of v in x,y may not lie in T'S, they lie in
R3 = Tp(z,y)S @ Rn(x,y) where n is the unit normal (Gauss map). If we subtract the normal
part, we obtain the tangential derivative:

Vv =00 — (n-9zv)n Vyv = 0yv — (n-0yv)n.

The symbol V is called nabla, and the operator V is called a connection for the surface S.
Using that v € TS is orthogonal to n, show that —n-0,v = Od,n-v. Show that V is
compatible with the Riemannian metric I (the first fundamental form): for vector fields v, w,

0z I(v,w) = I(Vyv,w) + I(v, Vyw),

We introduce some helpful notation: 0y = 0y, 02 = 0y, V1 = Vg, Vo = V,. Abbreviate
the basis of T'S by X1 = 0, F and Xy = 0yF. Abbreviate X;; = 0;0;F. Writing V, X; € TS
in the basis X;, X;, yields coefficient functions Fi—"j(x,y), called Christoffel symbols:

2
ViX; =Y TIhX;
k=1

Verify the symmetry relations:
k k
i =15

Now abbreviate by II;; the entries of the second fundamental form I = (& X)), defined by
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Show that the normal part of the derivatives of X; determines the second fundamental form:®
Xij — VZXJ = II”TL

Let’s abbreviate the entries I;; of the first fundamental form I = (; g) by:

’% :I(Xian)‘

Notice that g;; = g;j;- Now prove that
2
Xij - Xe =1(ViX;,X0) = > Thgie.
k=1

Using the earlier compatibility result, and the above equation, show that
2

digje = Z(ng‘gke +T3gk5)-
k=1

g -1
Writing g%/ for the entries® of the inverse matrix I~ = (; 5 ) , deduce that

2
1
Iy = 5 E 9" (9590 + 0;9i0 — Ougij)-
=1

Deduce that the Christoffel symbols are determined just by I, and therefore they are invariant
under isometries between surfaces.

5In case you’ve lost the plot, an example should clarify:
X11 = 0,0, F =T} 0, F +T2,0,F + Ln

where L is the (1, 1)-entry II1; of the second fundamental form I7.
SHint. =11 = id becomes the orthonormality equation

2
29795 =3,
i=1

where 62 equals 1 for i =k and 0 for i # k.



