
B3.2 GEOMETRY OF SURFACES - EXERCISE SHEET 2

Comments and corrections are welcome: ritter@maths.ox.ac.uk

Exercise 1. The classification of elliptic curves.
Recall from lectures that there are bijections{

Riemann surfaces
homeomorphic to a torus

}
biholomorphisms

←→

{
Quotients

C/(Z+ Zτ)with τ ∈ H

}
biholomorphisms

←→ H/PSL(2,Z),

The second map is C/(Z + Zτ) ↔ [τ ], and PSL(2,Z) = SL(2,Z)/ ± I acts on the upper
half-plane H = {z ∈ C : Im(z) > 0} by Möbius maps. Although we will not need the following
fact, some easy group theory shows that SL(2,Z) is generated by

(
0 −1
1 0

)
and ( 1 1

0 1 ) . The
corresponding Möbius maps S(z) = −1/z and T (z) = z + 1 are rather useful in this exercise.

For A =
(
a b
c d

)
∈ SL(2,Z), show that Im(Az) = 1

|cz+d|2 · Im(z). Deduce that, given a

constant K, only finitely many c, d ∈ Z satisfy Im(Az) > K.

Show that H/PSL(2,Z) is a topological space homeomorphic to C, by first showing that
each point of H/PSL(2,Z) has a representative inside the “strip”

{τ ∈ H : |Re(τ)| ≤ 1/2, |τ | ≥ 1}
and then checking that the only remaining identifications are on the boundary of the strip.1

Show that PSL(2,Z) acts freely2 on H except at the points in the PSL(2,Z)-orbits of eπi/3
and of i, and show that the stabilisers of those points are respectively Z/3 and Z/2.

Briefly comment on why the natural local complex coordinate from H makes H/PSL(2,Z)
into a Riemann surface except at eπi/3 and i, and explain why it is not a topological surface
near those two points (if one uses the coordinates inherited from H).

Cultural remark.By Exercise sheet one, w2 = 4z3 − g2z − g3 is Riemann surfaces home-
omorphic to a torus. In fact, it is biholomorphic to C/(Z + Zτ) if we take coefficients
g2 = 60

∑
(m+ nτ)−4 and g3 = 140

∑
(m+ nτ)−6 summing over all integers (m,n) 6= (0, 0).

There is a holomorphic map H → C, τ 7→ j(τ) = 1728 g32/(g
3
2 − 27g23), which is PSL(2,Z)-

invariant, so it gives a well-defined map j : H/PSL(2,Z) → C, called the elliptic modular
function or Klein’s j-invariant, where τ = eπi/3, i correspond to j = 0, 1728 respectively. The
Riemann surfaces corresponding to those two values of τ have3 automorphism groups Z/3 and
Z/2. For example, for τ = i, the generator of the Z/2 automorphism group of Λ/(Z+ τZ) is
multiplication by i. So the Riemann surface C classifies elliptic curves, up to that automor-
phism ambiguity, and it is called the moduli space of elliptic curves,M1,1.

One can give H/PSL(2,Z) the structure of a Riemann surface S by declaring that j is a
biholomorphism, which means that near i and eπi/3 we use a local holomorphic coordinate w
different from the natural coordinate z of H. Namely, π : H → S is a branched cover near
those two points, locally z 7→ w = z2 and z 7→ w = z3. We will study such maps in the course.

One can now prove a big theorem in complex analysis, the Picard Theorem:
The image of a non-constant holomorphic function f : C→ C misses at most one value.
Sketch proof: by translating and rescaling, we may assume by contradiction that f does not

attain the values 0, 1728. Let g be the multi-valued inverse of π : H→ S. Then ϕ = g ◦ j−1 ◦f
is locally holomorphic since g is holomorphic except at 0, 1728. Now analytically continue ϕ
to a well-defined holomorphic map C→ H. But such maps are constant.4

Exercise 2. Conformal and area-preserving parametrizations.

In this exercise, the first fundamental form has local matrix A =
(

e f
f g

)
.

Show that a local parametrization is conformal (i.e. angle-preserving) ⇔ f = 0, e = g

Date: This version of the notes was created on October 22, 2017.
1Hint. Try to maximize the imaginary part for the orbit of z under the action.
2A group G acts freely on X if stabilizers are trivial, explicitly: if g • x = x for some x, then g = 1.
3Strictly speaking, an elliptic curve is a genus one Riemann surface with a choice of a fixed marked point

in the curve (e.g. pick 0 ∈ C/Λ). This choice gets rid of the continuous group of automorphisms given by the

torus action on itself by translation: c ∈ C/Λ acts by C/Λ → C/Λ, z 7→ z+ c if we don’t require 0 to be fixed.
4Compose with the biholomorphism H ∼= D to the open unit disc, to get a bounded holomorphic map

C → D, then Liouville’s theorem implies it is constant.
1



2 B3.2 GEOMETRY OF SURFACES - EXERCISE SHEET 2, PROF. ALEXANDER F. RITTER

Show that a local parametrization is area preserving ⇔ det
(

e f
f g

)
= 1

Show that the stereographic projection is conformal, by considering the parametrization
given by the inverse of the stereographic projection:

C→ S2 \ (North Pole), (x, y) 7→ 1

1 + x2 + y2
(2x, 2y,−1 + x2 + y2),

and show that the fundamental form for the sphere in these local coordinates is

IF =
4(dx2 + dy2)

(1 + x2 + y2)2
.

Cultural remark: That fundamental form on the sphere is called the chordal metric. It
gives rise to another example of non-Euclidean geometry called elliptic geometry.

Exercise 3. Nautical cartography: Mercator’s projection.
Using the parametrization

F (θ, φ) = (cos θ cosφ, sin θ cosφ, sinφ)

of the unit sphere S2 ⊂ R3, find the first fundamental form.
To draw maps of the Earth, one often uses Mercator’s projection of the unit sphere minus

the date line:

(X,Y ) =

(
θ , log tan

(
φ

2
+

π

4

))
∈ R2,

where (θ, φ) are the longitude and latitude coordinates on the Earth. What does the first
fundamental form of the sphere become in the coordinates (X,Y ) of the plane? Deduce that
Mercator’s projection is conformal but not area-preserving.
There are pictures of this on Wikipedia: http://en.wikipedia.org/wiki/Mercator projection

Exercise 4. Tangential derivatives and Christoffel symbols.
A vector field is a smooth family of tangent vectors v ∈ TS, so locally

v(x, y) = a(x, y)∂xF + b(x, y)∂yF ∈ TF (x,y)S,

for some smooth functions a, b. The derivatives of v in x, y may not lie in TS, they lie in
R3 = TF (x,y)S⊕Rn(x, y) where n is the unit normal (Gauss map). If we subtract the normal
part, we obtain the tangential derivative:

∇xv = ∂xv − (n · ∂xv)n ∇yv = ∂yv − (n · ∂yv)n.

The symbol ∇ is called nabla, and the operator ∇ is called a connection for the surface S.
Using that v ∈ TS is orthogonal to n, show that −n · ∂xv = ∂xn · v. Show that ∇ is

compatible with the Riemannian metric I (the first fundamental form): for vector fields v, w,

∂x I(v, w) = I(∇xv, w) + I(v,∇xw),

We introduce some helpful notation: ∂1 = ∂x, ∂2 = ∂y, ∇1 = ∇x, ∇2 = ∇y. Abbreviate
the basis of TS by X1 = ∂xF and X2 = ∂yF. Abbreviate Xij = ∂i∂jF . Writing ∇iXj ∈ TS
in the basis Xi, Xj, yields coefficient functions Γk

ij(x, y), called Christoffel symbols:

∇iXj =
2∑

k=1

Γk
ijXk

Verify the symmetry relations:

Γk
ij = Γk

ji.

Now abbreviate by IIij the entries of the second fundamental form I = ( L M
M N ), defined by

IIij = n ·Xij
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Show that the normal part of the derivatives of Xj determines the second fundamental form:5

Xij −∇iXj = IIijn.

Let’s abbreviate the entries Iij of the first fundamental form I =
(

e f
f g

)
by:

gij = I(Xi, Xj)

Notice that gij = gji. Now prove that

Xij ·X` = I(∇iXj , X`) =

2∑
k=1

Γk
ijgk`.

Using the earlier compatibility result, and the above equation, show that

∂igj` =

2∑
k=1

(Γk
ijgk` + Γk

i`gkj).

Writing gij for the entries6 of the inverse matrix I−1 =
(

e f
f g

)−1

, deduce that

Γk
ij =

1

2

2∑
`=1

gk`(∂igj` + ∂jgi` − ∂`gij).

Deduce that the Christoffel symbols are determined just by I, and therefore they are invariant
under isometries between surfaces.

5In case you’ve lost the plot, an example should clarify:

X11 = ∂x∂xF = Γ1
11∂xF + Γ2

11∂yF + Ln

where L is the (1, 1)-entry II11 of the second fundamental form II.
6Hint. I−1I = id becomes the orthonormality equation

2∑
j=1

gijgjk = δik

where δik equals 1 for i = k and 0 for i 6= k.


