B3.2 GEOMETRY OF SURFACES - EXERCISE SHEET 3

Comments and corrections are welcome: ritter@maths.ox.ac.uk

Exercise 1. The curvatures for a torus in R® and Gauss-Bonnet.
Recall the torus in R3 given by

T? = {((a + bcosvp) cos b, (a+bcostp)sinb, bsiney) = all 6,4 € [0,27]}

where a > b > 0 are constants. Calculate the first fundamental form, the second fundamental
form, the principal directions, the principal curvatures, the mean curvature and the Gaussian
curvature K. In a picture, shade the regions where K is positive, zero, and negative.

Explicitly compute the area integral [ K dA. Using the Gauss-Bonnet theorem, deduce
from this the Euler characteristic of T2

Exercise 2. Geodesic curvature.

Let 7 : R — R? be a smooth periodic map with period £, i.e. y(t + £) = ~(t) for all t € R.
Assume that ~/(t) # 0 and that the curvature k(t) = ||/ (¢)]| # 0 for all ¢t € R. Also, assume
that the closed curve v : [0, ¢] — R3 is parametrized by arc length.

Show that the curve a(t) = +"(t)/k(t) lies in the unit sphere S? C R?® and that a(t) is
perpendicular to v/(t). Let b(t) = +/(t) x a(t). Show that v/(¢), a(t), b(t) form an orthonormal
basis of R3, and deduce that a = b x 7.

Deduce that b'(t) = 7(t)a(t) for some function 7(t), and that o' (t) = —7b — k~v'.

Let s be the arc length of a(t), so [[9¢|| = 1. By computing 9¢ = 9249 gshow that

(4)? = ﬁ Show that the signed geodesic curvature of a inside 5% is —- tan™"(%).

[Hint. Recall that J- tan™!(z) = ﬁ]
Assume that the above curve a(t) € S? does not self-intersect, and therefore divides the
sphere into two regions. Prove that those two regions of S? have equal area.

Exercise 3. Geodesics.

Take a rectangular strip of paper and draw a line down the middle. Make a M&bius band
in the usual way by joining two opposite edges along opposite directions. The drawn line is a
closed curve. Show that however you move the strip in R3, that closed curve is never planar.
[Hint. If the curve is planar, consider the outward normal to the curve in the given plane.]

Exercise 4. Critical points and Euler characteristic.

Consider the function f : R? — R, f(z,y) = cos2nz + cos27my. Find the critical points
and classify them into minima, saddle points and maxima.

Explain why f defines a smooth function on the torus R?/Z?, and compute the Euler
characteristic of the torus by appropriately counting the critical points.

Exercise 5. Riemann curvature, Ricci curvature, scalar curvature.
Recall in Exercise sheet 2 we defined the tangential derivative, which in the basis X1 = 0, F,
Xo = 0yF defines the Christoffel symbols:

V:X; = Fijk *)

where from now on we use the Einstein summation convention: you sum over repeated indices
(so above, we sum over k since it appears once as an upper index and once as a lower indezx).

The Riemann curvature tensor R}, measures how much the tangential derivatives fail to
commute. It is defined by:

R(X, X)) Xp = ViV, Xp —V,;Vi X,

= BjpXm
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It’s often useful to dot the above with another basis vector X,, which defines

| Rijre = R(Xi, X)) Xy - Xo = I(R(X;, X)) Xy, Xo) |

You can pass from one to the other by the lowering/raising of indices using the Riemannian
metric gi; = I;i; = X;-X;. Explicitly Rijre = R?}kgmg, which you can undo by using the
inverse matriz g* of gi; which satifies g” gjx = i (summing over j).

By substituting (*) into (**), show that R is determined completely by the Christoffel symbols
and the Riemannian metric ¢g;; = I;; (the first fundamental form):

me = O — T+ T8 T —Th T
Rijre = (0T — ;T + T8 T —T3T7) g

Notice that by Exercise Sheet 2, the Ffj are determined by g;j, so R only depends on the Rie-
mannian metric g;;. Therefore R doesn’t change under isometry, even if you pick a different
isometric embedding of the surface into R3.

Explain why R;jxe is anti-symmetric in the indices 1, j.

Recall by Exercise Sheet 2 that

Oil(v,w) = I(Viv,w) + I(v, V,w).

Since I (v, w) is a smooth function, its partial derivatives commute: 0;0;I(v, w) = 0;0;1(v, w).

Deduce that R;jke is anti-symmetric in &, £.

Deduce that R is determined by just one value: Ris1s.
Recall by Exercise Sheet 2 that

0;X; = ViX; + Ij;n =T Xy, + II;; n.
Since F' is smooth, the partial derivatives commute: 020100 F = 01010:F, so 0201 X7 =
0101 X5. From this, and the above equation, deduce by brute force calculation that

0= (8281)(1 — 8181X2) - X9 = Ro112 — det Il .

det lIp

Deduce, using K = ‘3 s

(from lectures), that

‘R1212 = —KdetIp ‘

Finally, deduce Gauss’ Theorema Egregium: the Gaussian curvature K only depends on the
Riemannian metric, so it is the same for two isometric surfaces.

The Ricci curvature is defined as the metric trace of Rijre in the j, € indices, explicitly:

_ il _ pJ
Rik = Rijieg” = R,

and the scalar curvature is the metric trace of the Ricci curvature, explicitly:
R=g"R;
as usual summing over repeated indices.
Show that for surfaces in R3,

Rij = —Kg; and R=-2K|

Cultural Remark. The above ideas are very important, for example the Einstein field
equations for general relativity are

1 8rG
Rij = 595 R+ giiA = — T

where the left-hand side encodes the geometry of the universe and the right-hand side encodes
the physical properties of the universe. The symbols are: G = Newton’s gravitational constant,
¢ = speed of light, A = cosmological constant, T;; = stress-energy tensor (which measures the
matter/energy content of spacetime). More of this in C7.5/C7.6 General Relativity.

In a vacuum, these equations become R;; = 0 when the cosmological constant is zero, and
Ri; = Agij (so a multiple of the metric) otherwise. Manifolds with a vanishing Ricci tensor
are called Ricci-flat manifolds, and manifolds with a Ricci tensor proportional to the metric
are called Einstein manifolds. They are objects of great interest nowadays in geometry.



