
B3.2 GEOMETRY OF SURFACES - EXERCISE SHEET 3

Comments and corrections are welcome: ritter@maths.ox.ac.uk

Exercise 1. The curvatures for a torus in R
3 and Gauss-Bonnet.

Recall the torus in R
3 given by

T 2 = {((a+ b cosψ) cos θ, (a+ b cosψ) sin θ, b sinψ) : all θ, ψ ∈ [0, 2π]}

where a > b > 0 are constants. Calculate the first fundamental form, the second fundamental
form, the principal directions, the principal curvatures, the mean curvature and the Gaussian
curvature K. In a picture, shade the regions where K is positive, zero, and negative.

Explicitly compute the area integral
∫
K dA. Using the Gauss-Bonnet theorem, deduce

from this the Euler characteristic of T 2.

Exercise 2. Geodesic curvature.

Let γ : R → R
3 be a smooth periodic map with period ℓ, i.e. γ(t+ ℓ) = γ(t) for all t ∈ R.

Assume that γ′(t) 6= 0 and that the curvature k(t) = ‖γ′′(t)‖ 6= 0 for all t ∈ R. Also, assume
that the closed curve γ : [0, ℓ] → R

3 is parametrized by arc length.
Show that the curve a(t) = γ′′(t)/k(t) lies in the unit sphere S2 ⊂ R

3 and that a(t) is
perpendicular to γ′(t). Let b(t) = γ′(t)×a(t). Show that γ′(t), a(t), b(t) form an orthonormal
basis of R3, and deduce that a = b× γ′.

Deduce that b′(t) = τ(t)a(t) for some function τ(t), and that a′(t) = −τb− kγ′.
Let s be the arc length of a(t), so ‖ da

ds
‖ = 1. By computing da

ds
≡ da

dt
dt
ds
, show that

( dt
ds
)2 = 1

τ2+k2 . Show that the signed geodesic curvature of a inside S2 is − d
ds

tan−1( τ
k
).

[Hint. Recall that d
dx

tan−1(x) = 1
1+x2 .]

Assume that the above curve a(t) ∈ S2 does not self-intersect, and therefore divides the
sphere into two regions. Prove that those two regions of S2 have equal area.

Exercise 3. Geodesics.
Take a rectangular strip of paper and draw a line down the middle. Make a Möbius band

in the usual way by joining two opposite edges along opposite directions. The drawn line is a
closed curve. Show that however you move the strip in R

3, that closed curve is never planar.
[Hint. If the curve is planar, consider the outward normal to the curve in the given plane.]

Exercise 4. Critical points and Euler characteristic.

Consider the function f : R2 → R, f(x, y) = cos 2πx + cos 2πy. Find the critical points
and classify them into minima, saddle points and maxima.

Explain why f defines a smooth function on the torus R
2/Z2, and compute the Euler

characteristic of the torus by appropriately counting the critical points.

Exercise 5. Riemann curvature, Ricci curvature, scalar curvature.
Recall in Exercise sheet 2 we defined the tangential derivative, which in the basis X1 = ∂xF ,

X2 = ∂yF defines the Christoffel symbols:

∇iXj = Γk
ijXk (*)

where from now on we use the Einstein summation convention: you sum over repeated indices
(so above, we sum over k since it appears once as an upper index and once as a lower index).

The Riemann curvature tensor Rm
ijk measures how much the tangential derivatives fail to

commute. It is defined by:

R(Xi, Xj)Xk = ∇i∇jXk −∇j∇iXk

= Rm
ijkXm

(**)
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It’s often useful to dot the above with another basis vector Xℓ, which defines

Rijkℓ = R(Xi, Xj)Xk ·Xℓ = I(R(Xi, Xj)Xk, Xℓ)

You can pass from one to the other by the lowering/raising of indices using the Riemannian
metric gij = Iij = Xi ·Xj. Explicitly Rijkℓ = Rm

ijkgmℓ, which you can undo by using the

inverse matrix gij of gij which satifies gijgjk = δik (summing over j).

By substituting (*) into (**), show that R is determined completely by the Christoffel symbols
and the Riemannian metric gij = Iij (the first fundamental form):

Rm
ijk = ∂iΓ

m
jk − ∂jΓ

m
ik + Γp

jkΓ
m
ip − Γp

ikΓ
m
jp

Rijkℓ = (∂iΓ
m
jk − ∂jΓ

m
ik + Γp

jkΓ
m
ip − Γp

ikΓ
m
jp)gmℓ.

Notice that by Exercise Sheet 2, the Γk
ij are determined by gij, so R only depends on the Rie-

mannian metric gij. Therefore R doesn’t change under isometry, even if you pick a different
isometric embedding of the surface into R

3.
Explain why Rijkℓ is anti-symmetric in the indices i, j.
Recall by Exercise Sheet 2 that

∂iI(v, w) = I(∇iv, w) + I(v,∇iw).

Since I(v, w) is a smooth function, its partial derivatives commute: ∂j∂iI(v, w) = ∂i∂jI(v, w).
Deduce that Rijkℓ is anti-symmetric in k, ℓ.

Deduce that R is determined by just one value: R1212.
Recall by Exercise Sheet 2 that

∂iXj = ∇iXj + IIij n = Γk
ijXk + IIij n.

Since F is smooth, the partial derivatives commute: ∂2∂1∂1F = ∂1∂1∂2F , so ∂2∂1X1 =
∂1∂1X2. From this, and the above equation, deduce by brute force calculation that

0 = (∂2∂1X1 − ∂1∂1X2) ·X2 = R2112 − det IIF .

Deduce, using K = det IIF
det IF

(from lectures), that

R1212 = −K det IF

Finally, deduce Gauss’ Theorema Egregium: the Gaussian curvature K only depends on the
Riemannian metric, so it is the same for two isometric surfaces.

The Ricci curvature is defined as the metric trace of Rijkℓ in the j, ℓ indices, explicitly:

Rik = Rijkℓg
jℓ = Rj

ijk

and the scalar curvature is the metric trace of the Ricci curvature, explicitly:

R = gijRij

as usual summing over repeated indices.
Show that for surfaces in R

3,

Rij = −Kgij and R = −2K

Cultural Remark. The above ideas are very important, for example the Einstein field
equations for general relativity are

Rij −
1

2
gijR + gijΛ =

8πG

c4
Tij

where the left-hand side encodes the geometry of the universe and the right-hand side encodes
the physical properties of the universe. The symbols are: G = Newton’s gravitational constant,
c = speed of light, Λ = cosmological constant, Tij = stress-energy tensor (which measures the
matter/energy content of spacetime). More of this in C7.5/C7.6 General Relativity.

In a vacuum, these equations become Rij = 0 when the cosmological constant is zero, and
Rij = Λgij (so a multiple of the metric) otherwise. Manifolds with a vanishing Ricci tensor
are called Ricci-flat manifolds, and manifolds with a Ricci tensor proportional to the metric
are called Einstein manifolds. They are objects of great interest nowadays in geometry.


