C3.4b Lie Groups, HT2015
ritter@maths.ox.ac.uk

Homework 1.

You are encouraged to collaborate on these exercises.
Question 1. Show that the tangent bundle $T G=\bigsqcup_{g \in G} T_{g} G$ of a Lie group G is canonically identifiable with $G \times T_{I} G$.
Hint. consider the left translation $\operatorname{map} \phi_{g}: G \rightarrow G, \phi_{g}(h)=g h$.
Deduce that any Lie group of dimension n has n non-vanishing vector fields which are linearly independent at each point of G.
Deduce that the 2-dimensional sphere S^{2} cannot be a Lie group.
Hint. you may quote the "hairy ball theorem" - google it!
Show that the 3 -dimensional sphere S^{3} is a Lie group by considering

$$
S U(2)=\left\{2 \times 2 \text { complex matrices with } A^{\dagger} A=I, \operatorname{det} A=1\right\}
$$

where A^{\dagger} denotes the conjugate transpose of A.
Hint. Verify that $S U(2)$ is the set of matrices $\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right)$ with $a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1$.
Cultural remark. The only spheres which are also Lie groups are S^{0}, S^{1}, S^{3}.
Question 2. Suppose G_{1}, G_{2} are Lie groups. Show that $G_{1} \times G_{2}$ is a Lie group in a natural way.
Deduce that the n-dimensional torus $T^{n}=S^{1} \times \cdots \times S^{1}$ is a Lie group.
Find a map $\pi: \mathbb{R}^{n} \rightarrow T^{n}$ that allows you to identify $T^{n} \cong \mathbb{R}^{n} / \mathbb{Z}^{n}$ (the quotient group).
Not all vector fields on \mathbb{R}^{n} give rise to vector fields on T^{n} if you apply $D \pi$, but which ones do? Are these all the vector fields on T^{n} ?
Find out which vector fields on T^{n} are left-invariant, meaning

$$
\left.D_{h} \phi_{g} \cdot X\right|_{h}=\left.X\right|_{g h}
$$

for all $h, g \in G$, where ϕ_{g} is defined in Question 1 .
Question 3. Use the implicit function theorem (at the end of Lecture 1) applied to

$$
\varphi: G L(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})=\{n \times n \text { symmetric matrices }\}, \varphi(A)=A^{T} A
$$

to prove that the orthogonal group $O(n)$ is a Lie group, to find the dimension of $O(n)$ and to find the tangent space $T_{I} O(n)$.
Show that $O(n)$ is compact. Hint. You may quote the Heine-Borel theorem.
Question 4. Let $\varphi: M \rightarrow N$ be a diffeomorphism of manifolds (a smooth map with smooth inverse). For a vector field X on M define the push-forward vector field $Z=\varphi_{*} X$ on N by

$$
\left.Z\right|_{y}=\left.D_{x} \varphi \cdot X\right|_{x}
$$

where $x=\varphi^{-1}(y)$. Show that for any function $f: N \rightarrow \mathbb{R}$,

$$
\left(\varphi_{*} X\right) \cdot f=(X \cdot(f \circ \varphi)) \circ \varphi^{-1}
$$

Deduce that $\left[\varphi_{*} X, \varphi_{*} Y\right] \cdot f=\varphi_{*}[X, Y] \cdot f$, and deduce that

$$
\left[\varphi_{*} X, \varphi_{*} Y\right]=\varphi_{*}[X, Y]
$$

Check that this last identity holds in the simple case: $M=N=\mathbb{R}, X=\frac{\partial}{\partial x}, Y=x \frac{\partial}{\partial x}, \varphi(x)=2 x$. Let G be a Lie group. Prove the following characterization of left-invariant vector fields:

$$
X \in \operatorname{Lie} G \Leftrightarrow\left(\phi_{g}\right)_{*} X=X \quad \text { for all } g \in G
$$

and deduce that, if $X, Y \in \operatorname{Lie} G$, then also $[X, Y] \in \operatorname{Lie} G$.
Remark. It's tricky to show $\left[\varphi_{*} X, \varphi_{*} Y\right]=\varphi_{*}[X, Y]$ directly using coordinates, try it if you are brave.

