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Homework 2.

You are encouraged to collaborate on these exercises.

Question 1. Viewing quaternions as matrices, show that quaternions satisfy the rules

|h1h2| = |h1| · |h2| |h−1| = |h|−1.

Viewing H as a real 4-dimensional vector space, check that |h| is the usual norm on R4.

Show that (using Lecture 2 and Question sheet 1)

Sp(1) = SU(2).

For h ∈ H \ {0} define
Ah : H→ H, p 7→ hph−1.

Show that Ah is an orthogonal map (viewing H as R4). (Hint. recall Example 11 from Lecture 2.)

By considering the orthogonal complement of R = R · 1 ⊂ H, deduce that SU(2) ∼= Sp(1) ⊂ H \ {0}
acts on R3 by rotations.

Writing quaternions as r + v, where r ∈ R and v ∈ R3 = spanR(i, j, k), show that

v1v2 = −v1 • v2 + v1 × v2
for v1, v2 ∈ R3, where • is dot product in R3, and × is cross product in R3.

Show that any h ∈ Sp(1) can be written as

h = cos( θ2) + sin( θ2)v

for a unit vector v ∈ R3 and for some θ ∈ R. Show that in this case vv = −1 and Ah(v) = v.

Describe the rotation determined by h. (Hint. consider an orthonormal basis w1, w2, v ∈ R3.)

Deduce that there is a smooth surjective homomorphism

SU(2)→ SO(3)

and explain briefly in what sense SU(2) “covers” SO(3) twice.

Show that SO(3) as a manifold is a solid ball B3 ⊂ R3 of radius π having identified the antipodal
points on the boundary of the ball (this boundary is a sphere of radius π in R3). This space is
called real projective space, RP 3.

Taking inspiration from the construction of polar coordinates, show that RP 3 can be identified
with the space of straight lines in R4 through the origin. Finally, show that the map
SU(2)→ SO(3) corresponds to the map

S3 → RP 3, (x ∈ S3 ⊂ R4) 7→ (the straight line in R4 through the two points 0 and x).

Question 2. Check these properties of exp : Lie(G)→ G.

(1) Image(exp) ⊂ G0 = connected component of 1 ∈ G;
(2) exp((t+ s)v) = exp(tv)exp(sv) for all t, s ∈ R;
(3) (exp v)−1 = exp(−v);
(4) If g = exp(v) then it has an n-th root: exp( 1

nv);
(5) Show that the following map is not surjective

exp : sl(2,R)→ SL(2,R)

by considering the eigenvalues of the square root (if it existed) of g =
(−4 0

0 −1
4

)
.

Cultural remark. For any compact connected Lie group G, exp is surjective.
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Question 3. Remark. Abbreviate g = Lie(G). By Lecture 5 you know that ad : g→ End(g) is a
Lie algebra homomorphism because it is the derivative D1Ad of a Lie group homomorphism.

Prove directly that ad is a Lie algebra homomorphism by using the fact that ad(X) · Z = [X,Z].

Show that
v1 =

(
0 1 0
−1 0 0
0 0 0

)
, v2 =

(
0 0 −1
0 0 0
1 0 0

)
, v3 =

(
0 0 0
0 0 1
0 −1 0

)
is a basis for so(3) ⊂ Mat3×3(R).

By computing all brackets [vi, vj ], show that

so(3) ∼= (R3, cross product), vi 7→ standard basis vector ei

is a Lie algebra isomorphism.

Via this isomorphism we identify End(so(3)) with 3× 3 matrices. Compute the matrices ad(vi).

By computing 〈vi, vj〉 show that the Killing form

〈v, w〉 = Trace(ad(v)ad(w)) ∈ R
is a negative definite scalar product on so(3).

Remark. Observe
su(2) ∼= so(3) ∼= o(3),

since SU(2), SO(3), O(3) are locally diffeomorphic near 1.

Cultural Remark. for a compact Lie group, the Killing form is negative definite on g/ kerad
(here we quotiented by the centre Z(g) = Lie(Z(G)) = kerad because the Killing form is zero if
ad(v) = 0).


