Homework 2.

You are encouraged to collaborate on these exercises.

Question 1. Viewing quaternions as matrices, show that quaternions satisfy the rules

$$|h_1h_2| = |h_1| \cdot |h_2|$$
 $|h^{-1}| = |h|^{-1}$.

Viewing \mathbb{H} as a real 4-dimensional vector space, check that |h| is the usual norm on \mathbb{R}^4 . Show that (using Lecture 2 and Question sheet 1)

$$\mathrm{Sp}(1) = SU(2).$$

For $h \in \mathbb{H} \setminus \{0\}$ define

$$\mathcal{A}_h \colon \mathbb{H} \to \mathbb{H}, p \mapsto hph^{-1}.$$

Show that \mathcal{A}_h is an orthogonal map (viewing \mathbb{H} as \mathbb{R}^4). (Hint. recall Example 11 from Lecture 2.) By considering the orthogonal complement of $\mathbb{R} = \mathbb{R} \cdot 1 \subset \mathbb{H}$, deduce that $SU(2) \cong Sp(1) \subset \mathbb{H} \setminus \{0\}$ acts on \mathbb{R}^3 by rotations.

Writing quaternions as r + v, where $r \in \mathbb{R}$ and $v \in \mathbb{R}^3 = \operatorname{span}_{\mathbb{R}}(i, j, k)$, show that

$$v_1v_2 = -v_1 \bullet v_2 + v_1 \times v_2$$

for $v_1, v_2 \in \mathbb{R}^3$, where \bullet is dot product in \mathbb{R}^3 , and \times is cross product in \mathbb{R}^3 .

Show that any $h \in \operatorname{Sp}(1)$ can be written as

$$h = \cos(\frac{\theta}{2}) + \sin(\frac{\theta}{2})v$$

for a unit vector $v \in \mathbb{R}^3$ and for some $\theta \in \mathbb{R}$. Show that in this case vv = -1 and $\mathcal{A}_h(v) = v$. Describe the rotation determined by h. (Hint. consider an orthonormal basis $w_1, w_2, v \in \mathbb{R}^3$.) Deduce that there is a smooth surjective homomorphism

$$SU(2) \rightarrow SO(3)$$

and explain briefly in what sense SU(2) "covers" SO(3) twice.

Show that SO(3) as a manifold is a solid ball $B^3 \subset \mathbb{R}^3$ of radius π having identified the antipodal points on the boundary of the ball (this boundary is a sphere of radius π in \mathbb{R}^3). This space is called *real projective space*, $\mathbb{R}P^3$.

Taking inspiration from the construction of polar coordinates, show that $\mathbb{R}P^3$ can be identified with the space of straight lines in \mathbb{R}^4 through the origin. Finally, show that the map $SU(2) \to SO(3)$ corresponds to the map

 $S^3 \to \mathbb{R}P^3$, $(x \in S^3 \subset \mathbb{R}^4) \mapsto (\text{the straight line in } \mathbb{R}^4 \text{ through the two points } 0 \text{ and } x).$

Question 2. Check these properties of $\exp : Lie(G) \to G$.

- (1) Image(exp) $\subset G_0$ = connected component of $1 \in G$;
- (2) $\exp((t+s)v) = \exp(tv)\exp(sv)$ for all $t, s \in \mathbb{R}$;
- (3) $(\exp v)^{-1} = \exp(-v);$
- (4) If $g = \exp(v)$ then it has an *n*-th root: $\exp(\frac{1}{n}v)$;
- (5) Show that the following map is not surjective

$$\exp:\mathfrak{sl}(2,\mathbb{R})\to SL(2,\mathbb{R})$$

by considering the eigenvalues of the square root (if it existed) of $g = \begin{pmatrix} -4 & 0 \\ 0 & -\frac{1}{4} \end{pmatrix}$.

Cultural remark. For any compact connected Lie group G, exp is surjective.

Question 3. Remark. Abbreviate $\mathfrak{g} = \text{Lie}(G)$. By Lecture 5 you know that $\mathbf{ad} : \mathfrak{g} \to \text{End}(\mathfrak{g})$ is a Lie algebra homomorphism because it is the derivative $D_1 \text{Ad}$ of a Lie group homomorphism.

Prove directly that **ad** is a Lie algebra homomorphism by using the fact that $\mathbf{ad}(X) \cdot Z = [X, Z]$. Show that

$$v_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

is a basis for $\mathfrak{so}(3) \subset \mathrm{Mat}_{3\times 3}(\mathbb{R})$.

By computing all brackets $[v_i, v_j]$, show that

$$\mathfrak{so}(3) \cong (\mathbb{R}^3, \text{cross product}), \ v_i \mapsto \text{standard basis vector } e_i$$

is a Lie algebra isomorphism.

Via this isomorphism we identify $\operatorname{End}(\mathfrak{so}(3))$ with 3×3 matrices. Compute the matrices $\operatorname{ad}(v_i)$. By computing $\langle v_i, v_j \rangle$ show that the **Killing form**

$$\langle v, w \rangle = \operatorname{Trace}(\operatorname{ad}(v)\operatorname{ad}(w)) \in \mathbb{R}$$

is a negative definite scalar product on $\mathfrak{so}(3)$.

Remark. Observe

$$\mathfrak{su}(2) \cong \mathfrak{so}(3) \cong \mathfrak{o}(3),$$

since SU(2), SO(3), O(3) are locally diffeomorphic near 1.

Cultural Remark. for a compact Lie group, the Killing form is negative definite on $\mathfrak{g}/\ker \operatorname{ad}$ (here we quotiented by the centre $Z(\mathfrak{g}) = \operatorname{Lie}(Z(G)) = \ker \operatorname{ad}$ because the Killing form is zero if $\operatorname{ad}(v) = 0$).