Homework 3.

You are encouraged to collaborate on these exercises.
Question 1. Show that the subgroups of $S^{1}=\mathbb{R} / \mathbb{Z}$ are: S^{1} or one of two types:
(1) a finite subgroup generated by a rational number;
(2) an infinite subgroup which is dense in S^{1}.

Describe geometrically the 1-parameter sugroups of the torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. In particular, give an example of a subgroup $\mathbb{R} \subset T^{2}$ which is not a submanifold. ${ }^{1}$
Question 2. Let $\varphi: T^{n} \rightarrow S^{1}$ be a Lie group homomorphism. Show that $D_{1} \varphi$ has integer entries. (Hint. use naturality of exp, and try the case $n=1$ first if you get stuck.)
Determine all Lie group homomorphisms

$$
\varphi: T^{n} \rightarrow S^{1}
$$

and all Lie group homomorphisms

$$
T^{n} \rightarrow T^{n}
$$

(Hint. given $D_{1} \varphi \in \mathbb{Z}^{n}$, can you construct a homomorphism φ ? is it unique?)
Let $v \in \mathbb{R}^{n}$. If the subgroup $\langle v\rangle$ generated by v is not dense in $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$, show that $v \in \operatorname{ker}\left(\varphi: T^{n} \rightarrow S^{1}\right)$ for some non-trivial φ.
(Hint. what Lie group can $T^{n} / \overline{\langle v\rangle}$ be, using the final results of Lecture 6?)
Show that the following statements are equivalent for $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$:
(1) $1, v_{1}, \ldots, v_{n}$ are linearly dependent over \mathbb{Q};
(2) $\sum a_{i} v_{i} \in \mathbb{Z}$ for some $a_{i} \in \mathbb{Z}$, where not all a_{i} are zero;
(3) $\langle v\rangle$ is not dense in T^{n}.

Deduce that almost any $v \in T^{n}$ will generate a dense subset of T^{n} !
Question 3. Using the formulas from Lecture 5, obtain the formula

$$
\exp (X) \exp (Y) \exp (-X)=\exp \left(Y+[X, Y]+\frac{1}{2!}[X,[X, Y]]+\frac{1}{3!}[X,[X,[X, Y]]]+\cdots\right)
$$

Show that for a matrix group,

$$
\operatorname{Ad}(g) \cdot X=g X g^{-1}
$$

where $g \in G, X \in \mathfrak{g}$.
Consider the subgroup $T \subset U(n)$ of diagonal unitary matrices. Show that T is a torus and that T lies in the image of $\exp : \mathfrak{u}(n) \rightarrow U(n)$. Deduce that

$$
\exp : \mathfrak{u}(n) \rightarrow U(n)
$$

is surjective.
(Hint. Recall from linear algebra that a unitary matrix has a basis of unitary eigenvectors.)
Question 4. Suppose

$$
\mathfrak{g}=V_{1} \oplus \cdots \oplus V_{k}
$$

as a vector space. Let

$$
\mathfrak{g} \rightarrow G, \quad \psi\left(v_{1}, \ldots, v_{k}\right)=\exp \left(v_{1}\right) \cdots \exp \left(v_{k}\right) .
$$

Show that ${ }^{2}$

$$
D_{0} \psi \cdot\left(X_{1}, \ldots, X_{k}\right)=X_{1}+\cdots+X_{k}
$$

and deduce that ψ is a local diffeomorphism near 0 .

[^0]Therefore, for small $X, Y \in \mathfrak{g}$, we can uniquely define $f(X, Y) \in \mathfrak{g}$ by the equation

$$
\exp X \cdot \exp Y=\exp (f(X, Y))
$$

Intuitively $f(X, Y)$ is telling you what group multiplication in G looks like in \mathfrak{g} via $\log =(\exp)^{-1}$. By Taylor ${ }^{3}$ expanding f near $(0,0)$, show that there is a bilinear map $B: \mathfrak{g} \oplus \mathfrak{g} \rightarrow \mathfrak{g}$ such that

$$
f(X, Y)=X+Y+\frac{1}{2} B(X, Y)+\text { higher order terms. }
$$

Using $\exp (Z)^{-1}=\exp (-Z)$, show that B is antisymmetric. Using the formula of Q.3, show

$$
B(X, Y)=[X, Y]
$$

Cultural Remark.

$$
f(X, Y)=\exp ^{-1}(\exp (X) \exp (Y))=X+Y+\frac{1}{2}[X, Y]+\text { higher }
$$

is called the Baker-Campbell-Hausdorff formula. A hard theorem states that the higher order terms can all be expressed in terms of Lie brackets involving X and Y (see Wikipedia). This proves the remarkable fact that the local group structure of G (multiplication for elements near 1) is determined by the Lie algebra \mathfrak{g}.

[^1]
[^0]: ${ }^{1} N \subset M$ is a submanifold if the inclusion is an embedding, i.e. a homeomorphism onto the image (in the subspace topology) and the derivative of the inclusion is injective.
 $2_{\text {where }}$ we naturally identify $T_{0} \mathfrak{g}=\mathfrak{g},[$ curve $0+t X] \leftrightarrow X$.

[^1]: ${ }^{3}$ Recall Taylor says: $f(X, Y)=f(0,0)+D_{0}(f) \cdot\binom{X}{Y}+\binom{X}{Y}^{T} \cdot \operatorname{Hessian}_{0}(f) \cdot\binom{X}{Y}+\cdots$. To ensure that the Hessian term does not have x_{i}^{2}, y_{i}^{2} terms, consider $f(X, 0)$ and $f(0, Y)$.

