Homework 4.

You are encouraged to collaborate on these exercises.

Question 1. Let $\varphi: G_1 \to G_2$ be a Lie group homomorphism. Show that

$$\ker \varphi \subset G_1$$

is a closed (hence embedded) Lie subgroup with Lie algebra

$$\ker(D_1\varphi)\subset\mathfrak{g}_1$$

A vector subspace $J \subset (V, [\cdot, \cdot])$ of a Lie algebra is called an **ideal** if

$$[v, j] \in J$$
 for all $v \in V, j \in J$.

Show that ideals are Lie subalgebras. Show that for a Lie subgroup $H \subset G$, with H, G connected,

$$H \subset G$$
 is a normal subgroup $\Leftrightarrow \mathfrak{h} \subset \mathfrak{g}$ is an ideal

Hints. for \Leftarrow use the formula from Question 1. For \Rightarrow use that formula but put tX, sY instead of X, Y and show that the curve $e^{t \operatorname{ad} X} \cdot Y$ lies in \mathfrak{h} .

The centre of a Lie algebra $(V, [\cdot, \cdot])$ is

$$Z(V) = \{ v \in V : [v, w] = 0 \text{ for all } w \in V \}.$$

For G connected, prove that the centre of the group G is¹

$$Z(G) = \ker(\mathrm{Ad}: G \to \mathrm{Aut}(\mathfrak{g}))$$

Deduce that the centre of G is a closed (hence embedded) Lie subgroup of G which is abelian, normal and has Lie algebra

$$\operatorname{Lie}(Z(G)) = Z(\mathfrak{g})$$

Finally deduce that, for G connected,

G is abelian $\Leftrightarrow \mathfrak{g}$ is abelian

Question 2. Show that

$$[X,Y] = 0 \Rightarrow \exp(X+Y) = \exp(X)\exp(Y)$$

(Hint. By Lecture 8, Lie subalgs of \mathfrak{g} correspond to connected Lie subgps of G. Consider span(X,Y).)

Prove that if G is a Lie group with $\mathbf{Z}(\mathbf{G}) = \{\mathbf{1}\}$ then G can be identified with a Lie subgroup of $GL(m, \mathbb{R})$, some m, so g is a Lie subalgebra of $\mathfrak{gl}(m, \mathbb{R})$.

If $(V, [\cdot, \cdot])$ is a Lie algebra with $\mathbf{Z}(\mathbf{V}) = \{\mathbf{0}\}$, show that V is the Lie algebra of some Lie group. (*Hint. consider* $\mathbf{ad} : V \to \operatorname{End}(V), \mathbf{ad}(X) \cdot Y = [X, Y]$, and use the theorem in the previous hint.)

Cultural remark 1. A big theorem (Ado's theorem) states that any Lie algebra V has a faithful representation into some $\mathfrak{gl}(m,\mathbb{R})$ (that is, an injective Lie algebra homomorphism $V \to \mathfrak{gl}(m,\mathbb{R})$). The same arguments you used above imply that there is a Lie subgroup of $GL(m,\mathbb{R})$ with Lie algebra V. So one could reduce the study of Lie algebras to studying matrices with the bracket [B, C] = BC - CB.

Cultural remark 2. Another big theorem (*Lie's third theorem*) states: if you impose the topological condition that the Lie group should be simply-connected² then you also get uniqueness:

 $\{ \text{ Lie algebras } V \}/\text{Lie alg isos} \xleftarrow{1:1} \{ \text{ connected simply-connected Lie groups } G \}/\text{Lie gp isos} \}$

That condition is necessary, since the double cover $SU(2) \rightarrow SO(3)$ illustrates two different Lie groups with isomorphic Lie algebras (but only SU(2) is simply connected).

¹Recall the centre of a group is $Z(G) = \{g \in G : hg = gh \text{ for all } h \in G\} = \{g \in G : hgh^{-1} = g \text{ for all } h \in G\}.$

 $^2\mathrm{meaning}$ continuous loops can always be continuously deformed to a point.

All connected Lie groups having a given Lie algebra are obtained from the corresponding simply-connected Lie group by quotienting by a central discrete sugroup. In the example, $SO(3) = SU(2)/{\pm I}$.

Cultural Remark 3. Not all Lie groups are matrix groups. The Heisenberg group

$$H = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$

is a simply-connected matrix group (as a manifold, it's just \mathbb{R}^3), but it turns out that the quotient

 $H/\left(\begin{smallmatrix}1&0&\mathbb{Z}\\0&1&0\\0&0&1\end{smallmatrix}\right)$

does not admit a faithful representation into any $\mathfrak{gl}(m,\mathbb{R})$.

Question 3. Find all the connected Lie subgroups of SO(3). Hint. Use the results from Q.3 of Question sheet 2.

Question 4. Given any real or complex matrix X, show that

$$\det e^X = e^{\mathrm{Tr}}(X)$$

(Hint. Recall from linear algebra, that over \mathbb{C} any matrix is conjugate to an upper triangular matrix.) Deduce that

 $\mathfrak{sl}(n,\mathbb{R}) = \{A \in \operatorname{Mat}_{n \times n}(\mathbb{R}) : \operatorname{Tr}(X) = 0\}.$

Deduce that

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

is a basis of $\mathfrak{sl}(2,\mathbb{R})$ and check that

$$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h.$$

Why is the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ not isomorphic to $\mathfrak{so}(3)$?

Which connected Lie subgroup of $SL(2,\mathbb{R})$ corresponds to the Lie subalgebra $\mathbb{R} \cdot (f-e)$?

Which connected Lie subgroup of $SL(2,\mathbb{R})$ corresponds to the Lie subalgebra span(h, e)?

A Lie group is called **simple** if it is connected, non-abelian, and has no non-trivial connected normal subgroups. A Lie algebra V is called **simple** if it is non-abelian, and its only ideals are 0 and V. Prove in general the correspondence:

 $\{ \text{ connected normal subgroups of } G \ \} \stackrel{1:1}{\longleftrightarrow} \{ \text{ ideals of } \mathfrak{g} \}$

Deduce that a connected Lie group is simple if and only if its Lie algebra is simple.

By considering $\mathfrak{sl}(2,\mathbb{R})$, show that $SL(2,\mathbb{R})$ is a simple Lie group.

Question 5. Let V_n be the vector space of homogeneous³ polynomials of degree n in two variables z_1, z_2 . Show that SU(2) acts on V_n by

$$(A \cdot p)(z) = p(zA),$$

where $p \in V_n$, $A \in SU(2)$, and zA is matrix multiplication of the row-vector $z = (z_1, z_2)$ with A. Deduce that the V_n are representations⁴ of the Lie group SU(2) of dimension n + 1.

Cultural Remark. In fact, these are all the irreducible⁵ representations of SU(2). Here V_0 is the trivial representation, V_1 is the standard representation, and V_n is called the n-th symmetric power of V_1 .

By considering the double cover $SU(2) \rightarrow SO(3)$, and using the cultural remark, show that the irreducible representations of SO(3) are precisely the spaces V_{2n} of odd dimension 2n + 1.

³meaning: the total degree of each term is the same, for example $3z_1^2 + 4z_1z_2 - 5z_2^2$ is homogeneous of degree 2.

⁴Recall a representation R of a group G is a vector space R together with a Lie group homomorphism $\varphi: G \to \operatorname{Aut}(R)$.

⁵Irreducible means that the only vector subspaces $R' \subset R$ satisfying $g \cdot R' \subset R'$, for all $g \in G$, are R' = 0 and R' = R (recall we abbreviate $g \cdot r' = \varphi(g)(r')$).