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Homework 4.

You are encouraged to collaborate on these exercises.

Question 1. Let ϕ : G1 → G2 be a Lie group homomorphism. Show that

kerϕ ⊂ G1

is a closed (hence embedded) Lie subgroup with Lie algebra

ker(D1ϕ) ⊂ g1.

A vector subspace J ⊂ (V, [·, ·]) of a Lie algebra is called an ideal if

[v, j] ∈ J for all v ∈ V, j ∈ J.

Show that ideals are Lie subalgebras. Show that for a Lie subgroup H ⊂ G, with H,G connected,

H ⊂ G is a normal subgroup⇔ h ⊂ g is an ideal

Hints. for ⇐ use the formula from Question 1. For ⇒ use that formula but put tX, sY instead of X,Y
and show that the curve et adX · Y lies in h.

The centre of a Lie algebra (V, [·, ·]) is

Z(V ) = {v ∈ V : [v, w] = 0 for all w ∈ V }.
For G connected, prove that the centre of the group G is1

Z(G) = ker(Ad : G→ Aut(g))

Deduce that the centre of G is a closed (hence embedded) Lie subgroup of G which is abelian, normal
and has Lie algebra

Lie(Z(G)) = Z(g).

Finally deduce that, for G connected,

G is abelian⇔ g is abelian

Question 2. Show that
[X,Y ] = 0⇒ exp(X + Y ) = exp(X) exp(Y ).

(Hint. By Lecture 8, Lie subalgs of g correspond to connected Lie subgps of G. Consider span(X,Y ).)

Prove that if G is a Lie group with Z(G) = {1} then G can be identified with a Lie subgroup of
GL(m,R), some m, so g is a Lie subalgebra of gl(m,R).

If (V, [·, ·]) is a Lie algebra with Z(V) = {0}, show that V is the Lie algebra of some Lie group.
(Hint. consider ad : V → End(V ),ad(X) · Y = [X,Y ], and use the theorem in the previous hint.)

Cultural remark 1. A big theorem (Ado’s theorem) states that any Lie algebra V has a faithful
representation into some gl(m,R) (that is, an injective Lie algebra homomorphism V → gl(m,R)). The
same arguments you used above imply that there is a Lie subgroup of GL(m,R) with Lie algebra V . So
one could reduce the study of Lie algebras to studying matrices with the bracket [B,C] = BC − CB.

Cultural remark 2. Another big theorem (Lie’s third theorem) states: if you impose the topological
condition that the Lie group should be simply-connected2 then you also get uniqueness:

{ Lie algebras V }/Lie alg isos
1:1←→ { connected simply-connected Lie groups G }/Lie gp isos

That condition is necessary, since the double cover SU(2)→ SO(3) illustrates two different Lie groups
with isomorphic Lie algebras (but only SU(2) is simply connected).

1Recall the centre of a group is Z(G) = {g ∈ G : hg = gh for all h ∈ G} = {g ∈ G : hgh−1 = g for all h ∈ G}.
2meaning continuous loops can always be continuously deformed to a point.
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All connected Lie groups having a given Lie algebra are obtained from the corresponding simply-connected
Lie group by quotienting by a central discrete sugroup. In the example, SO(3) = SU(2)/{±I}.
Cultural Remark 3. Not all Lie groups are matrix groups. The Heisenberg group

H =
{(

1 a b
0 1 c
0 0 1

)
: a, b, c ∈ R

}
is a simply-connected matrix group (as a manifold, it’s just R3), but it turns out that the quotient

H/
(

1 0 Z
0 1 0
0 0 1

)
does not admit a faithful representation into any gl(m,R).

Question 3. Find all the connected Lie subgroups of SO(3).
Hint. Use the results from Q.3 of Question sheet 2.

Question 4. Given any real or complex matrix X, show that

det eX = eTr(X).

(Hint. Recall from linear algebra, that over C any matrix is conjugate to an upper triangular matrix.)

Deduce that
sl(n,R) = {A ∈ Matn×n(R) : Tr(X) = 0}.

Deduce that
h =

(
1 0
0 −1

)
, e = ( 0 1

0 0 ) , f = ( 0 0
1 0 )

is a basis of sl(2,R) and check that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Why is the Lie algebra sl(2,R) not isomorphic to so(3)?

Which connected Lie subgroup of SL(2,R) corresponds to the Lie subalgebra R · (f − e)?

Which connected Lie subgroup of SL(2,R) corresponds to the Lie subalgebra span(h, e)?

A Lie group is called simple if it is connected, non-abelian, and has no non-trivial connected normal
subgroups. A Lie algebra V is called simple if it is non-abelian, and its only ideals are 0 and V .
Prove in general the correspondence:

{ connected normal subgroups of G } 1:1←→ { ideals of g }
Deduce that a connected Lie group is simple if and only if its Lie algebra is simple.

By considering sl(2,R), show that SL(2,R) is a simple Lie group.

Question 5. Let Vn be the vector space of homogeneous3 polynomials of degree n in two variables z1, z2.
Show that SU(2) acts on Vn by

(A · p)(z) = p(zA),

where p ∈ Vn, A ∈ SU(2), and zA is matrix multiplication of the row-vector z = (z1, z2) with A. Deduce
that the Vn are representations4 of the Lie group SU(2) of dimension n + 1.

Cultural Remark. In fact, these are all the irreducible5 representations of SU(2). Here V0 is the trivial
representation, V1 is the standard representation, and Vn is called the n-th symmetric power of V1.

By considering the double cover SU(2)→ SO(3), and using the cultural remark, show that the
irreducible representations of SO(3) are precisely the spaces V2n of odd dimension 2n + 1.

3meaning: the total degree of each term is the same, for example 3z21 + 4z1z2 − 5z22 is homogeneous of degree 2.
4Recall a representation R of a group G is a vector space R together with a Lie group homomorphism ϕ : G→ Aut(R).
5Irreducible means that the only vector subspaces R′ ⊂ R satisfying g · R′ ⊂ R′, for all g ∈ G, are R′ = 0 and R′ = R

(recall we abbreviate g · r′ = ϕ(g)(r′)).


