Homework 5.

You are encouraged to collaborate on these exercises.

Question 1. Let *H* be a connected Lie group. Show that any discrete normal subgroup $N \subset H$ satisfies $N \subset \text{Centre}(H)$. (Try it first, only then see the footnote for a hint.)¹

Let $\pi : H \to G$ be a covering of Lie groups, with H, G connected. Show that $\Gamma = \ker \pi$ is a discrete normal subgroup of Centre(H).

Conversely, if $\Gamma \subset \text{Centre}(H)$ discrete, show² that H/Γ is a Lie group and that the quotient map $\pi : H \to H/\Gamma$ is a covering map with fibre ker $\pi = \Gamma$.

Deduce that any connected Lie group with Lie algebra \mathfrak{g} is isomorphic to G/Γ for some discrete subgroup $\Gamma \subset \operatorname{Centre}(G)$, where G is a simply-connected Lie group.

Question 2. Let $\rho_j : G \to GL(d_j, \mathbb{F})$ be representations, j = 1, 2. State in terms of matrices what the following representations are: $\rho_1 \oplus \rho_2$, $\rho_1 \otimes_{\mathbb{F}} \rho_2$, conjugate rep $\overline{\rho_1}$, dual rep ρ_1^* , and $\operatorname{Hom}_{\mathbb{F}}(\rho_1, \rho_2)$. For compact G, show that $V^* \cong \overline{V}$. (*Hint. inner product.*)

Question 3. For V a representation (more precisely, $\rho: G \to \operatorname{Aut}(V)$), define its character $\chi_V = \chi_\rho$ by

 $\chi_V: G \to \mathbb{F}, \quad \chi_V(g) = \operatorname{Trace}(\rho(g)).$

Check the following properties hold:

- (1) χ_V is smooth
- (2) $\chi_V(1) = \dim_{\mathbb{F}} V$
- (3) χ_V is invariant under conjugation, $\chi_V(hgh^{-1}) = \chi_V(g)$
- (4) $\chi_V = \chi_W$ for equivalent reps $V \simeq W$
- (5) $\chi_{V\oplus W}(g) = \chi_V(g) + \chi_W(g)$
- (6) $\chi_{V\otimes W}(g) = \chi_V(g) \cdot \chi_W(g)$
- (7) $\chi_{V^*}(g) = \chi_V(g^{-1})$
- (8) $\chi_{\overline{V}}(g) = \overline{\chi_V(g)}$

Question 4. For G compact, and $\mathbb{F} = \mathbb{C}$, check the 1 : 1 correspondence:

{1-dim reps}/equivalence $\stackrel{1:1}{\leftrightarrow}$ {Lie group homs $G \to S^1$ }, $\rho \mapsto \chi_{\rho}$.

Classify all representations of S^1 and of T^n for $\mathbb{F} = \mathbb{C}$.

Observe that real representations $\rho: G \to \operatorname{Aut}(\mathbb{R}^n)$ are also complex representations $\rho: G \to \operatorname{Aut}(\mathbb{C}^n)$ satisfying $\rho(g) = \overline{\rho(g)}$ for all g. Suppose, in this situation, that $\mathbb{C}v$ is a 1-dim complex G-submodule of \mathbb{C}^n . Check that $x = \operatorname{Re}(v) = \frac{1}{2}(v + \overline{v})$ and $y = \operatorname{Im}(v) = \frac{1}{2i}(v - \overline{v})$ span a 2-dim real G-submodule of \mathbb{R}^n . Then classify all representations of S^1 and of T^n for $\mathbb{F} = \mathbb{R}$. (See the footnote for hints.)³

Question 5. Canonical decomposition. For compact G, and $\mathbb{F} = \mathbb{C}$, and V_i the (inequivalent) irreducible reps of G, show that the following evaluation map is a G-isomorphism:

$$\mathbf{ev}: \bigoplus_i \operatorname{Hom}_G(V_i, V) \otimes_{\mathbb{F}} V_i \to V,$$

where on a generator $\varphi \otimes v$ we define $\mathbf{ev}(\varphi \otimes v) = \varphi(v)$, and then extend \mathbf{ev} linearly.

¹Hint. Recall the definition of Centre from Question sheet 4. The results from Q. sheet 4 don't help here. Instead, let γ_t be a path from 1 to h, then observe that for $n \in N$ the continuous path $\gamma_t n \gamma_t^{-1}$ lies in N. But N is discrete.

²Hint: easier than it looks, combine results from Lectures 8 and 10. Hint to prove that Γ is closed: suppose $g_m \in \Gamma$ are distinct with $g_m \to g \in H$, then $g_m^{-1}g_{m+1} \to 1 \in \Gamma$ using the continuous map $H \times H \to H$, $(h,g) \mapsto h^{-1}g$.

³Hints: recall Q.2 on Question sheet 3 classifies Lie group homs $T^n \to S^1$. In \mathbb{R}^2 , if s is a reflection in the x-axis and r is a rotation by θ , check that $s^{-1} \circ r \circ s$ is a rotation by $-\theta$. Use Q.3.(4) of this sheet to distinguish some of the irreps.