Homework 6. - Do collaborate. .

All Lie groups are assumed compact, and we work over $\mathbb{F}=\mathbb{C}$.
We'll prove some harder theorems on this sheet. Use the footnotes to guide you through the argument.
Question 1. Irreducibility criterion: prove that V is irreducible if and only if $\left\langle\chi_{V}, \chi_{V}\right\rangle=1$.
If V_{1}, V_{2} are irreps of G_{1}, G_{2}, show $V_{1} \otimes V_{2}$ is an irrep of $G_{1} \times G_{2}$.
Claim: ${ }^{1}$ Conversely, all irreps of $G_{1} \times G_{2}$ have the form $V_{1} \otimes V_{2}$, for irreps V_{1}, V_{2} of G_{1}, G_{2} respectively.
Question 2. Representation theory for $\mathbf{S U}(\mathbf{2})$ Recall ($Q .5$ Sheet 4) SU(2) acts by $(A \cdot p)(z)=p(z A)$ on $p \in V_{n}=\left\{\right.$ homogeneous degree n polys in z_{1}, z_{2} over $\left.\mathbb{C}\right\}$. We'll use the basis $P_{j}=z_{1}^{j} z_{2}^{n-j}, 0 \leq j \leq n$. Claim 1. ${ }^{2}$ The V_{n} are irreducible.
Claim 2. ${ }^{3}$ The characters χ_{n} of the V_{n} are uniformly dense in $\mathrm{Cl}(S U(2))$.
Claim 3. ${ }^{4}$ The V_{n} are the only irreps of $S U(2)$ (up to equivalence).
Question 3. Claim. ${ }^{5}$ Every compact Lie group admits a faithful rep into some $\mathbf{U}(\mathbf{n})$. Remark. $U(n) \rightarrow S O(2 n)$ embeds via $A \mapsto\binom{\operatorname{Re} A-\operatorname{Im} A}{\operatorname{Im} A \operatorname{Re} A}$, so we can replace $U(n)$ by $O(n)$ above.
Question 4. Claim 1. ${ }^{6}$ The span over \mathbb{C} of the image of $\chi: R(G) \rightarrow \mathrm{Cl}(G)$ is dense, that is: class functions f can be uniformly approximated by $\sum z_{i} \chi_{V_{i}}$ for $z_{i} \in \mathbb{C}$.
Claim 2.7 The matrix entries of a faithful representation $\rho: G \rightarrow U(n)$, together with the conjugates of the entries, and with 1 , generate the \mathbb{C}-algebra $\mathcal{F}(G)$ of all representative functions.
Claim 3. ${ }^{8}$ Every irrep of G is a subrep of $V^{\otimes a} \otimes \bar{V}^{\otimes b}$, some $a, b \in \mathbb{N}$, where $V=\mathbb{C}^{n}$ is the faithful rep $\rho: G \rightarrow U(n)$. Remark. This implies that $L^{2}(G)$ has countable dimension (see Lecture 13).
Claim 4. ${ }^{9}$ For a closed (so compact Lie) subgp $H \subset G$, any irrep of H is contained inside an irrep of G.

[^0]OPTIONAL QUESTIONS (hand in if you like)
Optional Question 1. A Lie group that is not a matrix group. Consider

$$
H=\left\{\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{R}\right\} \quad N=\left\{\left(\begin{array}{lll}
1 & 0 & n \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): n \in \mathbb{Z}\right\} .
$$

Check that $N \subset H$ is a closed normal subgroup, so H / N is a Lie group.
This is of interest in quantum mechanics, because H / N is faithfully represented by the group of operators $M_{c} S_{b} T_{a}$ (in that order!) acting on the Hilbert space $L^{2}(\mathbb{R})$, generated by translation $T_{a} f(x)=f(x+a)$, rescaling $S_{b} f(x)=e^{2 \pi i b} f(x)$, and multiplication $M_{c} f(x)=e^{2 \pi i c x} f(x)$. Check H / N is iso to this group. Check that if you replace $n \in \mathbb{Z}$ by $n \in \mathbb{R}$ you obtain a circle $T \subset C$ entre (H / N), and check ${ }^{10}$ that each element in T is a commutator $g h g^{-1} h^{-1}$.
Prove in general that given a circle $T \subset \operatorname{Centre}(G)$, any rep of G is a sum $V=\oplus V_{a}$, such that T acts on V by $e^{2 \pi i a x}$ where $a \in \mathbb{Z}$.
Prove in general that if elements of T can be written as commutators, then ${ }^{11}$ in fact only V_{0} is non-zero and therefore T is in the kernel of the representation.
Deduce that the Heisenberg group H / N is not a matrix group.
Optional Question 2. Real representations vs complex representations.
We saw in Q .4 sheet 5 that a real rep is also a complex rep via $G \rightarrow G L(n, \mathbb{R}) \subset G L(n, \mathbb{C})$ so $\rho(g)=\overline{\rho(g)}$. More abstractly, this is the process of complexifying a real rep W : we get $W_{\mathbb{C}}=\mathbb{C} \otimes_{\mathbb{R}} W$ with \mathbb{C}-action $\lambda(z \otimes w)=(\lambda z) \otimes w$ and G-action $g(z \otimes w)=z \otimes g w$.
Deduce that real reps arise as complex reps which are self-conjugate: ${ }^{12} \bar{V} \simeq V$.
Check that V is self-conjugate iff χ_{V} is real-valued.
In the reverse direction, a complex rep V gives a real rep $V_{\mathbb{R}}$: just consider V as a vector space over \mathbb{R}.
Less abstractly: $\rho: G \rightarrow G L(n, \mathbb{C}) \subset G L(2 n, \mathbb{R})$ where ${ }^{13} G L(n, \mathbb{C}) \subset G L(2 n, \mathbb{R}), A \mapsto\left(\begin{array}{cc}\operatorname{Re} A & -\operatorname{Im} A \\ \operatorname{Im} A & \operatorname{Re} A\end{array}\right)$.
Prove that

$$
\left(W_{\mathbb{C}}\right)_{\mathbb{R}} \simeq W \oplus W \quad\left(V_{\mathbb{R}}\right)_{\mathbb{C}} \simeq V \oplus \bar{V}
$$

Let $R_{\mathbb{R}}(G)=\left\{\sum n_{i} W_{i}: n_{i} \in \mathbb{Z}, W_{i}\right.$ real irreps of $\left.G\right\}$ denote the real representation ring. Deduce that

$$
R_{\mathbb{R}}(G) \rightarrow R(G), \quad W \mapsto \mathbb{C} \otimes_{\mathbb{R}} W
$$

is an injective homomorphism. Hence, if W, W^{\prime} are real reps with $\mathbb{C} \otimes_{\mathbb{R}} W \simeq \mathbb{C} \otimes_{\mathbb{R}} W^{\prime}$ as cx reps, then $W \simeq W^{\prime}$ as real reps. Therefore, once you've found out which self-conjugate cx reps are real reps, you just need to use this criterion to determine which are equivalent.

A good example to play with, which is an alternative approach to Q. 4 Sheet 5, is to find the real irreps of S^{1} given that we easily know the complex irreps (and similarly for real irreps of T^{n}).

[^1]
[^0]: ${ }^{1}$ Let V be a rep of $G_{1} \times G_{2}$. Then V is a rep of $G_{2}=1 \times G_{2} \subset G_{1} \times G_{2}$. Apply the canonical decomposition (Q. 5 Sheet 5) to V, G_{2}. Define a G_{1}-action on $\operatorname{Hom}_{G_{2}}\left(V_{2}, V\right)$ for an irrep V_{2} of G_{2} so that the decomposition becomes $G_{1} \times G_{2}$-linear. Apply complete reducibility to the $G_{1}-\bmod \operatorname{Hom}_{G_{2}}\left(V_{2}, V\right)$.
 ${ }^{2}$ By the irreducibility criterion of Q.1, V_{n} is irrep iff $\operatorname{Hom}_{S U(2)}\left(V_{n}, V_{n}\right)=1$. So given $\varphi: V_{n} \rightarrow V_{n} S U(2)$-linear map, need show $\varphi=c \cdot$ Id. Consider the diagonal matrices $D_{\lambda} \in S U(2)$ with entries λ, λ^{-1}. Compute the action of D_{λ} on P_{j}. Deduce that for $\lambda=e^{2 \pi i / 4 n}$ the $\lambda^{2 j-n}$-eigenspace of D_{λ} is spanned by P_{j}. Deduce that $\varphi\left(P_{j}\right)=c_{j} P_{j}$, some $c_{j} \in \mathbb{C}$. Consider the rotation $R_{\theta} \in S U(2)$ by θ. Expand $\varphi\left(R_{\theta} P_{n}\right)=R_{\theta} \varphi\left(P_{n}\right)$ to deduce that the c_{j} are all equal.
 ${ }^{3}$ Recall unitary matrices are diagonalizable. Deduce that any element in $S U(2)$ is conjugate to D_{λ} with $\lambda=e^{i \theta}$, uniquely up to changing θ to $-\theta$. Deduce that class functions $f: S U(2) \rightarrow \mathbb{C}$ are in $1: 1$ correspondence with cts 2π-periodic even functions $\mathbb{R} \rightarrow \mathbb{C}$ via $\theta \mapsto f \circ D_{e^{i \theta}}$. So can abbreviate $\chi_{n}\left(D_{e^{i \theta}}\right)=\chi_{n}(\theta)$. Check $\chi_{n}(\theta)=\sum e^{i(2 j-n) \theta}$. Compute that geometric sum, you should get $\chi_{n}(\theta)=\frac{\sin ((n+1) \theta)}{\sin \theta}$, call this $c_{n}(\theta)$. Using trig identities, deduce $c_{n}=\cos (n \theta)+c_{n-1}(\theta) \cos \theta$. Deduce that the $\chi_{n}(\theta)$ generate (as an algebra) $1, \cos (\theta), \cos (2 \theta), \ldots, \cos (n \theta)$. By basic Fourier analysis, even 2π-periodic continuous functions are uniformly approximated by $\cos (n \theta), n \in \mathbb{N}$.
 ${ }^{4}$ Hint. Orthogonality relations and Claim 2.
 ${ }^{5}$ For a chain of strict inclusions $K_{1} \supset K_{2} \supset K_{3} \supset \cdots$ of closed sub-manifolds, check that dim drops or the \# of connected components drops each time. If K_{j} are closed subgps of G show the chain must stop. For a manifold M, and distinct points $p, q \in M$, explain why there is a cts function $f: M \rightarrow \mathbb{C}$ with $f(p) \neq f(q)$. Repeatedly apply this idea to $M=G$, using the Peter-Weyl theorem to approximate such f by representative functions $L \circ \rho$. The first step is to take $p=1, q=g \neq 1$, to get $\rho_{1}: G \rightarrow \operatorname{Aut}\left(V_{1}\right)$, with $K_{1}=\operatorname{ker} \rho_{1} \subset G$ a strict inclusion. You aim to end up with a faithful rep $V_{1} \oplus \cdots \oplus V_{m}$.
 ${ }^{6}$ Use the canonical decomposition ev : $\oplus H_{i} \otimes V_{i} \simeq V, \mathbf{e v}\left(\psi_{i}, v_{i}\right)=\psi_{i}\left(v_{i}\right)$ (Q.5 Sheet 5) where $H_{i}=\operatorname{Hom}_{G}\left(V_{i}, V\right), V_{i}$ the irreps. By Peter-Weyl $f \approx \operatorname{Tr}(\varphi \circ \rho)$, some $\varphi \in \operatorname{Hom}_{G}(V, V), \rho: G \rightarrow \operatorname{Aut}(V)$. Check that $\varphi \circ \rho$ on V corresponds via the canonical decomposition to $\oplus\left(\varphi \otimes \rho_{i}\right)$ on $\oplus H_{i} \otimes V_{i}$. So the traces of those two maps agree. Final hint: $z_{i}=\operatorname{Tr}\left(\varphi \circ: H_{i} \rightarrow H_{i}\right)$.
 ${ }^{7}$ Let $\mathcal{M}(G)$ be the algebra generated. By Stone-Weierstrass show $\mathcal{M}(G) \subset C(G)$ is dense. Deduce $\mathcal{M}(G)$ is dense in $\mathcal{F}(G)$. Aim: $\mathcal{M}(G) \subset \mathcal{F}(G)$ closed in sup-norm. Now $\|f\|^{2}=\langle f, f\rangle=\int_{G} \bar{f}(g) f(g) \leq\left(\sup _{G}|f|\right)^{2}$, so sup-closure $(\mathcal{M}(G))$ is a subset of $\|\cdot\|$-closure $(\mathcal{M}(G))$. Deduce: if $\mathcal{M}(G)$ is $\|\cdot\|$-closed then both closures equal $\mathcal{M}(G)$. Recall $\mathcal{F}(G)=\oplus \mathcal{F}_{V_{i}}(G)$ is an orthogonal direct sum over irreps V_{i} of G. Orthogonal projection $\pi_{i}: \mathcal{F}(G) \rightarrow \mathcal{F}_{V_{i}}(G)$ satisfies $\left\|\pi_{i}(f-m)\right\| \leq\|f-m\|$ for all $m \in \mathcal{M}(G)$. Deduce that for $f \in \overline{\mathcal{M}(G)}$ (the $\|\cdot\|$-closure), $\pi_{i}(f) \in \overline{\pi_{i}(\mathcal{M}(G)} \subset \mathcal{F}_{V_{i}}(G)$. Deduce, since $\operatorname{dim} \mathcal{F}_{V_{i}}(G)<\infty$, that $f \in \mathcal{M}(G)$.
 ${ }^{8}$ The matrix entries of $V^{\otimes a} \otimes \bar{V}^{\otimes b}$ are monomials of degree a in matrix entries of V and of degree b in matrix entries of \bar{V}. By Claim 2, they generate $\mathcal{F}(G)$, as a, b vary. If W were an irrep contradicting Claim 3, then by orthogonality $\int_{G} \overline{f_{W}} f_{V}=0$ for all $f_{W} \in \mathcal{F}_{W}(G), f_{V} \in \mathcal{F}_{V \otimes a \otimes \bar{V}^{\otimes b}}(G)$. By Peter-Weyl and Claim 2 this is impossible.
 ${ }^{9}$ Apply Claim 3 to the faithful rep $H \rightarrow G \rightarrow \operatorname{Aut}(V)$.

[^1]: ${ }^{10}$ Hint. $T_{n} M_{1} T_{n}^{-1} M_{1}^{-1}$.
 ${ }^{11}$ Hint. consider determinants.
 ${ }^{12}$ Self-conjugate reps may fail to be real - they may be quaternionic, or a tensor of a real and a quaternionic rep.
 ${ }^{13}$ Even more explicitly, a complex basis $e_{j}^{\mathbb{C}}$ gives a real basis $e_{1}^{\mathbb{C}}, \ldots, e_{n}^{\mathbb{C}}, i e_{1}^{\mathbb{C}}, \ldots, i e_{n}^{\mathbb{C}}$. The first column of the inclusion is because $A e_{j}^{\mathbb{C}}=(\operatorname{Re} A+i \operatorname{Im} A) e_{j}^{\mathbb{C}}=\operatorname{Re}(A) e_{j}^{\mathbb{C}}+\operatorname{Im}(A) i e_{j}^{\mathbb{C}}$. A simple example is:

 $$
 e^{i \theta} \in G L(1, \mathbb{C}) \mapsto\left(\begin{array}{cc}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
 \end{array}\right) \in G L(2, \mathbb{R})
 $$

