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Homework 6. - Do collaborate. . .

All Lie groups are assumed compact, and we work over F = C.
We’ll prove some harder theorems on this sheet. Use the footnotes to guide you through the argument.

Question 1. Irreducibility criterion: prove that V is irreducible if and only if 〈χV , χV 〉 = 1.
If V1, V2 are irreps of G1, G2, show V1 ⊗ V2 is an irrep of G1 ×G2.
Claim:1 Conversely, all irreps of G1 ×G2 have the form V1 ⊗ V2, for irreps V1, V2 of G1, G2 respectively.

Question 2. Representation theory for SU(2) Recall (Q.5 Sheet 4) SU(2) acts by (A · p)(z) = p(zA)

on p ∈ Vn = {homogeneous degree n polys in z1, z2 over C}. We’ll use the basis Pj = zj1z
n−j
2 , 0 ≤ j ≤ n.

Claim 1.2 The Vn are irreducible.
Claim 2.3 The characters χn of the Vn are uniformly dense in Cl(SU(2)).
Claim 3.4 The Vn are the only irreps of SU(2) (up to equivalence).

Question 3. Claim.5 Every compact Lie group admits a faithful rep into some U(n).
Remark. U(n)→ SO(2n) embeds via A 7→

(
ReA −ImA
ImA ReA

)
, so we can replace U(n) by O(n) above.

Question 4. Claim 1.6 The span over C of the image of χ : R(G)→ Cl(G) is dense, that is: class
functions f can be uniformly approximated by

∑
ziχVi for zi ∈ C.

Claim 2.7 The matrix entries of a faithful representation ρ : G→ U(n), together with the conjugates of
the entries, and with 1, generate the C-algebra F(G) of all representative functions.

Claim 3.8 Every irrep of G is a subrep of V ⊗a ⊗ V ⊗b, some a, b ∈ N, where V = Cn is the faithful rep
ρ : G→ U(n). Remark. This implies that L2(G) has countable dimension (see Lecture 13).
Claim 4.9 For a closed (so compact Lie) subgp H ⊂ G, any irrep of H is contained inside an irrep of G.

1Let V be a rep of G1 ×G2. Then V is a rep of G2 = 1×G2 ⊂ G1 ×G2. Apply the canonical decomposition (Q.5 Sheet
5) to V,G2. Define a G1-action on HomG2(V2, V ) for an irrep V2 of G2 so that the decomposition becomes G1 × G2-linear.
Apply complete reducibility to the G1-mod HomG2(V2, V ).

2By the irreducibility criterion of Q.1, Vn is irrep iff HomSU(2)(Vn, Vn) = 1. So given ϕ : Vn → Vn SU(2)-linear map, need

show ϕ = c · Id. Consider the diagonal matrices Dλ ∈ SU(2) with entries λ, λ−1. Compute the action of Dλ on Pj . Deduce

that for λ = e2πi/4n the λ2j−n-eigenspace of Dλ is spanned by Pj . Deduce that ϕ(Pj) = cjPj , some cj ∈ C. Consider the
rotation Rθ ∈ SU(2) by θ. Expand ϕ(RθPn) = Rθϕ(Pn) to deduce that the cj are all equal.

3Recall unitary matrices are diagonalizable. Deduce that any element in SU(2) is conjugate to Dλ with λ = eiθ, uniquely
up to changing θ to −θ. Deduce that class functions f : SU(2) → C are in 1 : 1 correspondence with cts 2π-periodic even

functions R→ C via θ 7→ f ◦Deiθ . So can abbreviate χn(Deiθ ) = χn(θ). Check χn(θ) =
∑
ei(2j−n)θ. Compute that geometric

sum, you should get χn(θ) = sin((n+1)θ)
sin θ

, call this cn(θ). Using trig identities, deduce cn = cos(nθ) + cn−1(θ) cos θ. Deduce
that the χn(θ) generate (as an algebra) 1, cos(θ), cos(2θ), . . . , cos(nθ). By basic Fourier analysis, even 2π-periodic continuous
functions are uniformly approximated by cos(nθ), n ∈ N.

4Hint. Orthogonality relations and Claim 2.
5For a chain of strict inclusions K1 ⊃ K2 ⊃ K3 ⊃ · · · of closed sub-manifolds, check that dim drops or the # of connected

components drops each time. If Kj are closed subgps of G show the chain must stop. For a manifold M , and distinct points
p, q ∈ M , explain why there is a cts function f : M → C with f(p) 6= f(q). Repeatedly apply this idea to M = G, using the
Peter-Weyl theorem to approximate such f by representative functions L ◦ ρ. The first step is to take p = 1, q = g 6= 1, to get
ρ1 : G→ Aut(V1), with K1 = ker ρ1 ⊂ G a strict inclusion. You aim to end up with a faithful rep V1 ⊕ · · · ⊕ Vm.

6Use the canonical decomposition ev : ⊕Hi ⊗ Vi ' V, ev(ψi, vi) = ψi(vi) (Q.5 Sheet 5) where Hi = HomG(Vi, V ), Vi the
irreps. By Peter-Weyl f ≈ Tr(ϕ ◦ ρ), some ϕ ∈ HomG(V, V ), ρ : G → Aut(V ). Check that ϕ ◦ ρ on V corresponds via the
canonical decomposition to ⊕(ϕ⊗ρi) on ⊕Hi⊗Vi. So the traces of those two maps agree. Final hint: zi = Tr(ϕ◦ : Hi → Hi).

7LetM(G) be the algebra generated. By Stone-Weierstrass showM(G) ⊂ C(G) is dense. DeduceM(G) is dense in F(G).

Aim: M(G) ⊂ F(G) closed in sup-norm. Now ‖f‖2 = 〈f, f〉 =
∫
G
f(g)f(g) ≤ (supG|f |)2, so sup-closure(M(G)) is a subset of

‖ ·‖-closure(M(G)). Deduce: ifM(G) is ‖ ·‖-closed then both closures equalM(G). Recall F(G) = ⊕FVi(G) is an orthogonal
direct sum over irreps Vi of G. Orthogonal projection πi : F(G)→ FVi(G) satisfies ‖πi(f −m)‖ ≤ ‖f −m‖ for all m ∈M(G).

Deduce that for f ∈M(G) (the ‖ · ‖-closure), πi(f) ∈ πi(M(G) ⊂ FVi(G). Deduce, since dimFVi(G) <∞, that f ∈M(G).
8The matrix entries of V ⊗a ⊗ V ⊗b

are monomials of degree a in matrix entries of V and of degree b in matrix entries of V .
By Claim 2, they generate F(G), as a, b vary. If W were an irrep contradicting Claim 3, then by orthogonality

∫
G
fW fV = 0

for all fW ∈ FW (G), fV ∈ FV⊗a⊗V⊗b(G). By Peter-Weyl and Claim 2 this is impossible.
9Apply Claim 3 to the faithful rep H → G→ Aut(V ).
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OPTIONAL QUESTIONS (hand in if you like)

Optional Question 1. A Lie group that is not a matrix group. Consider

H = {
(

1 a b
0 1 c
0 0 1

)
: a, b, c ∈ R} N = {

(
1 0 n
0 1 0
0 0 1

)
: n ∈ Z}.

Check that N ⊂ H is a closed normal subgroup, so H/N is a Lie group.

This is of interest in quantum mechanics, because H/N is faithfully represented by the group of operators
McSbTa (in that order!) acting on the Hilbert space L2(R), generated by translation Taf(x) = f(x+ a),
rescaling Sbf(x) = e2πibf(x), and multiplication Mcf(x) = e2πicxf(x). Check H/N is iso to this group.

Check that if you replace n ∈ Z by n ∈ R you obtain a circle T ⊂ Centre(H/N), and check10 that each
element in T is a commutator ghg−1h−1.

Prove in general that given a circle T ⊂ Centre(G), any rep of G is a sum V = ⊕Va, such that T acts on
V by e2πiax where a ∈ Z.

Prove in general that if elements of T can be written as commutators, then11 in fact only V0 is non-zero
and therefore T is in the kernel of the representation.

Deduce that the Heisenberg group H/N is not a matrix group.

Optional Question 2. Real representations vs complex representations.

We saw in Q.4 sheet 5 that a real rep is also a complex rep via G→ GL(n,R) ⊂ GL(n,C) so ρ(g) = ρ(g).
More abstractly, this is the process of complexifying a real rep W : we get WC = C⊗RW with C-action
λ(z ⊗ w) = (λz)⊗ w and G-action g(z ⊗ w) = z ⊗ gw.

Deduce that real reps arise as complex reps which are self-conjugate:12 V ' V .

Check that V is self-conjugate iff χV is real-valued.

In the reverse direction, a complex rep V gives a real rep VR: just consider V as a vector space over R.
Less abstractly: ρ : G→ GL(n,C) ⊂ GL(2n,R) where13 GL(n,C) ⊂ GL(2n,R), A 7→

(
ReA −ImA
ImA ReA

)
.

Prove that
(WC)R 'W ⊕W (VR)C ' V ⊕ V .

Let RR(G) = {
∑
niWi : ni ∈ Z,Wi real irreps of G} denote the real representation ring. Deduce that

RR(G)→ R(G), W 7→ C⊗R W

is an injective homomorphism. Hence, if W,W ′ are real reps with C⊗R W ' C⊗R W
′ as cx reps, then

W 'W ′ as real reps. Therefore, once you’ve found out which self-conjugate cx reps are real reps, you
just need to use this criterion to determine which are equivalent.

A good example to play with, which is an alternative approach to Q.4 Sheet 5, is to find the real irreps of
S1 given that we easily know the complex irreps (and similarly for real irreps of Tn).

10Hint. TnM1T
−1
n M−1

1 .
11Hint. consider determinants.
12Self-conjugate reps may fail to be real – they may be quaternionic, or a tensor of a real and a quaternionic rep.
13Even more explicitly, a complex basis eCj gives a real basis eC1 , . . . , e

C
n, ie

C
1 , . . . , ie

C
n. The first column of the inclusion is

because AeCj = (ReA+ iImA)eCj = Re (A) eCj + Im (A) ieCj . A simple example is:

eiθ ∈ GL(1,C) 7→
(
cos θ − sin θ
sin θ cos θ

)
∈ GL(2,R).


