C3.4b Lie Groups, HT2015
ritter@maths.ox.ac.uk

Homework 1.

You are encouraged to collaborate on these exercises.
Question 1. Show that the tangent bundle $T G=\bigsqcup_{g \in G} T_{g} G$ of a Lie group G is canonically identifiable with $G \times T_{I} G$.
Hint. consider the left translation $\operatorname{map} \phi_{g}: G \rightarrow G, \phi_{g}(h)=g h$.
Deduce that any Lie group of dimension n has n non-vanishing vector fields which are linearly independent at each point of G.
Deduce that the 2-dimensional sphere S^{2} cannot be a Lie group.
Hint. you may quote the "hairy ball theorem" - google it!
Show that the 3 -dimensional sphere S^{3} is a Lie group by considering

$$
S U(2)=\left\{2 \times 2 \text { complex matrices with } A^{\dagger} A=I, \operatorname{det} A=1\right\}
$$

where A^{\dagger} denotes the conjugate transpose of A.
Hint. Verify that $S U(2)$ is the set of matrices $\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right)$ with $a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1$.
Cultural remark. The only spheres which are also Lie groups are S^{0}, S^{1}, S^{3}.
Question 2. Suppose G_{1}, G_{2} are Lie groups. Show that $G_{1} \times G_{2}$ is a Lie group in a natural way.
Deduce that the n-dimensional torus $T^{n}=S^{1} \times \cdots \times S^{1}$ is a Lie group.
Find a map $\pi: \mathbb{R}^{n} \rightarrow T^{n}$ that allows you to identify $T^{n} \cong \mathbb{R}^{n} / \mathbb{Z}^{n}$ (the quotient group).
Not all vector fields on \mathbb{R}^{n} give rise to vector fields on T^{n} if you apply $D \pi$, but which ones do? Are these all the vector fields on T^{n} ?
Find out which vector fields on T^{n} are left-invariant, meaning

$$
\left.D_{h} \phi_{g} \cdot X\right|_{h}=\left.X\right|_{g h}
$$

for all $h, g \in G$, where ϕ_{g} is defined in Question 1 .
Question 3. Use the implicit function theorem (at the end of Lecture 1) applied to

$$
\varphi: G L(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})=\{n \times n \text { symmetric matrices }\}, \varphi(A)=A^{T} A
$$

to prove that the orthogonal group $O(n)$ is a Lie group, to find the dimension of $O(n)$ and to find the tangent space $T_{I} O(n)$.
Show that $O(n)$ is compact. Hint. You may quote the Heine-Borel theorem.
Question 4. Let $\varphi: M \rightarrow N$ be a diffeomorphism of manifolds (a smooth map with smooth inverse). For a vector field X on M define the push-forward vector field $Z=\varphi_{*} X$ on N by

$$
\left.Z\right|_{y}=\left.D_{x} \varphi \cdot X\right|_{x}
$$

where $x=\varphi^{-1}(y)$. Show that for any function $f: N \rightarrow \mathbb{R}$,

$$
\left(\varphi_{*} X\right) \cdot f=(X \cdot(f \circ \varphi)) \circ \varphi^{-1}
$$

Deduce that $\left[\varphi_{*} X, \varphi_{*} Y\right] \cdot f=\varphi_{*}[X, Y] \cdot f$, and deduce that

$$
\left[\varphi_{*} X, \varphi_{*} Y\right]=\varphi_{*}[X, Y]
$$

Check that this last identity holds in the simple case: $M=N=\mathbb{R}, X=\frac{\partial}{\partial x}, Y=x \frac{\partial}{\partial x}, \varphi(x)=2 x$. Let G be a Lie group. Prove the following characterization of left-invariant vector fields:

$$
X \in \operatorname{Lie} G \Leftrightarrow\left(\phi_{g}\right)_{*} X=X \quad \text { for all } g \in G
$$

and deduce that, if $X, Y \in \operatorname{Lie} G$, then also $[X, Y] \in \operatorname{Lie} G$.
Remark. It's tricky to show $\left[\varphi_{*} X, \varphi_{*} Y\right]=\varphi_{*}[X, Y]$ directly using coordinates, try it if you are brave.

Homework 2.

You are encouraged to collaborate on these exercises.
Question 1. Viewing quaternions as matrices, show that quaternions satisfy the rules

$$
\left|h_{1} h_{2}\right|=\left|h_{1}\right| \cdot\left|h_{2}\right| \quad\left|h^{-1}\right|=|h|^{-1}
$$

Viewing \mathbb{H} as a real 4-dimensional vector space, check that $|h|$ is the usual norm on \mathbb{R}^{4}.
Show that (using Lecture 2 and Question sheet 1)

$$
\operatorname{Sp}(1)=S U(2)
$$

For $h \in \mathbb{H} \backslash\{0\}$ define

$$
\mathcal{A}_{h}: \mathbb{H} \rightarrow \mathbb{H}, p \mapsto h p h^{-1}
$$

Show that \mathcal{A}_{h} is an orthogonal map (viewing \mathbb{H} as \mathbb{R}^{4}). (Hint. recall Example 11 from Lecture 2.) By considering the orthogonal complement of $\mathbb{R}=\mathbb{R} \cdot 1 \subset \mathbb{H}$, deduce that $\mathrm{SU}(2) \cong \operatorname{Sp}(1) \subset \mathbb{H} \backslash\{0\}$ acts on \mathbb{R}^{3} by rotations.
Writing quaternions as $r+v$, where $r \in \mathbb{R}$ and $v \in \mathbb{R}^{3}=\operatorname{span}_{\mathbb{R}}(i, j, k)$, show that

$$
v_{1} v_{2}=-v_{1} \bullet v_{2}+v_{1} \times v_{2}
$$

for $v_{1}, v_{2} \in \mathbb{R}^{3}$, where \bullet is dot product in \mathbb{R}^{3}, and \times is cross product in \mathbb{R}^{3}.
Show that any $h \in \operatorname{Sp}(1)$ can be written as

$$
h=\cos \left(\frac{\theta}{2}\right)+\sin \left(\frac{\theta}{2}\right) v
$$

for a unit vector $v \in \mathbb{R}^{3}$ and for some $\theta \in \mathbb{R}$. Show that in this case $v v=-1$ and $\mathcal{A}_{h}(v)=v$.
Describe the rotation determined by h. (Hint. consider an orthonormal basis $w_{1}, w_{2}, v \in \mathbb{R}^{3}$.)
Deduce that there is a smooth surjective homomorphism

$$
\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)
$$

and explain briefly in what sense $\mathrm{SU}(2)$ "covers" $\mathrm{SO}(3)$ twice.
Show that $\mathrm{SO}(3)$ as a manifold is a solid ball $B^{3} \subset \mathbb{R}^{3}$ of radius π having identified the antipodal points on the boundary of the ball (this boundary is a sphere of radius π in \mathbb{R}^{3}). This space is called real projective space, $\mathbb{R} P^{3}$.
Taking inspiration from the construction of polar coordinates, show that $\mathbb{R} P^{3}$ can be identified with the space of straight lines in \mathbb{R}^{4} through the origin. Finally, show that the map $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ corresponds to the map
$S^{3} \rightarrow \mathbb{R} P^{3}, \quad\left(x \in S^{3} \subset \mathbb{R}^{4}\right) \mapsto\left(\right.$ the straight line in \mathbb{R}^{4} through the two points 0 and $\left.x\right)$.
Question 2. Check these properties of $\exp : \operatorname{Lie}(G) \rightarrow G$.
(1) Image $(\exp) \subset G_{0}=$ connected component of $1 \in G$;
(2) $\exp ((t+s) v)=\exp (t v) \exp (s v)$ for all $t, s \in \mathbb{R}$;
(3) $(\exp v)^{-1}=\exp (-v)$;
(4) If $g=\exp (v)$ then it has an n-th root: $\exp \left(\frac{1}{n} v\right)$;
(5) Show that the following map is not surjective

$$
\exp : \mathfrak{s l}(2, \mathbb{R}) \rightarrow S L(2, \mathbb{R})
$$

by considering the eigenvalues of the square root (if it existed) of $g=\left(\begin{array}{cc}-4 & 0 \\ 0 & -\frac{1}{4}\end{array}\right)$.
Cultural remark. For any compact connected Lie group G, exp is surjective.

Question 3. Remark. Abbreviate $\mathfrak{g}=\operatorname{Lie}(G)$. By Lecture 5 you know that $\operatorname{ad}: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ is a Lie algebra homomorphism because it is the derivative $D_{1} \mathrm{Ad}$ of a Lie group homomorphism.
Prove directly that ad is a Lie algebra homomorphism by using the fact that $\mathbf{a d}(X) \cdot Z=[X, Z]$. Show that

$$
v_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad v_{2}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad v_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

is a basis for $\mathfrak{s o}(3) \subset \operatorname{Mat}_{3 \times 3}(\mathbb{R})$.
By computing all brackets $\left[v_{i}, v_{j}\right]$, show that

$$
\mathfrak{s o}(3) \cong\left(\mathbb{R}^{3}, \text { cross product }\right), v_{i} \mapsto \text { standard basis vector } e_{i}
$$

is a Lie algebra isomorphism.
Via this isomorphism we identify $\operatorname{End}(\mathfrak{s o}(3))$ with 3×3 matrices. Compute the matrices ad $\left(v_{i}\right)$. By computing $\left\langle v_{i}, v_{j}\right\rangle$ show that the Killing form

$$
\langle v, w\rangle=\operatorname{Trace}(\mathbf{a d}(v) \mathbf{a d}(w)) \in \mathbb{R}
$$

is a negative definite scalar product on $\mathfrak{s o}(3)$.
Remark. Observe

$$
\mathfrak{s u}(2) \cong \mathfrak{s o}(3) \cong \mathfrak{o}(3),
$$

since $S U(2), S O(3), O(3)$ are locally diffeomorphic near 1.
Cultural Remark. for a compact Lie group, the Killing form is negative definite on $\mathfrak{g} / \mathrm{ker} \mathbf{a d}$ (here we quotiented by the centre $Z(\mathfrak{g})=\operatorname{Lie}(Z(G))=\operatorname{ker}$ ad because the Killing form is zero if $\operatorname{ad}(v)=0)$.

Homework 3.

You are encouraged to collaborate on these exercises.
Question 1. Show that the subgroups of $S^{1}=\mathbb{R} / \mathbb{Z}$ are: S^{1} or one of two types:
(1) a finite subgroup generated by a rational number;
(2) an infinite subgroup which is dense in S^{1}.

Describe geometrically the 1-parameter sugroups of the torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. In particular, give an example of a subgroup $\mathbb{R} \subset T^{2}$ which is not a submanifold. ${ }^{1}$
Question 2. Let $\varphi: T^{n} \rightarrow S^{1}$ be a Lie group homomorphism. Show that $D_{1} \varphi$ has integer entries. (Hint. use naturality of exp, and try the case $n=1$ first if you get stuck.)
Determine all Lie group homomorphisms

$$
\varphi: T^{n} \rightarrow S^{1}
$$

and all Lie group homomorphisms

$$
T^{n} \rightarrow T^{n}
$$

(Hint. given $D_{1} \varphi \in \mathbb{Z}^{n}$, can you construct a homomorphism φ ? is it unique?)
Let $v \in \mathbb{R}^{n}$. If the subgroup $\langle v\rangle$ generated by v is not dense in $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$, show that $v \in \operatorname{ker}\left(\varphi: T^{n} \rightarrow S^{1}\right)$ for some non-trivial φ.
(Hint. what Lie group can $T^{n} / \overline{\langle v\rangle}$ be, using the final results of Lecture 6?)
Show that the following statements are equivalent for $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$:
(1) $1, v_{1}, \ldots, v_{n}$ are linearly dependent over \mathbb{Q};
(2) $\sum a_{i} v_{i} \in \mathbb{Z}$ for some $a_{i} \in \mathbb{Z}$, where not all a_{i} are zero;
(3) $\langle v\rangle$ is not dense in T^{n}.

Deduce that almost any $v \in T^{n}$ will generate a dense subset of T^{n} !
Question 3. Using the formulas from Lecture 5, obtain the formula

$$
\exp (X) \exp (Y) \exp (-X)=\exp \left(Y+[X, Y]+\frac{1}{2!}[X,[X, Y]]+\frac{1}{3!}[X,[X,[X, Y]]]+\cdots\right)
$$

Show that for a matrix group,

$$
\operatorname{Ad}(g) \cdot X=g X g^{-1}
$$

where $g \in G, X \in \mathfrak{g}$.
Consider the subgroup $T \subset U(n)$ of diagonal unitary matrices. Show that T is a torus and that T lies in the image of $\exp : \mathfrak{u}(n) \rightarrow U(n)$. Deduce that

$$
\exp : \mathfrak{u}(n) \rightarrow U(n)
$$

is surjective.
(Hint. Recall from linear algebra that a unitary matrix has a basis of unitary eigenvectors.)
Question 4. Suppose

$$
\mathfrak{g}=V_{1} \oplus \cdots \oplus V_{k}
$$

as a vector space. Let

$$
\mathfrak{g} \rightarrow G, \quad \psi\left(v_{1}, \ldots, v_{k}\right)=\exp \left(v_{1}\right) \cdots \exp \left(v_{k}\right) .
$$

Show that ${ }^{2}$

$$
D_{0} \psi \cdot\left(X_{1}, \ldots, X_{k}\right)=X_{1}+\cdots+X_{k}
$$

and deduce that ψ is a local diffeomorphism near 0 .

[^0]Therefore, for small $X, Y \in \mathfrak{g}$, we can uniquely define $f(X, Y) \in \mathfrak{g}$ by the equation

$$
\exp X \cdot \exp Y=\exp (f(X, Y))
$$

Intuitively $f(X, Y)$ is telling you what group multiplication in G looks like in \mathfrak{g} via $\log =(\exp)^{-1}$. By Taylor ${ }^{3}$ expanding f near $(0,0)$, show that there is a bilinear map $B: \mathfrak{g} \oplus \mathfrak{g} \rightarrow \mathfrak{g}$ such that

$$
f(X, Y)=X+Y+\frac{1}{2} B(X, Y)+\text { higher order terms. }
$$

Using $\exp (Z)^{-1}=\exp (-Z)$, show that B is antisymmetric. Using the formula of Q.3, show

$$
B(X, Y)=[X, Y]
$$

Cultural Remark.

$$
f(X, Y)=\exp ^{-1}(\exp (X) \exp (Y))=X+Y+\frac{1}{2}[X, Y]+\text { higher }
$$

is called the Baker-Campbell-Hausdorff formula. A hard theorem states that the higher order terms can all be expressed in terms of Lie brackets involving X and Y (see Wikipedia). This proves the remarkable fact that the local group structure of G (multiplication for elements near 1) is determined by the Lie algebra \mathfrak{g}.

[^1]
Homework 4.

You are encouraged to collaborate on these exercises.
Question 1. Let $\varphi: G_{1} \rightarrow G_{2}$ be a Lie group homomorphism. Show that

$$
\operatorname{ker} \varphi \subset G_{1}
$$

is a closed (hence embedded) Lie subgroup with Lie algebra

$$
\operatorname{ker}\left(D_{1} \varphi\right) \subset \mathfrak{g}_{1}
$$

A vector subspace $J \subset(V,[\cdot, \cdot])$ of a Lie algebra is called an ideal if

$$
[v, j] \in J \text { for all } v \in V, j \in J
$$

Show that ideals are Lie subalgebras. Show that for a Lie subgroup $H \subset G$, with H, G connected,

$$
H \subset G \text { is a normal subgroup } \Leftrightarrow \mathfrak{h} \subset \mathfrak{g} \text { is an ideal }
$$

Hints. for \Leftarrow use the formula from Question 1. For \Rightarrow use that formula but put $t X$, sY instead of X, Y and show that the curve $e^{t \operatorname{ad} X} \cdot Y$ lies in \mathfrak{h}.
The centre of a Lie algebra $(V,[\cdot, \cdot])$ is

$$
Z(V)=\{v \in V:[v, w]=0 \text { for all } w \in V\}
$$

For G connected, prove that the centre of the group G is ${ }^{1}$

$$
Z(G)=\operatorname{ker}(\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g}))
$$

Deduce that the centre of G is a closed (hence embedded) Lie subgroup of G which is abelian, normal and has Lie algebra

$$
\operatorname{Lie}(Z(G))=Z(\mathfrak{g})
$$

Finally deduce that, for G connected,

$$
G \text { is abelian } \Leftrightarrow \mathfrak{g} \text { is abelian }
$$

Question 2. Show that

$$
[X, Y]=0 \Rightarrow \exp (X+Y)=\exp (X) \exp (Y)
$$

(Hint. By Lecture 8, Lie subalgs of \mathfrak{g} correspond to connected Lie subgps of G. Consider span (X, Y).)
Prove that if G is a Lie group with $\mathbf{Z}(\mathbf{G})=\{\mathbf{1}\}$ then G can be identified with a Lie subgroup of $G L(m, \mathbb{R})$, some m, so \mathfrak{g} is a Lie subalgebra of $\mathfrak{g l}(m, \mathbb{R})$.

If $(V,[\cdot, \cdot])$ is a Lie algebra with $\mathbf{Z}(\mathbf{V})=\{\mathbf{0}\}$, show that V is the Lie algebra of some Lie group. (Hint. consider ad : $V \rightarrow \operatorname{End}(V), \mathbf{a d}(X) \cdot Y=[X, Y]$, and use the theorem in the previous hint.)
Cultural remark 1. A big theorem (Ado's theorem) states that any Lie algebra V has a faithful representation into some $\mathfrak{g l}(m, \mathbb{R})$ (that is, an injective Lie algebra homomorphism $V \rightarrow \mathfrak{g l}(m, \mathbb{R})$). The same arguments you used above imply that there is a Lie subgroup of $G L(m, \mathbb{R})$ with Lie algebra V. So one could reduce the study of Lie algebras to studying matrices with the bracket $[B, C]=B C-C B$.
Cultural remark 2. Another big theorem (Lie's third theorem) states: if you impose the topological condition that the Lie group should be simply-connected ${ }^{2}$ then you also get uniqueness:
$\{$ Lie algebras $V\} /$ Lie alg isos $\stackrel{1: 1}{\longleftrightarrow}$ \{ connected simply-connected Lie groups $G\} /$ Lie gp isos That condition is necessary, since the double cover $S U(2) \rightarrow S O(3)$ illustrates two different Lie groups with isomorphic Lie algebras (but only $S U(2)$ is simply connected).

[^2]All connected Lie groups having a given Lie algebra are obtained from the corresponding simply-connected Lie group by quotienting by a central discrete sugroup. In the example, $S O(3)=S U(2) /\{ \pm I\}$.
Cultural Remark 3. Not all Lie groups are matrix groups. The Heisenberg group

$$
H=\left\{\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{R}\right\}
$$

is a simply-connected matrix group (as a manifold, it's just \mathbb{R}^{3}), but it turns out that the quotient

$$
H /\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

does not admit a faithful representation into any $\mathfrak{g l}(m, \mathbb{R})$.
Question 3. Find all the connected Lie subgroups of $S O(3)$.
Hint. Use the results from Q. 3 of Question sheet 2.
Question 4. Given any real or complex matrix X, show that

$$
\operatorname{det} e^{X}=e^{\operatorname{Tr}}(X)
$$

(Hint. Recall from linear algebra, that over \mathbb{C} any matrix is conjugate to an upper triangular matrix.)
Deduce that

$$
\mathfrak{s l}(n, \mathbb{R})=\left\{A \in \operatorname{Mat}_{n \times n}(\mathbb{R}): \operatorname{Tr}(X)=0\right\} .
$$

Deduce that

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

is a basis of $\mathfrak{s l}(2, \mathbb{R})$ and check that

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h .
$$

Why is the Lie algebra $\mathfrak{s l}(2, \mathbb{R})$ not isomorphic to $\mathfrak{s o}(3)$?
Which connected Lie subgroup of $S L(2, \mathbb{R})$ corresponds to the Lie subalgebra $\mathbb{R} \cdot(f-e)$? Which connected Lie subgroup of $S L(2, \mathbb{R})$ corresponds to the Lie subalgebra $\operatorname{span}(h, e)$?
A Lie group is called simple if it is connected, non-abelian, and has no non-trivial connected normal subgroups. A Lie algebra V is called simple if it is non-abelian, and its only ideals are 0 and V. Prove in general the correspondence:

$$
\{\text { connected normal subgroups of } \mathrm{G}\} \stackrel{1: 1}{\longleftrightarrow}\{\text { ideals of } \mathfrak{g}\}
$$

Deduce that a connected Lie group is simple if and only if its Lie algebra is simple.
By considering $\mathfrak{s l}(2, \mathbb{R})$, show that $S L(2, \mathbb{R})$ is a simple Lie group.
Question 5. Let V_{n} be the vector space of homogeneous ${ }^{3}$ polynomials of degree n in two variables z_{1}, z_{2}. Show that $S U(2)$ acts on V_{n} by

$$
(A \cdot p)(z)=p(z A)
$$

where $p \in V_{n}, A \in S U(2)$, and $z A$ is matrix multiplication of the row-vector $z=\left(z_{1}, z_{2}\right)$ with A. Deduce that the V_{n} are representations ${ }^{4}$ of the Lie group $S U(2)$ of dimension $n+1$.
Cultural Remark. In fact, these are all the irreducible ${ }^{5}$ representations of $\operatorname{SU}(2)$. Here V_{0} is the trivial representation, V_{1} is the standard representation, and V_{n} is called the n-th symmetric power of V_{1}.
By considering the double cover $S U(2) \rightarrow S O(3)$, and using the cultural remark, show that the irreducible representations of $S O(3)$ are precisely the spaces $V_{2 n}$ of odd dimension $2 n+1$.

[^3]
Homework 5.

You are encouraged to collaborate on these exercises.

Question 1. Let H be a connected Lie group. Show that any discrete normal subgroup $N \subset H$ satisfies $N \subset$ Centre (H). (Try it first, only then see the footnote for a hint. $)^{1}$
Let $\pi: H \rightarrow G$ be a covering of Lie groups, with H, G connected. Show that $\Gamma=\operatorname{ker} \pi$ is a discrete normal subgroup of Centre (H).
Conversely, if $\Gamma \subset \operatorname{Centre}(H)$ discrete, show ${ }^{2}$ that H / Γ is a Lie group and that the quotient map $\pi: H \rightarrow H / \Gamma$ is a covering map with fibre ker $\pi=\Gamma$.
Deduce that any connected Lie group with Lie algebra \mathfrak{g} is isomorphic to G / Γ for some discrete subgroup $\Gamma \subset \operatorname{Centre}(G)$, where G is a simply-connected Lie group.
Question 2. Let $\rho_{j}: G \rightarrow G L\left(d_{j}, \mathbb{F}\right)$ be representations, $j=1,2$. State in terms of matrices what the following representations are: $\rho_{1} \oplus \rho_{2}, \rho_{1} \otimes_{\mathbb{F}} \rho_{2}$, conjugate rep $\overline{\rho_{1}}$, dual rep ρ_{1}^{*}, and $\operatorname{Hom}_{\mathbb{F}}\left(\rho_{1}, \rho_{2}\right)$.
For compact G, show that $V^{*} \cong \bar{V}$. (Hint. inner product.)
Question 3. For V a representation (more precisely, $\rho: G \rightarrow \operatorname{Aut}(V)$), define its character $\chi_{V}=\chi_{\rho}$ by

$$
\chi_{V}: G \rightarrow \mathbb{F}, \quad \chi_{V}(g)=\operatorname{Trace}(\rho(g)) .
$$

Check the following properties hold:
(1) χ_{V} is smooth
(2) $\chi_{V}(1)=\operatorname{dim}_{\mathbb{F}} V$
(3) χ_{V} is invariant under conjugation, $\chi_{V}\left(h g h^{-1}\right)=\chi_{V}(g)$
(4) $\chi_{V}=\chi_{W}$ for equivalent reps $V \simeq W$
(5) $\chi_{V \oplus W}(g)=\chi_{V}(g)+\chi_{W}(g)$
(6) $\chi_{V \otimes W}(g)=\chi_{V}(g) \cdot \chi_{W}(g)$
(7) $\chi_{V^{*}}(g)=\chi_{V}\left(g^{-1}\right)$
(8) $\chi_{\bar{V}}(g)=\overline{\chi_{V}(g)}$

Question 4. For G compact, and $\mathbb{F}=\mathbb{C}$, check the $1: 1$ correspondence:

$$
\{1 \text {-dim reps }\} / \text { /equivalence } \stackrel{1: 1}{\leftrightarrow} \quad\left\{\text { Lie group homs } G \rightarrow S^{1}\right\}, \quad \rho \mapsto \chi_{\rho} .
$$

Classify all representations of S^{1} and of T^{n} for $\mathbb{F}=\mathbb{C}$.
Observe that real representations $\rho: G \rightarrow \operatorname{Aut}\left(\mathbb{R}^{n}\right)$ are also complex representations $\rho: G \rightarrow \operatorname{Aut}\left(\mathbb{C}^{n}\right)$ satisfying $\rho(g)=\overline{\rho(g)}$ for all g. Suppose, in this situation, that $\mathbb{C} v$ is a 1 -dim complex G-submodule of \mathbb{C}^{n}. Check that $x=\operatorname{Re}(v)=\frac{1}{2}(v+\bar{v})$ and $y=\operatorname{Im}(v)=\frac{1}{2 i}(v-\bar{v})$ span a 2 -dim real G-submodule of \mathbb{R}^{n}. Then classify all representations of S^{1} and of T^{n} for $\mathbb{F}=\mathbb{R}$. (See the footnote for hints.) ${ }^{3}$

Question 5. Canonical decomposition. For compact G, and $\mathbb{F}=\mathbb{C}$, and V_{i} the (inequivalent) irreducible reps of G, show that the following evaluation map is a G-isomorphism:

$$
\text { ev : } \bigoplus_{i} \operatorname{Hom}_{G}\left(V_{i}, V\right) \otimes_{\mathbb{F}} V_{i} \rightarrow V,
$$

where on a generator $\varphi \otimes v$ we define $\mathbf{e v}(\varphi \otimes v)=\varphi(v)$, and then extend $\mathbf{e v}$ linearly.

[^4]
Homework 6. - Do collaborate. .

All Lie groups are assumed compact, and we work over $\mathbb{F}=\mathbb{C}$.
We'll prove some harder theorems on this sheet. Use the footnotes to guide you through the argument.
Question 1. Irreducibility criterion: prove that V is irreducible if and only if $\left\langle\chi_{V}, \chi_{V}\right\rangle=1$.
If V_{1}, V_{2} are irreps of G_{1}, G_{2}, show $V_{1} \otimes V_{2}$ is an irrep of $G_{1} \times G_{2}$.
Claim: ${ }^{1}$ Conversely, all irreps of $G_{1} \times G_{2}$ have the form $V_{1} \otimes V_{2}$, for irreps V_{1}, V_{2} of G_{1}, G_{2} respectively.
Question 2. Representation theory for $\mathbf{S U}(\mathbf{2})$ Recall ($Q .5$ Sheet 4) SU(2) acts by $(A \cdot p)(z)=p(z A)$ on $p \in V_{n}=\left\{\right.$ homogeneous degree n polys in z_{1}, z_{2} over $\left.\mathbb{C}\right\}$. We'll use the basis $P_{j}=z_{1}^{j} z_{2}^{n-j}, 0 \leq j \leq n$. Claim 1. ${ }^{2}$ The V_{n} are irreducible.
Claim 2. ${ }^{3}$ The characters χ_{n} of the V_{n} are uniformly dense in $\mathrm{Cl}(S U(2))$.
Claim 3. ${ }^{4}$ The V_{n} are the only irreps of $S U(2)$ (up to equivalence).
Question 3. Claim. ${ }^{5}$ Every compact Lie group admits a faithful rep into some $\mathbf{U}(\mathbf{n})$. Remark. $U(n) \rightarrow S O(2 n)$ embeds via $A \mapsto\binom{\operatorname{Re} A-\operatorname{Im} A}{\operatorname{Im} A \operatorname{Re} A}$, so we can replace $U(n)$ by $O(n)$ above.
Question 4. Claim 1. ${ }^{6}$ The span over \mathbb{C} of the image of $\chi: R(G) \rightarrow \mathrm{Cl}(G)$ is dense, that is: class functions f can be uniformly approximated by $\sum z_{i} \chi_{V_{i}}$ for $z_{i} \in \mathbb{C}$.
Claim 2.7 The matrix entries of a faithful representation $\rho: G \rightarrow U(n)$, together with the conjugates of the entries, and with 1 , generate the \mathbb{C}-algebra $\mathcal{F}(G)$ of all representative functions.
Claim 3. ${ }^{8}$ Every irrep of G is a subrep of $V^{\otimes a} \otimes \bar{V}^{\otimes b}$, some $a, b \in \mathbb{N}$, where $V=\mathbb{C}^{n}$ is the faithful rep $\rho: G \rightarrow U(n)$. Remark. This implies that $L^{2}(G)$ has countable dimension (see Lecture 13).
Claim 4. ${ }^{9}$ For a closed (so compact Lie) subgp $H \subset G$, any irrep of H is contained inside an irrep of G.

[^5]OPTIONAL QUESTIONS (hand in if you like)
Optional Question 1. A Lie group that is not a matrix group. Consider

$$
H=\left\{\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{R}\right\} \quad N=\left\{\left(\begin{array}{lll}
1 & 0 & n \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): n \in \mathbb{Z}\right\} .
$$

Check that $N \subset H$ is a closed normal subgroup, so H / N is a Lie group.
This is of interest in quantum mechanics, because H / N is faithfully represented by the group of operators $M_{c} S_{b} T_{a}$ (in that order!) acting on the Hilbert space $L^{2}(\mathbb{R})$, generated by translation $T_{a} f(x)=f(x+a)$, rescaling $S_{b} f(x)=e^{2 \pi i b} f(x)$, and multiplication $M_{c} f(x)=e^{2 \pi i c x} f(x)$. Check H / N is iso to this group. Check that if you replace $n \in \mathbb{Z}$ by $n \in \mathbb{R}$ you obtain a circle $T \subset C$ entre (H / N), and check ${ }^{10}$ that each element in T is a commutator $g h g^{-1} h^{-1}$.
Prove in general that given a circle $T \subset \operatorname{Centre}(G)$, any rep of G is a sum $V=\oplus V_{a}$, such that T acts on V by $e^{2 \pi i a x}$ where $a \in \mathbb{Z}$.
Prove in general that if elements of T can be written as commutators, then ${ }^{11}$ in fact only V_{0} is non-zero and therefore T is in the kernel of the representation.
Deduce that the Heisenberg group H / N is not a matrix group.
Optional Question 2. Real representations vs complex representations.
We saw in Q .4 sheet 5 that a real rep is also a complex rep via $G \rightarrow G L(n, \mathbb{R}) \subset G L(n, \mathbb{C})$ so $\rho(g)=\overline{\rho(g)}$. More abstractly, this is the process of complexifying a real rep W : we get $W_{\mathbb{C}}=\mathbb{C} \otimes_{\mathbb{R}} W$ with \mathbb{C}-action $\lambda(z \otimes w)=(\lambda z) \otimes w$ and G-action $g(z \otimes w)=z \otimes g w$.
Deduce that real reps arise as complex reps which are self-conjugate: ${ }^{12} \bar{V} \simeq V$.
Check that V is self-conjugate iff χ_{V} is real-valued.
In the reverse direction, a complex rep V gives a real rep $V_{\mathbb{R}}$: just consider V as a vector space over \mathbb{R}.
Less abstractly: $\rho: G \rightarrow G L(n, \mathbb{C}) \subset G L(2 n, \mathbb{R})$ where ${ }^{13} G L(n, \mathbb{C}) \subset G L(2 n, \mathbb{R}), A \mapsto\left(\begin{array}{cc}\operatorname{Re} A & -\operatorname{Im} A \\ \operatorname{Im} A & \operatorname{Re} A\end{array}\right)$.
Prove that

$$
\left(W_{\mathbb{C}}\right)_{\mathbb{R}} \simeq W \oplus W \quad\left(V_{\mathbb{R}}\right)_{\mathbb{C}} \simeq V \oplus \bar{V}
$$

Let $R_{\mathbb{R}}(G)=\left\{\sum n_{i} W_{i}: n_{i} \in \mathbb{Z}, W_{i}\right.$ real irreps of $\left.G\right\}$ denote the real representation ring. Deduce that

$$
R_{\mathbb{R}}(G) \rightarrow R(G), \quad W \mapsto \mathbb{C} \otimes_{\mathbb{R}} W
$$

is an injective homomorphism. Hence, if W, W^{\prime} are real reps with $\mathbb{C} \otimes_{\mathbb{R}} W \simeq \mathbb{C} \otimes_{\mathbb{R}} W^{\prime}$ as cx reps, then $W \simeq W^{\prime}$ as real reps. Therefore, once you've found out which self-conjugate cx reps are real reps, you just need to use this criterion to determine which are equivalent.

A good example to play with, which is an alternative approach to Q. 4 Sheet 5, is to find the real irreps of S^{1} given that we easily know the complex irreps (and similarly for real irreps of T^{n}).

[^6]
[^0]: ${ }^{1} N \subset M$ is a submanifold if the inclusion is an embedding, i.e. a homeomorphism onto the image (in the subspace topology) and the derivative of the inclusion is injective.
 $2_{\text {where }}$ we naturally identify $T_{0} \mathfrak{g}=\mathfrak{g},[$ curve $0+t X] \leftrightarrow X$.

[^1]: ${ }^{3}$ Recall Taylor says: $f(X, Y)=f(0,0)+D_{0}(f) \cdot\binom{X}{Y}+\binom{X}{Y}^{T} \cdot \operatorname{Hessian}_{0}(f) \cdot\binom{X}{Y}+\cdots$. To ensure that the Hessian term does not have x_{i}^{2}, y_{i}^{2} terms, consider $f(X, 0)$ and $f(0, Y)$.

[^2]: ${ }^{1}$ Recall the centre of a group is $Z(G)=\{g \in G: h g=g h$ for all $h \in G\}=\left\{g \in G: h g h^{-1}=g\right.$ for all $\left.h \in G\right\}$.
 ${ }^{2}$ meaning continuous loops can always be continuously deformed to a point.

[^3]: ${ }^{3}$ meaning: the total degree of each term is the same, for example $3 z_{1}^{2}+4 z_{1} z_{2}-5 z_{2}^{2}$ is homogeneous of degree 2 .
 ${ }^{4}$ Recall a representation R of a group G is a vector space R together with a Lie group homomorphism $\varphi: G \rightarrow \operatorname{Aut}(R)$.
 ${ }^{5}$ Irreducible means that the only vector subspaces $R^{\prime} \subset R$ satisfying $g \cdot R^{\prime} \subset R^{\prime}$, for all $g \in G$, are $R^{\prime}=0$ and $R^{\prime}=R$ (recall we abbreviate $g \cdot r^{\prime}=\varphi(g)\left(r^{\prime}\right)$).

[^4]: ${ }^{1}$ Hint. Recall the definition of Centre from Question sheet 4. The results from Q. sheet 4 don't help here. Instead, let γ_{t} be a path from 1 to h, then observe that for $n \in N$ the continuous path $\gamma_{t} n \gamma_{t}^{-1}$ lies in N. But N is discrete.
 ${ }^{2}$ Hint: easier than it looks, combine results from Lectures 8 and 10. Hint to prove that Γ is closed: suppose $g_{m} \in \Gamma$ are distinct with $g_{m} \rightarrow g \in H$, then $g_{m}^{-1} g_{m+1} \rightarrow 1 \in \Gamma$ using the continuous map $H \times H \rightarrow H,(h, g) \mapsto h^{-1} g$.
 ${ }^{3}$ Hints: recall Q. 2 on Question sheet 3 classifies Lie group homs $T^{n} \rightarrow S^{1}$. In \mathbb{R}^{2}, if s is a reflection in the x-axis and r is a rotation by θ, check that $s^{-1} \circ r \circ s$ is a rotation by $-\theta$. Use Q.3.(4) of this sheet to distinguish some of the irreps.

[^5]: ${ }^{1}$ Let V be a rep of $G_{1} \times G_{2}$. Then V is a rep of $G_{2}=1 \times G_{2} \subset G_{1} \times G_{2}$. Apply the canonical decomposition (Q. 5 Sheet 5) to V, G_{2}. Define a G_{1}-action on $\operatorname{Hom}_{G_{2}}\left(V_{2}, V\right)$ for an irrep V_{2} of G_{2} so that the decomposition becomes $G_{1} \times G_{2}$-linear. Apply complete reducibility to the $G_{1}-\bmod \operatorname{Hom}_{G_{2}}\left(V_{2}, V\right)$.
 ${ }^{2}$ By the irreducibility criterion of Q.1, V_{n} is irrep iff $\operatorname{Hom}_{S U(2)}\left(V_{n}, V_{n}\right)=1$. So given $\varphi: V_{n} \rightarrow V_{n} S U(2)$-linear map, need show $\varphi=c \cdot$ Id. Consider the diagonal matrices $D_{\lambda} \in S U(2)$ with entries λ, λ^{-1}. Compute the action of D_{λ} on P_{j}. Deduce that for $\lambda=e^{2 \pi i / 4 n}$ the $\lambda^{2 j-n}$-eigenspace of D_{λ} is spanned by P_{j}. Deduce that $\varphi\left(P_{j}\right)=c_{j} P_{j}$, some $c_{j} \in \mathbb{C}$. Consider the rotation $R_{\theta} \in S U(2)$ by θ. Expand $\varphi\left(R_{\theta} P_{n}\right)=R_{\theta} \varphi\left(P_{n}\right)$ to deduce that the c_{j} are all equal.
 ${ }^{3}$ Recall unitary matrices are diagonalizable. Deduce that any element in $S U(2)$ is conjugate to D_{λ} with $\lambda=e^{i \theta}$, uniquely up to changing θ to $-\theta$. Deduce that class functions $f: S U(2) \rightarrow \mathbb{C}$ are in $1: 1$ correspondence with cts 2π-periodic even functions $\mathbb{R} \rightarrow \mathbb{C}$ via $\theta \mapsto f \circ D_{e^{i \theta}}$. So can abbreviate $\chi_{n}\left(D_{e^{i \theta}}\right)=\chi_{n}(\theta)$. Check $\chi_{n}(\theta)=\sum e^{i(2 j-n) \theta}$. Compute that geometric sum, you should get $\chi_{n}(\theta)=\frac{\sin ((n+1) \theta)}{\sin \theta}$, call this $c_{n}(\theta)$. Using trig identities, deduce $c_{n}=\cos (n \theta)+c_{n-1}(\theta) \cos \theta$. Deduce that the $\chi_{n}(\theta)$ generate (as an algebra) $1, \cos (\theta), \cos (2 \theta), \ldots, \cos (n \theta)$. By basic Fourier analysis, even 2π-periodic continuous functions are uniformly approximated by $\cos (n \theta), n \in \mathbb{N}$.
 ${ }^{4}$ Hint. Orthogonality relations and Claim 2.
 ${ }^{5}$ For a chain of strict inclusions $K_{1} \supset K_{2} \supset K_{3} \supset \cdots$ of closed sub-manifolds, check that dim drops or the \# of connected components drops each time. If K_{j} are closed subgps of G show the chain must stop. For a manifold M, and distinct points $p, q \in M$, explain why there is a cts function $f: M \rightarrow \mathbb{C}$ with $f(p) \neq f(q)$. Repeatedly apply this idea to $M=G$, using the Peter-Weyl theorem to approximate such f by representative functions $L \circ \rho$. The first step is to take $p=1, q=g \neq 1$, to get $\rho_{1}: G \rightarrow \operatorname{Aut}\left(V_{1}\right)$, with $K_{1}=\operatorname{ker} \rho_{1} \subset G$ a strict inclusion. You aim to end up with a faithful rep $V_{1} \oplus \cdots \oplus V_{m}$.
 ${ }^{6}$ Use the canonical decomposition ev : $\oplus H_{i} \otimes V_{i} \simeq V, \mathbf{e v}\left(\psi_{i}, v_{i}\right)=\psi_{i}\left(v_{i}\right)$ (Q.5 Sheet 5) where $H_{i}=\operatorname{Hom}_{G}\left(V_{i}, V\right), V_{i}$ the irreps. By Peter-Weyl $f \approx \operatorname{Tr}(\varphi \circ \rho)$, some $\varphi \in \operatorname{Hom}_{G}(V, V), \rho: G \rightarrow \operatorname{Aut}(V)$. Check that $\varphi \circ \rho$ on V corresponds via the canonical decomposition to $\oplus\left(\varphi \otimes \rho_{i}\right)$ on $\oplus H_{i} \otimes V_{i}$. So the traces of those two maps agree. Final hint: $z_{i}=\operatorname{Tr}\left(\varphi \circ: H_{i} \rightarrow H_{i}\right)$.
 ${ }^{7}$ Let $\mathcal{M}(G)$ be the algebra generated. By Stone-Weierstrass show $\mathcal{M}(G) \subset C(G)$ is dense. Deduce $\mathcal{M}(G)$ is dense in $\mathcal{F}(G)$. Aim: $\mathcal{M}(G) \subset \mathcal{F}(G)$ closed in sup-norm. Now $\|f\|^{2}=\langle f, f\rangle=\int_{G} \bar{f}(g) f(g) \leq\left(\sup _{G}|f|\right)^{2}$, so sup-closure $(\mathcal{M}(G))$ is a subset of $\|\cdot\|$-closure $(\mathcal{M}(G))$. Deduce: if $\mathcal{M}(G)$ is $\|\cdot\|$-closed then both closures equal $\mathcal{M}(G)$. Recall $\mathcal{F}(G)=\oplus \mathcal{F}_{V_{i}}(G)$ is an orthogonal direct sum over irreps V_{i} of G. Orthogonal projection $\pi_{i}: \mathcal{F}(G) \rightarrow \mathcal{F}_{V_{i}}(G)$ satisfies $\left\|\pi_{i}(f-m)\right\| \leq\|f-m\|$ for all $m \in \mathcal{M}(G)$. Deduce that for $f \in \overline{\mathcal{M}(G)}$ (the $\|\cdot\|$-closure), $\pi_{i}(f) \in \overline{\pi_{i}(\mathcal{M}(G)} \subset \mathcal{F}_{V_{i}}(G)$. Deduce, since $\operatorname{dim} \mathcal{F}_{V_{i}}(G)<\infty$, that $f \in \mathcal{M}(G)$.
 ${ }^{8}$ The matrix entries of $V^{\otimes a} \otimes \bar{V}^{\otimes b}$ are monomials of degree a in matrix entries of V and of degree b in matrix entries of \bar{V}. By Claim 2, they generate $\mathcal{F}(G)$, as a, b vary. If W were an irrep contradicting Claim 3, then by orthogonality $\int_{G} \overline{f_{W}} f_{V}=0$ for all $f_{W} \in \mathcal{F}_{W}(G), f_{V} \in \mathcal{F}_{V \otimes a \otimes \bar{V}^{\otimes b}}(G)$. By Peter-Weyl and Claim 2 this is impossible.
 ${ }^{9}$ Apply Claim 3 to the faithful rep $H \rightarrow G \rightarrow \operatorname{Aut}(V)$.

[^6]: ${ }^{10}$ Hint. $T_{n} M_{1} T_{n}^{-1} M_{1}^{-1}$.
 ${ }^{11}$ Hint. consider determinants.
 ${ }^{12}$ Self-conjugate reps may fail to be real - they may be quaternionic, or a tensor of a real and a quaternionic rep.
 ${ }^{13}$ Even more explicitly, a complex basis $e_{j}^{\mathbb{C}}$ gives a real basis $e_{1}^{\mathbb{C}}, \ldots, e_{n}^{\mathbb{C}}, i e_{1}^{\mathbb{C}}, \ldots, i e_{n}^{\mathbb{C}}$. The first column of the inclusion is because $A e_{j}^{\mathbb{C}}=(\operatorname{Re} A+i \operatorname{Im} A) e_{j}^{\mathbb{C}}=\operatorname{Re}(A) e_{j}^{\mathbb{C}}+\operatorname{Im}(A) i e_{j}^{\mathbb{C}}$. A simple example is:

 $$
 e^{i \theta} \in G L(1, \mathbb{C}) \mapsto\left(\begin{array}{cc}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
 \end{array}\right) \in G L(2, \mathbb{R})
 $$

