Homework 1.

You are encouraged to collaborate on these exercises.

Question 1. Show that the *tangent bundle* $TG = \bigsqcup_{g \in G} T_g G$ of a Lie group G is canonically identifiable with $G \times T_I G$.

Hint. consider the left translation map $\phi_g: G \to G, \ \phi_g(h) = gh$.

Deduce that any Lie group of dimension n has n non-vanishing vector fields which are linearly independent at each point of G.

Deduce that the 2-dimensional sphere S^2 cannot be a Lie group.

Hint. you may quote the "hairy ball theorem" - google it!

Show that the 3-dimensional sphere S^3 is a Lie group by considering

$$SU(2) = \{2 \times 2 \text{ complex matrices with } A^{\dagger}A = I, \det A = 1\}$$

where A^{\dagger} denotes the conjugate transpose of A.

Hint. Verify that SU(2) *is the set of matrices* $\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}$ *with* $a, b \in \mathbb{C}$, $|a|^2 + |b|^2 = 1$.

Cultural remark. The only spheres which are also Lie groups are S^0 , S^1 , S^3 .

Question 2. Suppose G_1, G_2 are Lie groups. Show that $G_1 \times G_2$ is a Lie group in a natural way. Deduce that the *n*-dimensional torus $T^n = S^1 \times \cdots \times S^1$ is a Lie group.

Find a map $\pi : \mathbb{R}^n \to T^n$ that allows you to identify $T^n \cong \mathbb{R}^n / \mathbb{Z}^n$ (the quotient group).

Not all vector fields on \mathbb{R}^n give rise to vector fields on T^n if you apply $D\pi$, but which ones do? Are these all the vector fields on T^n ?

Find out which vector fields on T^n are *left-invariant*, meaning

$$D_h \phi_g \cdot X|_h = X|_{gh}$$

for all $h, g \in G$, where ϕ_q is defined in Question 1.

Question 3. Use the implicit function theorem (at the end of Lecture 1) applied to

 $\varphi: GL(n, \mathbb{R}) \to \operatorname{Sym}(n, \mathbb{R}) = \{n \times n \text{ symmetric matrices }\}, \ \varphi(A) = A^T A,$

to prove that the orthogonal group O(n) is a Lie group, to find the dimension of O(n) and to find the tangent space $T_IO(n)$.

Show that O(n) is compact. Hint. You may quote the Heine-Borel theorem.

Question 4. Let $\varphi : M \to N$ be a *diffeomorphism* of manifolds (a smooth map with smooth inverse). For a vector field X on M define the *push-forward* vector field $Z = \varphi_* X$ on N by

$$Z|_y = D_x \varphi \cdot X|_x$$

where $x = \varphi^{-1}(y)$. Show that for any function $f : N \to \mathbb{R}$,

$$(\varphi_*X) \cdot f = (X \cdot (f \circ \varphi)) \circ \varphi^{-1}$$

Deduce that $[\varphi_* X, \varphi_* Y] \cdot f = \varphi_* [X, Y] \cdot f$, and deduce that

$$[\varphi_*X, \varphi_*Y] = \varphi_*[X, Y].$$

Check that this last identity holds in the simple case: $M = N = \mathbb{R}$, $X = \frac{\partial}{\partial x}$, $Y = x \frac{\partial}{\partial x}$, $\varphi(x) = 2x$. Let G be a Lie group. Prove the following characterization of left-invariant vector fields:

 $X \in \operatorname{Lie} G \Leftrightarrow (\phi_q)_* X = X \quad \text{for all } g \in G,$

and deduce that, if $X, Y \in \text{Lie } G$, then also $[X, Y] \in \text{Lie } G$.

Remark. It's tricky to show $[\varphi_*X, \varphi_*Y] = \varphi_*[X, Y]$ directly using coordinates, try it if you are brave.

Homework 2.

You are encouraged to collaborate on these exercises.

Question 1. Viewing quaternions as matrices, show that quaternions satisfy the rules

$$|h_1h_2| = |h_1| \cdot |h_2|$$
 $|h^{-1}| = |h|^{-1}.$

Viewing \mathbb{H} as a real 4-dimensional vector space, check that |h| is the usual norm on \mathbb{R}^4 . Show that *(using Lecture 2 and Question sheet 1)*

$$\operatorname{Sp}(1) = SU(2).$$

For $h \in \mathbb{H} \setminus \{0\}$ define

$$\mathcal{A}_h \colon \mathbb{H} \to \mathbb{H}, p \mapsto hph^{-1}$$

Show that \mathcal{A}_h is an orthogonal map (viewing \mathbb{H} as \mathbb{R}^4). (*Hint. recall Example 11 from Lecture 2.*) By considering the orthogonal complement of $\mathbb{R} = \mathbb{R} \cdot 1 \subset \mathbb{H}$, deduce that $\mathrm{SU}(2) \cong \mathrm{Sp}(1) \subset \mathbb{H} \setminus \{0\}$ acts on \mathbb{R}^3 by rotations.

Writing quaternions as r + v, where $r \in \mathbb{R}$ and $v \in \mathbb{R}^3 = \operatorname{span}_{\mathbb{R}}(i, j, k)$, show that

$$v_1v_2 = -v_1 \bullet v_2 + v_1 \times v_2$$

for $v_1, v_2 \in \mathbb{R}^3$, where \bullet is dot product in \mathbb{R}^3 , and \times is cross product in \mathbb{R}^3 . Show that any $h \in \text{Sp}(1)$ can be written as

$$h = \cos(\frac{\theta}{2}) + \sin(\frac{\theta}{2})v$$

for a unit vector $v \in \mathbb{R}^3$ and for some $\theta \in \mathbb{R}$. Show that in this case vv = -1 and $\mathcal{A}_h(v) = v$. Describe the rotation determined by h. (*Hint. consider an orthonormal basis* $w_1, w_2, v \in \mathbb{R}^3$.) Deduce that there is a smooth surjective homomorphism

$$SU(2) \rightarrow SO(3)$$

and explain briefly in what sense SU(2) "covers" SO(3) twice.

Show that SO(3) as a manifold is a solid ball $B^3 \subset \mathbb{R}^3$ of radius π having identified the antipodal points on the boundary of the ball (this boundary is a sphere of radius π in \mathbb{R}^3). This space is called *real projective space*, $\mathbb{R}P^3$.

Taking inspiration from the construction of polar coordinates, show that $\mathbb{R}P^3$ can be identified with the space of straight lines in \mathbb{R}^4 through the origin. Finally, show that the map $SU(2) \rightarrow SO(3)$ corresponds to the map

 $S^3 \to \mathbb{R}P^3$, $(x \in S^3 \subset \mathbb{R}^4) \mapsto (\text{the straight line in } \mathbb{R}^4 \text{ through the two points } 0 \text{ and } x).$

Question 2. Check these properties of $\exp : \text{Lie}(G) \to G$.

- (1) Image(exp) $\subset G_0$ = connected component of $1 \in G$;
- (2) $\exp((t+s)v) = \exp(tv)\exp(sv)$ for all $t, s \in \mathbb{R}$;
- (3) $(\exp v)^{-1} = \exp(-v);$
- (4) If $g = \exp(v)$ then it has an *n*-th root: $\exp(\frac{1}{n}v)$;
- (5) Show that the following map is not surjective

$$\exp:\mathfrak{sl}(2,\mathbb{R})\to SL(2,\mathbb{R})$$

by considering the eigenvalues of the square root (if it existed) of $g = \begin{pmatrix} -4 & 0 \\ 0 & -\frac{1}{4} \end{pmatrix}$. Cultural remark. For any compact connected Lie group G, exp is surjective. Question 3. Remark. Abbreviate $\mathfrak{g} = \text{Lie}(G)$. By Lecture 5 you know that $\mathbf{ad} : \mathfrak{g} \to \text{End}(\mathfrak{g})$ is a Lie algebra homomorphism because it is the derivative D_1 Ad of a Lie group homomorphism. Prove directly that \mathbf{ad} is a Lie algebra homomorphism by using the fact that $\mathbf{ad}(X) \cdot Z = [X, Z]$. Show that

$$v_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

is a basis for $\mathfrak{so}(3) \subset \operatorname{Mat}_{3\times 3}(\mathbb{R})$. By computing all brackets $[v_i, v_j]$, show that

 $\mathfrak{so}(3) \cong (\mathbb{R}^3, \text{cross product}), v_i \mapsto \text{standard basis vector } e_i$

is a Lie algebra isomorphism.

Via this isomorphism we identify $\operatorname{End}(\mathfrak{so}(3))$ with 3×3 matrices. Compute the matrices $\operatorname{ad}(v_i)$. By computing $\langle v_i, v_j \rangle$ show that the **Killing form**

$$\langle v, w \rangle = \operatorname{Trace}(\operatorname{ad}(v)\operatorname{ad}(w)) \in \mathbb{R}$$

is a negative definite scalar product on $\mathfrak{so}(3)$.

Remark. Observe

$$\mathfrak{su}(2) \cong \mathfrak{so}(3) \cong \mathfrak{o}(3)$$

since SU(2), SO(3), O(3) are locally diffeomorphic near 1.

Cultural Remark. for a compact Lie group, the Killing form is negative definite on $\mathfrak{g}/\ker \mathfrak{ad}$ (here we quotiented by the centre $Z(\mathfrak{g}) = \operatorname{Lie}(Z(G)) = \ker \mathfrak{ad}$ because the Killing form is zero if $\mathfrak{ad}(v) = 0$).

Homework 3.

You are encouraged to collaborate on these exercises.

Question 1. Show that the subgroups of $S^1 = \mathbb{R}/\mathbb{Z}$ are: S^1 or one of two types:

(1) a finite subgroup generated by a rational number;

(2) an infinite subgroup which is dense in S^1 .

Describe geometrically the 1-parameter sugroups of the torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$. In particular, give an example of a subgroup $\mathbb{R} \subset T^2$ which is not a submanifold.¹

Question 2. Let $\varphi : T^n \to S^1$ be a Lie group homomorphism. Show that $D_1\varphi$ has integer entries. (*Hint. use naturality of* exp, and try the case n = 1 first if you get stuck.) Determine all Lie group homomorphisms

$$\varphi: T^n \to S^1$$

and all Lie group homomorphisms

$$T^n \to T^n$$
.

(Hint. given $D_1 \varphi \in \mathbb{Z}^n$, can you construct a homomorphism φ ? is it unique?) Let $v \in \mathbb{R}^n$. If the subgroup $\langle v \rangle$ generated by v is not dense in $T^n = \mathbb{R}^n / \mathbb{Z}^n$, show that $v \in \ker(\varphi : T^n \to S^1)$ for some non-trivial φ . (Hint. what Lie group can $T^n / \overline{\langle v \rangle}$ be, using the final results of Lecture 6?)

Show that the following statements are equivalent for $v = (v_1, \ldots, v_n) \in \mathbb{R}^n$:

- (1) $1, v_1, \ldots, v_n$ are linearly dependent over \mathbb{Q} ;
- (2) $\sum a_i v_i \in \mathbb{Z}$ for some $a_i \in \mathbb{Z}$, where not all a_i are zero;
- (3) $\langle v \rangle$ is not dense in T^n .

Deduce that almost any $v \in T^n$ will generate a dense subset of T^n !

Question 3. Using the formulas from Lecture 5, obtain the formula

$$\exp(X)\exp(Y)\exp(-X) = \exp(Y + [X,Y] + \frac{1}{2!}[X,[X,Y]] + \frac{1}{3!}[X,[X,[X,Y]]] + \cdots)$$

Show that for a matrix group,

$$\operatorname{Ad}(g) \cdot X = gXg^{-1}$$

where $g \in G, X \in \mathfrak{g}$.

Consider the subgroup $T \subset U(n)$ of diagonal unitary matrices. Show that T is a torus and that T lies in the image of exp : $\mathfrak{u}(n) \to U(n)$. Deduce that

$$\exp:\mathfrak{u}(n)\to U(n)$$

is surjective.

(Hint. Recall from linear algebra that a unitary matrix has a basis of unitary eigenvectors.)

Question 4. Suppose

$$\mathfrak{g} = V_1 \oplus \cdots \oplus V_k$$

as a vector space. Let

$$\mathfrak{g} \to G, \ \psi(v_1, \dots, v_k) = \exp(v_1) \cdots \exp(v_k)$$

Show that²

 $D_0\psi\cdot(X_1,\ldots,X_k)=X_1+\cdots+X_k,$

and deduce that ψ is a local diffeomorphism near 0.

 $^{{}^{1}}N \subset M$ is a submanifold if the inclusion is an embedding, i.e. a homeomorphism onto the image (in the subspace topology) and the derivative of the inclusion is injective.

²where we naturally identify $T_0\mathfrak{g} = \mathfrak{g}$, [curve 0 + tX] $\leftrightarrow X$.

Therefore, for small $X, Y \in \mathfrak{g}$, we can uniquely define $f(X, Y) \in \mathfrak{g}$ by the equation $\exp X \cdot \exp Y = \exp(f(X, Y)).$

Intuitively f(X, Y) is telling you what group multiplication in G looks like in \mathfrak{g} via $\log = (\exp)^{-1}$. By Taylor³ expanding f near (0,0), show that there is a bilinear map $B : \mathfrak{g} \oplus \mathfrak{g} \to \mathfrak{g}$ such that $f(X,Y) = X + Y + \frac{1}{2}B(X,Y) + \text{higher order terms.}$

Using $\exp(Z)^{-1} = \exp(-Z)$, show that B is antisymmetric. Using the formula of Q.3, show B(X,Y) = [X,Y].

Cultural Remark.

$$f(X,Y) = \exp^{-1}(\exp(X)\exp(Y)) = X + Y + \frac{1}{2}[X,Y] + \text{higher}$$

is called the **Baker-Campbell-Hausdorff formula**. A hard theorem states that the higher order terms can all be expressed in terms of Lie brackets involving X and Y (see Wikipedia). This proves the remarkable fact that the local group structure of G (multiplication for elements near 1) is determined by the Lie algebra \mathfrak{g} .

³Recall Taylor says: $f(X,Y) = f(0,0) + D_0(f) \cdot \begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} X \\ Y \end{pmatrix}^T \cdot \text{Hessian}_0(f) \cdot \begin{pmatrix} X \\ Y \end{pmatrix} + \cdots$. To ensure that the Hessian term does not have x_i^2, y_i^2 terms, consider f(X,0) and f(0,Y).

Homework 4.

You are encouraged to collaborate on these exercises.

Question 1. Let $\varphi: G_1 \to G_2$ be a Lie group homomorphism. Show that

$$\ker \varphi \subset G_1$$

is a closed (hence embedded) Lie subgroup with Lie algebra

$$\ker(D_1\varphi)\subset\mathfrak{g}_1$$

A vector subspace $J \subset (V, [\cdot, \cdot])$ of a Lie algebra is called an **ideal** if

$$[v, j] \in J$$
 for all $v \in V, j \in J$.

Show that ideals are Lie subalgebras. Show that for a Lie subgroup $H \subset G$, with H, G connected,

$$H \subset G$$
 is a normal subgroup $\Leftrightarrow \mathfrak{h} \subset \mathfrak{g}$ is an ideal

Hints. for \Leftarrow use the formula from Question 1. For \Rightarrow use that formula but put tX, sY instead of X, Y and show that the curve $e^{t \operatorname{ad} X} \cdot Y$ lies in \mathfrak{h} .

The centre of a Lie algebra $(V, [\cdot, \cdot])$ is

$$Z(V) = \{ v \in V : [v, w] = 0 \text{ for all } w \in V \}.$$

For G connected, prove that the centre of the group G is¹

$$Z(G) = \ker(\mathrm{Ad}: G \to \mathrm{Aut}(\mathfrak{g}))$$

Deduce that the centre of G is a closed (hence embedded) Lie subgroup of G which is abelian, normal and has Lie algebra

$$\operatorname{Lie}(Z(G)) = Z(\mathfrak{g})$$

Finally deduce that, for G connected,

G is abelian $\Leftrightarrow \mathfrak{g}$ is abelian

Question 2. Show that

$$[X,Y] = 0 \Rightarrow \exp(X+Y) = \exp(X)\exp(Y)$$

(Hint. By Lecture 8, Lie subalgs of \mathfrak{g} correspond to connected Lie subgps of G. Consider span(X,Y).)

Prove that if G is a Lie group with $\mathbf{Z}(\mathbf{G}) = \{\mathbf{1}\}$ then G can be identified with a Lie subgroup of $GL(m, \mathbb{R})$, some m, so g is a Lie subalgebra of $\mathfrak{gl}(m, \mathbb{R})$.

If $(V, [\cdot, \cdot])$ is a Lie algebra with $\mathbf{Z}(\mathbf{V}) = \{\mathbf{0}\}$, show that V is the Lie algebra of some Lie group. (*Hint. consider* $\mathbf{ad} : V \to \operatorname{End}(V), \mathbf{ad}(X) \cdot Y = [X, Y]$, and use the theorem in the previous hint.)

Cultural remark 1. A big theorem (Ado's theorem) states that any Lie algebra V has a faithful representation into some $\mathfrak{gl}(m,\mathbb{R})$ (that is, an injective Lie algebra homomorphism $V \to \mathfrak{gl}(m,\mathbb{R})$). The same arguments you used above imply that there is a Lie subgroup of $GL(m,\mathbb{R})$ with Lie algebra V. So one could reduce the study of Lie algebras to studying matrices with the bracket [B, C] = BC - CB.

Cultural remark 2. Another big theorem (*Lie's third theorem*) states: if you impose the topological condition that the Lie group should be simply-connected² then you also get uniqueness:

 $\{ \text{ Lie algebras } V \}/\text{Lie alg isos} \xleftarrow{1:1} \{ \text{ connected simply-connected Lie groups } G \}/\text{Lie gp isos} \}$

That condition is necessary, since the double cover $SU(2) \rightarrow SO(3)$ illustrates two different Lie groups with isomorphic Lie algebras (but only SU(2) is simply connected).

¹Recall the centre of a group is $Z(G) = \{g \in G : hg = gh \text{ for all } h \in G\} = \{g \in G : hgh^{-1} = g \text{ for all } h \in G\}.$

 $^2\mathrm{meaning}$ continuous loops can always be continuously deformed to a point.

All connected Lie groups having a given Lie algebra are obtained from the corresponding simply-connected Lie group by quotienting by a central discrete sugroup. In the example, $SO(3) = SU(2)/{\pm I}$.

Cultural Remark 3. Not all Lie groups are matrix groups. The Heisenberg group

$$H = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$

is a simply-connected matrix group (as a manifold, it's just \mathbb{R}^3), but it turns out that the quotient

 $H/\left(\begin{smallmatrix}1&0&\mathbb{Z}\\0&1&0\\0&0&1\end{smallmatrix}\right)$

does not admit a faithful representation into any $\mathfrak{gl}(m,\mathbb{R})$.

Question 3. Find all the connected Lie subgroups of SO(3). Hint. Use the results from Q.3 of Question sheet 2.

Question 4. Given any real or complex matrix X, show that

$$\det e^X = e^{\mathrm{Tr}}(X)$$

(Hint. Recall from linear algebra, that over \mathbb{C} any matrix is conjugate to an upper triangular matrix.) Deduce that

 $\mathfrak{sl}(n,\mathbb{R}) = \{A \in \operatorname{Mat}_{n \times n}(\mathbb{R}) : \operatorname{Tr}(X) = 0\}.$

Deduce that

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

is a basis of $\mathfrak{sl}(2,\mathbb{R})$ and check that

$$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h.$$

Why is the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ not isomorphic to $\mathfrak{so}(3)$?

Which connected Lie subgroup of $SL(2,\mathbb{R})$ corresponds to the Lie subalgebra $\mathbb{R} \cdot (f-e)$?

Which connected Lie subgroup of $SL(2,\mathbb{R})$ corresponds to the Lie subalgebra span(h, e)?

A Lie group is called **simple** if it is connected, non-abelian, and has no non-trivial connected normal subgroups. A Lie algebra V is called **simple** if it is non-abelian, and its only ideals are 0 and V. Prove in general the correspondence:

 $\{ \text{ connected normal subgroups of } G \ \} \stackrel{1:1}{\longleftrightarrow} \{ \text{ ideals of } \mathfrak{g} \}$

Deduce that a connected Lie group is simple if and only if its Lie algebra is simple.

By considering $\mathfrak{sl}(2,\mathbb{R})$, show that $SL(2,\mathbb{R})$ is a simple Lie group.

Question 5. Let V_n be the vector space of homogeneous³ polynomials of degree n in two variables z_1, z_2 . Show that SU(2) acts on V_n by

$$(A \cdot p)(z) = p(zA),$$

where $p \in V_n$, $A \in SU(2)$, and zA is matrix multiplication of the row-vector $z = (z_1, z_2)$ with A. Deduce that the V_n are representations⁴ of the Lie group SU(2) of dimension n + 1.

Cultural Remark. In fact, these are all the irreducible⁵ representations of SU(2). Here V_0 is the trivial representation, V_1 is the standard representation, and V_n is called the n-th symmetric power of V_1 .

By considering the double cover $SU(2) \rightarrow SO(3)$, and using the cultural remark, show that the irreducible representations of SO(3) are precisely the spaces V_{2n} of odd dimension 2n + 1.

³meaning: the total degree of each term is the same, for example $3z_1^2 + 4z_1z_2 - 5z_2^2$ is homogeneous of degree 2.

⁴Recall a representation R of a group G is a vector space R together with a Lie group homomorphism $\varphi: G \to \operatorname{Aut}(R)$.

⁵Irreducible means that the only vector subspaces $R' \subset R$ satisfying $g \cdot R' \subset R'$, for all $g \in G$, are R' = 0 and R' = R (recall we abbreviate $g \cdot r' = \varphi(g)(r')$).

Homework 5.

You are encouraged to collaborate on these exercises.

Question 1. Let *H* be a connected Lie group. Show that any discrete normal subgroup $N \subset H$ satisfies $N \subset \text{Centre}(H)$. (Try it first, only then see the footnote for a hint.)¹

Let $\pi: H \to G$ be a covering of Lie groups, with H, G connected. Show that $\Gamma = \ker \pi$ is a discrete normal subgroup of Centre(H).

Conversely, if $\Gamma \subset \text{Centre}(H)$ discrete, show² that H/Γ is a Lie group and that the quotient map $\pi : H \to H/\Gamma$ is a covering map with fibre ker $\pi = \Gamma$.

Deduce that any connected Lie group with Lie algebra \mathfrak{g} is isomorphic to G/Γ for some discrete subgroup $\Gamma \subset \operatorname{Centre}(G)$, where G is a simply-connected Lie group.

Question 2. Let $\rho_j : G \to GL(d_j, \mathbb{F})$ be representations, j = 1, 2. State in terms of matrices what the following representations are: $\rho_1 \oplus \rho_2$, $\rho_1 \otimes_{\mathbb{F}} \rho_2$, conjugate rep $\overline{\rho_1}$, dual rep ρ_1^* , and $\operatorname{Hom}_{\mathbb{F}}(\rho_1, \rho_2)$. For compact G, show that $V^* \cong \overline{V}$. (*Hint. inner product.*)

Question 3. For V a representation (more precisely, $\rho: G \to \operatorname{Aut}(V)$), define its character $\chi_V = \chi_\rho$ by

 $\chi_V: G \to \mathbb{F}, \quad \chi_V(g) = \operatorname{Trace}(\rho(g)).$

Check the following properties hold:

- (1) χ_V is smooth
- (2) $\chi_V(1) = \dim_{\mathbb{F}} V$
- (3) χ_V is invariant under conjugation, $\chi_V(hgh^{-1}) = \chi_V(g)$
- (4) $\chi_V = \chi_W$ for equivalent reps $V \simeq W$
- (5) $\chi_{V\oplus W}(g) = \chi_V(g) + \chi_W(g)$
- (6) $\chi_{V\otimes W}(g) = \chi_V(g) \cdot \chi_W(g)$
- (7) $\chi_{V^*}(g) = \chi_V(g^{-1})$
- (8) $\chi_{\overline{V}}(g) = \overline{\chi_V(g)}$

Question 4. For G compact, and $\mathbb{F} = \mathbb{C}$, check the 1 : 1 correspondence:

{1-dim reps}/equivalence $\stackrel{1:1}{\leftrightarrow}$ {Lie group homs $G \to S^1$ }, $\rho \mapsto \chi_{\rho}$.

Classify all representations of S^1 and of T^n for $\mathbb{F} = \mathbb{C}$.

Observe that real representations $\rho: G \to \operatorname{Aut}(\mathbb{R}^n)$ are also complex representations $\rho: G \to \operatorname{Aut}(\mathbb{C}^n)$ satisfying $\rho(g) = \overline{\rho(g)}$ for all g. Suppose, in this situation, that $\mathbb{C}v$ is a 1-dim complex G-submodule of \mathbb{C}^n . Check that $x = \operatorname{Re}(v) = \frac{1}{2}(v + \overline{v})$ and $y = \operatorname{Im}(v) = \frac{1}{2i}(v - \overline{v})$ span a 2-dim real G-submodule of \mathbb{R}^n . Then classify all representations of S^1 and of T^n for $\mathbb{F} = \mathbb{R}$. (See the footnote for hints.)³

Question 5. Canonical decomposition. For compact G, and $\mathbb{F} = \mathbb{C}$, and V_i the (inequivalent) irreducible reps of G, show that the following evaluation map is a G-isomorphism:

$$\mathbf{ev}: \bigoplus_{i} \operatorname{Hom}_{G}(V_{i}, V) \otimes_{\mathbb{F}} V_{i} \to V,$$

where on a generator $\varphi \otimes v$ we define $\mathbf{ev}(\varphi \otimes v) = \varphi(v)$, and then extend \mathbf{ev} linearly.

¹Hint. Recall the definition of Centre from Question sheet 4. The results from Q. sheet 4 don't help here. Instead, let γ_t be a path from 1 to h, then observe that for $n \in N$ the continuous path $\gamma_t n \gamma_t^{-1}$ lies in N. But N is discrete.

²Hint: easier than it looks, combine results from Lectures 8 and 10. Hint to prove that Γ is closed: suppose $g_m \in \Gamma$ are distinct with $g_m \to g \in H$, then $g_m^{-1}g_{m+1} \to 1 \in \Gamma$ using the continuous map $H \times H \to H$, $(h, g) \mapsto h^{-1}g$.

³Hints: recall Q.2 on Question sheet 3 classifies Lie group homs $T^n \to S^1$. In \mathbb{R}^2 , if s is a reflection in the x-axis and r is a rotation by θ , check that $s^{-1} \circ r \circ s$ is a rotation by $-\theta$. Use Q.3.(4) of this sheet to distinguish some of the irreps.

Homework 6. - Do Collaborate...

All Lie groups are assumed compact, and we work over $\mathbb{F} = \mathbb{C}$.

We'll prove some harder theorems on this sheet. Use the footnotes to guide you through the argument.

Question 1. Irreducibility criterion: prove that V is irreducible if and only if $\langle \chi_V, \chi_V \rangle = 1$.

If V_1, V_2 are irreps of G_1, G_2 , show $V_1 \otimes V_2$ is an irrep of $G_1 \times G_2$.

Claim:¹ Conversely, all irreps of $G_1 \times G_2$ have the form $V_1 \otimes V_2$, for irreps V_1, V_2 of G_1, G_2 respectively.

Question 2. Representation theory for SU(2) Recall (Q.5 Sheet 4) SU(2) acts by $(A \cdot p)(z) = p(zA)$ on $p \in V_n = \{\text{homogeneous degree } n \text{ polys in } z_1, z_2 \text{ over } \mathbb{C}\}$. We'll use the basis $P_j = z_1^j z_2^{n-j}, 0 \le j \le n$. Claim 1.² The V_n are irreducible.

Claim 2.³ The characters χ_n of the V_n are uniformly dense in Cl(SU(2)).

Claim 3.⁴ The V_n are the only irreps of SU(2) (up to equivalence).

Question 3. Claim.⁵ Every compact Lie group admits a faithful rep into some U(n).

Remark. $U(n) \to SO(2n)$ embeds via $A \mapsto \left(\operatorname{Re}^{\operatorname{Re}A - \operatorname{Im}A}_{\operatorname{Im}A \operatorname{Re}A} \right)$, so we can replace U(n) by O(n) above.

Question 4. Claim 1.⁶ The span over \mathbb{C} of the image of $\chi : R(G) \to Cl(G)$ is dense, that is: class functions f can be uniformly approximated by $\sum z_i \chi_{V_i}$ for $z_i \in \mathbb{C}$.

Claim 2.⁷ The matrix entries of a faithful representation $\rho: G \to U(n)$, together with the conjugates of the entries, and with 1, generate the \mathbb{C} -algebra $\mathcal{F}(G)$ of all representative functions.

Claim 3.⁸ Every irrep of G is a subrep of $V^{\otimes a} \otimes \overline{V}^{\otimes b}$, some $a, b \in \mathbb{N}$, where $V = \mathbb{C}^n$ is the faithful rep $\rho: G \to U(n)$. Remark. This implies that $L^2(G)$ has countable dimension (see Lecture 13).

Claim 4.⁹ For a closed (so compact Lie) subgp $H \subset G$, any irrep of H is contained inside an irrep of G.

²By the irreducibility criterion of Q.1, V_n is irrep iff $\operatorname{Hom}_{SU(2)}(V_n, V_n) = 1$. So given $\varphi : V_n \to V_n SU(2)$ -linear map, need show $\varphi = c \cdot \operatorname{Id}$. Consider the diagonal matrices $D_\lambda \in SU(2)$ with entries λ, λ^{-1} . Compute the action of D_λ on P_j . Deduce that for $\lambda = e^{2\pi i/4n}$ the λ^{2j-n} -eigenspace of D_λ is spanned by P_j . Deduce that $\varphi(P_j) = c_j P_j$, some $c_j \in \mathbb{C}$. Consider the rotation $R_\theta \in SU(2)$ by θ . Expand $\varphi(R_\theta P_n) = R_\theta \varphi(P_n)$ to deduce that the c_j are all equal.

³Recall unitary matrices are diagonalizable. Deduce that any element in SU(2) is conjugate to D_{λ} with $\lambda = e^{i\theta}$, uniquely up to changing θ to $-\theta$. Deduce that class functions $f : SU(2) \to \mathbb{C}$ are in 1 : 1 correspondence with cts 2π -periodic even functions $\mathbb{R} \to \mathbb{C}$ via $\theta \mapsto f \circ D_{e^{i\theta}}$. So can abbreviate $\chi_n(D_{e^{i\theta}}) = \chi_n(\theta)$. Check $\chi_n(\theta) = \sum e^{i(2j-n)\theta}$. Compute that geometric sum, you should get $\chi_n(\theta) = \frac{\sin((n+1)\theta)}{\sin\theta}$, call this $c_n(\theta)$. Using trig identities, deduce $c_n = \cos(n\theta) + c_{n-1}(\theta)\cos\theta$. Deduce that the $\chi_n(\theta)$ generate (as an algebra) 1, $\cos(\theta)$, $\cos(2\theta), \ldots, \cos(n\theta)$. By basic Fourier analysis, <u>even</u> 2π -periodic continuous functions are uniformly approximated by $\cos(n\theta)$, $n \in \mathbb{N}$.

⁴Hint. Orthogonality relations and Claim 2.

⁵For a chain of strict inclusions $K_1 \supset K_2 \supset K_3 \supset \cdots$ of closed sub-manifolds, check that dim drops or the # of connected components drops each time. If K_j are closed subgps of G show the chain must stop. For a manifold M, and distinct points $p, q \in M$, explain why there is a cts function $f: M \to \mathbb{C}$ with $f(p) \neq f(q)$. Repeatedly apply this idea to M = G, using the Peter-Weyl theorem to approximate such f by representative functions $L \circ \rho$. The first step is to take $p = 1, q = g \neq 1$, to get $\rho_1: G \to \operatorname{Aut}(V_1)$, with $K_1 = \ker \rho_1 \subset G$ a strict inclusion. You aim to end up with a faithful rep $V_1 \oplus \cdots \oplus V_m$.

⁶Use the canonical decomposition $\mathbf{ev} : \oplus H_i \otimes V_i \simeq V, \mathbf{ev}(\psi_i, v_i) = \psi_i(v_i)$ (Q.5 Sheet 5) where $H_i = \operatorname{Hom}_G(V_i, V), V_i$ the irreps. By Peter-Weyl $f \approx \operatorname{Tr}(\varphi \circ \rho)$, some $\varphi \in \operatorname{Hom}_G(V, V), \rho : G \to \operatorname{Aut}(V)$. Check that $\varphi \circ \rho$ on V corresponds via the canonical decomposition to $\oplus(\varphi \otimes \rho_i)$ on $\oplus H_i \otimes V_i$. So the traces of those two maps agree. Final hint: $z_i = \operatorname{Tr}(\varphi \circ : H_i \to H_i)$.

⁷Let $\mathcal{M}(G)$ be the algebra generated. By Stone-Weierstrass show $\mathcal{M}(G) \subset C(G)$ is dense. Deduce $\mathcal{M}(G)$ is dense in $\mathcal{F}(G)$. Aim: $\mathcal{M}(G) \subset \mathcal{F}(G)$ closed in sup-norm. Now $||f||^2 = \langle f, f \rangle = \int_G \overline{f}(g)f(g) \leq (\sup_G |f|)^2$, so sup-closure($\mathcal{M}(G)$) is a subset of $||\cdot||$ -closure($\mathcal{M}(G)$). Deduce: if $\mathcal{M}(G)$ is $||\cdot||$ -closed then both closures equal $\mathcal{M}(G)$. Recall $\mathcal{F}(G) = \bigoplus \mathcal{F}_{V_i}(G)$ is an orthogonal direct sum over irreps V_i of G. Orthogonal projection $\pi_i : \mathcal{F}(G) \to \mathcal{F}_{V_i}(G)$ satisfies $||\pi_i(f-m)|| \leq ||f-m||$ for all $m \in \mathcal{M}(G)$. Deduce that for $f \in \overline{\mathcal{M}(G)}$ (the $||\cdot||$ -closure), $\pi_i(f) \in \overline{\pi_i(\mathcal{M}(G)} \subset \mathcal{F}_{V_i}(G)$. Deduce, since dim $\mathcal{F}_{V_i}(G) \leq \infty$, that $f \in \mathcal{M}(G)$.

Deduce that for $f \in \overline{\mathcal{M}(G)}$ (the $\|\cdot\|$ -closure), $\pi_i(f) \in \overline{\pi_i(\mathcal{M}(G)} \subset \mathcal{F}_{V_i}(G)$. Deduce, since dim $\mathcal{F}_{V_i}(G) < \infty$, that $f \in \mathcal{M}(G)$. ⁸The matrix entries of $V^{\otimes a} \otimes \overline{V}^{\otimes b}$ are monomials of degree a in matrix entries of V and of degree b in matrix entries of \overline{V} . By Claim 2, they generate $\mathcal{F}(G)$, as a, b vary. If W were an irrep contradicting Claim 3, then by orthogonality $\int_G \overline{f_W} f_V = 0$ for all $f_W \in \mathcal{F}_W(G)$, $f_V \in \mathcal{F}_{V^{\otimes a} \otimes \overline{V}^{\otimes b}}(G)$. By Peter-Weyl and Claim 2 this is impossible.

⁹Apply Claim 3 to the faithful rep $H \to G \to \operatorname{Aut}(V)$.

¹Let V be a rep of $G_1 \times G_2$. Then V is a rep of $G_2 = 1 \times G_2 \subset G_1 \times G_2$. Apply the canonical decomposition (Q.5 Sheet 5) to V, G_2 . Define a G_1 -action on $\operatorname{Hom}_{G_2}(V_2, V)$ for an irrep V_2 of G_2 so that the decomposition becomes $G_1 \times G_2$ -linear. Apply complete reducibility to the G_1 -mod $\operatorname{Hom}_{G_2}(V_2, V)$.

OPTIONAL QUESTIONS (hand in if you like)

Optional Question 1. A Lie group that is not a matrix group. Consider

$$H = \{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \} \qquad N = \{ \begin{pmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \}.$$

Check that $N \subset H$ is a closed normal subgroup, so H/N is a Lie group.

This is of interest in quantum mechanics, because H/N is faithfully represented by the group of operators $M_c S_b T_a$ (in that order!) acting on the Hilbert space $L^2(\mathbb{R})$, generated by translation $T_a f(x) = f(x+a)$, rescaling $S_b f(x) = e^{2\pi i b} f(x)$, and multiplication $M_c f(x) = e^{2\pi i c x} f(x)$. Check H/N is iso to this group. Check that if you replace $n \in \mathbb{Z}$ by $n \in \mathbb{R}$ you obtain a circle $T \subset \text{Centre}(H/N)$, and check¹⁰ that each element in T is a commutator $ghg^{-1}h^{-1}$.

Prove in general that given a circle $T \subset \text{Centre}(G)$, any rep of G is a sum $V = \oplus V_a$, such that T acts on V by $e^{2\pi i a x}$ where $a \in \mathbb{Z}$.

Prove in general that if elements of T can be written as commutators, then¹¹ in fact only V_0 is non-zero and therefore T is in the kernel of the representation.

Deduce that the Heisenberg group H/N is not a matrix group.

Optional Question 2. Real representations vs complex representations.

We saw in Q.4 sheet 5 that a real rep is also a complex rep via $G \to GL(n, \mathbb{R}) \subset GL(n, \mathbb{C})$ so $\rho(g) = \rho(g)$. More abstractly, this is the process of **complexifying** a real rep W: we get $W_{\mathbb{C}} = \mathbb{C} \otimes_{\mathbb{R}} W$ with \mathbb{C} -action $\lambda(z \otimes w) = (\lambda z) \otimes w$ and G-action $g(z \otimes w) = z \otimes gw$.

Deduce that real reps arise as complex reps which are **self-conjugate**:¹² $\overline{V} \simeq V$.

Check that V is self-conjugate iff χ_V is real-valued.

In the reverse direction, a complex rep V gives a real rep $V_{\mathbb{R}}$: just consider V as a vector space over \mathbb{R} . Less abstractly: $\rho: G \to GL(n, \mathbb{C}) \subset GL(2n, \mathbb{R})$ where¹³ $GL(n, \mathbb{C}) \subset GL(2n, \mathbb{R}), A \mapsto \begin{pmatrix} \operatorname{Re} A & -\operatorname{Im} A \\ \operatorname{Im} A & \operatorname{Re} A \end{pmatrix}$. Prove that

$$(W_{\mathbb{C}})_{\mathbb{R}} \simeq W \oplus W \qquad (V_{\mathbb{R}})_{\mathbb{C}} \simeq V \oplus \overline{V}.$$

Let $R_{\mathbb{R}}(G) = \{\sum n_i W_i : n_i \in \mathbb{Z}, W_i \text{ real irreps of } G\}$ denote the real representation ring. Deduce that

 $R_{\mathbb{R}}(G) \to R(G), \quad W \mapsto \mathbb{C} \otimes_{\mathbb{R}} W$

is an injective homomorphism. Hence, if W, W' are real reps with $\mathbb{C} \otimes_{\mathbb{R}} W \simeq \mathbb{C} \otimes_{\mathbb{R}} W'$ as cx reps, then $W \simeq W'$ as real reps. Therefore, once you've found out which self-conjugate cx reps are real reps, you just need to use this criterion to determine which are equivalent.

A good example to play with, which is an alternative approach to Q.4 Sheet 5, is to find the real irreps of S^1 given that we easily know the complex irreps (and similarly for real irreps of T^n).

¹³Even more explicitly, a complex basis $e_j^{\mathbb{C}}$ gives a real basis $e_1^{\mathbb{C}}, \ldots, e_n^{\mathbb{C}}, ie_1^{\mathbb{C}}, \ldots, ie_n^{\mathbb{C}}$. The first column of the inclusion is because $Ae_j^{\mathbb{C}} = (\operatorname{Re} A + i\operatorname{Im} A)e_j^{\mathbb{C}} = \operatorname{Re}(A)e_j^{\mathbb{C}} + \operatorname{Im}(A)ie_j^{\mathbb{C}}$. A simple example is:

$$e^{i\theta} \in GL(1,\mathbb{C}) \mapsto \left(\begin{array}{c} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) \in GL(2,\mathbb{R}).$$

¹⁰*Hint.* $T_n M_1 T_n^{-1} M_1^{-1}$.

¹¹*Hint.* consider determinants.

 $^{^{12}}$ Self-conjugate reps may fail to be real – they may be quaternionic, or a tensor of a real and a quaternionic rep.