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Homework 1.

You are encouraged to collaborate on these exercises.

Question 1. Show that the tangent bundle TG =
⊔

g∈G TgG of a Lie group G is canonically
identifiable with G× TIG.
Hint. consider the left translation map φg : G→ G, φg(h) = gh.

Deduce that any Lie group of dimension n has n non-vanishing vector fields which are linearly
independent at each point of G.

Deduce that the 2-dimensional sphere S2 cannot be a Lie group.
Hint. you may quote the “hairy ball theorem” – google it!

Show that the 3-dimensional sphere S3 is a Lie group by considering

SU(2) = {2× 2 complex matrices with A†A = I, detA = 1}
where A† denotes the conjugate transpose of A.

Hint. Verify that SU(2) is the set of matrices
(

a b
−b a

)
with a, b ∈ C, |a|2 + |b|2 = 1.

Cultural remark. The only spheres which are also Lie groups are S0, S1, S3.

Question 2. Suppose G1, G2 are Lie groups. Show that G1 ×G2 is a Lie group in a natural way.

Deduce that the n-dimensional torus Tn = S1 × · · · × S1 is a Lie group.

Find a map π : Rn → Tn that allows you to identify Tn ∼= Rn/Zn (the quotient group).

Not all vector fields on Rn give rise to vector fields on Tn if you apply Dπ, but which ones do? Are
these all the vector fields on Tn?

Find out which vector fields on Tn are left-invariant, meaning

Dhφg ·X|h = X|gh
for all h, g ∈ G, where φg is defined in Question 1.

Question 3. Use the implicit function theorem (at the end of Lecture 1) applied to

ϕ : GL(n,R)→ Sym(n,R) = {n× n symmetric matrices } , ϕ(A) = ATA,

to prove that the orthogonal group O(n) is a Lie group, to find the dimension of O(n) and to find
the tangent space TIO(n).

Show that O(n) is compact. Hint. You may quote the Heine-Borel theorem.

Question 4. Let ϕ : M → N be a diffeomorphism of manifolds (a smooth map with smooth
inverse). For a vector field X on M define the push-forward vector field Z = ϕ∗X on N by

Z|y = Dxϕ ·X|x
where x = ϕ−1(y). Show that for any function f : N → R,

(ϕ∗X) · f = (X · (f ◦ ϕ)) ◦ ϕ−1.
Deduce that [ϕ∗X,ϕ∗Y ] · f = ϕ∗[X,Y ] · f , and deduce that

[ϕ∗X,ϕ∗Y ] = ϕ∗[X,Y ].

Check that this last identity holds in the simple case: M = N = R, X = ∂
∂x , Y = x ∂

∂x , ϕ(x) = 2x.

Let G be a Lie group. Prove the following characterization of left-invariant vector fields:

X ∈ LieG ⇔ (φg)∗X = X for all g ∈ G,
and deduce that, if X,Y ∈ LieG, then also [X,Y ] ∈ LieG.

Remark. It’s tricky to show [ϕ∗X,ϕ∗Y ] = ϕ∗[X,Y ] directly using coordinates, try it if you are brave.
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Homework 2.

You are encouraged to collaborate on these exercises.

Question 1. Viewing quaternions as matrices, show that quaternions satisfy the rules

|h1h2| = |h1| · |h2| |h−1| = |h|−1.

Viewing H as a real 4-dimensional vector space, check that |h| is the usual norm on R4.

Show that (using Lecture 2 and Question sheet 1)

Sp(1) = SU(2).

For h ∈ H \ {0} define
Ah : H→ H, p 7→ hph−1.

Show that Ah is an orthogonal map (viewing H as R4). (Hint. recall Example 11 from Lecture 2.)

By considering the orthogonal complement of R = R · 1 ⊂ H, deduce that SU(2) ∼= Sp(1) ⊂ H \ {0}
acts on R3 by rotations.

Writing quaternions as r + v, where r ∈ R and v ∈ R3 = spanR(i, j, k), show that

v1v2 = −v1 • v2 + v1 × v2
for v1, v2 ∈ R3, where • is dot product in R3, and × is cross product in R3.

Show that any h ∈ Sp(1) can be written as

h = cos( θ2) + sin( θ2)v

for a unit vector v ∈ R3 and for some θ ∈ R. Show that in this case vv = −1 and Ah(v) = v.

Describe the rotation determined by h. (Hint. consider an orthonormal basis w1, w2, v ∈ R3.)

Deduce that there is a smooth surjective homomorphism

SU(2)→ SO(3)

and explain briefly in what sense SU(2) “covers” SO(3) twice.

Show that SO(3) as a manifold is a solid ball B3 ⊂ R3 of radius π having identified the antipodal
points on the boundary of the ball (this boundary is a sphere of radius π in R3). This space is
called real projective space, RP 3.

Taking inspiration from the construction of polar coordinates, show that RP 3 can be identified
with the space of straight lines in R4 through the origin. Finally, show that the map
SU(2)→ SO(3) corresponds to the map

S3 → RP 3, (x ∈ S3 ⊂ R4) 7→ (the straight line in R4 through the two points 0 and x).

Question 2. Check these properties of exp : Lie(G)→ G.

(1) Image(exp) ⊂ G0 = connected component of 1 ∈ G;
(2) exp((t+ s)v) = exp(tv)exp(sv) for all t, s ∈ R;
(3) (exp v)−1 = exp(−v);
(4) If g = exp(v) then it has an n-th root: exp( 1

nv);
(5) Show that the following map is not surjective

exp : sl(2,R)→ SL(2,R)

by considering the eigenvalues of the square root (if it existed) of g =
(−4 0

0 −1
4

)
.

Cultural remark. For any compact connected Lie group G, exp is surjective.
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Question 3. Remark. Abbreviate g = Lie(G). By Lecture 5 you know that ad : g→ End(g) is a
Lie algebra homomorphism because it is the derivative D1Ad of a Lie group homomorphism.

Prove directly that ad is a Lie algebra homomorphism by using the fact that ad(X) · Z = [X,Z].

Show that
v1 =

(
0 1 0
−1 0 0
0 0 0

)
, v2 =

(
0 0 −1
0 0 0
1 0 0

)
, v3 =

(
0 0 0
0 0 1
0 −1 0

)
is a basis for so(3) ⊂ Mat3×3(R).

By computing all brackets [vi, vj ], show that

so(3) ∼= (R3, cross product), vi 7→ standard basis vector ei

is a Lie algebra isomorphism.

Via this isomorphism we identify End(so(3)) with 3× 3 matrices. Compute the matrices ad(vi).

By computing 〈vi, vj〉 show that the Killing form

〈v, w〉 = Trace(ad(v)ad(w)) ∈ R
is a negative definite scalar product on so(3).

Remark. Observe
su(2) ∼= so(3) ∼= o(3),

since SU(2), SO(3), O(3) are locally diffeomorphic near 1.

Cultural Remark. for a compact Lie group, the Killing form is negative definite on g/ kerad
(here we quotiented by the centre Z(g) = Lie(Z(G)) = kerad because the Killing form is zero if
ad(v) = 0).
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Homework 3.

You are encouraged to collaborate on these exercises.

Question 1. Show that the subgroups of S1 = R/Z are: S1 or one of two types:

(1) a finite subgroup generated by a rational number;
(2) an infinite subgroup which is dense in S1.

Describe geometrically the 1-parameter sugroups of the torus T 2 = R2/Z2. In particular, give an
example of a subgroup R ⊂ T 2 which is not a submanifold.1

Question 2. Let ϕ : Tn → S1 be a Lie group homomorphism. Show that D1ϕ has integer entries.
(Hint. use naturality of exp, and try the case n = 1 first if you get stuck.)

Determine all Lie group homomorphisms

ϕ : Tn → S1

and all Lie group homomorphisms
Tn → Tn.

(Hint. given D1ϕ ∈ Zn, can you construct a homomorphism ϕ? is it unique?)

Let v ∈ Rn. If the subgroup 〈v〉 generated by v is not dense in Tn = Rn/Zn, show that
v ∈ ker(ϕ : Tn → S1) for some non-trivial ϕ.

(Hint. what Lie group can Tn/〈v〉 be, using the final results of Lecture 6?)

Show that the following statements are equivalent for v = (v1, . . . , vn) ∈ Rn:

(1) 1, v1, . . . , vn are linearly dependent over Q;
(2)

∑
aivi ∈ Z for some ai ∈ Z, where not all ai are zero;

(3) 〈v〉 is not dense in Tn.

Deduce that almost any v ∈ Tn will generate a dense subset of Tn!

Question 3. Using the formulas from Lecture 5, obtain the formula

exp(X) exp(Y ) exp(−X) = exp(Y + [X,Y ] + 1
2! [X, [X,Y ]] + 1

3! [X, [X, [X,Y ]]] + · · · )

Show that for a matrix group,
Ad(g) ·X = gXg−1

where g ∈ G,X ∈ g.

Consider the subgroup T ⊂ U(n) of diagonal unitary matrices. Show that T is a torus and that T
lies in the image of exp : u(n)→ U(n). Deduce that

exp : u(n)→ U(n)

is surjective.
(Hint. Recall from linear algebra that a unitary matrix has a basis of unitary eigenvectors.)

Question 4. Suppose
g = V1 ⊕ · · · ⊕ Vk

as a vector space. Let
g→ G, ψ(v1, . . . , vk) = exp(v1) · · · exp(vk).

Show that2

D0ψ · (X1, . . . , Xk) = X1 + · · ·+Xk,

and deduce that ψ is a local diffeomorphism near 0.

1N ⊂M is a submanifold if the inclusion is an embedding, i.e. a homeomorphism onto the image (in the subspace
topology) and the derivative of the inclusion is injective.

2where we naturally identify T0g = g, [curve 0 + tX]↔ X.
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Therefore, for small X,Y ∈ g, we can uniquely define f(X,Y ) ∈ g by the equation

expX · expY = exp(f(X,Y )).

Intuitively f(X,Y ) is telling you what group multiplication in G looks like in g via log = (exp)−1.

By Taylor3 expanding f near (0, 0), show that there is a bilinear map B : g⊕ g→ g such that

f(X,Y ) = X + Y + 1
2B(X,Y ) + higher order terms.

Using exp(Z)−1 = exp(−Z), show that B is antisymmetric. Using the formula of Q.3, show

B(X,Y ) = [X,Y ].

Cultural Remark.

f(X,Y ) = exp−1(exp(X) exp(Y )) = X + Y + 1
2 [X,Y ] + higher

is called the Baker-Campbell-Hausdorff formula. A hard theorem states that the higher order
terms can all be expressed in terms of Lie brackets involving X and Y (see Wikipedia). This proves
the remarkable fact that the local group structure of G (multiplication for elements near 1) is
determined by the Lie algebra g.

3Recall Taylor says: f(X,Y ) = f(0, 0) +D0(f) · (X
Y ) + (X

Y )
T ·Hessian0(f) · (X

Y ) + · · · . To ensure that the Hessian

term does not have x2
i , y

2
i terms, consider f(X, 0) and f(0, Y ).
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Homework 4.

You are encouraged to collaborate on these exercises.

Question 1. Let ϕ : G1 → G2 be a Lie group homomorphism. Show that

kerϕ ⊂ G1

is a closed (hence embedded) Lie subgroup with Lie algebra

ker(D1ϕ) ⊂ g1.

A vector subspace J ⊂ (V, [·, ·]) of a Lie algebra is called an ideal if

[v, j] ∈ J for all v ∈ V, j ∈ J.

Show that ideals are Lie subalgebras. Show that for a Lie subgroup H ⊂ G, with H,G connected,

H ⊂ G is a normal subgroup⇔ h ⊂ g is an ideal

Hints. for ⇐ use the formula from Question 1. For ⇒ use that formula but put tX, sY instead of X,Y
and show that the curve et adX · Y lies in h.

The centre of a Lie algebra (V, [·, ·]) is

Z(V ) = {v ∈ V : [v, w] = 0 for all w ∈ V }.
For G connected, prove that the centre of the group G is1

Z(G) = ker(Ad : G→ Aut(g))

Deduce that the centre of G is a closed (hence embedded) Lie subgroup of G which is abelian, normal
and has Lie algebra

Lie(Z(G)) = Z(g).

Finally deduce that, for G connected,

G is abelian⇔ g is abelian

Question 2. Show that
[X,Y ] = 0⇒ exp(X + Y ) = exp(X) exp(Y ).

(Hint. By Lecture 8, Lie subalgs of g correspond to connected Lie subgps of G. Consider span(X,Y ).)

Prove that if G is a Lie group with Z(G) = {1} then G can be identified with a Lie subgroup of
GL(m,R), some m, so g is a Lie subalgebra of gl(m,R).

If (V, [·, ·]) is a Lie algebra with Z(V) = {0}, show that V is the Lie algebra of some Lie group.
(Hint. consider ad : V → End(V ),ad(X) · Y = [X,Y ], and use the theorem in the previous hint.)

Cultural remark 1. A big theorem (Ado’s theorem) states that any Lie algebra V has a faithful
representation into some gl(m,R) (that is, an injective Lie algebra homomorphism V → gl(m,R)). The
same arguments you used above imply that there is a Lie subgroup of GL(m,R) with Lie algebra V . So
one could reduce the study of Lie algebras to studying matrices with the bracket [B,C] = BC − CB.

Cultural remark 2. Another big theorem (Lie’s third theorem) states: if you impose the topological
condition that the Lie group should be simply-connected2 then you also get uniqueness:

{ Lie algebras V }/Lie alg isos
1:1←→ { connected simply-connected Lie groups G }/Lie gp isos

That condition is necessary, since the double cover SU(2)→ SO(3) illustrates two different Lie groups
with isomorphic Lie algebras (but only SU(2) is simply connected).

1Recall the centre of a group is Z(G) = {g ∈ G : hg = gh for all h ∈ G} = {g ∈ G : hgh−1 = g for all h ∈ G}.
2meaning continuous loops can always be continuously deformed to a point.
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All connected Lie groups having a given Lie algebra are obtained from the corresponding simply-connected
Lie group by quotienting by a central discrete sugroup. In the example, SO(3) = SU(2)/{±I}.
Cultural Remark 3. Not all Lie groups are matrix groups. The Heisenberg group

H =
{(

1 a b
0 1 c
0 0 1

)
: a, b, c ∈ R

}
is a simply-connected matrix group (as a manifold, it’s just R3), but it turns out that the quotient

H/
(

1 0 Z
0 1 0
0 0 1

)
does not admit a faithful representation into any gl(m,R).

Question 3. Find all the connected Lie subgroups of SO(3).
Hint. Use the results from Q.3 of Question sheet 2.

Question 4. Given any real or complex matrix X, show that

det eX = eTr(X).

(Hint. Recall from linear algebra, that over C any matrix is conjugate to an upper triangular matrix.)

Deduce that
sl(n,R) = {A ∈ Matn×n(R) : Tr(X) = 0}.

Deduce that
h =

(
1 0
0 −1

)
, e = ( 0 1

0 0 ) , f = ( 0 0
1 0 )

is a basis of sl(2,R) and check that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Why is the Lie algebra sl(2,R) not isomorphic to so(3)?

Which connected Lie subgroup of SL(2,R) corresponds to the Lie subalgebra R · (f − e)?

Which connected Lie subgroup of SL(2,R) corresponds to the Lie subalgebra span(h, e)?

A Lie group is called simple if it is connected, non-abelian, and has no non-trivial connected normal
subgroups. A Lie algebra V is called simple if it is non-abelian, and its only ideals are 0 and V .
Prove in general the correspondence:

{ connected normal subgroups of G } 1:1←→ { ideals of g }
Deduce that a connected Lie group is simple if and only if its Lie algebra is simple.

By considering sl(2,R), show that SL(2,R) is a simple Lie group.

Question 5. Let Vn be the vector space of homogeneous3 polynomials of degree n in two variables z1, z2.
Show that SU(2) acts on Vn by

(A · p)(z) = p(zA),

where p ∈ Vn, A ∈ SU(2), and zA is matrix multiplication of the row-vector z = (z1, z2) with A. Deduce
that the Vn are representations4 of the Lie group SU(2) of dimension n + 1.

Cultural Remark. In fact, these are all the irreducible5 representations of SU(2). Here V0 is the trivial
representation, V1 is the standard representation, and Vn is called the n-th symmetric power of V1.

By considering the double cover SU(2)→ SO(3), and using the cultural remark, show that the
irreducible representations of SO(3) are precisely the spaces V2n of odd dimension 2n + 1.

3meaning: the total degree of each term is the same, for example 3z21 + 4z1z2 − 5z22 is homogeneous of degree 2.
4Recall a representation R of a group G is a vector space R together with a Lie group homomorphism ϕ : G→ Aut(R).
5Irreducible means that the only vector subspaces R′ ⊂ R satisfying g · R′ ⊂ R′, for all g ∈ G, are R′ = 0 and R′ = R

(recall we abbreviate g · r′ = ϕ(g)(r′)).
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Homework 5.

You are encouraged to collaborate on these exercises.

Question 1. Let H be a connected Lie group. Show that any discrete normal subgroup N ⊂ H satisfies
N ⊂ Centre(H). (Try it first, only then see the footnote for a hint.)1

Let π : H → G be a covering of Lie groups, with H,G connected. Show that Γ = kerπ is a discrete
normal subgroup of Centre(H).

Conversely, if Γ ⊂ Centre(H) discrete, show2 that H/Γ is a Lie group and that the quotient map
π : H → H/Γ is a covering map with fibre kerπ = Γ.

Deduce that any connected Lie group with Lie algebra g is isomorphic to G/Γ for some discrete subgroup
Γ ⊂ Centre(G), where G is a simply-connected Lie group.

Question 2. Let ρj : G→ GL(dj ,F) be representations, j = 1, 2. State in terms of matrices what the
following representations are: ρ1 ⊕ ρ2, ρ1 ⊗F ρ2, conjugate rep ρ1, dual rep ρ∗1, and HomF(ρ1, ρ2).

For compact G, show that V ∗ ∼= V . (Hint. inner product.)

Question 3. For V a representation (more precisely, ρ : G→ Aut(V )), define its character χV = χρ by

χV : G→ F, χV (g) = Trace(ρ(g)).

Check the following properties hold:

(1) χV is smooth
(2) χV (1) = dimF V
(3) χV is invariant under conjugation, χV (hgh−1) = χV (g)
(4) χV = χW for equivalent reps V 'W
(5) χV⊕W (g) = χV (g) + χW (g)
(6) χV⊗W (g) = χV (g) · χW (g)
(7) χV ∗(g) = χV (g−1)

(8) χV (g) = χV (g)

Question 4. For G compact, and F = C, check the 1 : 1 correspondence:

{1-dim reps}/equivalence
1:1↔ {Lie group homs G→ S1}, ρ 7→ χρ.

Classify all representations of S1 and of Tn for F = C.

Observe that real representations ρ : G→ Aut(Rn) are also complex representations ρ : G→ Aut(Cn)

satisfying ρ(g) = ρ(g) for all g. Suppose, in this situation, that Cv is a 1-dim complex G-submodule of
Cn. Check that x = Re(v) = 1

2(v + v) and y = Im(v) = 1
2i(v − v) span a 2-dim real G-submodule of Rn.

Then classify all representations of S1 and of Tn for F = R. (See the footnote for hints.)3

Question 5. Canonical decomposition. For compact G, and F = C, and Vi the (inequivalent)
irreducible reps of G, show that the following evaluation map is a G-isomorphism:

ev :
⊕
i

HomG(Vi, V )⊗F Vi → V,

where on a generator ϕ⊗ v we define ev(ϕ⊗ v) = ϕ(v), and then extend ev linearly.

1Hint. Recall the definition of Centre from Question sheet 4. The results from Q. sheet 4 don’t help here. Instead, let γt
be a path from 1 to h, then observe that for n ∈ N the continuous path γtnγ

−1
t lies in N . But N is discrete.

2Hint: easier than it looks, combine results from Lectures 8 and 10. Hint to prove that Γ is closed: suppose gm ∈ Γ are
distinct with gm → g ∈ H, then g−1

m gm+1 → 1 ∈ Γ using the continuous map H ×H → H, (h, g) 7→ h−1g.
3Hints: recall Q.2 on Question sheet 3 classifies Lie group homs Tn → S1. In R2, if s is a reflection in the x-axis and r is

a rotation by θ, check that s−1 ◦ r ◦ s is a rotation by −θ. Use Q.3.(4) of this sheet to distinguish some of the irreps.

1
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Homework 6. - Do collaborate. . .

All Lie groups are assumed compact, and we work over F = C.
We’ll prove some harder theorems on this sheet. Use the footnotes to guide you through the argument.

Question 1. Irreducibility criterion: prove that V is irreducible if and only if 〈χV , χV 〉 = 1.
If V1, V2 are irreps of G1, G2, show V1 ⊗ V2 is an irrep of G1 ×G2.
Claim:1 Conversely, all irreps of G1 ×G2 have the form V1 ⊗ V2, for irreps V1, V2 of G1, G2 respectively.

Question 2. Representation theory for SU(2) Recall (Q.5 Sheet 4) SU(2) acts by (A · p)(z) = p(zA)

on p ∈ Vn = {homogeneous degree n polys in z1, z2 over C}. We’ll use the basis Pj = zj1z
n−j
2 , 0 ≤ j ≤ n.

Claim 1.2 The Vn are irreducible.
Claim 2.3 The characters χn of the Vn are uniformly dense in Cl(SU(2)).
Claim 3.4 The Vn are the only irreps of SU(2) (up to equivalence).

Question 3. Claim.5 Every compact Lie group admits a faithful rep into some U(n).
Remark. U(n)→ SO(2n) embeds via A 7→

(
ReA −ImA
ImA ReA

)
, so we can replace U(n) by O(n) above.

Question 4. Claim 1.6 The span over C of the image of χ : R(G)→ Cl(G) is dense, that is: class
functions f can be uniformly approximated by

∑
ziχVi for zi ∈ C.

Claim 2.7 The matrix entries of a faithful representation ρ : G→ U(n), together with the conjugates of
the entries, and with 1, generate the C-algebra F(G) of all representative functions.

Claim 3.8 Every irrep of G is a subrep of V ⊗a ⊗ V ⊗b, some a, b ∈ N, where V = Cn is the faithful rep
ρ : G→ U(n). Remark. This implies that L2(G) has countable dimension (see Lecture 13).
Claim 4.9 For a closed (so compact Lie) subgp H ⊂ G, any irrep of H is contained inside an irrep of G.

1Let V be a rep of G1 ×G2. Then V is a rep of G2 = 1×G2 ⊂ G1 ×G2. Apply the canonical decomposition (Q.5 Sheet
5) to V,G2. Define a G1-action on HomG2(V2, V ) for an irrep V2 of G2 so that the decomposition becomes G1 × G2-linear.
Apply complete reducibility to the G1-mod HomG2(V2, V ).

2By the irreducibility criterion of Q.1, Vn is irrep iff HomSU(2)(Vn, Vn) = 1. So given ϕ : Vn → Vn SU(2)-linear map, need

show ϕ = c · Id. Consider the diagonal matrices Dλ ∈ SU(2) with entries λ, λ−1. Compute the action of Dλ on Pj . Deduce

that for λ = e2πi/4n the λ2j−n-eigenspace of Dλ is spanned by Pj . Deduce that ϕ(Pj) = cjPj , some cj ∈ C. Consider the
rotation Rθ ∈ SU(2) by θ. Expand ϕ(RθPn) = Rθϕ(Pn) to deduce that the cj are all equal.

3Recall unitary matrices are diagonalizable. Deduce that any element in SU(2) is conjugate to Dλ with λ = eiθ, uniquely
up to changing θ to −θ. Deduce that class functions f : SU(2) → C are in 1 : 1 correspondence with cts 2π-periodic even

functions R→ C via θ 7→ f ◦Deiθ . So can abbreviate χn(Deiθ ) = χn(θ). Check χn(θ) =
∑
ei(2j−n)θ. Compute that geometric

sum, you should get χn(θ) = sin((n+1)θ)
sin θ

, call this cn(θ). Using trig identities, deduce cn = cos(nθ) + cn−1(θ) cos θ. Deduce
that the χn(θ) generate (as an algebra) 1, cos(θ), cos(2θ), . . . , cos(nθ). By basic Fourier analysis, even 2π-periodic continuous
functions are uniformly approximated by cos(nθ), n ∈ N.

4Hint. Orthogonality relations and Claim 2.
5For a chain of strict inclusions K1 ⊃ K2 ⊃ K3 ⊃ · · · of closed sub-manifolds, check that dim drops or the # of connected

components drops each time. If Kj are closed subgps of G show the chain must stop. For a manifold M , and distinct points
p, q ∈ M , explain why there is a cts function f : M → C with f(p) 6= f(q). Repeatedly apply this idea to M = G, using the
Peter-Weyl theorem to approximate such f by representative functions L ◦ ρ. The first step is to take p = 1, q = g 6= 1, to get
ρ1 : G→ Aut(V1), with K1 = ker ρ1 ⊂ G a strict inclusion. You aim to end up with a faithful rep V1 ⊕ · · · ⊕ Vm.

6Use the canonical decomposition ev : ⊕Hi ⊗ Vi ' V, ev(ψi, vi) = ψi(vi) (Q.5 Sheet 5) where Hi = HomG(Vi, V ), Vi the
irreps. By Peter-Weyl f ≈ Tr(ϕ ◦ ρ), some ϕ ∈ HomG(V, V ), ρ : G → Aut(V ). Check that ϕ ◦ ρ on V corresponds via the
canonical decomposition to ⊕(ϕ⊗ρi) on ⊕Hi⊗Vi. So the traces of those two maps agree. Final hint: zi = Tr(ϕ◦ : Hi → Hi).

7LetM(G) be the algebra generated. By Stone-Weierstrass showM(G) ⊂ C(G) is dense. DeduceM(G) is dense in F(G).

Aim: M(G) ⊂ F(G) closed in sup-norm. Now ‖f‖2 = 〈f, f〉 =
∫
G
f(g)f(g) ≤ (supG|f |)2, so sup-closure(M(G)) is a subset of

‖ ·‖-closure(M(G)). Deduce: ifM(G) is ‖ ·‖-closed then both closures equalM(G). Recall F(G) = ⊕FVi(G) is an orthogonal
direct sum over irreps Vi of G. Orthogonal projection πi : F(G)→ FVi(G) satisfies ‖πi(f −m)‖ ≤ ‖f −m‖ for all m ∈M(G).

Deduce that for f ∈M(G) (the ‖ · ‖-closure), πi(f) ∈ πi(M(G) ⊂ FVi(G). Deduce, since dimFVi(G) <∞, that f ∈M(G).
8The matrix entries of V ⊗a ⊗ V ⊗b

are monomials of degree a in matrix entries of V and of degree b in matrix entries of V .
By Claim 2, they generate F(G), as a, b vary. If W were an irrep contradicting Claim 3, then by orthogonality

∫
G
fW fV = 0

for all fW ∈ FW (G), fV ∈ FV⊗a⊗V⊗b(G). By Peter-Weyl and Claim 2 this is impossible.
9Apply Claim 3 to the faithful rep H → G→ Aut(V ).
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OPTIONAL QUESTIONS (hand in if you like)

Optional Question 1. A Lie group that is not a matrix group. Consider

H = {
(

1 a b
0 1 c
0 0 1

)
: a, b, c ∈ R} N = {

(
1 0 n
0 1 0
0 0 1

)
: n ∈ Z}.

Check that N ⊂ H is a closed normal subgroup, so H/N is a Lie group.

This is of interest in quantum mechanics, because H/N is faithfully represented by the group of operators
McSbTa (in that order!) acting on the Hilbert space L2(R), generated by translation Taf(x) = f(x+ a),
rescaling Sbf(x) = e2πibf(x), and multiplication Mcf(x) = e2πicxf(x). Check H/N is iso to this group.

Check that if you replace n ∈ Z by n ∈ R you obtain a circle T ⊂ Centre(H/N), and check10 that each
element in T is a commutator ghg−1h−1.

Prove in general that given a circle T ⊂ Centre(G), any rep of G is a sum V = ⊕Va, such that T acts on
V by e2πiax where a ∈ Z.

Prove in general that if elements of T can be written as commutators, then11 in fact only V0 is non-zero
and therefore T is in the kernel of the representation.

Deduce that the Heisenberg group H/N is not a matrix group.

Optional Question 2. Real representations vs complex representations.

We saw in Q.4 sheet 5 that a real rep is also a complex rep via G→ GL(n,R) ⊂ GL(n,C) so ρ(g) = ρ(g).
More abstractly, this is the process of complexifying a real rep W : we get WC = C⊗RW with C-action
λ(z ⊗ w) = (λz)⊗ w and G-action g(z ⊗ w) = z ⊗ gw.

Deduce that real reps arise as complex reps which are self-conjugate:12 V ' V .

Check that V is self-conjugate iff χV is real-valued.

In the reverse direction, a complex rep V gives a real rep VR: just consider V as a vector space over R.
Less abstractly: ρ : G→ GL(n,C) ⊂ GL(2n,R) where13 GL(n,C) ⊂ GL(2n,R), A 7→

(
ReA −ImA
ImA ReA

)
.

Prove that
(WC)R 'W ⊕W (VR)C ' V ⊕ V .

Let RR(G) = {
∑
niWi : ni ∈ Z,Wi real irreps of G} denote the real representation ring. Deduce that

RR(G)→ R(G), W 7→ C⊗R W

is an injective homomorphism. Hence, if W,W ′ are real reps with C⊗R W ' C⊗R W
′ as cx reps, then

W 'W ′ as real reps. Therefore, once you’ve found out which self-conjugate cx reps are real reps, you
just need to use this criterion to determine which are equivalent.

A good example to play with, which is an alternative approach to Q.4 Sheet 5, is to find the real irreps of
S1 given that we easily know the complex irreps (and similarly for real irreps of Tn).

10Hint. TnM1T
−1
n M−1

1 .
11Hint. consider determinants.
12Self-conjugate reps may fail to be real – they may be quaternionic, or a tensor of a real and a quaternionic rep.
13Even more explicitly, a complex basis eCj gives a real basis eC1 , . . . , e

C
n, ie

C
1 , . . . , ie

C
n. The first column of the inclusion is

because AeCj = (ReA+ iImA)eCj = Re (A) eCj + Im (A) ieCj . A simple example is:

eiθ ∈ GL(1,C) 7→
(
cos θ − sin θ
sin θ cos θ

)
∈ GL(2,R).


