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What are nice functions?

We will consider the following setup:

M = closed1 (smooth) m-dimensional manifold,
f : M → R a smooth function.

Locally, f : Rm → R near p = 0:

f(x) = f(0) +
∑

i

∂f

∂xi

(0) · xi +
1

2!

∑

i,j

∂2f

∂xi∂xj

+ · · ·

= f(0) + df0 · x+
1

2
xT · Hess0(f) · x+ · · · (matrix notation)

Hope:

• Want few p ∈M with

dfp = 0 ←− p critical point (e.g. max,min)

Note: these are m conditions, so we hope

(i) finite Crit(f) = {critical points of f}

• At critical p, we want a good next order term:

(ii) detHessp(f) 6= 0 ←− p nondegenerate

Fact. (ii) ⇒ (i)

Def. f : M → R is Morse if all critical points are nondegenerate

Example. M = torus:

f = height

R

f = height

R

circle of maxima
hence not MorseMorse X

standing vertically lying flat

Modern perspective

T ∗M

M = zero section

dfp

graph of df
(section of T ∗M)

p

f is Morse ⇔
the section df is transverse
to the zero section of T ∗M

Date: May 1, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1closed = compact and no boundary.
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2 PART III, MORSE HOMOLOGY, L1

Idea of what “transverse” means:

transverse non-transverse

Transverse objects are the “generic” ones in geometry:

perturbation
small

transversenon-transverse

⇒ almost all functions are Morse

Fact. All manifolds arise as submanifolds of some R
k. We’ll prove that: almost

any “height function”2 is Morse on M ⊂ R
k.

⇒ it is easy to find Morse functions

How do you relate Morse f to the topology?

Two natural geometrical objects to look at, given a function f :

level sets f = r
sublevel sets f ≤ r

Consider the torus standing vertically:

Sublevel setLevel set

∅∅

∅r ∈ R

f = height

Observe that the topology changes when you cross the critical values f(p),
where dfp = 0. Otherwise the topology does not change:

2height function = linear functional Rk → R.
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f−1(r + ε)
f−1(r)

flow in the direction of −∇f
to homeomorph f ≤ r + ε onto f ≤ r

We will prove: passing through a critical point changes the topology by attaching
a k-cell, where

k = #negative eigenvalues of Hesspf ←− index |p|

Example: M = torus, f = height

p

saddle −∇f locally f(x, y) = −x2 + y2

Hess0f =

(

−2 0
0 2

)

so |p| = 1

pass
through

critical
value f(p)

New sublevel set

≃

∼=

Sublevel set

1-handle

1-cell

homeo

hpy equiv

diffeo

⇒ Can reconstruct the mfd up to hpy equivalence

Hwk 8: f Morse with 2 critical points ⇒ M ∼= Sm homeomorphic.
Warning. Not diffeomorphic, ∃ “exotic” S7 homeo but not diffeo to the usual
S7 ⊂ R

8 (proved by Milnor, using the result of Hwk 8).

Is it easy to recover the homology from f?

Classical approach (Morse ∼ 1930, Thom, Smale, Milnor ∼ 1960, . . . )
Pick a self-indexing Morse function (meaning index(p) = f(p)).

⇒ the above cell-attachments define a CW structure on M .
⇒ recover cellular homology of M

Example: M = S1
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q

p
R

f = height
−∇f

Consider the unstable cells

x 7→ U(x) = {points flowing down from the critical point x}

p

q

U(p) =

U(q) =

1-cell

0-cell

The cellualar boundary is:3

∂U(p) = U(q) − U(q) = 0

so Hcell
∗

(S1) is generated by cells U(q),U(p) in degrees ∗ =0,1, as expected.

Why is the classical approach bad?
If M is ∞-dimensional, then U(p) is usually ∞-dimensional, hence not a cell.

Also, the “flow” is often not defined, so U(p) is not even well-defined.
You may ask: who cares about∞-dimensional manifolds? Actually, these nowa-

days arise quite naturally in geometry. For example:

“particle theory”

q

Morse theory

p

Floer theory
“string theory”

p
q

M = space of all loops
modern

research

is an ∞ dimensional mfd

Modern approach (Witten, Floer, . . . ∼ 1980)
Consider the moduli space4

M(p, q) = {−∇f flowlines from p to q}/reparametrization

Example: M = S1

q

p

γ2

M(p, q) = {γ1, γ2}

γ1

3Note that orientation signs are a subtle issue: if we got the sign wrong, then suddenly ∂U(p)
would no longer be zero. To avoid such technical subtleties, we will work over Z/2 in this course.

4these flowlines are called instantons or tunneling paths in physics.
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Define a chain complex, called Morse complex,

MC∗(f) = Z2 · p⊕ Z2 · q ⊕ · · ·

where p, q, . . . are the critical points, and we work over Z2 = Z/2 to avoid signs.

d : MCk →MCk−1

dp =
∑

q(#elements inM(p, q)) · q

Example: M = hot-dog (∼= S2)

R

f = height

ε

α

a
2

b
2

c
1

β

γ

0
e

Then:

MC2 = Z2 · a⊕ Z2 · b da = #{α} · c = c, db = #{β} · c = c
MC1 = Z2 · c dc = #{γ, ε} = 0 (mod 2)
MC0 = Z2 · e de = 0

Morse homology =
ker ∂

im ∂
= MH∗(f) = Z2 · e ⊕ Z2(a− b)

∗ = 0 1

Observe this is the same as H∗(S
2) (over Z/2).

Theorem. MH∗(f) ∼= H∗(M)

Cor.

#(critical points of a Morse function) = #(generators of MC∗(f))
≥ #(generators of MH∗(f))
=

∑

dimHi(M) (Betti numbers)

Example. A generic f : → R has ≥ 2 + 2 · genus = 6 critical points.5

Geometry is functional analysis

We made two tacit assumptions when defining MC∗,MH∗:

(1) need #M(p, q) finite for |q| = |p| − 1. Rephrasing:

M(p, q) is a compact 0-dimensional manifold

(2) need d2 = d ◦ d = 0 to define homology.

5Non-examinable: Algebraic topology tells you ≥ |χ(M)| = |
∑

(−1)i dimMCi(f)|, via the
intersection number: graph(df) · 0T∗M = −χ(M). So for a torus it just predicts ≥ 0.
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Idea of proof of (2):

d2p = d(
∑

q #M(p, q) · q)
=

∑

q,r #M(p, q) ·#M(q, r) · r

Now #M(p, q) ·#M(q, r) counts “broken” flowlines from p to q to r. Hence:

d2 = 0⇔ once-broken flowlines arise in pairs

Hope: ∃ a 1-family of flowlines joining two broken flowlines:

q2

r

p

q1

View the flowlines as points in the moduli space, then:

1-family

⊂M(p, r)

broken flowlinebroken flowline

Hope:

• M(p, r) is a non-compact 1-mfd
• ∃ natural way of making it compact:

M(p, r) =M(p, r) ∪ “∂M(p, r)” (∂M(p, r) = {broken flowlines})

⇒M(p, r) compact 1-mfd
⇒M(p, r) = disjoint union of circles and compact intervals

⇒ ∂M(p, r) = even number of points, so = 0 mod 2

⇒ d2p = 0

⇒ d2 = 0 �

Idea of proof of (1): Functional Analysis

(3) transversality problem: M(p, q) are smooth manifolds for a “generic”
metric g (which defines ∇f by g(∇f, ·) = df), and

dimM(p, q) = |p| − |q| − 1.

(4) compactness problem: M(p, q) can be compactified by broken flowlines.

Most modern homology theories involve these two problems

⇒ Morse homology is a perfect playground!
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Idea to solve (3): consider the “Banach” vector bundle

{smooth vector fields along u}

��

gg

section F = ∂su−∇f(u)

{smooth paths u : R→M,u(s)→ p, q as s→ −∞,+∞}

Observe:
F = 0⇔ ∂su = −∇f ⇔ u ∈M(p, q)

⇒ M(p, q) = intersection of a section of a Banach vector bundle with 0 section

transversenon-transverse

perturb
the metric g

⇒M(p, q) mfd!

F

Geometry is algebra

Define the Morse cohomology MH∗(f) ∼= H∗(M) using

MC∗ = Z2 · p⊕ Z2 · q ⊕ · · ·
δ : MCk →MCk+1

δp =
∑

q #M(q, p) · q (where |q| = |p|+ 1)

Then Poincaré duality H∗(M) ∼= Hm−∗(M) (over Z2)
6 is just the symmetry:

MH∗(f) ∼= MHm−∗(−f)
p 7→ p

M(p, q; f) ∼= M(q, p;−f)
−∇f flowline u(s) 7→ ∇f flowline u(−s)

The switch in grading is because flipping the sign of f flips the sign of the Hessian.
Poincaré duality is just reversal of flowlines in Morse theory! If you use a height

function, Poincaré duality is the intuitive idea “look at the manifold upside down!”.
The Künneth isomorphism H∗(M1 ×M2) ∼= H∗(M1) ⊗ H∗(M2) can be proved

quite simply now by the observation: Morse functions f1 : M1 → R, f2 : M2 → R

give naturally rise to the Morse function f1 + f2 : M1 ×M2 → R, and the flowlines
are just the combined flowline for f1, f2 on the respective factors of M1 ×M2.

The cup product Ha(M) ⊗ Hb(M) → Ha+b(M) can also be described Morse
theoretically: you count flows along a Y-shaped Feynman graph, flowing by a Morse
function along each of the three edges of the graph and you require that the flow
converges to the inputs p, q at the top, and to r at the bottom. This solution then
contributes p · q = r + · · · to the product.

6this also works over Z, but then one needs to assume M is orientable, which is secretly hidden
in the orientation signs that define MC∗, MC∗.
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0. REVIEW OF DIFFERENTIAL GEOMETRY

0.1. Connections: motivation. How do you differentiate on vector bundles?

x+ t∂i

Ex+t∂i E = vector bundle (family of vector spaces)

x

v

Ex
v = section

(picks a vector over each point)

L

M = manifold

∂i =
∂

∂xi

In very loose notation, we want

∇∂i
v =

“

lim
t→0

[L · v(x + t∂i)]− v(x)

t

”

where we need a linear identification L : Ex+t∂i
→ Ex. Expanding

L = I + tA+ order t2,

since at t = 0 we definitely want L = identity. Expanding v:

v(x + t∂i) = v(x) + t∂iv + order t2.

So we want ∇∂i
v = lim

t→0

v(x)/ + t∂iv + tAv(x) − v(x)/ + order t2

t

= ∂iv +Av

0.2. Connections.

Notation.1 C∞(M) = smooth functions M → R

C∞(E) = smooth sections M → E of the vector bundle E → M .

Def. A connection ∇ is a bilinear map

∇ : C∞(TM)⊗ C∞(E) → C∞(E)
(X, v) 7→ ∇Xv

(1) C∞(M)-linear in X: ∇fXv = f∇Xv
(2) C∞(M)-Leibniz in v: ∇Xfv = (X · f)v + f∇Xv

Date: May 1, 2011, c© Alexander F. Ritter, Trinity College, Cambridge University.
1The space of sections is also written Γ(E), but we will need to keep track of the topology.
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Rmk. X plays the same role as ∂i, and X · f is differentiation of f just like ∂if
would be. Check that X · f = df(X), where the 1-form df “eats” the vector X.

Equivalent Definition2 (by defining ∇v ·X = ∇Xv),

∇ : C∞(E) → C∞(T ∗M)⊗ C∞(E)

such that it is C∞(M)-Leibniz: ∇(fv) = df ⊗ v + f∇v.

Locally

C∞(E) has basis s1, . . . , sr (E|U ∼= U × Rr)

v =
∑

vjsj (vj ∈ C∞(M))

∇v =
∑

dvj ⊗ sj + vj∇sj

∇

(
v1

...
vr

)
= d

(
v1

...
vr

)
+A

(
v1

...
vr

)
(A = “matrix of 1-forms” with∇sj =

∑
k Ak

j sk)

∇ = d+A locally, as expected!

0.3. Pull-back bundle.

u∗E

��

// E

��

[0, 1]
u

// M

For u : [0, 1] → M smooth, define (u∗E)s = Eu(s). We will
define u∗∇ : C∞(T [0, 1])⊗ C∞(u∗E) → C∞(u∗E).
Let s be the coordinate on [0, 1], v an E-field along u. We
abbreviate (u∗∇)(∂s ⊗ v) by ∇sv = ∇

∂s
v

Locally ∇sv = ∂v
∂s

+A(∂su) · v (1-forms in A eat ∂su, · is matrix multiplication)

Rmk. Some abusively write ∇∂suv because if u is an embedding,3 then any ṽ ∈
C∞(E) with ṽ(u(s)) = v(s) satisfies4

(∇sv)s = (∇∂suṽ)u(s) = dṽ(∂su) +A(∂su) · ṽ

0.4. Parallel transport along a path. For smooth u : [0, 1] → M define

Pu : Eu(0) → Eu(1)

For v0 ∈ Eu(0) solve the linear ODE

{
∇sv = 0
v(0) = v0

in the unknown v ∈ C∞(u∗E). Then Pu(v0) = v(1).
u

v1
vs

E1E0

v0

• ODE theory ⇒ ∃ unique solution, depending smoothly on u ⇒ Pu smooth.
• Linear ODE ⇒ Pu linear.

⇒Hwk 2. can make Motivation 0.1 rigorous: for a path u with u(0) = x, u′(0) = X ,

2
C∞(T∗M)=Ω1(M)= 1-forms on M , and C∞(T∗M)⊗C∞(E)=Ω1(M,E)=E-valued 1-forms on M .

3f : M → N is an embedding if f is an immersion with f : M → f(M) a homeomorphism.
Immersion = the differential df is injective at each point. Homeomorphism = continuous bijection
having a continuous inverse. Often require proper = preimages of compact sets are compact (if
M,N are compact manifolds this is superfluous, and in this case embedding = injective immersion).

4dṽ(∂su) =
∂
∂s

ṽ(u(s)) = ∂
∂s

v(s): so you only need to know how ṽ varies along u(s).



PART III, MORSE HOMOLOGY, L2 3

(∇Xv)x = lim
t→0

P−1
u,t · v(u(t))− v(x)

t

= ∂
∂t

∣∣
t=0

P−1
u,t · v ∈ Ex

u′(t) = Xu(t)

u(t)
x = u(0)

P−1
u,t

0.5. Levi-Civita connection.

E = TM , g Riemannian metric5 ⇒ ∃ unique ∇ such that ∇ is

(1) symmetric:6 ∇XY −∇Y X = [X,Y ]
(2) g-compatible: X · g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

Remarks.

Locally: sj = ∂j = ∂
∂xj

, ∇∂j =
∑

Ak
j ⊗ ∂k, ∇∂i

∂j =
∑

Γk
ij∂k

(Γk
ij = Christoffel symbols, locally C∞(M) : Ak

j =
∑

Γk
ijdx

i)

(1) ⇔ locally ∇∂i
∂j = ∇∂j

∂i ⇔ Γk
ij = Γk

ji.

(1) + (2) ⇔ an equation7 for Γk
ij in terms of g−1, ∂g holds.

Lemma. Pu is an isometry for Levi-Civita ∇

Proof. ∂s|v|
2 = ∂sg(v, v) = g(∇sv, v) + g(v,∇sv) = 0 (since ∇sv = 0). �

0.6. Geodesics.

Consider E = TM , ∇ = Levi-Civita.

Def. u : [0, 1] → M is a geodesic ⇔ ∂su is parallel along u
⇔ ∇∂su∂su = 0
⇔ (nonlinear) 2nd order ODE8 in u.

Cor. Geodesics have constant speed |∂su|. Length(u) =
∫ 1

0
|∂su| ds = |∂su|.

Proof. Pu is an isometry. �

The space of sections is also written Γ(E), but we will need to keep track of
the topology. Fact. Geodesics minimize length locally.9 So they can be used to
measure distances between closeby points.

0.7. Exponential map.

ODE theory ⇒ geodesics exist for small time
ODE theory ⇒ geodesic is uniquely determined by initial conditions

⇒ call expp(s, v) = u(s) geod with u(0) = p ∈ M , u′(0) = v ∈ TpM
Easy exercise. expp(st, v) = expp(s, tv)

⇒ can write expp(s · v).

Denote DεTM = {v ∈ TM : |v| ≤ ε}, called a disc bundle.

Cor. For a closed manifold M ,

exp : DεTM
smooth
−→ M, (p, v) 7→ expp v

5g ∈ C∞(Sym2(T∗M)) fibrewise positive definite (= g is an inner product in each fibre, varying

smoothly over M). Sym2(T ∗M) = bundle of bilinear forms on TM . The norm is |v| =
√

g(v, v).
6locally X=

∑
Xi∂i, Y =

∑
Y i∂i (Xi, Y i functions in x), [X, Y ]=

∑
(Xi∂iY

j − Y i∂iX
j) ∂j .

7Non-examinable: Γℓ
ij = 1

2

∑
gℓk(∂igjk + ∂jgki − ∂kgij), where gℓk = matrix entries of g−1.

8Non-examinable: ∂2
su

k +
∑

Γk
ij · ∂sui · ∂suj = 0.

9great circles are geodesics on the sphere, but they don’t minimize length after half a circle.
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is defined10 and distance preserving11 for small ε>0.

Proof. Take ε = smallest t such that expp(t, v) is defined for all |v| = 1. Smoothness
follows from ODE theory: smooth dependence of solutions on initial conditions. �

Cor. For M compact, ∃ε > 0 such that any two points in M at distance < ε are
connected by a unique12 geodesic. So any two sufficiently close continuous paths
are homotopic by following geodesic arcs.

0.8. Differential. For a (smooth) map of mfds f : Mm → Nn, the derivative map

df(p) = dpf : TpM → Tf(p)N

is the best linear approximation of f . Locally f : Rm → Rn, df =
(

∂fi
∂xj

)
(matrix).

Trick. Any vector v at p gives rise to a smooth curve c defined near c(0) = p,
with c′(0) = v (and vice-versa any c defines a vector c′(0) = v at p). Then

dpf · v =
∂

∂s

∣∣∣∣
s=0

f(c(s))

0.9. Vertical differential.

p

v(p)

E

0E = zero section ∼= M

E

M

π(πv = id)

section v

Ep

A section v : M → E has derivative dv : TM → TE. This is ugly because TE
has double the dimension of E!

Key Idea:
T vertical
e E = ker dπe

∼= E

since it is a vector space (analogue of TxR
m ∼= Rm).

Def. For ∇ on E, there exists13 a vertical differential (or linearization),

Dp : TpM → Ep

Dpv ·X = (∇Xv)p

Lemma. Dpv is independent of ∇ if v(p) = 0, indeed it is the vertical projection
composed with dpv:

Ep

X

Dpv ·X
dpv ·X

v

Dpv ·X = dpv
loc ·X

= dpv ·X −X
= (projection to Ep) ◦ dpv ·X

10exp : TM → M is defined on all of TM (for closed M): patch local solutions of the ODE.
But not necessarily on non-closed M : consider C\point and any straight line intersecting 0.

11meaning dist(p, expp v) = |v|, using the above Fact.
12uniqueness will be explained in Example 1.1.
13One could write Dp = ∇. The emphasis is that the definition depends on the vector X at

p, rather than a vector field X defined near p. Also, Dp reminds you about the Lemma.
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Proof/Explanation.
Locally: E|U ∼= U × Ep, T(p,v)E ∼= TpU × TvEp ≡ TpU × Ep, write

v(x) = (x, vloc(x)) ∈ U × Ep

⇒ dpv ·X = (X, dpv
loc ·X)

⇒ (∇Xv)p = dpv
loc ·X +A(X) · vloc(p)

= dpv
loc ·X (since vloc(p) = 0)

In particular,

TpM ≡ Tp0E ⊂ TE,

so dpv ·X −X makes sense and ≡ dpv
loc ·X.

Also

T(p,0)E ≡ TpM ⊕ T vertical
(p,0) E ≡ TpM ⊕ Ep

independently of coordinates, so vertical projection is defined.14 �

1. DIFFERENTIAL TOPOLOGY

1.0. Motivation. The aim is to relate the infinitesimal, the local and the global:

charts
tubular neighbourhoods
transition rules

.......
partitions of unity

linear algebra
inverse function thm
implicit function thm
......

dpf : TpM → TpM

linear isomorphism

Manifold M

if f also bijective,
then f diffeo

Example:

TpM Chart

f local diffeo

Local GlobalInfinitesimal

1.1. Diffeomorphisms.

Def. A smooth map f : Mm → Nn is a diffeo if
{

f is bijective
f−1 is smooth

f is a local diffeo if ∃ open p ∈ U ⊂ M such that
{

f(U) is open
f |U : U → f(U) is a diffeo

Rmk. This forces m = n since

f local diffeo at p ⇒ dpf isomorphism with inverse df(p)f
−1

Thm (Inverse Function Theorem).

dpf isomorphism ⇒ f local diffeo at p

14at (p, v) 6= (p, 0) the iso T(p,v)E
∼= TpM ⊕ Ep depends on ∇: ∇ decides which vectors are

horizontal. Non-examinable: Thoriz
(p,v)

E=dsp(TpM) for local sections s with (∇Xs)p=0, ∀X∈TpM .
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Ideas in the proof. 15

“x = f−1(y)” ⇔ y = f(x) ⇔ fixed point gy(x) = x

where we define

gy(x) = x+A−1(y − f(x))

where A = dpf in local coords on a closed ball around p (which is a complete
metric space). By the contraction mapping theorem16 there exists f−1, and one
easily checks that f−1 is continuous. Now observe the following equation holds:

(df−1)(y) = [df(f−1(y))]−1

so by bootstrapping,17

smoothness of f−1 = smoothness of f. �

Rmk. The proof only used completeness and linear algebra, we never used com-
pactness or finite dimensionality.

Example.18

TpM

v
0

M
p

expp

d0(expp) · ~v = ∂t|t=0 expp(t~v) = ~v, so d0 expp = I,

⇒ expp is a local diffeo near 0,

⇒ ∃ε > 0 so that expp : DεTpM → M is a chart!

⇒ This proves the uniqueness of geodesics joining two
close enough points.

1.2. Regular maps.19

Def.
dpf surjective ⇒ f is regular at p (submersion), so m ≥ n.
dpf not surjective ⇒ p is a critical point, f(p) is a critical value.

Def. {regular values} = N \{critical values}. Note f may not attain these values!20

Example. f : M → R regular at p ⇔ dpf 6= 0, so Crit(f) = {p ∈ M : dpf = 0}.

Thm (Implicit Function Theorem).
f regular at p ⇒ ∃ local coords near p, f(p) in which f is a projection:

f(x1, . . . , xn, . . . , xm) = (x1, . . . , xn)

Pf. Locally f : Rm → Rn defined near p = 0, f(p) = 0.
By linear algebra (row/col operations):

B ◦ dpf ◦A = (I 0) ,

15For a detailed proof, see for example Lang, Undergraduate analysis.
16Contraction Mapping Theorem: a contraction mapping on a complete metric space has a

unique fixed point. Contraction mapping f : M → M means there is a constant 0 < k < 1 for
which dist(fx, fy) ≤ k · dist(x, y), for all x, y ∈ M . Fixed point means a point x with f(x) = x.

17f−1 is cts ⇒ df−1 cts (because of the equation) ⇒ f−1 is once ctsly diffble⇒ can differentiate
equation ⇒ repeat. Note that we used that inversion is C∞ on invertible matrices.

18by definition u(t) = expp(t~v) satisfies u′(t) = ~v.
19Motivation: what if m 6= n? Hwk 3 is about m ≤ n, immersive maps. Here we do m ≥ n.
20r ∈ N is a regular value iff dpf is surjective for all p ∈ f−1(r). So this holds if f−1(r) = ∅!
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some A ∈ GL(m), B ∈ GL(n). Replace f by B ◦ f ◦A (a linear change of coords),
so dpf = (I 0) . Define

F : Rm → Rn+(m−n) = Rm defined near p by
F (x) = (f(x), xn+1, . . . , xm)

So dpF =

(
I 0
0 I

)
. So F local diffeo near p. The claim follows by the diagram:

M

old chart
��

new chart

""

f
// N

old chart

��

Rm

F
��

Rm
projection

// Rn

�

Rmk. diffeo/regularity are open conditions: if true at p then true near p.

Rmk. classically (algebraic geometry) you apply the theorem to

F : Rn × R
m−n → R

n × R
m−n, F (X,Y ) = (f(X,Y ), Y ).

If X 7→ f(X, b) has non-singular derivative at X = a, and f(a, b) = 0, then near
(a, b) the vanishing set

V (f) = f−1(0) is parametrized by Y 7→ (0, Y )
F−1

7→ (g(Y ), Y )

so f(g(Y ), Y ) = 0, and g is called implicit function.

Cor (Implicit Function Theorem).21

q ∈ N regular value of f ⇒

{
f−1(q) ⊂ M submfd of codim = n
Tpf

−1(q) = ker dpf ∀p ∈ f−1(q)

Pf. Locally
f(x1, . . . , xn, . . . , xm) = (x1, . . . , xn)

dxf · (~x1, . . . , ~xn, . . . , ~xm) = (~x1, . . . , ~xn).

⇒ f−1(0) = {(0, . . . , 0, xn+1, . . . , xm)}, so those x’s form local coords for chart.
⇒ Tf−1(0) = ker df . �

21Codimension f−1(q) = n means dim f−1(q) = m − n. You lose n dimensions because you
impose n conditions by asking f = q. The tangent space is also intuitive: if a curve moves along
f = q, then f does not change, so dpf = 0, and now recall that we related curves and vectors.
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1.3. Sard’s theorem.

Fact.1 For smooth f : M → N ,

Almost every point of N is a regular value of f

This means: {critical values} = f({critical points}) is a set of measure zero2 in N .
Equivalently: {regular values} ⊂ N has full measure, so these points are “generic”.

Cor. {regular values} ⊂ N is dense.

Pf. Non-empty open sets in Rn have measure > 0. �

Rmk. M,N need not be compact. The result only uses that M is second countable.3

Fact. For Ck-maps4 f : Mm → Nn, the above fact holds provided k > m − n.
(Here M,N need not be smooth, just need Ck-mfds: the transition maps are Ck.)

Examples.

(1) f : Rm → R, x 7→
∑

x2
i − 1

0 regular value, so f−1(0) = Sm−1 mfd of dim = m− 1.
(2) f : Matricesn×n → Symmetric Matricesn×n, A 7→ ATA

I regular value, so f−1(0) = O(n) mfd of dim = n2 − n(n+1)
2 .

(3) Hwk.5 Sard ⇒ homotopy groups πi(S
n) = 0 for i < n.

1.4. Transversality.

Motivation:

q ∈ N regular value ⇒ f−1(q) ⊂ M submfd
➀ submfd Q ⊂ N satisfying . . . ? ⇒ f−1(Q) ⊂ M submfd

➁ submfds Q1, Q2 ⊂ N satisfying . . . ? ⇒ Q1 ∩Q2 ⊂ N submfd

➀ Pretend N/Q made sense ,

⇒ F : M
f
→ N → N/Q ∋ q = Q/Q

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1If you are curious about its non-examinable proof, see Milnor’s Topology from the Differen-

tiable Viewpoint, or Guillemin & Pollack, Differential Topology.
2A subset S of Rn has measure zero if ∀ε > 0, ∃countable covering of S by cubes Ci, with∑
vol(Ci)<ε. A subset S of a mfd N has measure zero if for any chart ϕ : U → Rn, ϕ(S ∩ U)

has measure 0 (it’s enough to require this for a covering ϕi : Ui → Rn). Example: Q ⊂ R. Useful
facts: countable unions of measure 0 sets have measure 0; C1-maps between subsets of Rn always
map measure 0 sets to measure 0 sets.

3Second countable= there is a countable covering by charts. This is always part of the definition
of manifold. Consequence: any covering has a countable subcover.

4k-times continuously differentiable maps, with k ≥ 1 so “regular/critical points” are defined.
5Non-examinable: the proof essentially shows Sard implies the cellular approximation theorem.

1
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⇒ f−1(Q) = F−1(q)

⇒ f−1(Q) is mfd if q regular value of F

if dpF surjective ∀p ∈ F−1(q)

if dpF (TpM) = Tq(N/Q)

if dpf(TpM) + TqQ = TqN ∀p ∈ f−1(q), ∀q ∈ Q

Def. f : M → N is transverse to Q if the above box holds. Write f ⋔ Q.

Thm.

f ⋔ Q ⇒

{

f−1(Q) ⊂ M submfd of codim = codimQ

Tpf
−1(Q) = ker( TpM

dpf
// TN // TN/TQ) = ker(Dpf : TpM → νQ,q)

Pf. Locally Q ⊂ N is6 Ra ⊂ Rn, so “N/Q” is well-defined locally: Rn/Ra. �

Explanation: νQ = TN/TQ =normal bundle to Q ⊂ N , fibre νQ,q = TqN/TqQ.

Dpf is abuse of notation:7 Dfp ·X = vertical projection of dpf ·X at q = f(p) ∈ Q

➁ For f : Q1 N//
inclusion

�

�

and Q = Q2 ⊂ N ,

f−1(Q) = Q1 ∩Q2 ⊂ N.

Def. Q1, Q2 are transverse submfds of N ,

written Q1 ⋔ Q2, if

TqQ1 + TqQ2 = TqN ∀q ∈ Q1 ∩Q2
Q1

Q2

q

TqQ2

TqQ1

Examples. N ⋔ any submfd! Two vector subspaces ⊂ Rn are ⋔ if they span Rn.

Q1

Q2

Q1 ∩Q2

Cor.

Q1 ⋔ Q2 ⇒







Q1 ∩Q2 ⊂ N submfd

of codim = codimQ1 + codimQ2

Tq(Q1 ∩Q2) = TqQ1 ∩ TqQ2

Rmk.

1. dimQ1+dimQ2 < dimN then Q1 ⋔ Q2 ⇔ Q1 ∩Q2 = ∅

2. dimQ1+dimQ2 = dimN then Q1 ⋔ Q2 ⇔

{

Q1 ∩Q2 finite set8

TQ1 ⊕ TQ2
∼= TN at q ∈ Q1 ∩Q2 (∗)

In case 2. you can define an intersection number

Q1 ·Q2 = #(Q1 ∩Q2) mod 2 ∈ Z/2Z

If Q1, Q2, N oriented:9

Q1 ·Q2 = #(Q1 ∩Q2) ∈ Z,

6Hwk 3: Q → N immersion ⇒ locally has form (x1, . . . , xa) 7→ (x1, . . . , xa, 0, . . . , 0) ∈ Rn.
7f is not a section of νQ, but the construction of that vertical projection is analogous.
8assuming Q1, Q2 are compact submanifolds. Otherwise, replace with “discrete set”.
9Non-examinable: it suffices that Q1 is oriented, and Q2 is co-oriented (= normal bundle

νQ2
= TN/TQ2 is oriented). Assign +1 to p ∈ Q1 ∩ Q2 if an oriented basis of TpQ1 gives rise

to an oriented basis of νQ2
, and −1 else. When Q1, Q2, N are oriented, this sign agrees with the

one above, if we orient so that TN |Q2

∼= νQ2
⊕ TQ2 preserves orientation (“normals first”).
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where # counts with sign +1 if the iso (∗) is orientation-preserving, −1 otherwise.

Next time, we will deduce that one can always achieve Q1 ⋔ Q2 after perturbing

Q1 (or Q2), and in case 2. the value Q1 ·Q2 is independent of the perturbation.

Motivation for stability and genericity. Transversality is stable and generic:
Stable: perturbing preserves the property, generic: it can be achieved by perturbing.

perturb
perturb

nontransverse transversetransverse still transverse

1.5. Stability.

Recall a (smooth) homotopy ft of f : M → N means a smooth map

H : M × [0, 1] → N with

{

ft(x) = H(x, t)
f0 = f

Call f0, f1 (smoothly) homotopic.

Def. A “property” P is stable for a class C of maps f : M → N , if

f ∈ C satisfies P
ft homotopy

}

⇒ ft satisfies P for each t < ε (ε > 0 depending on f, ft)

Rmk.

(1) Locally stable means ∀p ∈ M , ∃ nbhd U ∋ p such that P is stable for the

restrictions {f |U : f ∈ C}
(2) For compact M , one can often deduce stability from local stability, by cov-

ering M by such U , taking a finite subcover, taking min of ε’s.
(3) Can use more general parameters t ∈ S = metric space.

Stability Theorem. M compact ⇒ the following classes are stable:

{local diffeos}
{regular maps}
{maps ⋔ to a given topologically-closed submfd Q ⊂ N}

Pf. The definition of these classes locally involve the non-vanishing of some (sub)
determinant of some differential. Use Rmk (2) to globalize. �

Cor. Transversality is stable and it is an open condition.

Pf. Stability by Thm. Open: if not, find non-transverse fn → f as10 n → ∞.
Produce a homotopy H of f with H(1/n, t) = fn(t). H contradicts stability. �

Rmk. Here is a more direct proof that transversality is an open condition:

Claim 1. regular points of any smooth map f of mfds forms an open set.

Pf. Locally at regular p, dpf = (I 0). So for q close to p, dqf = (T ∗) for

some invertible T since invertibility is an open condition.11 So q is regular. �

Transversality can be expressed as a regularity condition, so it is also open.

10the convergence is in C∞. Also C1 is enough: we just need the derivatives to converge.
11If s is an operator with small norm (‖s‖ < 1 is enough), then (I+s)−1 = I−s+s2−s3+ · · ·

is a well-defined operator. If L is invertible and ‖s‖ < ‖L‖ then (L + s)−1 = (I + L−1s)−1L−1.
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1.6. Local to global examples.

Thm. Any compact mfd N can be embedded in some Rk.

Pf. Cover N by all possible charts12 ϕ : B(2) → N .
Pick finitely many ϕi for which ϕi(B(1)) cover N .
Let β = bump function13 B(2) → [0, 1], β = 1 on B(1), β = 0 near ∂B(2).

⇒ N →֒ R(n+1)·#charts

p 7→ (β(ϕ−1
i (p)) ·ϕ−1

i (p), β(ϕ−1
i (p)) )i=1,2,... (zero entry for i if p /∈ imϕi).

Note we are keeping track of the β values to ensure global injectivity. �

Cultural Rmk. Whitney proved Nn →֒ R2n. Transversality techniques from this

course can easily prove Nn →֒ R2n+1 (if you’re curious, see Guillemin & Pollack).

Def. A tubular neighbourhood is a nbhd U of S with a regular retraction

π : U → S.

(Retraction just means π|S = idS).

Thm. Any submanifold S ⊂ M has a tubular nbhd U ⊂ M .

Pf. Pick a Riemannian metric for M , use exp map. �

S

U
geodesic ⊥ S

πx x point to x in S)
(fact: πx = closest

Rmk.

(1) U
exp−1

∼= nbhd of zero section of normal bundle νS
π ∼= projection

(2) Converse:14 A closed subset S ⊂ Rk is a submfd ⇔ S is a smooth retract15

Pf. implicit function theorem for regular π : U → S. �

Non-examinable details of Pf:

(x, y)

π(x, y)

p

Y

S

πp
X

X

For p ∈ U near S, let X = dpπ(TpU) ⊂ Rk a

v.subspace (secretly Tπ(p)S). Then Rk = X⊕Y

some v.subspace Y . After lin change of coords,

dpπ = [ I 0
0 0 ] : X ⊕ Y → X ⊕ Y,

with p = (0, 0) ∈ X ⊕ Y = Rk. Define

F : X ⊕ Y → X ⊕ Y, F (x, y) = π(x, y) + y.

dpF = I ⇒ InvFnThm ⇒ F−1(s) = (g(s, 0), 0)
for s ∈ S defines chart s 7→ g(s, 0) at π(p) ∈ S.

12B(r) = open ball of radius r, centre 0, in Rn.
13You gain nothing from writing out explicitly a bump function you already know exists:

Non-examinable: for b > a > 0, let α(x) = e−1/x for x > 0, 0 for x ≤ 0; let γ(x) = α(x−a)·α(b−x);

let δ(x) =
∫ b
x
γ/

∫ b
a
γ. Then β(x) = δ(|x|) is 1 on |x| ≤ a, 0 on |x| ≥ b, β(x) ∈ (0, 1) for a < |x| < b.

14the same proof shows this holds for Cr-mfds, π a Cr-map, r ≥ 1 (not just r = ∞).
15Smooth retract= ∃ open nbhd U of S, ∃ smooth π : U → Rk with π(U) ⊂ S, π|S = idS .
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1.7. Genericity. Recall we defined: almost every = full measure = generic. Generic
implies dense, but not conversely (e.g. Q ⊂ R is dense but not generic).

Thm (Parametric Transversality). Let M,N be closed mfds, Q ⊂ N a submfd, and
S a mfd1 without boundary but possibly non-compact. Suppose:

F : M × S → N smooth map and F ⋔ Q

Then Fs = F (·, s) ⋔ Q for generic s ∈ S.

Proof. Consider the projection π:

M × S

π

��

F
// N W = F−1(Q)

π

��

F |W
// Q

S S

where we used F ⋔ Q to deduce W = F−1(Q) is a mfd.
Claim. s ∈ S regular for π|W ⇔ Fs ⋔ Q.

(So the Thm follows by Sard applied to π|W )
Proof of Claim. Suppose q = F (m, s) ∈ Q, so w = (m, s) ∈ W . F ⋔ Q implies:

(∗) TN = dF · T (M × S) + TQ at F (w)

and it implies

TwW = ker(T (M × S)
dF
→ TN → TN/TQ) at w

= {(~m,~s) ∈ Tw(M × S) = TmM ⊕ TsS : dF · ~m+ dF · ~s ∈ TQ}

= {(~m,~s) : dF · ~m = −dF · ~s modulo TQ}.

Finally, observe that

s regular for π|W ⇒ dπ|W : TW → TS surjective at w

⇒ ∀~s, ~s = dπ|W · (~m,~s) some (~m,~s) ∈ TwW

⇒ ∀~s, dF · ~m = −dF · ~s modulo TQ some ~m
(∗)
⇒ ∀~n ∈ TqN, ~n = dF · ~m2 + dF · ~s+ ~q some ~m2, ~s, ~q

⇒ ∀~n ∈ TqN, ~n = dF · ~m2 − dF · ~m modulo TQ

⇒ TN = dF · TM + TQ at F (w) (∗∗)

⇒ Fs ⋔ Q at w.

The proof also works by reversing the implications, which proves the converse. �

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1the parameter space.

1
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Modern viewpoint: compute ker and coker of dπ|W at w = (m, s), F (w) = q ∈ Q:

ker(dπ|W )w = {(~m, 0) ∈ TwW}
∼= {~m ∈ TmM : dF · ~m ∈ TQ}

= ker( TmM
dF=dFs

//

DF=DFs

33
TN // TN/TQ = νQ )

Therefore ker(dπ|W )w = ker(DFs : TmM → νQ) (which is TF−1
s (Q) if Fs ⋔ Q).

Now consider coker(dπ|W )w = TsS/dπ·TW , which you can think of as measuring
how much the implication ∗ ⇒ ∗∗ fails to hold. By linear algebra,2

dπ :
TM ⊕ TS

TM + TW
→

TS

dπ · TW
= coker(dπ|W )w iso at w

F ⋔ Q ⇒ TW = ker(DF : TM ⊕ TS
surj
→ νQ) at w

⇒
TM ⊕ TS

TW
→ νQ iso at w

⇒
TM ⊕ TS

TM + TW
→

νQ
DF · TM

=
νQ

DFs · TM
= cokerDFs iso at w

So coker(dπ|W )w ∼= coker(DFs : TmM → νQ) .

These calculations only used linear algebra, so they hold also for Banach manifolds
(which use a Banach space instead of Rn for charts, more on this in Lecture 5).

Thm (Parametric Transversality 2).

F ⋔ Q ⇒

{

ker(dπ|W )w = ker(DFs : TmM → νQ)

coker(dπ|W )w ∼= coker(DFs : TmM → νQ)

⇒

{

dπ Fredholm ⇔ DF Fredholm3

dπ surjective ⇔ DF surjective

Thm (Genericity of transversality). Let f : M → N be smooth, Q ⊂ N a submfd
(M,N,Q closed mfds). Then for S =open nbhd of 0 ∈ Rk, there is F : M×S → N ,
F (·, 0) = f , with F ⋔ Q.

Proof. Embed N →֒ Rk. Pick tubular nbhd of N : U ⊂ Rk, π : U → N . Then

F : M × Rk → U → N
(m, s) 7→ f(m) + s → π(f(m) + s)

the first map is defined for small ‖s‖, and is clearly regular (think about it). The
second map is regular by definition of U . Therefore the composite is regular. So
F ⋔ anything (since dF is already surjective), in particular F ⋔ Q. �

Cor.4 f is homotopic to fs = F (·, s) ⋔ Q (for generic s).

Rmk.

2dπ : TM⊕TS → TS, dπ ·(~m,~s) = ~s is surjective. Make it injective by quotienting the domain
by TM . Now you want TS/dπ · TW as codomain, so to make the map well-defined you quotient
the domain by TM + TW .

3Fredholm = finite dimensional kernel and cokernel, more on this in Lecture 6.
4Motto: You can make things transverse by perturbing!
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(1) You only need to perturb f near f−1(nbhd(Q)), indeed by replacing s by
β(m)s where β : M → [0, 1], β = 1 near f−1(Q), β = 0 away from f−1(Q),
we still get regularity of F near F−1(Q) so F ⋔ Q.

(2) If f is already ⋔ Q on a closed set M0 ⊂ M (hence near M0 by openness
of transversality), then one only needs to perturb f away from M0: again
pick β : M → R, β = 0 on M0, β = 1 away from M0 (ensure 0 < β < 1
lies in region where f ⋔ Q, so for small enough s also fs ⋔ Q there).

(3) Instead of using N ⊂ Rk one can also use charts U ⊂ N , ϕ : U → Rn, and
consider F (m, s) = ϕ ◦ f(m)+ β(ϕ(m)) · s, β =bump function supported in
chart. So one can inductively perturb f on charts to make it ⋔ Q.

1.8. Sections of a vector bundle.

dF · v

p

DF · v

v

F (p) = 0

Ep F

0E = M
(p, 0)

Recall DpF : TpM → Ep is the vertical derivative (vertical projection of dF ).

Lemma. DpF surjective ∀p ∈ F−1(0E) ⇔ F ⋔ 0E

Proof. T(p,0)E = Tp0E ⊕ Ep, so dpF (TpM) + Tp0E = DpF (TpM) + Tp0E . �

Cor.

DF surjective along F−1(0E) ⇒







F−1(0E) ⊂ M submfd
of codim = codim 0E = rank E
TF−1(0E) = kerDF

Example. E = T ∗M → M with section F = df , where f : M → R smooth.

1.9. Morse functions.

Def. f : M → R is a Morse function if df ⋔ 0T∗M

Consequences (for M closed):

(1) df−1(0T∗M ) = Crit(f) is a 0-dim submfd, so the critical points are isolated,

so Crit(f) is finite .

(2) f Morse ⇔ all critical pts are nondegenerate (Hessian is nonsingular)

Proof. Hwk 2: at p ∈ Crit(f), Hesspf = Dp(df) =
∂2f(p)
∂xi∂xj

. �

(3) Being Morse is stable.

(4) Being Morse is open in the C2-topology

dg

df
Proof. For Morse f :
f, g C2-close ⇒ df, dg C1-close

⇒ dg ⋔ 0 since df ⋔ 0

⇒ g Morse. �
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(5) Morse functions are dense in the C0-topology

(Means: ∀ε > 0, h : M → R ⇒ ∃ Morse f : M → R, sup |f − h| < ε)

Proof.5 WLOG6 M ⊂ Rk, h : Rk → R (extend to Rk via a tubular nbhd and
bump function). WLOG h smooth (since C∞ ⊂ C0 dense). For q ∈ Rn,

Lq : R
k → R, Lq(x) = 〈q, x〉Rk =

∑

qi · xi

is called a height function.
Claim. h+Lq is Morse for almost every q (and C0-close to h for small q)
Proof. Consider F (x, q) = d(h+ Lq):

M × Rk

π

��

F
// T ∗M

Rk

We want F ⋔ 0T∗M , then d(h+Lq) ⋔ 0T∗M for generic q X. View its vertical
component F loc as a map Rk × Rk → T ∗

xR
k (later restrict to M ⊂ Rk):

F loc(x, q) =
∑

i(
∂h
∂xi

(x) + qi) dxi

DF(x,q) · (~x, ~q) =
∑

i(
∑

j
∂2h

∂xj∂xi
dxj(~x) + dqi(~q)) dxi

Key remark: dqi(~q) is arbitrary as you vary ~q ∈ TqR
k. Now restrict:

DF(x,q) : TxM × TqR
k F
−→ T ∗

xR
k pullback

−→ T ∗
xM

The first map is surjective by the Key remark (can still freely vary ~q), the
second map is surjective because M →֒ Rk is embedded so TxM →֒ TxR

k

is injective so its dual is surjective. So DF(x,q) surjective, so F ⋔ 0 �

Cor. Almost any height function on M ⊂ Rk is Morse (take h = 0).

(6) Morse Lemma

f Morse ⇔

{

∃ local coords near each crit point p (called Morse chart)
such that f(x) = f(p)− x2

1 − · · · − x2
i + x2

i+1 + · · ·+ x2
m

Proof. See Hwk 4. Key idea: Taylor f(x) = f(p) + 1
2

∑

Aij(x)xixj with
A(x) symmetric. Diagonalize A(x) smoothly in x. Then rescale coords. �

Def. The Morse index of p ∈ Crit(f) is the index i in the Morse Lemma:

|p| = indf (p) = i = #(negative evalues of Hessp(f) in local coords)

which equals the dimension of the maximal vector subspace of TpM on which
TpM ⊗ TpM → R, (v, w) 7→ Dp(df) · (v, w) is negative definite.7

(7) Morse functions are generic Proof. Hwk 6.

5A messier alternative (avoiding M →֒ Rk, and works for noncompact M): inductively perturb
f on charts by adding φj(x) · Lqj (x), where φj is a partition of unity subordinate to a countable
locally finite cover by charts, qj are generic and small chosen inductively so that f stays Morse

on charts where you already perturbed.
6Without Loss Of Generality.
7Dp(df) : TpM → T ∗

pM , so Dp(df) eats two vectors and outputs a number.
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Motivation. M(p, q) = {−∇f flowlines u : R → M} is an infinite dimensional
manifold. What does this mean?

2. Banach spaces and manifolds

2.1. Review of Banach spaces.

Def. Banach space = complete1 normed vector space B. Call ‖·‖ :B→R the norm.

Fact. The unit ball in a Banach space is compact ⇔ B is finite dimensional.

Examples.

• C0[0, 1]={continuous [0, 1] → R},

‖f‖∞ = max |f | (“uniform norm”)

• Ck[0, 1]={k-times ctsly diffble [0, 1] → R},

‖f‖Ck =
∑

0≤j≤k

‖Djf‖∞ (D =
d

dx
,D0f = f)

Arzela-Ascoli theorem.2 K compact metric space, F ⊂ C(K) = {cts K → R}
equibounded3 and equicontinuous,4 then F is precompact5 using ‖ · ‖∞.

Non-examples.

• Cc(R) = {compactly supported6 cts f : R → R} with ‖ · ‖∞.

• C0[0, 1] with

‖f‖p =

(
∫ 1

0

|f(t)|p dt

)1/p

(1 ≤ p <∞)

• C∞[0, 1] with the natural topology7: the topology is generated by all U ∩C∞[0, 1]
with U open in (Ck[0, 1], ‖ · ‖Ck) some k ≥ 0. Explicitly:

fn → f in C∞ ⇔ ‖fn − f‖Ck(n) → 0 some k(n) → ∞.

Lemma. C∞[0, 1] is a complete metric space, but not a Banach space.

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1Complete=Cauchy sequences converge: “‖xn−xm‖→0 as n,m→∞” implies “∃x : xn→ x”.
2if you are curious, see Rudin, Functional Analysis.
3sup{|f(x)| : f ∈ F} < ∞ for any given x ∈ K.
4∀ε > 0, x ∈ K, there is a nbhd U of x such that |f(y) − f(x)| < ε for all y ∈ U, f ∈ F.
5the closure of F in C(K) is compact, explicitly: any sequence fn ∈ F has a uniformly

convergent subsequence (but the limit may not be in F ).
6f = 0 outside a compact. Equivalently: the support supp(f) = {x : f(x) 6= 0} is compact.
7
Motivation: we want {f : ‖f‖Ck < ε} to be open for all k ≥ 0, ε > 0. Asking that f, g

are close in C∞ iff all their derivatives are within ε is too harsh as there would be very few
C∞-functions considered “close to” 0: essentially only Gaussian functions like ε(1− exp(−1/x2)).

1
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Proof.

• Metric: d(f, g) = max
k

2−k‖f−g‖
Ck

1+‖f−g‖
Ck

• Cauchy ⇒ uniform convergence of any derivative (since [0, 1] compact)
⇒ C∞-convergence
⇒ completeness.

• Claim. closed & bounded subsets F are compact
Pf. bounded means ‖f‖Ck < Kk some constants Kk.

⇒ Dk−1f equicts (by mean value theorem)
⇒ a sequence in F has subseq fn with Dk−1fn cgt in C0 (by Arzela-Ascoli)
⇒ a sequence in F has subseq fn with Dkfn cgt in C0, ∀k (diagonal argument)
⇒ a sequence in F has subseq fn cgt in C∞. X

• Suppose C∞ is Banach (= ∃ norm inducing above topology). Then the closed unit
ball is compact (by Claim) so C∞ is finite dimensional (by Fact). Contradiction! �

Completion. From a normed space (V, ‖ · ‖V ) we can produce a Banach v.s. B:

B = {Cauchy sequences xn ∈ V }/ (xn)∼(yn) iff
‖xn−yn‖V →0

Define ‖xn‖B = lim
n→∞

‖xn‖V . Get dense isometric inclusion V → B, x 7→ (xn = x).

Examples.

• Lp[0, 1] = completion of (C0[0, 1], ‖ · ‖p) (1 ≤ p <∞)
•W k,p[0, 1] = completion of (Ck[0, 1], ‖ · ‖k,p),

‖f‖k,p =
∑

0≤j≤k

‖Djf‖p.

Fact. C∞ is dense in C0, Ck, so can replace C0, Ck by C∞ above.

Rmk. p = 2 is particularly useful because it is Hilbert8 using 〈f, g〉L2 =
∫ 1

0
f(x)g(x) dx

on L2[0, 1]. Having a notion of perpendicularity goes a long way.

Rmk. Since C∞ is not Banach, you must pass to Ck, Lp,W k,p to use big theorems

(inverse fn thm, etc.). Big issue: how to recover C∞ results e.g. from Ck ∀k?

Trick: passing from Ck, ∀k to C∞: Suppose Mk ⊂ Ck = Ck[0, 1] dense & open
∀k, and Mk+1 = Mk ∩ C

k+1. Claim. M∞ = ∩Mk ⊂ C∞ dense & open.

Proof. • f ∈ C∞ ⇒ f ∈ Ck ⇒ ∃fk ∈ Mk : ‖fk − f‖Ck < ε/2
• C∞ ⊂ Ck dense ⇒ ∃gk ∈ C∞ : ‖fk − gk‖Ck < ε/2
• Mk ⊂ Ck open ⇒ can ensure gk ∈ Mk, so gk ∈ Mk ∩ C

∞ = M∞

Conclusion: M∞ ⊂ C∞ is Ck-dense.
• f ∈ C∞ ⇒ ∃fk ∈ M∞ : ‖f − fk‖Ck < 1/k ⇒ fk → f in C∞

Conclusion: M∞ ⊂ C∞ is C∞-dense.
• M∞ ⊂ C∞ open since M∞ = Mk ∩ C

∞ and Mk ⊂ Ck is Ck-open. �

2.2. Banach manifolds.

Def. A (smooth) Banach mfd X modeled on the Banach space B is a Hausdorff,

second-countable9 topological space together with:

8Banach space with inner product such that ‖b‖2 = 〈b, b〉.
9Second-countable= there exists a countable basis for the topology. Consequence 1: any cover

has a countable subcover. Consequence 2: it is separable = there is a countable dense subset.
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• open covering X = ∪Ui;

• charts: homeomorphisms ϕi : Ui → open ⊂ B;

• transitions: ϕj ◦ ϕ
−1
i are Ck-differentiable ∀k.

If the transitions are only Ck, then it’s a Ck-Banach mfd.

Rmk. ψ : B → B is differentiable at x if ∃ bounded
10 linear L : B → B with

ψ(x+y) = ψ(x)+L ·y+O(‖y‖), where O(t) is an error term satisfying lim
t→0

O(t)
t = 0.

Warning: (smooth) partitions of unity do not exist in general.

Non-examinable Example.

Claim. M,N closed mfds ⇒ X = Ck(M,N) is a C∞-Banach mfd.

• Avoiding charts: embed N ⊂ Rk, pick a smooth retraction π : U → Rk of
an open tubular nbhd U of N . Observe: X ⊂ Ck(M,U) is closed, Ck(M,U) ⊂
Ck(M,Rk) is open, Ck(M,Rk) is a Banach space. Since

π◦ : Ck(M,U) → Ck(M,N) = X

is a smooth retraction, 1.6 Remark (2) ⇒ X is a Banach submfd of Ck(M,Rk).

• Charts: we obtain nearby maps by the geodesic flow. Details: fix a Riemannian
metric on N , fix a smooth f :M → N . Then Ck-maps close to f are parametrized
by11 Ck(Dεf

∗TN). Indeed the chart is Ck(Dεf
∗TN) → Ck(M,N), v 7→ fv where

fv(p) = expf(p) v(p).

One can12 checkCk(f∗TN) is a Banach space for the norm ‖v‖Ck =
∑

j≤k sup |∇
jv(p)|.

This gives a local chart13 near f . They cover X since smooth f are dense in X .

• Transitions: f, g∈X smooth & close ⇒ Ck(f∗TN)→Ck(g∗TN) on overlap14 is

T : v 7→ expf(p) v(p) 7→ exp−1
g(p)(expf(p) v(p))

Key observation: differentiating in v means dvT · ~v = ∂s|s=0T (v + s~v), for ~v ∈
Ck(f∗TN). This involves derivatives of exp, g, f : these are all smooth!15

• Second countable: any f ∈ Ck(M,N) can be approximated by a smooth map,
which can be extended to a smooth map Rl → Rk after embedding M ⊂ Rl, N ⊂
Rk. Now approximate that by a map Rl → Rk whose coordinates are polynomials
in l variables.16 Approximate those polynomials by polynomials with Q coefficients.
Hence X can be covered by charts as above constructed for restrictions to M of
such rational polynomial maps. That is a countable basis for the topology.

10Bounded means ‖L‖ = sup
y 6=0∈B

‖Ly‖
‖y‖

< ∞. Easy fact: L continuous ⇔ L bounded.

11The pull-back f∗TN is just the bundle over M with (f∗TN)p = Tf(p)N at p ∈ M . So

v ∈ Ck(Dεf∗TN) means v(p) ∈ Tf(p)N , |v(p)| ≤ ε, and v is Ck.
12We’ll see this norm in detail in future lectures. For now, think “manifold version” of ‖ · ‖Ck .
13Technical Rmk: B = Ck(f∗TN) is the same Banach space up to iso if you vary f by a

smooth homotopy. If you change the homotopy class of f then B can change drastically. Indeed
Ck(M,N) is a disjoint union of connected components, each component is a Banach mfd consisting
of homotopic maps. We are just using a different local model B for each component.

14If we wanted to use the same model B = Ck(f∗TN), then we could always compose with
the isomorphism induced by the diffeo g∗TN ∼= f∗TN obtained from the exponential map.

15Do not confuse this with the unrelated local derivatives ∂iv ∈ Ck−1, which never arise!
16This can be done by the Stone-Weierstrass theorem.
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Upshot: can now redo differential geometry: tangent vectors, derivative map, etc.

General principle: Results involving linear algebra or inverse function theorem
generalize to Banach manifolds. But anything which involved compactness may fail
unless you first reduce the problem to finite dimensional submfds/subspaces.

What works:

• Inverse function theorem (IFT) X
• Implicit function theorem X provided ker dpf has a closed complement. (∗)
(locally f : B1 → B2, want to apply IFT to F : B1 = ker dpf ⊕ C → B2 ⊕ C,
F (x, y) = f(x, y)⊕ y, so need B2 ⊕ C Banach, so need C closed)
• Transversality definitions, all results which did not use Sard, assuming (∗) X

What fails:

• Sard’s theorem: but this has a chance at working if the map is an isomorphism
up to finite dimensional errors.

Def. A map f :M → N between Banach mfds is Fredholm if dpf : TpM → Tf(p)N
is a Fredholm operator, meaning dpf has finite dimensional kernel and cokernel.

Basic example of Fredholm operators.

B = all sequences of reals (r1, r2, r3, . . .) with finite norm ‖r‖ =
∑

|ri| (or (
∑

|ri|
p)1/p)

Right shift R : (r1, r2, . . .) 7→ (0, r1, r2, . . .).
Left shift L : (r1, r2, . . .) 7→ (r2, r3, . . .).

These are Fredholm: kerR = 0, cokerR ∼= R, kerL ∼= R, cokerL = 0.
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2.3. Fredholm theory.

Def. A bounded linear map L : A → B between Banach spaces is a Fredholm
operator if kerL and cokerL are finite dimensional.

Def. A map f : M → N between Banach mfds is a Fredholm map if dpf : TpM →
Tf(p)N is a Fredholm operator.

Basic Facts about Fredholm operators

(1) K = kerL has a closed complement A0 ⊂ A.
(so the implicit function theorem applies to Fredholm maps).
Pf. pick basis v1, . . . , vk ofK, pick dual1 v∗1 , . . . , v

∗

k ∈ A∗. A0 = ∩ ker v∗i . �

(2) im(L) = image(L) ⊂ B is closed.
(so cokerL = B/im(L) is Banach)
Pf. pick complement C to im(L). C is finite dim’l, so closed, so Banach.

⇒ L : A/K ⊕ C → B,L(a, c) = La+ c

is a bounded linear bijection, hence an iso (open mapping theorem). So
L(A/K) = Im(L) is closed. �

(3) A = A0⊕K, B = B0⊕C where B0 = im(L), C = complement (∼= cokerL).

⇒ L =
[

iso 0
0 0

]

: A0 ⊕K → B0 ⊕ C

Def. index(L) = dim kerL− dim coker L.
(4) Perturbing L preserves the Fredholm condition and the index:

Claim.2 s : A→ B bdd linear with small norm⇒ ∃ “change of basis” isos

i : A ∼= B0 ⊕K
j : B ∼= B0 ⊕ C such that j ◦ (L+ s) ◦ i =

[

I 0
0 ℓ

]

for some linear map ℓ : K → C. Note: dimker drops by rank(ℓ), but also
dim coker drops by rank(ℓ). So index(L) = index(L + s).
Proof. s =

[

a b
c d

]

, L = [ T 0
0 0 ] (where T is an iso). So:

[

I 0
−c(T+a)−1 I

]

·
[

T+a b
c d

]

·
[

I −(T+a)−1b

0 I

]

=
[

I 0
−c(T+a)−1 I

]

·
[

T+a 0
c −c(T+a)−1b+d

]

=
[

T+a 0
0 −c(T+a)−1b+d

]

where we use that (T + a)−1 is defined for small ‖s‖:

(T + a)−1 = [T (I + T−1a)]−1 = (I − T−1a+ (T−1a)2 − (T−1a)3 + · · · )T−1

that power series converges provided ‖T−1a‖ < 1, which we guarantee by:
‖T−1

a‖<1⇐‖T−1‖<‖a‖−1⇐‖T−1‖<‖s‖−1⇐‖s‖<‖T−1‖−1 (since ‖s‖≥‖a‖).

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1v∗i (vj) = δij , the v∗i exist by the Hahn-Banach theorem.
2Claim implies dimkerL is upper semicontinuous: dimker(L+ s) ≤ dimkerL, for small ‖s‖.

1
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Cor. M connected, f Fred map ⇒ index (f) = index dpf is indep of p ∈M .

2.4. Sard-Smale Theorem.

f : M → N smooth Fred map ⇒ {regular values of f} ⊂ N is a Baire set.

Baire set is a geometer’s analogue of “full measure” or “generic” for Banach mfds.

Def. S⊂N is a Baire set3 if S contains a countable intersection of open dense sets.

Baire category thm. A Baire set in a complete metric space4 is dense.

Proof of Sard-Smale.

Claim 1. ∃ charts M⊃U →֒A∼=B0⊕K
N⊃V →֒B∼=B0⊕C

such that locally f(b, k) =
[

I 0
0 ℓ(b,k)

]

, for some

nonlinear ℓ : B0 ⊕K → C.

Pf. Centre the charts around p ∈ U , f(p) ∈ V . Take K = kerdpf , C ∼= cokerdpf .
So f : B0 ⊕ K → B0 ⊕ C, f(0, 0) = (0, 0), d(0,0)f =

[

I 0
0 0

]

. Implicit fn thm5 ⇒

(after a change of charts) f(b, k) = (b, ℓ(b, k)) X

Claim 2. f is locally closed6 (indeed closed in the above charts).

Pf. Suppose f(bn, kn) → (b, c), (bn, kn) ⊂ bounded open ⊂ B0 ⊕K. By Claim 1,
bn → b. Now kn bdd, K finite dim’l ⇒ ∃ cgt subseq kn → k. So f(b, k) = (b, c) X

Claim 3. We can reduce to Sard’s theorem:

From a cover by charts as above, pick7 a countable subcover of M , so reduce to
f |U : U → V . Claim. Vreg = {regular values of f |U} ⊂ V is open and dense.8

Pf. (critical points of f |U ) ⊂ U is closed,9 so by Claim 2, Vreg is open X

d(b,k)f =
[

I 0
∗ d(b,k)ℓ|K

]

surjective ⇔ d(b,k)ℓ|K surjective

Note: d(b,k)ℓ|K = dk(ℓb) for ℓb : K → C, k 7→ ℓ(b, k) ← map of finite dim’l spaces!
⇒ Vreg ∩ ({b} ⊕ C) = (reg. val’s of ℓb) ⊂ {b} ⊕ C ← dense inclusion by Sard!
⇒ Vreg ⊂ V dense X �

3or generic set, or residual set. We often produce S = countable intersection of dense opens.
4 Banach mfds are (complete) metric spaces. Non-examinable proof: Urysohn’s metrization

theorem says every second-countable regular space is metrizable. Banach mfds are by definition
second-countable. Regular space means given a point p not contained in a closed subset C, there
exist disjoint open nbhds of p and C (for Banach mfds, take a chart centred at p, then consider
the ε-radius open ball centre p and the complement of the 2ε-radius closed ball centre p).

5f(b, k) = (α(b, k), β(b, k)). Inverse fn thm ⇒ ∃ local inverse to h : B0 ⊕ K → B0 ⊕ K,
h(b, k) = (α(b, k), k) near (0, 0). Hence f ◦ h−1(b, k) = (b, ℓ(b, k)). �

6locally, closed sets map to closed sets.
7Banach mfds are defined to be second-countable, hence Lindelöf (covers have ctble subcovers).

Non-examinable remark: I want Banach mfds to be metric spaces (see footnote 4). For metric
spaces: second-countable ⇔ separable ⇔ Lindelöf. As far as I know, if I replace second-countable
by separable, then it’s not clear Banach mfds are metric, so it’s not clear Baire category applies.

8So the regular values of f is the intersection of the regular values of all f |U ’s, so it’s a countable
intersection of open dense sets, as required.

9Regular points of any smooth map of Banach mfds form an open set: at regular p, dpf = [I 0]
(after change of basis), so for q close to p, dqf = [T ∗] for some invertible T since invertibility is

an open condition (which is proved by the power series argument as in (4) of 2.3).
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Thm. If f : M → N is a Fredholm Ck-map of Ck-Banach mfds, then Sard-Smale
holds provided k > index(f).

Proof. lb : K → C, index(f) = dimK − dimC, now use Ck-Sard (see 1.3). �

Cor. F : M × S → N smooth map of Banach mfds, Q ⊂ N submfd, F ⋔ Q, such
that DmFs : TmM → νQ,Fs(m) is Fredholm. Then Fs ⋔ Q for generic s ∈ S.

Proof. Parametric transversality 1 & 2 (using Sard-Smale and Hwk 6). �

2.5. Zero sets of Fredholm sections.

Def. Banach vector bundle π : E → B with fibre V , is defined analogously to
finite dimensional vector bundles after replacing E,B by Banach mfds, and V by a
Banach space.

Thm. For a Banach vector bundle E →M ×S and a smooth section F : M ×S →
E, assume for all (m, s) with F (m, s) = 0 that

(1) D(m,s)F : T(m,s)(M × S)
dF
−→ T(m,s,0)E → E(m,s) is surjective

(2) DmFs : TmM → E(m,s) Fredholm

Then, for generic s ∈ S,
{

F−1
s (0E) ⊂M submfd of dim = index (DmFs) (near m)

TmF−1
s (0E) = ker(DmFs : TmM

surj
−→ E(m,s))

Proof. This is a direct consequence of the Corollary, but since it’s important:
(1) ⇒ F ⋔ 0E ⇒ W = F−1(0) mfd (implicit fn thm10).
Write π : M × S → S for the projection, recall parametric transversality 2:

ker dπ|W ∼= kerDFs coker dπ|W ∼= coker DFs.

(2) ⇒ dπ|W Fredholm of index = index DFs.
Sard-Smale ⇒ for generic s, dπ|W is surjective along

π|−1
W (s) = W ∩ π−1(s)=F−1

s (0).

Hence DFs is surjective (by the iso of cokernels above). So F−1
s (0) mfd and

TF−1
s (0) ∼= kerDFs

with dimTmF−1
s (0) = dim kerDmFs = index DmFs (since cokerDmFs = 0). �

Thm. Thm also holds for Ck-maps of Ck-Banach mfds when k > index DFs.

Rmk. The dimension of F−1
s (0E) can vary depending on the connected component,

since index (DmFs) depends on the connected component of m. That is why we
wrote “near m” in the Thm.

10Hwk 6 checks the closed complement condition. You should check that Cor 1.2 (implicit
function theorem) works also for Banach mfds.
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Motivation. Morse theory = studying the space of {−∇f flowlines }.

3. Flowlines and Topology

3.1. Flowlines. M closed mfd, V smooth vector field.

p = ϕ(p, 0) ϕ(p, s)

flowline timeV
initial condition

Thm.

There exists a unique solution ϕ : M × R → M of

∂ϕ

∂s
= V ◦ ϕ ϕ(·, 0) = id.

ϕs = ϕ(·, s) : M → M is a diffeo, with ϕs ◦ ϕt = ϕs+t.

Def. ϕ is the flow of V , and s 7→ ϕ(p, s) is the flowline through p.
By uniqueness, flowlines never intersect unless they coincide (up to s 7→ s+ const).

Proof. Locally: y : [−ε, ε] → R
m, y(s) = ϕ(p, s) solves the ODE

y′(s) = V (y(s)) y(0) = p.

ODE theory1 ⇒ for small ε > 0, ∃ unique solution y which depends smoothly on
the initial condition p.

Globally: ∀p ∈ M , local result yields a unique smooth map2

ϕ : Up × [−εp, εp] → M (∗)

Take a finite cover of M by Up’s, and ε = smallest of the εp’s. So:

ϕ : M × [−ε, ε] → M (∗∗)

Trick: ϕs ◦ ϕt = ϕs+t for small s, t, since both solve y(0) = ϕt(p), y
′(s) = V (y(s)).

⇒ ϕs diffeo with inverse ϕ−s

⇒ extend3 ϕs to s ∈ R: ϕs = ϕs/k ◦ · · · ◦ ϕs/k

(k composites, with k ≫ 0 so that |s/k| < ε) �

Rmk. ODE theory ⇒ If V is Ck then ϕ is Ck.

If M is just a Ck-mfd and4 V is Ck−1 then ϕ is Ck−1.

Rmk.

Date: May 1, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1Lang, Undergraduate Analysis, or Lang, Differential Manifolds, prove this in great detail.
2pick the open nbhd Up of p small enough, so that ϕ lands in the given chart.
3ϕs is well-defined, indeed: (ϕs/k′ )k

′

= (ϕs/kk′ )kk
′

= (ϕs/k)
k .

4Since TM is just Ck−1, any higher differentiability of vector fields does not make sense.

1
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(1) If Vs depends on s, you pass to M ×R, V (p, s) = Vs(p)⊕
∂
∂s . Since the mfd

is now non-compact, (∗) holds but (∗∗) can fail (if ε(p,s) → 0 as |s| → ∞).

Fact. If V is C1-bounded then (∗∗) holds.5 So Thm holds.

(2) For non-compact mfd M or Banach mfd M , (∗) holds by the same proof,

but for (∗∗) we need the condition:

∃K,R > 0 such that ∀p ∈ M , ∃ chart ϕp : Up → R
m or B, such that V is

C1-bounded by K in chart and6 ϕp(Up) ⊃ ball with centre ϕp(p) radius R.

3.2. Negative gradient flowlines.

(M, g) closed Riemannian mfd. Write |v| = g(v, v)1/2 for the norm.
f : M → R smooth function.

Def. The gradient vector field ∇f is defined by

g(∇f, ·) = df

Locally:7 ∇f = g−1∂f =
∑

∂if · gij · ∂j.

Rmk. p ∈ Crit(f) ⇔ dpf = 0 ⇔ (∇f)p = 0 ⇔ |∇f |p = 0

For a −∇f flowline u : [a, b] → M (so u′ = −∇f) we care how f varies along u:

∂s(f ◦ u) = df · u′ = df(−∇f) = g(∇f,−∇f) = −|∇f |2

f(u(b))− f(u(a)) =
∫ b

a ∂s(f ◦ u) ds = −
∫ b

a |(∇f)u(s)|
2 ds ≤ 0

Def. So it is natural to introduce the notion of Energy of a path u : (a, b) → M :

E(u) =

∫ b

a

|(∇f)u(s)|
2 ds ≥ 0.

Note that E(u) = 0 iff u is constantly equal to a critical point.

Cor. f decreases along −∇f flowlines, and there is an a priori energy estimate:8

for any −∇f flowline from x to y,

E(u) = f(x)− f(y).

In particular, E(u) is a homotopy invariant relative to the ends.

Rmk (Novikov theory). A generalization of Morse theory, called Novikov theory,
replaces df by a closed 1-form α. This gives rise to a vector field via g(V, ·) = α,

and one studies −V flowlines. The energy E(u) =
∫ b

a
|Vu(s)|

2 ds ≥ 0 is zero iff u
is constantly equal to a zero of α. There is no a priori energy estimate. However,

E(u) is still a homotopy invariant of −V flowlines relative to the ends. Indeed:

E(u) = −

∫
[a,b]

u∗α

5Why C1? Locally it implies V is Lipschitz by the mean value theorem, which is what’s needed
to solve the ODE. C1 bounds guarantee the Lipschitz constant is bounded uniformly.

6The C1 bounds are calculated in a chart, but they can always be achieved by rescaling a

chart. So the second condition is crucial (for example: consider V = ∂
∂x

on R \ {0}).
7gij = inverse matrix of gij = g(∂i, ∂j), ∂j = ∂

∂xj
.

8a priori refers to the fact that the estimate only depends on boundary conditions x, y, not u.
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since u∗α = α · u′ = −α(V ) = −g(V, V ) = −|V |2.
Proof: if H : [a, b]× [0, 1] → M is a homotopy relative ends9, by Stokes’s theorem

∫
[a,b]

u∗
0α−

∫
[a,b]

u∗
1α =

∫
[a,b]×[0,1]

dH∗α = 0

(dH∗α = H∗dα = 0, since α is closed). For α = df the energy estimate is Stokes:

E(u) = −
∫
[a,b]

u∗df = −
∫
[a,b]

d(u∗f) = f(u(a))− f(u(b)) for −∇f flowlines u.

3.3. Energy consumption.

∇f ≈ 0 so consume little energy

|∇f | ≥ K > 0 so consume energy

p
r

q

Br

Bq

Bp

Lemma. A −∇f flowline from x to y landing in a region where |∇f | ≥ K > 0 has

E(u) ≥ K · dist(x, y).

Pf.10 Loosely:11 E(u) =
∫
|∇f |2 ≥ K

∫
|∇f | = K

∫
|u′| = K length(u) ≥ Kdist(x, y).

For example, this proof shows that: in the complement of small balls centred at
the critical points of a Morse function f , any −∇f flowline must consume at least
some fixed amount δ > 0 of energy to flow from one ball to another.

Notation. A ⊂⊂ B (compactly contained) means: A,B open, and A ⊂ A ⊂ B.

Ap

u Bp

p

No escape Lemma. Let p ∈ Ap ⊂⊂ Bp with Bp ∩ Crit(f) = {p}. Then ∃δ > 0
such that any −∇f flowline needs E ≥ δ to go from ∂Ap to ∂Bp, or vice-versa.

Proof. Consider the region Bp \Ap, apply the Lemma. �

Energy quantum Lemma.12 Pick disjoint nbhds Br of each r ∈ Crit(f). ∃δ > 0
such that any −∇f flowline from Bp to Bq for p 6= q consumes energy E ≥ δ.

Proof. Consider the region M \ ∪Br, apply the Lemma. �

9H(a, ·) = x, H(b, ·) = y, H(0, ·) = u0, H(1, ·) = u1.
10This proof works similarly if we use α instead of df (see previous Rmk).
11Distance dist(x, y) = infimum of lenth(u) =

∫
|u′(s)| ds over all curves u from x to y. Rmk.

length is parametriz’n indep:
∫
|(u ◦ φ)′(s))| ds =

∫
|u′(φ(s))|φ′(s) ds =

∫
|u′(s)| ds (φ′(s) > 0).

12Note: you could have f(p) = f(q), so the energy estimate doesn’t imply result immediately.
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3.4. Convergence at the ends.

Thm. For f : M → R Morse, M closed mfd, any −∇f flowline u : R → M must

converge at the ends to critical points, hence ∃p, q ∈ Crit(f) with

u ∈ W (p, q) = {−∇f flowlines R → M converging to p, q at −∞,∞}.

In particular, W (p, p) = {constant flowline at p}, since there E = f(p)− f(p) = 0.

Proof. 13 Case s → +∞ (for s → −∞ apply proof to −f). No Escape Lemma: for
each p ∈ Crit(f) pick Ap, Bp’s (small), get δ > 0. f ◦ u decreases in s, but f is
bounded (M compact), so f ◦ u → r ∈ R, so for s ≫ 0, f ◦ u is within δ of r.
Suppose u /∈ ∪Bp for some s ≫ 0. Then u hasn’t enough energy left to reach ∪Ap

for larger s. So u /∈ ∪Ap for s ≫ 0. But |∇f | ≥ K > 0 on M \∪Ap, so f ◦u → −∞,
absurd. So u ∈ ∪Bp for s ≫ 0, and Bp is arbitrarily small. �

3.5. Topology of sublevel sets. Ma = {x ∈ M : f(x) ≤ a} are the sublevel sets.

f−1(a)

f−1(b)

Thm. If [a, b] contains no critical values of f , then Mb
∼= Ma

are diffeo.

Proof. ϕ = flow of − β(f)
|∇f |2 ·∇f , where β : R → [0, 1] is a bump

function, β = 1 on [a, b] and β = 0 on away from [a, b] (in
particular β = 0 at all critical values of f).

∂s(f ◦ ϕ) = df · ∂sϕ = g(∇f,−β(f)∇f
|∇f |2 ) = −β(f)

which equals −1 on [a, b]. So ϕ(·, b− a) : Mb → Ma diffeo. �

Rmk. The −∇f flowlines are orthogonal to the regular level sets f−1(a).
Pf. g(−∇f, v) = −df · v = 0 for v ∈ Tf−1(a) = kerdf |f−1(a).

Rmk. There is a deformation retraction14 of Mb onto Ma: r : Mb × [0, 1] → Mb,

r(x, s) = x if x ∈ Ma, and r(x, s) = ϕ(x, s(f(x) − a)) if x ∈ f−1[a, b].

X YM

Def. A cobordism between possibly-disconnected

closed Xn, Y n is a compact mfd Mn+1 with ∂M =
X ⊔ Y . Call it h-cobordism if in addition X,Y
are deformation retracts of M .

Fact.15 Equivalent definitions of h-cobordism:

M h-cobordism ⇔ (X,Y →֒ M hpy equivalences ) ⇔ (π∗(M,X) = π∗(M,Y ) = 0)

For X,Y,M simply connected: (M h-cobordism ) ⇔ (H∗(M,X) = 0)

13Curiosity: ∃non-insightful elementary proof by contradiction, avoiding energy arguments.
14Deformation retraction r : X × [0, 1] → X of X onto A means: r cts, r|A =id, r(X, 1) = A.

Note r is a hpy from idX to a retraction r1 = r(·, 1) of X onto A (means r1(X) = A, r1|A = idA).
15Non-examinable: By Whitehead’s theorem and LES for relative hpy: inclusions X,Y →֒ M

are hpy equivalences ⇔ they are isos on hpy gps ⇔ π∗(M,X) = π∗(M,Y ) = 0. By hpy theory:16M
deform retracts onto X ⇔ π∗(M,X) = 0. The 2nd fact uses Hurewicz: if π1(X) = 0, π1(M,X) =
0 then the first non-zero πk(M,X) is iso to the first non-zero Hk(M,X); and it uses the Poincaré
duality isoH∗(M,X) ∼= Hm−∗(M,Y ) (by universal coefficients, H∗(M,Y ) = 0 ⇔ H∗(M,Y ) = 0).

16Hilton, An Introduction to Homotopy Theory, Thm 1.7 p.98: if π∗(Y, Y0) = 0, then ∀ subcx
A of a CW cx X, any (X,A) → (Y, Y0) can be homotoped to X → Y0 keeping it constant on A.
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h-cobordism Thm17 (Smale 1962) If X,Y are simply connected of dim ≥ 5 then

the h-cobordism M is trivial: M ∼= Y × [0, 1] diffeo. In particular X ∼= Y diffeo.

Lemma. If there exists a Morse function f : M → [a, b] with no critical points,

X = f−1(a), Y = f−1(b), then M is a trivial h-cobordism.

Proof. In notation of previous Rmk: f−1(b)×[0, 1] → M, (x, s) 7→ ϕ(x, s(b−a)). �

Cor. An h-cobordism is trivial ⇔ it admits a Morse function as in the Lemma.

Idea of Pf of Thm.(hard!) Start with a Morse function on the cobordism. Sys-
tematically “cancel out” the crit points in pairs by locally modifying f and the flow,
until there are no crit points left. Key: the use of gradient-like vector fields:
V ∈ C∞(TM), V (f) > 0 (except at Crit(f)), such that at each p ∈ Crit(f), ∃
Morse chart in which

f(x) = f(p)− x2
1 − . . .− x2

i + x2
i+1 + . . .+ x2

m

V = −x1∂1 − . . .− xi∂i + xi+1∂i+1 + . . .+ xm∂m.

The flow you consider is the flow of −V , not that of −∇f . This means you know
exactly what v is near critical points: up to a constant, it is the Euclidean gradient
in the Morse chart (whereas −∇f is unknown since the metric in general is not
Euclidean in the Morse chart!). The V (f) > 0 ensures that f still decreases along
−V flowlines, and you get good estimates of the energy E =

∫
|V |2.

The idea behind cancelling out critical points in pairs is as follows. Consider the
sphere with two discs cut out:

chop

cobordism between two circles

You would like to push down one of the hills:

In general, you do not know what the manifold looks like globally, so you actually
just modify f, v locally near the trail going up the hill:18

17Standard great reference: Milnor, Lectures on the h-cobordism theorem.
18in the figure, we modify f, v in the shaded region.
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Thus cancelling out the two critical points with index difference 1.
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f r

attach a handle

1-cell 1-handle
Mr+ε

Mr−ε

3.6. Handle attachments.

Def. A k-handle is a “thickened up” k-cell:1 Dk ×Dn−k

X

boundary of X

cocore

attaching sphere

core (k-cell)

Dk × 0

0×Dn−k

Sk = Sk−1 ×Dn−kSk−1 × 0

belt sphere

attaching region

0× Sn−k−1

Attaching a k-handle to Xn means:

X ∪Sk
(Dk ×Dn−k)

where the handle is attached along the attaching region Sk = Sk−1 ×Dn−k via an
embedding Sk →֒ ∂X which needs to be specified.

Rmk. One can smoothen the corners of the attachment, but we omit the details.

corners
smoothen

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1where Dk is the closed unit disk in R

k.

1
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Rmk. The boundary becomes:

(∂X \ intSk) ∪∂Sk
(Dk × Sn−k−1)

called a surgery on Sk →֒ ∂X (or surgery on ∂X). Equivalently, it is a surgery on

the knot Sk−1 = Sk−1× 0
ϕ
→֒ ∂X with framing2. Note that this attachment kills the

homotopy class of Sk →֒ ∂X. Example: surgery on a 3-sphere with a 1-handle:

∂(X3) ∂(X) \ S1 surgery

3.7. Topology of sublevel sets II.

Thm (Handle-attaching theorem). Mm closed, f : M → R Morse.

f has exactly one critical point
p ∈ f−1[a, b] of index k

⇒ Mb ≃ Ma ∪ k-cell (hpy equivalence)

Rmk. If there are several critical points on the same level set, then the proof still
works (attach several cells).

Proof. Let r = f(p). By Theorem 3.5, we just need to show

Mr+ε ≃ Mr−ε ∪ k-cell (for small ε > 0)

Pick Morse chart near p: f(x, y) = r − |x|2 + |y|2, (x, y) ∈ R
k × R

m−k .

y

y

x

x

y

x

f = r + ε

f = r − ε

f ≤ r − ε f ≤ r − ε

f = r

f ≤ r + ε

f ≤ r − ε f ≤ r − ε

core

k-handle

2framing = a given trivialization of the normal bundle νim(ϕ)
∼= Sk−1 × R

n−k . You demand
the normal bundle to be trivial, since you want to extend the knot embedding to an embedding
Sk = Sk−1 ×Dn−k →֒ ∂X.
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Aim: Mr+ε deformation retracts onto Mr−ε ∪ core, where

core = {(x, 0) : f(x, 0) = r − |x|2 ≥ r − ε}
= {(x, 0) : |x|2 ≤ ε} = k-cell.

We will define two regions, R1, R2:

R1 = {|x|2 < 2ε, |y|2 < 2ǫ}

R2 = {|x|2 < δ, |y|2 < δ}

y

x

Aim: the deformation is the flow of a vector field v which is
{

−∇f=(2x,−2y) outside R2

vertical =(0,−2y) in R1

Pick 0 < δ < 1 so that R2 ⊂ Morse chart.
Pick a Riemannian metric on M which equals3 the Euclidean metric on R2.
Pick ε < δ/2. Define

v =
{

(2β(x,y)·x,−2y) on R2

−∇f outside R2

with β : Rm → [0, 1] equal to 0 on R1 and 1 outside R2. Let

ϕ(t, z) = flow of v
|v| for time t starting from z ∈ Mr+ε, where

0 ≤ t ≤ T (z) = time required to reach Mr−ε ∪ core.

Note: if z ∈ Mr−ε then T (z) = 0, ϕ(0, z) = z. Moreover, T (z) is finite since:4

df ·
v

|v|
=

{

−‖∇f‖ outside R2

(−2xdx+ 2ydy)(2βx∂x − 2y∂y) = −4β|x|2 − 4|y|2 ≤ −4|y|2 in R2

(so you can’t stop flowing before reaching Mr−ε or y = 0).
Finally, observe that T (z) is continuous. Conclusion:

(t, z) 7→ ϕ(t · T (z), z), for t ∈ [0, 1], deform retracts Mr+ε onto Mr−ε ∪ k-cell. �

Rmk. The proof also shows:

• Mb, Mr deform retract onto Ma ∪ k-cell
• Mb

∼= Ma ∪ k-handle are diffeomorphic
• f−1(b) = surgery on f−1(a).

Def. Recall a CW structure on M are subsets M0 ⊂ M1 ⊂ . . . ⊂ Mn = M where
M0 is a discrete set of points, and

Mk = Mk−1 ∪Dk
1 ∪Dk

2 ∪ · · ·

3recall metrics can be patched together by a partition of unity argument.
4abbreviating xdx =

∑
xidxi, etc.
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is obtained by attaching k-cells via continuous maps fk
i : ∂Dk

i → Mk−1.

Cor. M closed, f : M → R Morse. Then M has a CW structure with a k-cell
attached for each critical point of f of index k, and M0 = minima of f .

Proof. For a self-indexing Morse function5 the result is immediate from the The-
orem (consider Mn by induction on n). So the result follows by Hwk 9: one can
modify a Morse f to make it self-indexing without changing Crit(f) and its indices.

Alternative: use hpy theory (cellular approximation theorem6) to overcome the
issue that the Thm is not attaching cells ordered by dimension.7 �

Torus = =

=

∪ 2-cell

a figure eight with a 2-cell attached.

Rmk. Provided Mr = (f ≤ r) is compact, the Thm holds for non-compact M (for
the Corollary you need a little care using homotopy theory7).

3.8. Stable and unstable manifolds. Let ϕ be the flow of a vector field v on M .

Def. For v(p) = 0,

unstable mfd Wu(p, v) = {x ∈ M : lim
t→−∞

ϕ(x, t) = p}

stable mfd W s(p, v) = {x ∈ M : lim
t→+∞

ϕ(x, t) = p}

Rmk. This of these as the points flowing “out of”/“into” p. They both contain p
since ϕ(p, t) = p. For nasty v the Wu,W s may not be manifolds.

Def. For v = −∇f we abbreviate Wu(p) = Wu(p,−∇f),W s(p) = W s(p,−∇f),
which are often called descending mfd U(p) and ascending mfd A(p) (thinking of
f as a “height” function).

Example. In the pf of Thm 3.7, −∇f = (−2x, 2y) near p (Euclidean metric) so

Wu(p) = x-plane W s(p) = y-plane (near p)

so Mr+ε = Mr−ε ∪Wu(p) and infinitesimally: TpM = TpW
u(p)⊕ TpW

s(p) (∗)

Observe Wu(p) is a mfd in a nbhd U of p, so it is globally a mfd since

Wu(p) =
⋃

t≥0

ϕ(Wu(p) ∩ U, t),

so Wu(p) ∼= R
index(p) (exercise). Similarly, W s(p) is8 a submfd R

m−index(p) →֒ M .

5meaning the index |p| = f(p).
6Maps Sn → M can be homotoped to maps Sn → Mn ⊂ M , which is an immediate conse-

quence of Sard’s theorem: first smoothen the map, then by dimensions the map cannot surject
onto the higher discs Dm

i for m > n, so you can homotope it to avoid those discs.
7 For details, see Milnor’s Morse theory book.
8Wu(p),W s(p) are embedded submfds, but the embedding is not proper.
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Thm (Hadamard-Perron & Hartman-Grobman).

Wu(p, v),W s(p, v) are “mfds” for

{

v = −∇f (f Morse, for any metric)
v = vector field with hyperbolic fixed points9

and (∗) holds.

More precisely, respectively

{

Wu(p,−∇f),W s(p,−∇f) are embedded planes,
Wu(p, v),W s(p, v) are injectively immersed planes.

Rmk. For general hyperbolic v a point may return arbitrarily close to itself under
the flow: for example, for v you may have non-constant v-flowlines converging to
p at both ends. This does not happen for −∇f because f decreases along the flow.
Non-examinable: prove that −∇f has hyperbolic fixed points, so the first case is a
particularly well-behaved special case of the second.

Rmk. The proof is hard. If you are given a metric, then you cannot hope that
in a Morse chart the metric is Euclidean (e.g. consider a metric which is not flat
near p). Therefore you do not know what −∇f looks like near the critical points,
so even the infinitesimal result (do TWu(p), TW s(p) exist?) is hard.

Two tricks to avoid the Theorem.

(1) change the metric to make it Euclidean near p via a hpy

gt = (1− t) · g + t · ((1 − β) · g + β · gEuclidean)

using a bump function β = 1 near p (compare pf of Thm 3.7).
(2) don’t use ∇f , and instead use a gradient-like vector field v (see Hwk 7):

v(f) > 0 except at Crit f, v = ∇Euclideanf in a Morse chart near p ∈ Crit f.

9meaning, if v(p) = 0, then dϕ(p, t) has no evalues λ with |λ| = 1 ∀t 6= 0.



LECTURE 9.

PART III, MORSE HOMOLOGY, 2011

HTTP://MORSEHOMOLOGY.WIKISPACES.COM

Motivation. Denote the (parametrized) −∇f flowlines from p to q by:

W (p, q) = {u : R → M : u′ = −∇f, lim
s→−∞

u(s) = p, lim
s→+∞

u(s) = q}

Identify W (p, q) ≡ Wu(p) ∩W s(q), u ↔ u(0). When is W (p, q) a manifold?

3.9. Classical approach. f : M → R Morse, and g is a Riem metric on M .

(1) Thm 3.8: Prove Wu(p), W s(q) are smooth mfds of dim = |p|,m− |q|.
(2) Def. f : M → R is Morse-Smale for the Riem metric g on M if

Wu(p) ⋔ W s(q) ∀p, q ∈ Crit(f)

By Cor 1.4, (f, g) Morse-Smale ⇒ W (p, q) ≡ Wu(p) ∩W s(q) is mfd of
codim = (m− |p|) + |q|, hence of dimension:

dimW (p, q) = |p| − |q|.

Rmk. ⇒ W (p, p) = {constant p} since f decreases along the flow.
Rmk. ⇒ W (p, q) = ∅ if |p| ≤ |q| (p 6= q) since a non-constant flowline u
gives a 1-dim family of flowlines u(·+ constant).

(3) Thm [Kupka-Smale 1963]
(M, g) closed Riem mfd ⇒ generic f ∈ C∞(M,R) are Morse-Smale.

Example. Hwk 1: 1(ii) Morse-Smale, but 1(i) is not by Rmk (∃ 2 flowlines
between the index 1 crit pts)

Rmk. The Kupka-Smale Thm is stronger: for generic smooth vector fields,
the fixed pts are hyperbolic1 and Wu(p) ⋔ W s(q).

(4) One can describe how the Wu(p)’s fit together, so get a CW structure on
M and can do cellular homology.

3.10. Cellular homology for self-indexing f .

Thm (Thom, Smale, Milnor ∼ 1965). For f self-indexing, and g Morse-Smale,

H∗(M) ∼= homology of
⊕

p∈Crit(f)

Z p with differential

d p =
∑

|q|=|p|−1

(Su(p) · Ss(q)) q

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1so Wu,W s are injectively immersed submfds, see 3.8.

1
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where the intersection number Su(p) · Ss(q) is calculated2 inside f−1(c), where you

fix any regular value c ∈ (f(q), f(p)), and where:3

Su(p) = Wu(p) ∩ f−1(c) unstable sphere

Du(p) = Wu(p) ∩ (f ≥ c) unstable disc bounded by Su(p)

p

f = r + ε

f = r − ε

Ss(p) for c = r + ε

Du(p)

Ds(p)

Ss(p)

Su(p) for c = r − ε

Su(p)

Ds(p) for c = r + ε

Du(p) for c = r − ε

p

For f self-indexing Morse:

Ck = Hk(Mk,Mk−1)
∼= Hk (Mk/Mk−1 = bouquet of k-spheres one for each p ∈ Crit(f), |p| = k)
∼=

⊕

|p|=k

Z p

Fact.4 S ⊂ M ⊂ L⇒ LES5 H∗(M,S)
incl
−→ H∗(L, S)

quot
−→ H∗(L,M)

∂
−→ H∗−1(M,S).

Define. ∂ : Ck → Ck−1 from LES of Mk−1 ⊂ Mk ⊂ Mk+1.
Recall this is how cellular homology is defined (and one checks that ∂2 = 0).

Thm. H∗(M) ∼= H∗(C∗, ∂)

Proof. Use the 2 LES of triples:

0

��

hence this is ∼= ker∂|Ck

uujjjjjjjjjjjjjjj

so this is ∼= Hk(C∗, ∂)

ttiiiiiiiiiiiiiiiii

Ck+1

∂
&&N

N
N

N
N

N
N

N
N

N
N

N

// Hk(Mk,Mk−2)

��

// Hk(Mk+1,Mk−2) // 0

Ck

∂

��
Ck−1

⇒ Hk(C∗, ∂) ∼= Hk(Mk+1,Mk−2) ∼= Hk(Mk+1) ∼= Hk(M). �

2The point is that you can’t do Wu(p) · W s(q) because it has dimension ≥ 1 because of the
reparametrization freedom u(·+ constant).

3these are a sphere/disc if you choose c very close to f(p), using the local model of Thm 3.7,
and hence it’s true for any c ∈ (f(q), f(p)) by using the flow of −∇f (see Thm 3.5).

4Small, Medium, Large.
5Long Exact Sequence.
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Intersection Pairing.
A,B ⊂ X closed mfds, codim(A) = k, dimB = k, assume A ⋔ B = {p1, p2, . . .}
and assume A is co-oriented (the normal bundle νA is oriented6)

Recall the Thom isomorphism:

H0(A) ∼= Hk(X,X \A)
[pt] 7→ τ = Thom class = fibrewise an orienation generator of νA

Idea: it’s a family of generators of Hk(D
k, ∂Dk) where Dk is the disc in the fibre.

Thm 1.

Hk(B)
incl
−→ Hk(X)

quot
−→ Hk(X,X \A)

[B] 7→ [B] 7→ (A · B) τ.

Proof. Localize problem: pick disjoint open balls Ui around pi in B. By naturality
of the Thom iso

Hk(Ui, Ui − pi)
incl
∼= Hk(X,X \A)

[Ui, Ui − pi] 7→ ±τ

where± is the intersection number ofA,B at pi (since you can check the intersection
number is the comparison of the generator [Dk, ∂Dk] for (νA)pi

with [Ui, ∂Ui]).

A

B

∂Ui

Dk

∂Dk

p

νA
Ui

pi

Now globalize:

Hk(B)

''P
P

P
P

P
P

P
P

P
P

P
P

// Hk(X) // Hk(X,X \A)

Hk(B,B \A ∩B)
∼=

excision
// ⊕

iHk(Ui, Ui − pi)

OO

�

Thm 2. Ck+1 → Ck, pi 7→
∑

j(S
s(qj) · Su(pi)) [D

u(qj)]

(intersecting inside f−1(c), where one can take c = k + 1
2 ).

6you can ignore orientations if you count intersections modulo 2.
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Proof. For simplicity, do the case where Ck+1 is generated by just p, |p| = k + 1
and Ck by just q, |q| = k (the proof easily generalizes).

H0(S
s(q))

∼=Thom

��
Hk(S

u(p))

i

��

(∗) // Hk(f
−1(c),f−1(c)\Ss(q))

r

��
Ck+1

� //[Du(p)]

∂

//

∼
excision// Hk+1(Mk+1\(f<c),f−1(c))

bdry// Hk(f
−1(c))

[Su(p)]

i

��

Hk(Mk−1∪Du(q),Mk−1∪(Du(q)−q))

deformation

retraction

��
Hk(Mk)

quot

))SSSSSSSSSSSSSSSSS

Hk(Mk−1∪Du(q),Mk−1)

i

��
Ck

where i stands for “inclusion”, r is the (restriction of the) retraction of Mk onto
Mk−1∪Du(q) of Thm 3.7, and the arrow “deformation retraction” pushes Du(q)−q
away from q and into Mk−1.

Finally, one can check that this diagram commutes.7

By Thm 1, the arrow (∗) is

[Su(p)] 7→ (Ss(q) · Su(p)) τ

and the right column is [pt] 7→ τ 7→ [Du(q)] ∈ Ck (easy exercise). �

3.11. Modern vs classical.

Def (Witten (1982)). The Morse complex is MC∗ =
⊕

p∈Crit(f) Z p. For p 6= q ∈

Crit(f) the moduli space of Morse trajectories8 is

M(p, q) = W (p, q)/R

where the R action by time-shifting identifies u ∼ u(·+ constant).
The Morse differential is

∂p =
∑

|q|=|p|−1

#M(p, q) · q

where #M(p, q) counts the number of elements with orientation signs (exercise:
this agrees with Su(q) · Ss(p)).

Cor. For a self-indexing Morse function f and a Morse-Smale metric g on a closed

manifold M , the Morse differential satisfies d2 = 0 and the Morse homology9 is

isomorphic to ordinary homology

MH∗(f) ∼= H∗(M).

7the two big columns commute at the level of topological maps if you replace i : f−1(c) → Mk

by r, and then since r∗ = i∗ on homology it commutes also at the level of homology.
8called instantons or tunneling paths by physicists.
9MH∗(f, g) = H∗(MC∗, d).
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3.11. Modern vs classical (continued).

(f, g)
perturb f +3 Wu(p) ⋔ W s(q) +3 W (p, q) mfd +3 M(p, q) = W (p, q)/R mfd

f Morse

modern approach

perturb g

.6
∀p 6= q ∈ Crit(f) dim = |p| − |q| dim = |p| − |q| − 1

Rmk. From a dynamical systems perspective, the natural object to perturb is the
dynamical system: f . You would not “shake the universe” to get the equations that
you want. The modern approach is however reasonable: you can never measure
exactly what the Riemannian metric g is, so you can always assume it is generic.

Historical context:

1988 Floer: M(p, q) = zero set of a Fredholm section of a Banach vector bundle
and proved smoothness & compactness theorems

1989 Floer: proved (an infinite dimensional generalization of) ∂2 = 0,
and MH∗(f) ∼= H∗(M) using the “Conley index”1

1990 Salamon: proved MH∗(f) ∼= H∗(M) using the Conley index.

Importance of the modern approach:

Need to avoid 3.9 (i): in infinite dimensional generalizations of Morse theory,

(1) Wu(p),W s(q) are usually not defined2

(2) and even when they are defined, they are usually infinite dimensional.3

Date: May 2, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1which is essentially a sophisticated dynamical version of cellular homology.
2because flows are badly behaved in infinite dimensions.
3So you have a bad intersection theory. Example: take the space of sequences of real numbers.

You can shift sequences by a fixed amount without losing information, so you can arbitrarily
increase codimensions of subsets, so can deform any two proper subsets so that they never intersect.

1
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3.12. Modern generalizations. [Non-examinable]

Homology Manifold Morse function f x ∈ Crit(f) −∇f flowline inM(x, y)

Morse u : R→ M

(MH) Mn closed f : M → R x ∈M : dxf = 0 ∂su = −∇f

Applications: count # of critical points of a function.

∞-dim LN = C∞(S1, N) E : LN → R x = closed geodesic u : R× S1 →M

MH free loop space E(x) =
∫ 1

0
1
2
|x′|2 dt of period = 1 ∂su = −∇E

Applications: count # of closed geodesics.

Symplectic L(T ∗M) AH(x)=−
∫
x
p dq+

∫
x
1
2
|p|2 x = closed geodesic Floer’s eqn u :R×S1→T ∗M

(SH) T ∗M coords (q, p), ω=d(pdq) (if x contractible, it of period = 1 ∂su = −J∂tu−∇
1
2
|p|2

=dp ∧ dq symplectic (closed equals “area”
∫
x
ω of disc T ∗M∼=TM ∋(x, x′) (compare Cauchy-Riemann

2-form ω s.t. ωn = volT∗M ) x bounding x (Stokes)) eqns: ∂su = −i∂tu on C)

Applications: count # of closed geodesics.

Floer L0N = contractible loops AH : L0N → R Hamiltonian orbits Floer’s eqn

(FH) (N2n, ω) symplectic AH(x) = −
∫
x
ω +

∫
x
H x′ = XH (x) u : R× S1 →M

closed mfda (ω(·, XH ) = dH) ∂su = −J∂tu−∇H

Applications: count # of contractible Hamiltonian orbits.

Lagrangian Ω(L0, L1)= paths in (N2n, ω) “holomorphic” strips

FH from L0 toL1 (Lagrangian A(x) = −
∫
x
ω x ∈ L0 ∩ L1 u : R× S1 → N

submfds:b ω|L=0,dimL=n) ∂su = −J∂tu

x

L0

L1
basept

x

L0

x

L1

x y

Applications: package up LFH’s ∀Lagrangians and all
dictionary
←→ Category of coherent sheaves on a

algebraic operations ⇒Fukaya category (Fukaya,Seidel,. . .) mirror manifold

SYMPLECTIC TOPOLOGY
mirror symmetry

←→ ALGEBRAIC GEOMETRY

Applications: Heegaard Floer homology “=” LFHc for 3-mfds (Ozsváth-Szabo,. . . )

⇒ invariants of knots (detects knot genus, categorifies Alexander polynomial)

Instanton B = {connections x on P}/ ∼ Chern-Simons functional flat connections x u : R→ B

(IH) (∼gauge eq., P → Y principal CS(x)= 1

8π2

∫
Y
Tr(x ∧ dx+ ∂su = − ∗ Fu (∗ =Hodge

SU(2)-blde, Y closed 3-mfd) + 2
3
x ∧ x ∧ x) star, Fu=curvature of u(s))

Seiberg- {spinc-connections x Chern-Simons-Dirac monopoles x 4-dim SW eqns

-Witten with section Y → S functionald

(HM) to a reference spin bdle}

Applications: invariants of 4-mfds (a 4-dim coborism gives a hom of HM∗’s of boundary 3-mfds)

Taubes (2010): Seiberg-Witten homology ∼= Heegaard Floer homology

aMeaning, ω is a closed 2-form with ωn = volM . Usually you assume
∫
2-spheres

ω = 0 so that

AH : L0N → R is well-defined independently of the choice of disc x bounding x. This ω[π2(M)] =
0 condition also prevents an issue called “bubbling”: non-constant holomorphic spheres don’t
appear because they would have positive ω-area.
bCalled (Lagrangian) branes by physicists.
cLoosely speaking, you mimick the construction of LFH for N = the symmetric product Symg(Σg)
of the surface Σg arising in a Heegaard splitting of the 3-mfd, with L0 =

∏
αi, L1 =

∏
βi for

appropriate loops αi, βi which generate the H1 of Σg.
dSee Kronheimer and Mrowka, Monopoles and Three Manifolds.
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3.13. Key aspects of modern homology theories.

(1) Moduli Space: M(x, y) = zero set of some Fredholm map;
(2) Transversality: perturb parameters ⇒ M(x, y) smooth mfd;
(3) Dimension: index of some Fredholm operator4 in terms of x, y gradings;
(4) Compactness & Gluing: M(x, y) compact if allow “broken solutions”;
(5) Orientations: for Z coefficients, need to choose5 orientations for M(x, y);
(6) Invariance: H∗(⊕x∈Crit(f)Zx, ∂ counting M(x, y)’s) indep of parameters.

4. Transversality Theorem

4.0. Transversality for M(p, q): outline of the proof.
For f : M → R smooth Morse function, consider

E = all vector fields along paths

��

bb

F (u, g) = ∂su−∇gf

U ×G = {all paths R → M from p to q} × {all metrics}

where ∇gf is ∇f for g: g(∇gf, ·) = df . Then notice:

Mg(p, q) = ( zero set of Fg = F (·, g))

Aim: Parametric transversality ⇒ Mg(p, q) is smooth mfd for generic g.

What is needed: U,G,E Banach mfds, F ⋔ 0E, DFg Fredholm.

What Banach mfd structure?

• Cannot use C∞: not Banach

• G = {Ck-metrics on M} X

• ∂su = −∇gf and u ∈ C1 ⇒ u is Ck+1:

(∂s)
k+1u = (∂s)

k(−∇gf).

• C1 is not so good on non-compact domains like R. Also: want to integrate∫
R
|u′|2 dt and

∫
R
|∇fu|2 dt, but C1 ∩ L2 is not Banach. Try W 1,2 instead.

• W 1,2 is great since Hilbert: for smooth u, v : R → M ⊂ Ra, inner product6

〈u, v〉1,2 = 〈u, v〉L2 + 〈∂su, ∂sv〉L2 .

Recall W 1,2 is obtained by completing C1∩L2 for the induced norm ‖·‖1,2.
Hilbert spaces are great because you can tell if an operator is surjective by
studying the subspace perpendicular to the image.

• First attempt:

U = {u ∈ W 1,2(R,M) : u → p, q at the ends} (not quite correct)

E = {L2 − vector fields over paths}
However, various problems arise:

4the linearization of the Fredholm map in (1).
5chosen compatibly with respect to the gluing (4) of ∂M(x, y) ontoM(x, y).
6〈u, v〉L2 =

∫
u(s) · v(s) ds using the dot product in Ra after embedding M →֒ Ra.
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• Does u → p, q even make sense? For smooth u ∈ W 1,2 get

|u(b)− u(a)| = |
∫ b

a
(∂su) ds|

≤
∫ b

a
|∂su| ds

≤ (
∫ b

a 12)1/2(
∫ b

a |∂su|2)1/2

≤
√
b− a · ‖u‖1,2

does this mean that elements in W 1,2 can be represented by a continuous
function? (in which case u → p, q makes sense).

• even if u is continuous, F involves “∂su”: surely u is not C1 in general?
• finally, W 1,2(R,M) doesn’t quite make sense: a constant R → {x} ∈ M ⊂
Ra has norm

∫
R
|x| ds = ∞ (for x 6= 0), and most other maps R → M also

have infinite norm. So in fact we want u to be locally W 1,2, and we require
that u is W 1,2 at the ends with norms calculated in such a way that the
critical points have norm zero. This requires some care.

Conclusion: we need to review the Sobolev spaces W 1,2 before moving on. Then
we will define G,U,E properly, and prove they are Banach mfds. Finally we will
prove the hypotheses required for parametric transversality. The upshot will be
that the moduli spaces M(p, q) are smooth mfds for generic metrics g.
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SOBOLEV SPACES

The book by Adams, Sobolev spaces, gives a thorough treatment of this material.
We will treat Sobolev spaces with greater generality than necessary (we only use
W 1,2 and L2), since these spaces are ubiquitously used in geometry.

4.1. W k,p spaces on Euclidean space. Notation: k ≥ 0 integer, 1 ≤ p < ∞ real.

Def. For an open set X ⊂ R
n, W k,p(X) = W k,p(X,R) is the completion1 of

C∞(X) = {smooth u : X → R} with respect to the ‖ · ‖k,p-norm
2

‖u‖k,p =
∑

|I|≤k

‖∂Iu‖p =
∑

|I|≤k

(
∫

X

|∂Iu|p dx

)1/p

W k,∞(X) is defined analogously using ‖u‖k,∞ =
∑

|I|≤k

sup |∂Iu|.

Def. W k,p(X,Rm) is the completion of C∞(X,Rm) using

‖u‖k,p =
∑

i=1,...,m

‖ui‖Wk,p(X)

where ui are the coordinates of u. An equivalent norm3 can be defined using the

previous definition, replacing |∂Iu| by |∂Iu|Rn .

Rmks.

(1) C∞ is dense in Ck with respect to ‖ · ‖k,p, so completing Ck is the same as

completing C∞. Fact. When ∂X smooth (or C1), C∞(X) ⊂ W k,p(X) is

dense (X = closure of X ⊂ R
n), so it is the same as completing C∞(X).

(2) W k,p
0 is the completion of C∞

c inside W k,p, where4

C∞
c (X) = {smooth compactly supported functions φ : X → R}

These spaces typically arise in geometry when you globalize a locally defined

function after multiplying by a bump function.

Example. φ ∈ C∞
c (X), u ∈ W k,p(X) ⇒ φ · u ∈ W k,p

0 (X).

Warning. Usually W0 6= W since the u’s must = 0 on ∂X, unlike C∞(X).

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1it is always understood that we complete the subset of C∞ of u’s with bounded ‖u‖k,p.
2where I = (i1, i2, . . . , in), ∂I = (∂1)i1 · · · (∂n)in , ∂j = ∂

∂xj
, |I| = i1 + · · ·+ in.

3Two norms ‖ · ‖, ‖ · ‖′ are equivalent if ∃ constants a, b > 0 such that a‖x‖ ≤ ‖x‖′ ≤ b‖x‖, ∀x.
4The support of φ is supp(φ) = {x ∈ X : φ(x) 6= 0}.

1
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(3) W k,p
loc = locallyW k,p maps= completion of C∞

c with respect to the topology:5

un → u ⇔ un|C → u|C ∀C ⊂⊂ X

Loosely think of this as saying: the restriction to any compact is W k,p.

Warning. This is not a normed space, but it is a complete metric space.

(4) All these spaces are separable: there is a countable dense subset, namely

the polynomials with rational coefficients.

4.2. Lp theory.

Lp = W 0,p with ‖u‖p =
(∫

X
|u|p dx

)1/p
, and L∞ = W 0,∞ with ‖u‖∞ = sup |u|.

Recall Hölder’s inequality6

∫

X

|u · v| dx ≤ ‖u‖p‖v‖q for 1
p + 1

q = 1.

Lemma. p ≥ q ⇒ vol(X)−1/q · ‖u‖q ≤ vol(X)−1/p · ‖u‖p
⇒ Lp(X) →֒ Lq(X) is bounded for X bounded.

Proof. For u ∈ C∞, let A =
∫

|u|p, then

‖u‖q
‖u‖p

=
(
∫

|u|q)1/q

A
1
p

=

(

∫
(

|u|p

A

)q/p

· 1

)1/q

≤

[

(
∫

|u|p

A

)q/p

· (
∫

1)1−
q

p

]1/q

= vol(X)
1
q
− 1

p

using Hölder in the inequality. Therefore (C∞ ∩ Lp, ‖ · ‖p) → (C∞ ∩ Lq, ‖ · ‖q) is a
bdd inclusion, so we can complete it:7 Lp → Lq, [un] 7→ [un]. �

Example. L∞(X) ⊂ Lp(X) is clearly true for bdd X , and clearly false for X = R.

Cor. p ≥ q ⇒ W k,p(X) →֒ W k,q(X) is bdd for X bdd.

Motivation. k > k′ ⇒ W k,p →֒ W k′,p is clearly bounded, and one might even
suspect that it is compact because of a mean value thm argument. So can one
combine this with the Corollary and get optimal conditions on k, p simultaneously?

Def. Recall a linear map L : X → Y is bounded if ‖Lx‖ ≤ c‖x‖ ∀x, and compact

if any bounded sequence gets mapped to a sequence having a cgt subsequence.8

4.3. Sobolev embedding theorems. Let9

p∗ =

{ np
n−kp if kp < n

∞ if kp ≥ n

From now on, assume X ⊂ R
n open, ∂X smooth (or C1).

Thm. W k,p(X)
bdd
→֒ Lq(X) for p ≤ q ≤ p∗ (require q 6= ∞ if kp = n).

Rmk. For X bdd one can omit p ≤ q by the Lemma.

5recall C ⊂⊂ X means C,X open and C ⊂ C ⊂ X.
6The generalization of the Cauchy-Schwarz inequality (p = q = 2).
7the inequality shows that Lp-Cauchy implies Lq-Cauchy, and the map [un] 7→ [un] is well-

defined since un → 0 in Lp implies un → 0 in Lq , again by the inequality.
8equivalently: the closure of the image of the unit ball is compact.
9Unexpected results happen at the Sobolev borderline kp = n. Example: log log(1 + 1

|x|
) on

the unit ball in R
n is W 1,n but neither C0 nor L∞.
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Cor. Under the same assumptions, W k+j,p(X) →֒ W j,q(X) is bdd.

Proof. Idea: u ∈ W j,q ⇔ ∂Iu ∈ Lq, ∀|I| ≤ j. For smooth u (afterwards complete):

‖u‖j,q =
∑

|I|≤j

‖∂Iu‖q ≤ c
∑

|I|≤j

‖∂Iu‖k,p ≤ c′ ‖u‖k+j,p. �

Thm.10 W k+j,p(X)
bdd
→֒ Cj

b (X) for kp > n

Thm (Rellich). X bdd & inequalities are strict ⇒ above embeddings are compact.

Example. W 1,2(R,Rm) →֒ C0
b (R,R

m) = {bdd cts R → R
m} (kp = 2 > n = 1X).

W 1,2(R,Rm)
restr
−→ W 1,2((0, 1),Rm) →֒ C0([0, 1],Rm) is compact.

Idea of Proof of First Theorem for kp < n, X bdd
Note: kp < n, q ≤ p∗ ⇔ 0 > k − n

p ≥ −n
q . By induction reduce to k = 1:

u ∈ W k,p ⇒ u, ∂ju ∈ W k−1,p

⇒ (induction) u, ∂ju ∈ Lp′

0 > k − 1− n
p = 0− n

p′

⇒ u ∈ W 1,p′

⇒ (k = 1) u ∈ Lq 0 > 1− n
p′

= k − n
p ≥ 0− n

q

To prove W 1,p →֒ Lq seek

‖u‖q ≤ c‖du‖p ∀u ∈ C∞
c (X) (fails for u = 1) (∗)

Sketch: You start from fund. thm of calculus “u(x) =
∫ xi

−∞
∂iu(· · · ) dxi” (p = 1),

then everything else11 is repeated integrations and Hölder’s inequalities. For general
p, you just use clever exponents.

Fact. can extend u ∈ W 1,p(X) to a compactly supported u ∈ W 1,p(Rn) in a way
that ‖u‖W 1,p(Rn) ≤ c‖u‖W 1,p(X). Then approximate by C∞

c (Rn) and use (∗). �

Rmks.

(1) Can replace W by W0 (then no conditions on ∂X are needed).

(2) (∗) holds ∀u ∈ W 1,p
0 (X) (0 > 1− n

p > 0− n
q ), a version of Poincaré’s ineq.

(3) kp > n is wonderful since W k,p ⊂ C0, so you can represent elements as

continuous functions, avoiding the Cauchy rubbish.

4.4. Derivatives on W k,p.
Method 1: via completions

∂s : (C
∞, ‖ · ‖k,p) → (C∞, ‖ · ‖k−1,p)

∂s : W
k,p → W k−1,p, [un] → [∂sun]

Method 2: for p = 2, use the Fourier transform to replace ∂I by multiplication
by xI (up to a constant factor). See Hwk 11.

Method 3: Using weak derivatives
First we want to avoid completions, and work with actual functions:

Lp(X) = {Lebesgue measurable u : X → R with ‖u‖p < ∞} / u∼v if u=v
almost everywhere

10using ‖u‖Cj =
∑

|I|≤j sup |∂Iu| on Cj(X): call Cj
b
the subset of u’s with bdd ‖u‖Cj .

11If you’re curious, see Evans, Partial Differential Equations, p.263.
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For our purposes, we don’t need a deep understanding of measure theory, just a
vague nod: Lebesgue measure is a good notion of volume for certain subsets of Rn.
These subsets are called measurable. For example open subsets and closed subsets.
The notion of volume for cubes and balls is what you think, and there are various
axioms, the most important of which is: the volume of a countable disjoint union
of subsets is the sum of the individual volumes. Define:

f is measurable if f−1(any open set) is measurable.

Examples. Continuous functions, since f−1(open) is open. Step functions (for
example f = 1 on some open set, f = 0 outside it). Also: can add, scale, multiply,
take limits of measurable fns to get measurable fns.12

Convention. If u ∼ continuous fn, then we always represent u by the cts fn!

Fact. The above (Lp(X), ‖·‖p) is complete and C∞(X) ⊂ Lp(X) dense, so Lp(X) ∼=
completion of (C∞(X), ‖ · ‖p) (as usual, only allow smooth u with ‖u‖p < ∞).

Def. fI ∈ Lp(X) is an I-th weak derivative of f if ∀φ ∈ C∞
c (X),

∫

X

fI · φdx = (−1)|I|
∫

X

f · ∂Iφdx.

For smooth f this is just integration by parts with fI = ∂If .

Exercise. weak derivatives are unique if they exist. So just write fI = ∂If .

Key Fact. if fI is cts, then the usual ∂If exists and equals fI .

See Lieb & Loss, Analysis, 2nd ed. Non-examinable: If u ∈ W
k,p

loc
then u ∈ W

1,1
loc

by Lemma 4.2 (loc gives finite

vol), hence the FTC holds (L&L p.143): u(x + y) − u(x) =
∫ 1
0 y · ∇u(x + ty) dt for a.e. x, all small y. Their

proof shows that this is true for all x if u,∇u are continuous. The key fact is proved in L&L p.145. Example:

Suppose u ∈ W1,2(R, Rm) with cts weak ∂su, then
u(s+y)−u(s)

y
=

∫ 1
0 ∂su(s+ ty) dt → ∂su(s) as y → 0 by cty,

so u is C1 with deriv = weak deriv. Proof of FTC for u ∈ W1,2(R, R): for φ ∈ C∞

c (R,R), write φ̃(s) = φ(s− ty).

∫
φ(s)(

∫ 1
0 y · ∂su(s + ty)dt) ds =

∫ 1
0 y(

∫
φ(s) · ∂su(s + ty) ds)dt = −

∫ 1
0

∫
y · ∂sφ̃(s) · u(s) ds dt

=
∫ ∫ 1

0 ∂tφ̃(s) dt u(s) ds =
∫
φ(s − y)u(s)ds −

∫
φ(s)u(s) ds =

∫
φ(s)(u(s + y) − u(s)) ds.

Hence
∫ 1
0 y · ∂su(s + ty)dt = u(s + y) − u(s) for a.e. s (all s if u, ∂su cts (u is cts by Sobolev)).

Rmks.

(1) Weak derivatives behave as you expect:

∂I : W k,p → W k−|I|,p is linear.

Also φ ∈ C∞
c , u ∈ W k,p ⇒ φ · u ∈ W k,p with ∂I(φ · u) = Leibniz formula.

(2) Observe:

u ∈ W k,p(X) ⇒ u = (‖ · ‖k,p-Cauchy sequence of smooth un : X → R)
⇒ ∂Iun are ‖ · ‖p-Cauchy ∀|I| ≤ k
⇒ ∂Iun → uI in Lp, some uI ∈ Lp(X) (by completeness of Lp).

But
∫

∂Iun · φ = (−1)I
∫

un · ∂Iφ, take n → ∞, deduce uI = weak derivs!

Thm. Define

W k,p(X) = {u ∈ Lp(X) : u has weak derivatives ∂Iu ∈ Lp(X), ∀|I| ≤ k}

then C∞(X)∩W k,p(X) ⊂ W k,p(X) dense, so W k,p(X) ∼= completion construction.

Pf uses a standard method to smoothly approximate measurable fns:mollifiers.13

12Non-examinable: Any measurable fn is a limit of simple fns. Simple fns are linear combina-
tions of characteristic fns χS of measurable subsets S (χS(s) = 1∀s ∈ S, else χS = 0).

13An explicit η is the following: c · exp( 1
|x|2−1

) for |x| ≤ 1, and 0 otherwise.
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0

unit ball

R
n

R

η

η : Rn → R smooth bump function,
normalized so that

∫

Rn η dx = 1.

For ε > 0, define14 ηε(x) =
1
εn · η(xε )

Observe: ηε ∈ C∞(Rn,R), supp ηε ⊂ ε-ball,
and

∫

Rn ηε dx = 1.

For u : X → R in L1
loc(X), define ε-mollification as a convolution:

uε(x) = (ηε ∗ u)(x)
=

∫

X
ηε(x − y)u(y) dy

=
∫

ε-ball ηε(y)u(x− y) dy

defined for x ∈ Xε = {points of X at distance > ε from ∂X}.

Fact.15

(1) uε(x) only depends on values of u near x (Pf. 2nd integral.)
(2) uε ∈ C∞(Xε) (Pf. differentiate 1st integral.)
(3) uε(x) → u(x) for almost any x as ε → 0
(4) u continuous ⇒ uε → u uniformly on compacts (hence C∞ ⊂ C0 is dense)
(5) u ∈ Lp

loc(X) ⇒ uε → u in Lp
loc(X)

Cor. u ∈ W k,p(X) ⇒ uε → u in W k,p
loc (X)

Proof. Easy computation:

∂Iuε = ηε ∗ ∂
Iu (in Xε)

but ∂Iu ∈ Lp(X), so by (5), ηε ∗ ∂
Iu → ∂Iu in Lp

loc. �

This corollary essentially implies the theorem by a clever16 partition of unity
argument (non-examinable).

4.5. Elementary proof of Sobolev/Rellich for W 1,2.

Theorem 1. W 1,2(R)
bdd
→֒ C0

b (R) = {bdd cts R → R}, and W 1,2(R)
cpt
→ C0([−S, S]).

Proof. For u ∈ W 1,2, pick un ∈ C0∩W 1,2 converging to u in W 1,2 (by mollification,
C0 ∩W 1,2 ⊂ W 1,2 is dense). So un is W 1,2-bdd and by Cauchy-Schwarz

|un(b)− un(a)| ≤

∫ b

a

|∂sun| ds ≤
√

|b− a| · ‖un‖1,2 ≤ const ·
√

|b− a| (∗)

so un is equicts. To check un is equibdd, suppose un(a) is unbdd (fixed a). By (∗)
∣

∣

∣

∣

min
b∈[a−1,a+1]

un(b)− un(a)

∣

∣

∣

∣

≤ C

so that minimum is also unbdd. So un is L2-unbdd, contradicting W 1,2-bdd.

14as ε → 0, intuitively “ηε →Dirac delta”.
15If you’re curious: Evans, Partial Differential Equations, p.630.
16If you’re curious: Evans, Partial Differential Equations, p.251-254. The Corollary gives the

Thm for C∞(X), and to get C∞(X) one needs a little care near the boundary ∂X because the
convolution requires having an ε-ball around x inside the domain. The fix is to locally (on a small
open V ⊂ X) translate u: ũ(x) = u(x− cε~n) where ~n is the outward normal along ∂X and c is a

large constant. Then ηε ∗ ũ ∈ C∞(V ) cges to u in W k,p(V ).
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By Arzela-Ascoli, there is a subsequence un|[−S,S] → v in C0[−S, S], so also in

L2[−S, S], so v = u|[−S,S], so u is cts since S was arbitrary.

Need to check u is C0-bounded. As in (∗), |u(s+ 1)− u(s)| ≤ ‖u|[s,s+1]‖1,2, so

|u(s+m)−u(s)| ≤ ‖u|[s,s+1]‖1,2+ · · ·+‖u|[s+m−1,s+m]‖1,2 = ‖u|[s,s+m]‖1,2 ≤ ‖u‖1,2

so u is bdd at ±∞, hence bdd on R by cty. �

4.6. W k,p for manifolds. Let Nn be a compact mfd and Mm any mfd.
W k,p(N) = W k,p(N,R) and W k,p(N,M) are the completion of C∞(N) and

C∞(N,M) w.r.t. the ‖ · ‖k,p norm defined below. Equivalently, they are the space
of measurable functions/maps17 which are k-times weakly differentiable (in the
charts below) and which have bounded ‖ · ‖k,p-norm.

Def. W k,p(N,Rm) for Nn compact mfd: pick a finite cover by charts18

ϕi : (ball Bi ⊂ R
n) → Ui ⊂ N

For u : N → R
m, define ‖u‖k,p =

∑

‖u ◦ ϕi‖Wk,p(Bi,Rm)

W k,p(N,M), any mfd Mm: fix smooth embedding j :M →֒R
a. For u : N→M let19

‖u‖k,p = ‖j ◦ u‖Wk,p(N,Ra).

Rmk.

(1) N compact ⇒ get equivalent norms if change charts

(2) X,Y ⊂ R
n open, k ≥ 1, call φ : X → Y a Ck-diffeo if: φ is a homeomor-

phism, φ ∈ Ck(X,Y ), φ−1 ∈ Ck(Y ,X) and both have bdd Ck-norm.

Fact. W k,p(Y )
◦φ
−→ W k,p(X) is bdd with bdd inverse.

Cor. N compact ⇒ get equivalent norm if change ϕi, Ui.

(3) φ : X → Y has bdd Ck-norm ⇒ W k,p(N,X)
φ◦
−→ W k,p(N, Y ) bdd

Rmk. just bound φ ◦ u in terms of ‖φ‖k,p, ‖u‖Ck. If you wanted to bound

φ ◦ u in terms of ‖φ‖k,p, ‖u‖k,p, then even for smooth φ you need kp > n.
Cor. M compact⇒choice of j does not matter (for non-cpt M it matters)

4.7. W k,p for vector bundles. For a vector bundle E → N ,

W k,p(E) = {W k,p sections u : N → E}

In this case, you can avoid picking j:

Bi × R
r

ϕi
∼= Ui × R

r
triv
∼= E|Ui

view u ◦ ϕi as a map Bi → R
r

‖u‖k,p =
∑

‖(ρi · u) ◦ ϕi‖Wk,p(Bi,Rr)

17W k,p(N,M) ⊂ W k,p(N,Ra), the u : N → R
a with u(n) ∈ M ⊂ R

a for almost every n ∈ N .
18strictly speaking these are parametrizations: they go from R

n to N . If you want charts
ϕi : Ui → R

n, then you need bump functions ρi subordinate to the Ui:
∑

‖(ρi·u)◦ϕ
−1
i ‖W1,2(Rn,R).

19Using charts on M would be a bad idea: think about why that would not work.
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Alternatively, pick: a Riem metric gN on N , a metric gE on E (smoothly varying
inner product for each fibre), and a connection ∇ on E. Then define:20

‖u‖k,p =
∑

i≤k

(
∫

N

|∇iu|p volN

)1/p

Lemma 2. N compact ⇒ those two definitions give equivalent norms.

Proof. Choice of local trivializations doesn’t matter since they change by multipli-
cation by a smooth matrix-valued map (use Rmk 3 above).

Pick local trivializns using smooth local orthonormal sections. So | · | differs from
| · |Ra only by use of g∗N in Ωi(N) directions. So get bounds since N is compact.

Locally∇ = d+A (A local section of End(E)), hence can bound u, . . . ,∇i−1u,∇iu
in terms of ‖A‖∞, u, ∂Iu (|I| ≤ i). Vice-versa can bound ∂Iu in terms of ‖A‖∞,
∇iu (i ≤ |I|) by the triangle inequality. �

4.8. Sobolev theorems for manifolds. For a compact mfd N , any mfd M :

Lp(N)
bdd
→֒ Lq(N) for p ≥ q (since vol(N) < ∞)

W k,p(N,M)
bdd
→֒ W k′,p′

(N,M) for

{

k ≥ k′

k − n
p ≥ k′ − n

p′

(p′ 6=∞ if kp=n)

(compact if strict > ’s)

W k,p(N,M)
bdd & cpt

→֒ Ck′

(N,M) for k − n
p > k′

Warning. Fails for non-compact N , unless you have control of the geometry at
∞: for example for N = R,Rn the above still holds.

Def. W k,p
loc (N,M) = {u : N → M : u|C ∈ W k,p(C,M), ∀C ⊂⊂ N}

Warning. the W k,p
loc are not normed, but they are complete metric spaces with the

topology: un → u in W k,p
loc ⇔ un|C → u|C in W k,p(C,M)∀C ⊂⊂ N .

Exercise. u ∈ W k,p
loc ⇔ ∃un ∈ C∞

c , un → u in W k,p
loc . So W k,p

loc
∼= completion defn.

Cor. Sobolev embeddings hold for21 Wloc, Lloc, Cloc even for non-compact N .

Proof. u ∈ W k,p
loc (N,M) ⇒ u|C ∈ W k,p(C,M) ⇒ u|C ∈ W k′,p′

(C,M) ⇒ u ∈

W k′,p′

(N,M) �

20where ∇0u = u, ∇i : C∞(E) → Ωi(N) ⊗ C∞(E) (extending ∇ to higher forms by Leibniz:

∇(ω⊗ s) = dω⊗ s+ω⊗∇s), and volN =
√

| det gN | dx1 ∧ · · ·∧ dxn, and the norm in the integral
combines the norm from gE on E and the norm from the dual metric g∗

N
on T ∗N (which induces a

metric on the exterior product ΛiT ∗N - explicitly, use gN to locally define an orthonormal frame
for TN by Gram-Schmidt, declare the dual of that to be an o.n. frame for T ∗N , this determines
g∗
N
, and taking ordered i-th wedge products you declare what an o.n. frame for ΛiT ∗N is).
21Ck

loc
just means Ck-convergence on compact subsets.
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4.9. Sobolev setup for the transversality theorem. Let M be a closed man-
ifold, f : M → R a Morse function, and fix critical points p 6= q ∈ Crit(f) and a
reference metric gM for M (all norms will refer to gM , not the variable metric g).

Consider the bundle mentioned in 4.0:

E

��

]]

F (u, g) = ∂su+ f ′

g(u)

U ×M

where:1

G = {Ck-metrics on M} (fix k ≥ 1)

U = {u ∈ W
1,2
loc (R,M) : u(s) → p, q as s→ −∞,+∞ and for large S we have :

u(s) = expp(ξ(s)) for s ≤ −S, some ξ ∈W 1,2((−∞,−S), TpM)

u(s) = expq(ξ(s)) for s ≥ +S, some ξ ∈W 1,2((+S,∞), TqM)}

E = {L2-vector fields along the paths u ∈ U}

By Sobolev, W 1,2
loc ⊂ C0

loc(R,M), so the u ∈ U are continuous, and requiring
convergence to p, q at ±∞ makes sense.
E is a vector bundle over U × G with fibre L2(u∗TM), the L2-sections of the

pull-back bundle u∗TM → R whose fibre is (u∗TM)s = Tu(s)M over s ∈ R.

Lemma. G is a smooth Banach manifold.

Proof. G ⊂ Ck(Sym2(T ∗M)) is an open subset of the space2 of symmetric 2-
forms on TM , since positive definiteness is an open condition. We have a regular
retraction π : U → M of a tubular nbhd of j : M →֒ R

a (so π ◦ j = id). Recall by
1.6, that for a Banach space B and a closed subset S ⊂ B,

S smooth retract of an open nbhd of S ⊂ B ⇒ S ⊂ B is a submfd.

Also recall that for any map ϕ : A → B of mfds, g metric on B, the pull-back
metric is defined by (ϕ∗g)a(v, w) = gϕa(dϕ · v, dϕ · w) for v, w ∈ TaA.

Date: May 2, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1
Rmk. We cannot just say U ⊂ W 1,2(R,M): Sobolev spaces don’t make sense for non-

compact domains (unless you are considering sections of a bundle). Example: the constant
u : R → {p} ∈ M has

∫

R
|u(s)|2 ds = |p|2 ·

∫

R
1 ds = ∞ for |p| 6= 0 the norm of p ∈ M ⊂ R

a.

Similarly, continuous u converging to p, q have infinite L2-norm. So our Sobolev spaces would be
empty! We want each p ∈ Crit(f) to be considered to have zero norm, for that reason we chose
(canonical, using exp) charts around the critical points and require u to be W 1,2 in that chart.

2Example: g =
(

1 2
2 3

)

is the symmetric form dx⊗2+2dx⊗dy+2dy⊗dx+3dy⊗2, so g(∂x, ∂y) = 2.

1
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First note that

S = Ck(Sym2(T ∗M)) →֒ Ck(Sym2(T ∗U)), g 7→ π∗g

is a closed subset (injective since j∗π∗g = (πj)∗g = g). Secondly

Ck(Sym2(T ∗U)) → S, g 7→ π∗j∗g

is a retraction (since π∗j∗π∗j∗g = π∗(πj)∗j∗g = π∗j∗g). Finally, both these maps
are smooth since linear in g. Thus, by the above result, S is a smooth manifold,
hence also the open subset G is a smooth Banach manifold. �

Lemma. U is a smooth Banach manifold modeled on W
1,2
0 (R,Rm).

Proof. The reference metric defines and exp map, and by Cor 0.7: any C0-close
continuous paths u,w are homotopic through geodesic arcs joining u(s), w(s).

geodesic

w(s) = exp
u(s) v(s)

u(s)

Let ε > 0 be as in that Corollary. For each smooth u ∈ U , define

W = {expu(s) v(s) : v ∈W
1,2
0 (u∗DεTM)}

(so in particular, v(s) → 0 as s → ±∞). You can easily check that W ⊂ U , by
construction (this crucially uses the fact that u, exp are smooth maps, so expu v is
as smooth as v is). By Cor 0.7, and the density of C∞ maps inside W 1,2 maps, any
w ∈ U is within ε-distance of some smooth u ∈ U , therefore these W ’s cover U .

Let ∇ be the Levi-Civita connection for gM , then by parallel translation

R

R
m

u u∗TM ∼= R× R
m

so W 1,2
0 (u∗TM) ∼= W

1,2
0 (R,Rm), which is a Banach space. Thus the v are local

coordinates for U near u. You can easily check that transition maps on overlaps
are smooth, since they involve smooth maps u0, u1, exp. �

Rmk. For a Banach manifold M modeled on B, the tangent space is TmM = B

(compare with TxR
n ≡ R

n). For a chart ϕ :M ⊃ U → B define TM |U = ϕ(U)×B.

For another chart ψ : U ′ → B, the transition ϕ(U ∩ U ′) × B → ψ(U ′ ∩ U) × B is

(x, b) 7→ (x, dx(ψ ◦ ϕ−1) · b). In our example: TvW
1,2
0 (u∗DεTM) ≡W

1,2
0 (u∗TM)

Lemma. E is a smooth Banach vector bundle with fibre L2(R,Rm).

Proof. Consider parallel transport along geodesics:

u

exp
u(s)(t · v(s)) w = exp

u(s)(v(s))

R
m

R
m
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Pv : u∗TM
∼
−→ (expu v)

∗TM = w∗TM

Recall this map is smooth (since linear) and is an isometry. Now, consider its
dependence on v:

P :W 1,2
0 (u∗DεTM)× u∗TM

∼
−→

⋃

w∈W

w∗TM.

This is again smooth.3

Finally, consider parallel transporting L2-vector fields over u:

P : W 1,2
0 (u∗DεTM)× L2(u∗TM)

∼
−→ L2(

⋃

w∈W

w∗TM) = E|W .

This is well-defined since parallel transport is an isometry (so L2 sections map to L2

sections), and is invertible by doing parallel transport backwards. It is smooth for
the same reasons as before. As above, we can trivialize: L2(u∗TM) ∼= L2(R,Rm).
Thus we have obtained a trivialization of E|W :

E|W ∼=W × L2(R,Rm)

and two trivializations differ by smooth maps since u0, u1, exp are smooth. �

3Non-examinable: The ODE you solve is ∂t~x(t) = −Aexp
u(s)(tv(s))

((d expu(s))tv(s) ·v(s))·~x(t),

~x(0) ∈ Tu(s)M (where s ∈ R is fixed, t ∈ [0, 1] varies). Change v(s) to v(s) + λ~v(s): observe that

~x(1) is smooth in λ ∈ R because solutions of ODEs depend smoothly on initial conditions.
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4.9. Sobolev setup for transversality theorem (continued).

E

��

]]

F (u, g) = ∂su+ f ′

g(u)

U ×M

where f ′
g is ∇f calculated for g: g(f ′

g, ·) = df .

Lemma. F is a well-defined section.

Proof. The weak derivative ∂s : W 1,2 → L2 is well-defined so only f ′
g may be an

issue. Since f ′
g is Ck, it is L2 on compacts, so we just need to check that f ′

g(u) is

L2 near the ends. Locally near a critical point p = (x = 0):

|f ′

g(x)| ≤ c · |x| by Taylor, since f ′

g(p) = 0.

Hence |f ′
g(u)| ≤ c · |u|, so f ′

g(u) is L
2 near the ends since u is L2. �

Lemma. F is Ck.

Proof. Differentiating in the g direction: only f ′
g contributes, and

df = g(f ′

g, ·)

so locally f ′
g = g−1 · ∂f . This is linear in g−1, hence smooth in g−1. Finally,

inversion is smooth on non-singular matrices. So f ′
g is smooth in g.

Differentiating in the direction ~v ∈ W 1,2
0 (u∗TM) ≡ TvW

1,2
0 (u∗DεTM) (where u

is smooth):

DvF · ~v = ∇t|t=0(∂sw − f ′
g(w)) (see Hwk 12)

where w : R× [0, 1] → M w(s, t) = expv(s)(t~v(s))

t = 0v(s)

w(s, t)

~v(s)

= (∇s∂tw −∇tf
′
g(w))t=0 (using ∇ torsion-free (see Hwk 12))

= ∇s~v − (∇~vf
′
g)v

Note: ∇s = ∂s+A(∂sv)· is linear in v so C∞ in v, (∇~vf
′
g)v = (d(f ′

g)•+A(•) ·f ′
g)V :

the first term is Ck−1, A(•) is C∞, f ′
g is Ck, so (∇~vf

′
g)v is1 Ck−1 in v. �

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1The key point is that we never differentiate v in s.

1
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4.10. Transversality Theorem.

Lemma. F (u, g) = 0 ⇒ u ∈ Ck+1 (motto: u is “as smooth as” g)

Proof. The weak derivative ∂su = f ′
g(u) is continuous since u is cts.2 Recall that if

the weak derivative is cts then it equals the usual derivative. Now bootstrap.3 �

Conditions of Thm 2.5
∀F (u, g) = 0:

i) D(u,g)F : T(u,g)(U ×G) → E(u,g) surjective;

ii) DuFg : TuU → E(u,g) Fredholm of index < k.

Claim 1. (ii) holds and index = |p| − |q| (so pick k > |p| − |q|)
Claim 2. (i) holds

We will prove the Claims later. First we mention the consequence:

Transversality Theorem
For generic Ck-metrics g,

W k(p, q) = {Ck-flowlines u of −∇f from p to q} = F−1
g (0)

is a Ck-submanifold of U with

dimW k(p, q) = indexFg = |p| − |q|

and tangent space

TuW
k(p, q) = ker(DuFg : TuU

surj
→ Eu)

Proof. Theorem 2.5 and Claims 1 & 2 above. �

Cor. Can take k = ∞

Proof. Pick Ck metric g satisfying ⋔,
⇒ ∃C∞ g′ close to g
⇒ g′ satisfies ⋔ since transversality is an open condition (regularity is open).
Hwk 13: C∞-metrics g satisfying ⋔ are generic. �

⇒
for a generic smooth metric,

W (p, q) = W∞(p, q) is a smooth mfd of dim = |p| − |q|
M(p, q) = W (p, q)/R is a smooth mfd of dim = |p| − |q| − 1

Rmk. Hwk 13 proves that the quotient M(p, q) really is a smooth mfd.

Rmk. Hwk 19 proves that the transversality condition for W (p, q), that is the sur-
jectivity of the linearization DuFg at zeros of Fg, is equivalent to the condition that g

is Morse-Smale for f . So “generic g” is equivalent to saying “g is Morse-Smale”

2
Non-examinable: this is an example of the elliptic regularity theorem: ∂s is an elliptic operator

of order 1, and so weak solutions of ∂su = −f ′

g(u) are as regular as f ′

g plus order, so u is Ck+1.
3We proved u is C1, so ∂su = f ′

g(u) is C1 (since f ′

g is Ck and u is C1) so u is C2 etc.
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4.11. Hilbert spaces tricks. L : A → B bounded linear, A Banach, B Hilbert.

Lemma 1 If im(L) is closed, then

cokerL ∼= (imL)⊥ = {b ∈ B : 〈La, b〉 = 0 ∀a ∈ A}.

Proof. In general, if V ⊂ B closed subspace, then B = V ⊕V ⊥, so V ⊥ ∼= B/V . �

Warning. C∞ ⊂ L2 dense (non-closed) subspace: (C∞)⊥ = 0, but C∞ 6= L2.

Def. Define the adjoint L∗ : B → A of L : A → B, where A,B Hilbert, by

〈La, b〉B = 〈a, L∗b〉A ∀a, b

(easy exercise: ∃ unique bounded linear such L∗).

Lemma 2 (imL)⊥ ∼= kerL∗.

Proof. b ⊥ imL ⇔ 〈La, b〉 = 0 = 〈a, L∗b〉 ∀a ⇔ L∗b = 0. �

L : A = A1 ×A2 → B, A1 Hilbert, A2 Banach, B Hilbert.
L(a1, a2) = D(a1) + P (a2)
D : A1 → B, P : A2 → B bounded linear (think of P as “perturbation”).

Lemma 3 imL closed ⇒ cokerL ⊂ ker(D∗ : B → A1) ∩ (imP )⊥.

Proof. imD ⊂ imL

⇒ kerD∗
by 2
∼= (imD)⊥ ⊃ (imL)⊥

by 1
∼= cokerL

⇒ cokerL ⊥ imL ⊃ imP. �

Lemma 4 D Fredholm ⇒ imL closed.

Proof. B = imD ⊕ C, C = complement (finite dimensional).
imL = imD ⊕ (C ∩ imL) (equality holds since imD ⊂ imL)
Finally: imD closed, and C ∩ imL is finite dimensional hence closed. �

4.12. Claim 1 ⇒ Claim 2. We will apply Lemma 3 to:

=

D P

DuFg · ~u−D(u,g)f
′
g · ~g(D(u,g)F ) · (~u,~g)

L

A1 = W 1,2
0 (u∗TM) ∼= W 1,2

0 (R,Rm) 〈a, a′〉1,2 =
∫
R
gM (a, a′) ds+

∫
R
gM (∂sa, ∂sa

′) ds
A2 = TgG
B = Eu = L2(u∗TM) ∼= L2(R,Rm) 〈b, b′〉L2 =

∫
R
gM (b, b′) ds.

Where D is Fredholm by Claim 1.

Rmk. F (u, g) = 0 so u is Ck+1, and we are using the charts defined by trivi-
alizing TM over u since we only need Ck-Banach mfd structures (F is only Ck

anyway). If you want to use the C∞-Banach space structures, then trivialize over
a smooth u, and study F (v, g) = 0 (where v is an abbreviation for expu(s) v(s),

v ∈ W 1,2
0 (u∗DεTM)) so replace u’s by v’s except in the defns of A1, B.

Cor. cokerD(u,g)F ⊂ ker(DuFg)
∗ ∩ (imP )⊥.

Claim 2 D(u,g)F is surjective.

Proof. If not, then ∃b 6= 0 ∈ Eu:
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(1) (DuFg)
∗b = 0

(2) 〈Df ′
g · ~g, b〉L2 = 0 ∀~g.

Key trick 1: (1) ⇒ b continuous. (Proof in next Lecture)
Key trick 2: b(s0) 6= 0 for some s0 ∈ R. Claim: it suffices to define ~g at u(s0) with

gM ((Df ′

g)u(s) · (~g)u(s), b(s)) > 0 at s = s0 (∗)

Proof of Claim:
pick any Ck-extension of (~g)u(s0) to ~gx defined for x ∈ M close to u(s0)

⇒ by continuity (∗) holds near s0
globalize ~g: multiply ~g by a bump function (= 0 away from u(s0), = 1 at u(s0))

⇒ (∗) holds with “≥” for all s, and with “>” near s0
⇒ (2) fails. Contradiction. �

Construction of ~g as in the Claim:
Locally f ′

g = g−1∂f , so

Df ′

g · ~g = (∂t|t=0(g + t~g)−1) ∂f.

Now use the usual series trick:

(g + t~g)−1 = [g · (1 + tg−1~g)]−1

(1 + tg−1~g)−1 · g−1 (careful with order of matrices!)
(1 − tg−1~g + order t2) · g−1

Hence Df ′
g · ~g = −g−1 · ~g · g−1 · ∂f

Now ∂f 6= 0 since4 u(s0) /∈ Crit(f).

Moreover, g−1 · ~g · g−1 is an arbitrary5 symmetric matrix at s0 by letting ~g vary:
indeed to get the symmetric matrix S take ~g = gSg.

⇒ Df ′
g ·~g is arbitrary at s0. So in our case, we pick ~g so that Df ′

g ·~g = b(s0). �

4u is a −∇f trajectory from p to q 6= p, so it is non-constant: the unique −∇f trajectory
passing through a critical point is the constant trajectory at the critical point.

5G ⊂ Sym2(T ∗M) is an open subset, so TgG = TgSym2(T ∗M).
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4.13. Claim 1.

Aim: F (u, g) = 0 ⇒ DuFg = ∇s •−∇•f
′
g(u) : TuU → E(u,g) is Fred, index |p|−|q|.

Rmk. F (u, g) = 0 ⇒ u is Ck (Lemma 4.10). We will prove the Aim more generally
for any Ck-path u ∈ U (we will not use F (u, g) = 0 anymore).

u ∈ Ck ⇒ can trivialize u∗TM by parallel transport:
Pick basis e1, . . . , em of u∗TM with ∇sei = 0

V =
∑

V iei
∇sV =

∑
∂sV

iei
∇V f

′
g(u) =

∑
V j∇ejf

′
g(u) =

∑
(As)

i
jV

jei (this defines a matrix As)

Cor. DuFg in the basis ei is:

W
1,2
0 (R,Rm) → L2(R,Rm)
(

V 1

...
V m

)
7→ (∂s +As) ·

(
V 1

...
V m

)

Define the adjoint A∗
s by gM (A∗

sx, y) = gM (x,Asy) ∀x, y ∈ R
m .

Lemma. (∂s +As)
∗b = 0 for b ∈ L2 ⇒ b ∈ W 1,2 Sobolev

⇒ b ∈ C0.

Proof. 0 = 〈(∂s +As)
∗b, φ〉1,2 = 〈b, (∂s +As)φ〉L2 = 0 ∀φ ∈ L2

⇒ 〈b, ∂sφ〉L2 = −〈A∗
sb, φ〉L2 ∀φ ∈ C∞

c

⇒ weak ∂sb = A∗
sb ∈ L2

⇒ b ∈ W 1,2. �

Cor. 4.12 Key trick 1 holds, since (D(u,g)Fg)
∗ = (∂s+As)

∗ in the trivialization.

Rmk. In general, such Lemmas are proved by the elliptic regularity theorem.1

Rmk. W
1,2
0 (R,Rm) = W 1,2(R,Rm) and similarly for L2.

Proof. Given b ∈ W 1,2, ∃bn ∈ C∞ with bn → b in W 1,2. Pick bump βn : R → [0, 1],
βn = 1 on [−n+1, n−1] and βn = 0 outside [−n, n], and |∂sβn| ≤ 2. Then βnbn → b

in L2 since
∫
R\[−n,n]

|b|2 ds → 0 as n → ∞. Also, ∂s(βnbn) = (∂sβn) · bn +βn ·∂sbn:

the second term → ∂sb in L2 by the same argument, and the first term is supported
outside [−n, n] and bounded by 2

∫
R\[−n,n] |b|

2 ds → 0 as n → ∞. �

Date: May 2, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1This is a general bootstrapping result for W k,2 spaces. Non-examinable: for an elliptic

operator L (such as ∂s or the Laplacian) the weak solutions u of Lu = f with f ∈ W k,2 (and u = 0

on ∂U , with smooth ∂U) lie in u ∈ W k+order(L),2. For f ∈ C∞ = ∩kW
k,2 get u ∈ ∩kW

k,2 = C∞.

1
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Rmk. The same arguments show W k,p(R,Rm) = W
k,p
0 (R,Rm). For other exam-

ples, see Adams, Sobolev spaces, p.70.

Claim 1 follows immediately from the following theorem:

Thm.

(1) s 7→ As is a Ck−1-path of symmetric matrices, with As → Hesspf , Hessqf
in Ck−1 as s → −∞,+∞. Proof. Hwk 2, (1iii). �

(2) ∂s +As : W
1,2(R,Rm) → L2(R,Rm) is a Fredholm operator

(3) index (∂s + As) = “spectral flow of As” = |p| − |q|.
Explanation: suppose you could2 diagonalize As continuously in s, then the

“movie” of eigenvalues is:

evals of As

+∞

R R R

evals of A+∞

−∞ s

evals of A−∞

spectral flow = #(evalues of As moving from negative to positive)−
−#(evalues of As moving from positive to negative)

= index (Hesspf)− index (Hessqf)
= |p| − |q|

In the picture: spectral flow = 1− 0 and |p| − |q| = 3− 2

Rmk. The spectral flow is a useful “relative index” in the ∞-dimensional settings

when the absolute indices |p|, |q| are infinite.

4.14. ∂s +As is Fredholm.

(∗) L = ∂s +As : W
1,2(R,Rm) → L2(R,Rm) with As → A±∞ symm nondeg

K = restriction : W 1,2(R,Rm) → L2([−S, S],Rm) compact (by Sobolev)

Aim: deduce ∂s −As has finite dimensional kernel and closed image from Lemma:

Closed range Lemma

A,B,C Banach spaces

L : A → B bounded linear

K : A → C compact3 bounded linear

If ‖a‖A ≤ constant · (‖La‖B + ‖Ka‖C) ∀a ∈ A

then
{
kerL finite dimensional
imL closed

Proof. WLOG constant = 1 (rescale L,K)
kerL ⊂ {a ∈ A : ‖a‖A ≤ ‖Ka‖C} closed
Suppose an ∈ kerL : ‖an‖ = 1

⇒ subseq Kan → c (K compact)

2This is presumably true generically over C, but we will take a different approach.
3This means: if an is bdd, then Kan has a cgt subseq.
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⇒ ‖an − am‖A ≤ ‖Kan −Kam‖C → ‖c− c‖C = 0

⇒ an Cauchy, hence cgt

⇒ unit sphere in kerL is compact

⇒ kerL finite dimensional

⇒ ∃ closed complement A0 of kerL, so A = kerL⊕A0 (see 2.3(1))

⇒ L : A′ → B injective.
Suppose Lan → b. WLOG an ∈ A0 (without changing Lan).
Suppose by contradiction that ‖an‖ is unbounded.

⇒ ∃ subsequence ‖an‖ → ∞

⇒ ãn = an

‖an‖
has Lãn cgt (since Lan → b)

⇒ ‖ãn − ãm‖A ≤ ‖Lãn − Lãm‖B + ‖Kãn −Kãm‖C → 0

⇒ Cauchy, hence ãn → ã ∈ A0 (A0 closed)

⇒ Lã → 0 = Lã

⇒ ã = 0 (L injective on A0)

⇒ contradiction (‖ãn‖ = 1 → ‖ã‖ = 1 not 0)

⇒ ‖an‖ bounded .

⇒ subsequence Kan cgt

⇒ ‖an − am‖A ≤ ‖Lan − Lam‖B + ‖Kan −Kam‖C → 0

⇒ an Cauchy, so cgt, so an → a, Lan → b = La

⇒ imL closed. �

Thm. Inequality of Lemma holds for operators in (∗) for S ≫ 0.

Proof.

Step (1). For As ≡ A−∞ constant (symmetric nondegenerate):
Aim: Solve (∂s +A)V = W ∈ L2(R,Rm) then bound V in terms of W (= LV ).

Rm = E− ⊕ E+ where E− = ⊕eigenspaces of A−∞ for evals < 0, E+ = ⊕ · · · > 0
WLOG Rm = E− by solving equation separately on E−, E+. Solution:4

V (s) =
∫ s

−∞ e−A(s−t)W (t) dt

Check: ∂sV = e−A(s−t)W |t=s −
∫ s

−∞
Ae−A(s−t)W dt = W (s)−AV (s) X

Unique solution? suppose (∂s +A)V = 0

⇒ change coords so that A diagonal

⇒ ∂sV
i = −λiV

i λi evalue

⇒ V i(s) = constant · e−λi·s

⇒ not in L2 unless V ≡ 0. X

Is V in L2?

V (s) =
∫∞

−∞
φ(s− t)W (t) dt φ(s) =

{
e−As for s ≥ 0
0 for s < 0

= (φ ∗W )(s)

4
Non-examinable: In general, to solve the ODE ∂sV = BV + W , you first solve for the

fundamental solution φ : R → End(Rm) of ∂sφ = Bφ, φ(s0) = I (so that V (s) = φ(s)V0 solves
∂sV = BV with V (s0) = V0), then our ODE has solution

V (s) = φ(s)V0 + φ(s)
∫ s

s0
φ(t)−1W (t) dt = φ(s)V0 +

∫ s

s0
φ(s− t)W (t) dt

as can be checked by differentiating. The first piece is the homogeneous solution, the second is
the particular solution. In our particular example, φ(s) = e−A·s, and “V (−∞)” = 0.
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‖φ ∗W‖22 =
∫∞

−∞
|
∫∞

−∞
φ(s− t)W (t) dt|2 ds

≤
∫
(
∫
|φ(s− t)|1/2 · |φ(s − t)|1/2 · |W (t)| dt)2 ds

≤
∫
(
∫
|φ(s− t)| dt ·

∫
|φ(s − t)| · |W (t)|2 dt) ds (Cauchy-Schwarz)

= ‖φ‖1
∫∫

|φ(s− t)| · |W (t)|2 ds dt (Fubini)
= ‖φ‖1 · ‖φ‖1 · ‖W‖22

⇒ ‖V ‖2 = ‖φ ∗W‖2 ≤ ‖φ‖1 · ‖W‖2 (a version of Young’s inequality)

Is V in W 1,2?
∂sV = −AV +W

‖∂sV ‖2 ≤ ‖AV ‖2 + ‖W‖2
≤ ‖A‖ · (‖φ‖1 + 1) · ‖W‖2

where ‖A‖ = supx 6=0
‖Ax‖
‖x‖ . Thus ‖V ‖2 + ‖∂sV ‖2 ≤ constant · ‖W‖2, equivalently:

‖V ‖1,2 ≤ constant · ‖(∂s +A−∞)V ‖2

Step (2). For V = 0 away from −∞:
‖As −A−∞‖ ≤ ε for s < −S + 1 (for large S depending on ε)
Assume V = 0 for s ≥ −S + 1:

⇒ ‖V ‖1,2 ≤ c · ‖(∂s +A−∞)V ‖2 (by (1))
≤ c · (‖(∂s +As)V ‖2 + ‖(As −A−∞)V ‖2) (triangle ineq)
≤ c · (‖LV ‖2 + ε‖V ‖2) (L = ∂s +As)

⇒ ‖V ‖1,2 ≤ c
1−cε‖LV ‖2 (pick ε > 0 small so cε < 1)

Step (3). Similarly do (1) for A+∞, and (2) for V = 0 for s ≤ S − 1.

Step (4). General case:

Pick a bump function β ∈ C∞(R, [0, 1]) with β =

{
1 for |s| ≤ S − 1
0 for |s| > S

‖(1− β)V ‖1,2 ≤ constant · ‖L(1− β)V ‖2 (by (2), (3))
‖βV ‖1,2 ≡ ‖βV ‖2 + ‖∂s(βV )‖2

≤ ‖βV ‖2 + ‖LβV ‖2 + (sups ‖As‖) · ‖βV ‖2
≤ constant · (‖βV ‖2 + ‖LβV ‖2)

‖V ‖1,2 ≤ ‖(1− β)V ‖1,2 + ‖βV ‖1,2 (triangle ineq)
≤ constant · (‖βV ‖2 + ‖LβV ‖2 + ‖L(1− β)V ‖2) (above ineq’s)
≤ constant · (‖KV ‖2 + ‖LV ‖2) (see below)

The last inequality used that β, ∂sβ are bounded and vanish outside [−S, S], so

‖(∂sβ)V ‖2 ≤ constant · ‖V |[−S,S]‖2 ≡ constant · ‖KV ‖2,

and it used that ‖βLV ‖2 ≤ constant · ‖LV ‖2 and similarly for ‖(1− β)LV ‖2. �

Cor. L = ∂s +As has closed image and finite dimensional kernel.

Aim of next lecture: the cokernel is also finite dimensional, so ∂s +As is Fred.
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4.14. ∂s +As Fredholm (continued).

L = ∂s +As : W
1,2(R,Rm) → L2(R,Rm)

Aim: L has finite dimensional cokernel.

Lemmas 4.11 ⇒ cokerL ∼= (imL)⊥ ∼= kerL∗.
Warning. L∗ : L2 → W 1,2 is difficult to calculate (try!).1

Remedy: the formal adjoint L⋆, which is not L∗, but it has a similar kernel.

Def. X,Y → M vector bundles with metrics over a (possibly non-compact) Riem

mfd. Given a linear map on sections L : C∞(X) → C∞(Y ), the formal adjoint (if
it exists) is a map L⋆ : C∞(Y ) → C∞(X) satisfying

∫

M

〈Lx, y〉Y volM =

∫

M

〈x, L⋆y〉X volM ∀x ∈ C∞

c (X), ∀y ∈ C∞

c (Y ).

Exercise: L⋆ is unique if it exists.

Lemma. For L = ∂s +As, get
2 L⋆ = −∂s +A∗

s .

Proof. X = Y = R
m and we trivialize u∗TM by gM -ortonormal3 ei. Therefore

〈·, ·〉X = 〈·, ·〉Y = 〈·, ·〉Rm . For all x, y ∈ C∞
c (R,Rm), by definition of the weak

derivative:4

∫

〈(∂s +As)x, y〉 ds =
∫

〈x,−∂sy〉 ds+
∫

〈x,A∗
sy〉 ds. �

Cor. L⋆ extends to −∂s +A∗
s : W 1,2 → L2, so 〈L⋆x, y〉2 = 〈x, Ly〉2, ∀x, y ∈ W 1,2.

Proof. approximate x, y by C∞
c . �

Cor. cokerL ∼= kerL⋆ = ker(−∂s +A∗
s)

Proof. cokerL ∼= (imL)⊥
4.11
∼= kerL∗ ⊂ W 1,2(R,Rm) (Lemma 4.13).5

⇒ if b ∈ (imL)⊥ then 0 = 〈La, b〉2 = 〈a, L⋆b〉2 for all a by the previous Cor, so
b ∈ kerL⋆, and conversely if b ∈ kerL⋆ then b ∈ (imL)⊥ by the same equation.
⇒ kerL⋆ ∼= (imL)⊥ ∼= cokerL. �

Date: May 2, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1The issue is that it involves 〈x, L∗y〉W1,2 not just L2 pairings.
2Where gM (Asv, w) = gM (v, A∗

sw),∀v, w. In our case As is symmetric, so As = A∗
s .

3Pick ei orthonormal at a point, then parallel transport will preserve orthonormality:
∂s〈ei, ej〉 = 〈∇sei, ej〉+ 〈ei,∇sej〉 = 0 since ∇sei = 0.

4in this case, we are really just doing integration by parts.
5Observe that we are first checking that b ∈ L2 really is W 1,2 before we apply L⋆!

1
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4.15. Index of ∂s +As.

Cor. Index(L) = dimkerL− dimkerL⋆

Aim: find kerL, kerL⋆ to calculate dimensions.

Need to solve

∂sx = −Asx x : R → R
m x(s0) = x0

write x(s) = φ(s) · x0, for φ : R → End(Rm) = m×m matrices. So need to solve:

∂sφ = −As · φ, φ(s0) = I (so x(s0) = φ(s0)x0 = x0)

This φ is called fundamental solution (and later we will write φ(s) = φs
s0

to
emphasize the initial condition).
By 2.1 Rmk 2 ⇒ ∃ unique φ ∈ Ck−1 since A : R → EndRm is Ck−1-bounded.6

Consider E± = E±(s0) = {x0 ∈ R
m : φ(s)x0 → 0 as s → ±∞}

These are vector subspaces of Rm since the ODE is linear.

Recall L = ∂s +As, L
⋆ = −∂s + A∗

s, where A±∞ are symmetric non-singular.

Thm.

kerL ∼= E− ∩E+,

kerL⋆ ∼= (E−)⊥ ∩ (E+)⊥,
E− ∼= Eu(−A−∞) = Es(A−∞) ≡ ⊕eigenspaces for evals λ < 0 of A−∞ = Hesspf,
E+ ∼= Es(−A+∞) = Eu(A+∞) ≡ ⊕eigenspaces for evals λ > 0 of A+∞ = Hessqf.

Cor.

IndexL = dimE− ∩ E+ − dim((E−)⊥ ∩ (E+)⊥)
= dimE− ∩ E+ − (m− dim(E− + E+)) (taking ⊥ of ∩ gives +)
= dimE− + dimE+ −m

= |p| − |q|.

4.16. Dynamical systems and ODEs.
Aim: study x′(t) = A(t) · x(t), A(t) matrices converging to a nonsingular matrix
B as t → +∞. Want to compare solutions with the solutions of x′(t) = B · x(t).

Rmk. We use a time variable t ∈ R instead of s ∈ R to emphasize that this is an

abstract problem separate from previous sections.

Example: B =
[

1 0
0 −1

]

. Then

Eu(B) = {x0 : flow(x0) → 0 as t → −∞} = R · ( 10 )
Es(B) = {x0 : flow(x0) → 0 as t → +∞} = R · ( 01 )

x = exp(Bt) · x

=
[

e
t 0
0 e−t

]

x0

x′ = Bx
Es(B)

Eu(B)

Now look at a flowline for x′(t) = A(t)x(t) starting at x0 for t = t0:

6s 7→ As is Ck−1, As → A±∞ in Ck−1 as s → ±∞, so for s ≫ 0: ‖As‖ ≈ ‖A±∞‖, ‖∂j
sAs‖ ≈ 0.
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x0

−x0

V (t)

V (t0)

−x(t)

x(t)

Because the ODE is linear, we can in fact consider the flow of the lines V (t) =
φt
t0
· (R · x0), which viewed as a flow on the Grassmannian RP 1 = {lines in R

2} is:

x-axis x-axis

V (t)

V (t0)

which shows that V (t) → Eu(B) = x-axis as t → +∞, so Eu(B) is an attractor.
Aim of next Lecture: prove in general that Eu(B) is an attractor in the

Grassmannian of k-planes, k = dimEu(B), for the flow x′(t) = A(t)x(t) (assuming
B is nonsingular and symmetric and A(t) → B as t → +∞).
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4.16. Dynamical systems and ODEs (continued).

Def. B is a hyperbolic matrix if the real parts Re (eigenvalues) 6= 0.

Rmk. These matrices are generic. Exercise: check the details of this lecture for
B symmetric and nondegenerate (so the eigenvalues are real and non-zero, so it’s
hyperbolic), indeed just assume WLOG that is B diagonal (by a change of basis).

Linear Algebra Trick1

For L : Rn → R
n linear with evalues λ satisfying

a < Reλ < b

there exists a basis of Rn inducing2an inner product (·, ·) with norm ((·)) such that

a((x))2 ≤ (Lx, x) ≤ b((x))2.

Key trick. If x′(t) = Lx(t) then

d

dt
((x))2 =

d

dt
(x, x) = 2(Lx, x)

so a ≤ 1
2

d
dt

log((x))2 = d
dt
log((x)) ≤ b so eat((x(0))) ≤ ((x(t))) ≤ ebt((x(0))) .

Example. For L restricted to3
⊕

Reλ<0

Eλ(L) can pick b < 0 so ((x(t))) → 0 exp fast.

Def. Recall eBt is the flow for x′ = Bx. The stable and unstable spaces for B:

Es(B) = {x0 ∈ R
m : eBt · x0 → 0 as t→ +∞}

Eu(B) = {x0 ∈ R
m : eBt · x0 → 0 as t→ −∞}

Rmk. Es(−B) = Eu(B) since lim
t→+∞

e−Bt · x0 = 0⇔ lim
t→−∞

eBt · x0 = 0.

Exercise.4 B hyperbolic ⇒

Es(B) =
⊕

Reλ<0 Eλ(B)
Eu(B) =

⊕
Reλ>0 Eλ(B)

Es(−B∗) = Es(B)⊥

Date: May 2, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1For a proof, see the 1974 edition of Hirsch-Smale, Differential Equations, p.147. For diagonal

matrices this is obvious, so for symmetric matrices it’s easy (take an orthonormal basis of evectors).
You need to fiddle around with the Jordan Normal Form in the general case.

2(x, y) =
∑

xiyi where xi, yi are the coordinates of x, y in the given basis, and ((x)) = (x, x)1/2.
We reserve the symbols ‖ · ‖, 〈·, ·〉, ⊥ for the standard R

n symbols.
3Eλ(L) = ker(L− λI)n is the generalized eigenspace for λ.
4For B symmetric, Es(−B∗) = Es(−B) = Eu(B).

1
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Thm. Suppose B hyperbolic and A(t) → B as t → +∞. Then for t ≫ 0, Eu(B)
is an attractor5 inside

Gr = {k-planes in R
m}

for the flow x′(t) = A(t)x(t) (where k = dimEu(B)), with basin of attraction6

Gr \ (k-planes intersecting Coneε(E
s(B))

where7 ε > 0 can be chosen arbitrarily small for t≫ 0.

basin of attraction

Eu(B)

Coneε(Es(B))

Es(B)

Proof. Define local coordinates on Gr:

N = Es(B)

P = Eu(B) = (ℓ = 0)

V = graph (ℓ : P
linear
−→ N) ⊂ P ⊕N = R

m

p

p ⊕ ℓ(p)

The (m−k)·k local coordinates are the entries of the matrix ℓ, and these coordinates
are defined on Gr \ (k-planes V intersecting N). We abbreviated Eu(B), Es(B) as
P,N since they involve evalues with, respectively, positive and negative real parts.

V = span {pi ⊕ ℓ(pi)}
eBt

7→ eBt · V = span {eBtpi ⊕ eBt · ℓ(pi)}
graph(ℓ : pi 7→ ℓ(pi)) 7→ graph(eBt · ℓ · e−Bt : eBtpi 7→ eBt · ℓ(pi))

So the local ODE is:

ℓ′ =
d

dt

∣∣∣∣
t=0

eBtℓe−Bt = Bℓ− ℓB,

so ℓ′ = Lℓ for the linear map L : ℓ 7→ Bℓ− ℓB for8

ℓ ∈ Lin(P,N) ∼= Lin(Rk,Rm−k) ∼= R
m−k ⊗ (Rk)∗.

5meaning: nearby solutions converge to Eu(B) as t → +∞.
6the subset which specifies what “nearby” means in the previous footnote.
7Recall Rm = Es(B)⊕Es(−B∗) (orthogonal subspaces), so we uniquely decompose x = xs+xu

in the respective subspaces with xs ⊥ xu. Easy check: ‖x‖2 = ‖xs‖2 + ‖xu‖2. Define

Coneε(E
s(B)) = {x ∈ R

m : ‖xu‖2 < ε‖xs‖2}

8The last isomorphism works as follows.
Identify R

k ∼= (Rk)∗ ≡ HomR(R
k,R) by v 7→ (vT : x 7→ vT x = 〈v, x〉 ∈ R). The linear map w⊗vT

is R
k → R

m−k , x 7→ w · (vT x). If pi are an orthonormal basis, then ℓ =
∑

ℓ(pi)⊗ pTi .
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We want to find the eigenvalues of L. Observe

L(w ⊗ vT ) = Bw ⊗ vT − w ⊗ vTB = Bw ⊗ vT − w ⊗ (BT v)T .

So if w ∈ N evector of B for evalue λw, and v ∈ P evector for BT for evalue µv,

L(w ⊗ vT ) = (λw − µv) w ⊗ vT ,

so w ⊗ vT is an evector of L for evalue λw − µv.

Exercise. the multiplicities (dim of gen. espaces) are what you expect.

B preserves P,N , and evalues of B|P = evalues of BT |P , so

Reλw < 0, Reµv > 0

so Re (λw − µv) < 0. So by the Key trick applied to L,

(Lℓ, ℓ) ≤ −δ((ℓ))2 < 0 (∗)

for any −δ < smallest Real part of all such differences of eigenvalues λw − µv.

Now consider x′ = A(t)x. Let φt
t0

denote its flow,9 so

ℓ(t) = φt
t0
(ℓ(t0)) = flow of ℓ(t0)

Warning: the flow can be unbounded since the flow of V may intersect Es(B), so
ℓ→∞, i.e. you exit the chart for Gr!

For t0 ≫ 0, and away from a cone around Es:

d

dt

∣∣∣∣
t=t0

φt
t0
(ℓ(t0)) ≈ L · ℓ(t0) (∗∗)

since A(t0)→ B as t0 → +∞.

⇒ d
dt
(ℓ(t), ℓ(t)) = 2(ℓ′(t), ℓ(t))

= 2( d
ds

∣∣
s=t

ℓ(s), ℓ(t))

= 2( d
ds

∣∣
s=t

φs
t (ℓ(t)), ℓ(t))

≤ 2(− δ
2 ((ℓ))

2)

where in the last line we combined (∗∗) and (∗). So arguing as in the Key trick,

((ℓ(t))) ≤ e−
δ

2
(t−t0)((ℓ(t0)))→ 0 (“ = Eu(B)”) exponentially fast. �

Aim: Es(t0) converges to Es(B) as t0 → ∞. The idea is: solutions of x′(t) =
A(t)x(t) which decay to zero as t → ∞ cannot get attracted to Eu(B) because if
you are close to Eu(B) then you flow off to infinity. The difficulty is that we don’t
know the dimension of Es(t0), and a priori the dimension can jump at t0 =∞ since
we haven’t proved a continuity “at infinity” result. The key idea is: show that the
adjoint problem produces a space orthogonal to Es(t0), and use that cleverly.

Def. Write φt
t0

for the flow for x′ = A(t)x starting at t0, and φ̃t
t0

for x′ = −A(t)∗x.

Es(t0) = {x0 ∈ R
m : φt

t0
(x0)→ 0 as t→ +∞}

Ẽs(t0) = {x0 ∈ R
m : φ̃t

t0
(x0)→ 0 as t→ +∞}

Lemma.

R
m = Es(t0)©⊥ Ẽs(t0)→ Es(B)©⊥ Es(−B∗) as t0 → +∞

9fundamental solution with initial condition t0, so ∂tφ
t
t0

= A(t) ◦ φt
t0

and φ
t0
t0

= I.
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Proof.

Claim 1: Es(t0) gets “attracted” to Es(B), meaning: Es(t0) lies in an arbi-
trarily small cone around Es(B) for large t0 (not claiming dimEs(t0) = dimEs(B)
yet).

Proof: Suppose not. Then some vector x ∈ Es(t0) lies outside that small cone.
So x lies in the basin of attraction of Eu(B) by the Theorem.10 But once x stays
within a small cone around Eu(B), the flow of the vector x will go off to infinity
exponentially fast by Hwk 16, ex.1.11 X

So, via this argument, the Theorem has shown that Es(t0), Ẽ
s(t0) get “at-

tracted” to Es(B), Es(−B∗), but we still need to show that the dimensions agree.

Observe: any vector subspace inside Coneε(E
s(B)) has dimension at most dimEs(B),

by basic linear algebra.12 So dimEs(t0) ≤ dimEs(B) , similarly for Ẽ.

Key observation:

∂t〈φ
t
t0
(x0), φ̃

t
t0
(y0)〉 = 〈A(t)φ

t
t0
(x0), φ̃

t
t0
(y0)〉+ 〈φ

t
t0
(x0),−A(t)

∗φ̃t
t0
(y0)〉 = 0

so 〈φt
t0
(x0), φ̃

t
t0
(y0)〉 is constant. For x0 ∈ Es(t0), y0 ∈ Ẽs(t0) this constant is zero

13

so at t = t0: 〈x0, y0〉 = 0. So Es(t0) ⊥ Ẽs(t0) .

Ẽs(−B∗)

Es(B) Ẽs(t0)

Es(t0)

Coneε(Es(−B∗))

Coneε(Es(B))

Claim 2: Es(t0) = Ẽs(t0)
⊥ ∩Coneε(E

s(B)) (in particular dimEs(t0) = dimEs(B)).
Proof. Suppose not, by contradiction.

⇒ ∃x0 ∈ Ẽs(t0)
⊥ ∩ Coneε(E

s(B)) but x0 /∈ Es(t0)

⇒ x(t) = φt
t0
(x0) ∈ Ẽs(t)⊥ = (φ̃t

t0
Ẽs(t0))

⊥ (by the Key observation)

Ẽs(t) ⊂ Coneε(E
s(−B∗)), ∀t≫ 0 (by Claim 1)

⇒ x(t) ∈ (Coneε(E
s(−B∗)))⊥ = Coneε(E

s(B)), ∀t≫ 0

By Hwk 16: for t0 ≫ 0, x0 ∈ Coneε(E
s(B)) (with ε > 0 sufficiently small),

d

dt
((φt

t0
(x0)))

2 ≤ −δ((x0))
2 if φt

t0
(x0) ∈ Coneε(E

s(B)) ∀t ≥ t0.

So, in our case, ((x(t))) ≤ e−
δ

2
(t−t0)((x0))→ 0, so x0 ∈ Es(t0). Contradiction.

Similarly Ẽs(t0) = Es(t0)
⊥ ∩ Coneε(E

s(−B∗)).

10In order to work on Gr, you just turn x into a subspace of the correct dimension, k, by taking
the span of x and any k − 1 vectors from Eu(B).

11Strictly speaking Hwk 16 ex.1 proves exponential convergence to 0 of vectors whose flow
stays in a small cone around Es(B), but a similar argument proves what we mentioned here.

12The vector subspace in fact lies inside the graph of a linear map constructed as in the local
coords construction for Gr.

13since both vectors in the inner product converge to zero as t → ∞ by definition.
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So R
m = Es(t0) ⊕ Ẽs(t0), the summands are ⊥ to each other, and given any

small ε > 0, Es(t0)⊕ Ẽs(t0) ⊂ Coneε(E
s(B)) ⊕ Coneε(E

s(−B∗)) for t0 ≫ 0. �

Cor. Es(t0)→ Es(B) as t0 →∞ and the dimensions agree.
Similarly, if A(t)→ C as t→ −∞ then

Eu(t0) ≡ {x0 ∈ R
m : φt

t0
x0 → 0 as t→ −∞} → Eu(C) as t0 → −∞.

Proof. The first claim is by the Lemma.
Note x′(t) = A(t)x(t)⇒ y(t) = x(−t) satisfies y′(t) = −A(−t)y(t).

⇒ Eu
A(t)(t0) = Es

−A(−t)(−t0)→ Es(−C) = Eu(C) as t0 →∞. �

4.17. Proof of Theorem 4.15. We go back to the notation of 4.15:

Lx = 0 ⇔ x′(s) = −Asx(s)
L⋆x = 0 ⇔ x′(s) = A∗

sx(s) = −(−A
∗
s)x(s)

Notice that we are now using s,−As in place of the t, A(t) of Section 4.16.
By Cor 4.16, E+ → Es(−A+∞) = Eu(A+∞) as s0 → +∞⇒ 4th claim Thm 4.15.X
By Cor 4.16, E− → Eu(−A−∞) as s0 → −∞ ⇒ 3rd claim Thm 4.15.X

Lemma (1st claim Thm 4.16).

ker(∂s +As) ∼= E− ∩ E+

(x : R→ R
m) → x(s0)

(x(s) = φs
s0
· x0) ← x0

where φ denotes the flow for x′(s) = −Asx(s).

Proof. Suppose x ∈ ker(∂s + As : W 1,2 → L2). By 4.10, x is Ck and satisfies
x(s) = φs

s0
· x(s0). By Sobolev, x → 0 at ±∞ since x ∈ (C0, ‖ · ‖∞). So x(s0) ∈

E−(s0)∩E
+(s0). Conversely: for x0 ∈ E−∩E+ need x(s) ∈ W 1,2 so need to prove

fast convergence at the ends. By Hwk 17 (Exponential Convergence at the ends):

(∂s+As)x(s) = 0, x ∈ C1 ⇒

{
either |x(s)| → ∞ as s→ +∞ or −∞, so x /∈ L2

or x(s)→ 0 exponentially fast as |s| → ∞, so x ∈ L2

So x0 ∈ E− ∩E+ ⇒ x→ 0⇒ x ∈ L2 ⇒ ∂sx = −Asx ∈ L2 ⇒ x ∈ W 1,2. �

Cor (2nd claim Thm 4.16). ker(∂s −A∗
s)
∼= Ẽ− ∩ Ẽ+ = (E−)⊥ ∩ (E+)⊥.

4.18. The clever way to calculate the Index.
Aim: if you only care about the index of ∂s +As, then one can avoid the difficult
asymptotic analysis of 4.16. Trick: the index will not change if homotope As so
that it becomes constant in s near s = ±∞.

Consider

A• : R→ End(Rm) Ck−1-differentiable

with As → A± as s→ ±∞, and A± hyperbolic matrices. By 4.14 (and Hwk 15),

∂s +As : X → Y is Fredholm (X = W 1,2(R,Rm), Y = L2(R,Rm))

The Index of a Fred operator is constant under small-operator-norm perturba-

tions (by 2.3). If Ãs is a homotopy of As:

‖(∂s + Ãs)V − (∂s +As)V ‖2 = ‖ÃsV −AsV ‖2
≤ sups∈R

‖Ãs −As‖ · ‖V ‖2
≤ sups∈R

‖Ãs −As‖ · ‖V ‖1,2
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So if ‖Ãs −As‖ is small enough for all s, the indices of ∂s + Ãs and ∂s +As agree.
This proves index invariance for small homotopies. To prove index invariance

for a general homotopy (As,λ)0≤λ≤1: the above shows that the index of ∂s + As,λ

is constant on the interval (λ− δλ, λ+ δλ) (some small δλ > 0). Now cover [0, 1] by
finitely many such intervals. Hence, the index is constant for all λ ∈ [0, 1].

Upshot: By homotopying As, we may assume:

As =

{
A+ for s ≥ S
A− for s ≤ −S

Then E+(s0) ≡ Es(−A+) for s0 ≥ S since both definitions involve the same equa-
tion x′(s) = −A+x(s). Similarly for E−.

So you avoid the asymptotic analysis of 4.16! (but you still need 4.17).14

Rmk. The same arguments show that the index of ∂s + As is invariant under
homotopying the15 W 1,2-path u with fixed ends p, q. Just compare the two operators
by parallel transport for small hpies, and repeat the above arguments.

14Note: φs
s0

: E+(s0) → E+(s) is an isomorphism. So all we care about is E+(s) for large s.
15recall we trivialized our section F on u∗TM to obtain ∂s + As.
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5. Compactness Theorem

5.1. Motivating example.

Consider M = T 2 tilted ⊂ R
3 (see Hwk 1), f = height function.

a

p

b

q

qa

b
β1

β2

q

q a

b

q

p

α2

α1

where we view the torus as a square with parallel sides identified. Observe:

dimW (p, q) = |p| − |q| = 2 (parametrized flowlines)
dimM(p, q) = 1 (unparametrized flowlines = trajectories)

Consider the lower left subsquare: the transverse intersection of the flowlines with
the dashed subdiagonal parametrizes the space of trajectoriesM(p, q) (since you fix
the parametrization by declaring that u(0) is the point of intersection). Considering
all squares, the four open subdiagonals parametrize M(p, q):

M(p, q) ∼= 4-open intervals

∂(this interval) = {α1#α2, β1#β2}

α4

β1

α2

α1

α3

β2

β3

∂(this interval)
= {β1#β3, α3#α4}

The boundaries of the open intervals involve broken trajectories, such as α1#α2

which means the trajectory α1 followed by α2. Thus:

∂M(p, q) ∼= M(p, a)×M(a, q) ⊔M(p, b)×M(b, q) (0-dimensional)
= 8 broken trajectories

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
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and the obvious way to compactify this is to compactify each interval separately:1

M(p, q) = M(p, q) ∪ ∂M(p, q) = disjoint union of 4 closed intervals
= compact smooth 1-manifold.

Key idea: to compactify R (∼= open interval)

(1) identify which sequences fail to have a convergent subsequence:
xn ⊂ R with |xn| → ∞

(2) artificially add the limit points to your set:
R = R ∪ {−∞,+∞}

(3) declare new open sets2 to ensure those new points are indeed limit points:
[−∞, r), (r,+∞] for all r ∈ R

Upshot: R is compact, whose open part3 R ⊂ R has the original topology, and
it has boundary ∂R = {new points}.

5.2. The topology of M(p, q) = W (p, q)/R. Recall that

W (p, q) ⊂ U ⊂ W 1,2
loc (R,M) ⊂ C0

loc(R,M)

and W (p, q) is a submanifold of U . So it comes with a topology induced from U
which in particular implies C0-convergence on compact sets.

Call π : W (p, q) → M(p, q)/R, u 7→ π(u) = [u] the quotient map. The R-action
is just the reparametrization action given by shifting the s-variable by a constant:

v = [u] = [u(·+ constant)].

We call such a u = ṽ ∈ W (p, q) a lift of v ∈ M(p, q). The quotient topology is:
O ⊂ M(p, q) is open ⇔ π−1O ⊂ W (p, q) is open. More usefully:

vn → v ∈ M(p, q) ⇔ ∃ṽn → ṽ in W (p, q)

or even more explicitly:

[un] → [u] in M(p, q) ⇔ un(·+ sn) → u(·) in W (p, q) for some sn ∈ R

Example. u ∈ W (p, q) ⇒ un(s) = u(s + n) not cgt in W (p, q), but cgt to [u]
(indeed constant!) in M(p, q).

5.3. C0
loc-convergence. Mm closed mfd, f : M → R Morse.

Lemma. ∂sun = −∇f(un) ⇒ ∃ subseq un → u in C0
loc (= C0-cgce on compacts).

Proof. un|[−S,S] : [−S, S] → M ⊂ R
a are equibounded (since M is compact) and

equicontinuous by the mean value theorem using |∂sun| ≤ supx∈M |∇f(x)|. Now
apply Arzela-Ascoli (see 2.1). �

Cor. W =
⋃

p6=q∈Crit(f)

W (p, q) is C0
loc-compact.

1You do not want to identify the ends of the intervals pairwise, giving a circle: consider two
sequences of trajectories, one which converges to β1#β2 and β1#β3 respectively (for example).
Then the two sequences are not actually approaching each other, because β2 and β3 are not equal.
So you do not want to identify the two limiting broken trajectories.

2the new topology is then the one generated by the old topology and these new open sets.
Example: {−∞} is a closed set because, for example, {−∞} = R \ ( (−∞, 0) ∪ (−1,+∞] ).

3
R is open & closed, R ⊂ R is open but no longer closed (since the complement of ∅ is now R).
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Rmk. Suppose
{

∂sun=−∇f(un)
∂su=−∇f(u)

}
. Then un → u in C0

loc ⇔ in Ck
loc ∀k ⇔ in C∞

loc.

Proof. Usual bootstrapping: un → u in C0
loc ⇒ −∇f(un) → −∇f(u) in C0

loc

⇒ un → u in C1
loc ⇒ etc.

Cor. W is C∞
loc-compact.

Thm. C0
loc-convergence in W (p, q) ⇒ convergence in W (p, q) (in 5.1 topology)

Proof. Suppose un → u in C0
loc, where un, u ∈ W (p, q). On [−S, S] we have C1

convergence hence W 1,2 convergence. So we reduce to showing convergence at the
ends. The key trick is to show that for energy reasons, the un, u must be uniformly4

close to the critical points at the ends, so this does not happen:

p

q

unu

Recall E(u) =
∫
R
|∂su|2 ds. Pick S ≫ 0 such that

∫

R\[−S,S]

|∂su|
2 =

1

2
δ (small).

By Rmk:

⇒ un|[−S,S] → u|[−S,S] in C1

⇒ E(un|[−S,S]) → E(u|[−S,S])
by 3.2
⇒ E(un|R\[−S,S]) ≤ δ ( for n ≫ 0, say n ≥ N)

by 3.3
⇒ un(s) ∈ small ball around p for s ≤ −S, n ≥ N

un(s) ∈ small ball around q for s ≥ +S, n ≥ N

Where 3.2 refers to the a priori estimate f(p)−f(q) = E(u) = E(un) and 3.3. refers
to the No escape Lemma: if you have little energy left and you have to converge to
p, q then you must be close to p, q.

Thus we reduce to showing W 1,2 convergence near p, q. WLOG do the case q.
Hwk 17 Exponential cgce at the ends: Locally near q = 0,

∃c, δ > 0, ∃ ball Br(0) s.t. if u : [S,∞) → Br(0) solves ∂su = −∇f(u) then

|u(s)| ≤ c · e−δs for s ≥ S.

So in our case, un(s) → q exponentially fast as s → ∞ at a rate independent of n.
⇒ dist(un(s), u(s)) ≤ dist(un(s), q) + dist(q, u(s)) → 0 exp fast in s.

⇒ −∇f(un(s)),−∇f(u(s)) exp close, indeed exp close to −∇f(q) = 0

⇒ un, u are W 1,2-close on [S,∞). �

Rmk. In more complicated situations, when you don’t have a result like 3.2 in the
above argument, you would assume that E(un) is bounded. So the Thm would hold
for sequences having a bound on the energies.

4independently of n.
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5.4. Convergence to broken trajectories. Given un ∈ W (p, q). By Cor 5.2, a
subsequence un → u in W in C0

loc. Two situations can arise:

Case 1: no breaking. if u ∈ W (p, q) then un → u in W (p, q) by Thm 5.2.

Case 2: breaking. u ∈ W (pu, qu) 6= W (p, q). Observe:

f(p) ≥ f(pu) ≥ f(qu) ≥ f(q) since f decreases along flowlines (3.2)

Trick (3.3): ∃δ > 0 s.t. flowlines with ends near distinct crit pts consume E ≥ δ

Lemma (Reparametrization Trick). Assuming we are in Case 2,

∃sn ∈ R such that wn = un(·+ sn)
C0

loc→ w with f(w(R)) ∩ f(u(R)) = ∅.

Proof. Suppose pu 6= p (case qu 6= q is similar). Then

f(p) > f(pu),

otherwise un|[−an,−bn] has ends close to p, pu (for bn large, an very large) with
energy ≈ f(p)− f(pu) = 0 contradicting Trick 3.3.

f(q)

wn

p

pw

qw

pu

qu

q

w

uun
f(pu)

f(qw)

f(qu)

f(w(R))

f(u(R))

f

f(p)
R

c
f(pw)

Fix a regular value c of f with

f(p) > c > f(pu)

and any sn ∈ R with

f(un(sn)) → c.

Cor 5.2 ⇒ wn = un(·+ sn)
C0

loc→ w some w ∈ W (pw, qw), with

f(p) ≥ f(pw) > c > f(qw) (∗).

We claim5 that sn → −∞. Proof:

un

C0

loc→ u ⇒ c > f(pu) > f(u(−S))
n≫0
≈ f(un(−S))

⇒ c > f(un|[−S,∞)) (for n ≫ 0)
⇒ sn ≤ −S X (by (∗))

It remains to check f(qw) ≥ f(pu).
Suppose by contradiction f(pu) > f(qw). Observe:

5intuition: it takes ∞ time to reach pu since ∇f → 0.
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f(qw) ≈ f(w(S)) ≈ f(un(S + sn))

f(pu) ≈ f(u(−S)) ≈ f(un(−S)

S ≫ 0 n ≫ 0

> >

hence this follows. But sn → −∞
so contradicts f decreasing along un

�
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5.3. Convergence to broken trajectories (continued). Recall that by the
reparametrization trick, for any sequence un ∈ W (p, q) without a convergent sub-
sequence, ∃sn ∈ R with wn = un(·+ sn) → w in C0

loc with f(w(R)) ∩ f(u(R)) = ∅.

Thm. un ∈ W (p, q) ⇒ ∃ subseq un such that:

• ∃ sin ∈ R i = 1, . . . , N
• ∃ui ∈ W (pi, pi+1) p = p1, q = pN+1

• f(p1) > f(p2) > · · · > f(pN+1)

with

ui
n = un(·+ sin) → ui in W (pi, pi+1)

un

uN
pN

p3

u1p = p1

q = pN+1

p2

u2

Proof. Cover [f(p), f(q)] by closures of disjoint intervals obtained by the reparametriza-
tion trick. This is a finite cover by Trick 3.3.1 �

Def. Call (u1, u2, . . . , uN ) ∈ W (p1, p2)× · · · ×W (pN , pN+1) a broken flowline.

5.4. Compactness theorem.

Rmk. In the Theorem, ui
n ∈ W (p, q) are different lifts of the same [un] ∈ M(p, q).

Def. In the Theorem, denote vn = [un] = [ui
n] ∈ M(p, q), vi = [ui] ∈ M(pi, pi+1).

Then we summarize the conclusion of the Theorem by the broken limit symbol

vn ⇉ v1# · · ·#vN

and we call v1# · · ·#vN ∈ M(p, p2)×· · ·M(pN , q) an (N -times) broken trajectory.

Cor. vn ∈ M(p, q) ⇒ ∃ subseq vn ⇉ v1# · · ·#vN with vi ∈ M(pi, pi+1)
(f(p) = f(p1) > · · · > f(pN+1) = f(q), p = p1, q = pN+1).

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1you consume energy ≥ length of interval ≥ δ > 0.

1
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Rmk. From now on, assume transversality holds (it does for a generic metric). So

|p| = |p1| > |p2| > · · · > |pN+1| = |q|

since M(pi, pi+1) = ∅ if 2 |pi| ≤ |pi+1| (note dimM(pi, pi+1) = |pi|−|pi+1|−1 < 0).

Repeat the Key idea 5.0 for the compactification of M(p, q):

(1) sequences un ∈ M(p, q) which do not have a convergent subsequence:
those with a subsequence ⇉ broken trajectory

(2) artificially add limit points to M(p, q):

M(p, q) = M(p, q) ∪ ∂M(p, q)

∂M(p, q) =
⋃

N≥2,|p|>|p2|>···>|q|

M(p, p2)× · · · ×M(pN , q)

(3) enlarge the topology to make them limit points:
topology of ⇉ convergence to broken trajectories

Upshot: Theorem. M(p, q) is compact.

Two problems:

• 5.3 ; every broken flowline arises as a ⇉ limit

• M(p, q) smooth mfd (with corners)?

Answer: Yes, by the gluing theorem! (next section)
We will only study once-broken trajectories, so there are no corners. But, for

example, you should think of a 2-dimensional moduli space as follows:

once broken:

twice broken:
corner of codim = 2

the boundary (so codim = 1)
(λ1, λ2) ∈ R

2

no breaking

5.5. Gluing theorem. For once broken flowlines (for simplicity):

dimW (p, q) = |p| − |q| = 2
dimM(p, q) = 1

Thm. (Assuming transversality) For all a ∈ Crit(f) with |p| − |a| = 1 = |a| − |q|,
there is a gluing map

# : W (p, a)×W (a, q)× (λ0,∞) → W (p, q)
(u,w, λ) 7→ u#λw

(1) # induces a smooth embedding on M(·, ·) spaces
(2) u#λw ⇉ u#w as λ → ∞
(3) if vn ⇉ u#w then for n ≫ 0, vn = [u#λn

w] ∈ M(p, q), for some λn → ∞

Cor. dimM(p, q) = 1 ⇒ M(p, q) smooth compact 1-mfd with bdry ∂M(p, q).

Proof. Thm ⇒ ∃ (collar nbhd of u#w) ∼=
∞λ

u#wu#λw
λ0 ⊂ R. �

2pi 6= pi+1 since f(pi) > f(pi+1).
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Sketch of Proof of Theorem3

αλ

p

q

u

w

αλ

a

Step 1. construct a smooth approximate solution of F (u) = 0:

αλ(s) =







u(s+ 2λ) for s ≤ −λ

a for s ∈ [−λ+ 1, λ− 1]
w(s − 2λ) for s ≥ λ

and we use expa(·) to interpolate this data.4

Then:

• F (αλ(s)) 6= 0 since you would need5 ∞ time s to reach the crit pt a
• (∗) F (αλ(s)) → 0 as λ → ∞ since

F (u(·+ 2λ)) = 0 = F (w(· − 2λ))
F (s 7→ a) = −∇fa = 0
F (interpolation) ≈ −∇fa = 0

Step 2. (∗) ⇒ ∃ “unique” actual solution u#λw close to αλ,

F (u#λw) = 0.

This “⇒” is proved using the contraction mapping theorem and the implicit func-
tion theorem. “Unique” is imprecise: one can construct a cts bijection αλ → u#λw.

Step 3. αλ(s) ⇉ u#w, indeed make s-shifts by −2λ and +2λ when you lift αλ.

Ideas used in Step 2. Lu = DuF , Lw = DwF , Lλ = Dαλ
F

Rmk. DuF , DwF , Lλ are Fredholm (Thm 4.146)

Technical Fact:

Lu, Lw surjective
(by transversality)

⇒











➀ Lλ surjective for λ ≫ 0
➁ ∃c > 0 s.t. for λ ≫ 0 :

‖L⋆
λV ‖1,2 ≤ c · ‖LλL

⋆
λV ‖2 ∀V ∈ W 1,2(R, α∗

λTM)

➀ One can patch7 together elements in kerLu, kerLw to obtain approximate
solutions to LλV = 0, and one proves that for λ ≫ 0 this defines an isomorphism:

kerLu ⊕ kerLw
∼
→ kerLλ

Vu ⊕ Vw 7→ (orthogonal projection) · (Vu#λVw)

where # is the patching. This we call linear gluing. It is quite simple to prove
because it just involves linear subspaces. This linear gluing map arises as the
differential of the gluing map, and this isomorphism is used to prove the embedding
property in (2).

3This would take too many Lectures to prove in detail, and the details are not enlightening.
4
Non-examinable: expa(β(−s−λ+1)·u(s+2λ)) for s ∈ [−λ,−λ+1]; expa(β(s−λ+1)·w(s−2λ))

for s ∈ [λ− 1, λ], where β : R → [0, 1] is increasing with β = 0 on s ≤ 0, β = 1 on s ≥ 1.
5Hwk 22. ex. 2
6recall the theorem only used that the path was Ck, not that F (path) = 0.
7
Non-examinable: For operators L,K which are asymptotically constant at +∞,−∞ respec-

tively, then for λ ≫ 0 we can glue L(·+2λ)#K(·−2λ) = L#λK, then kerL⊕kerK
∼
→ ker(L#λK)

is the orthog projection of the patching V#λW = V (·+2λ) +W (· − 2λ) (for fixed s this is small
for λ ≫ 0 since the solutions V,W decay to zero fast at the ends). This map is an iso for λ ≫ 0.
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By invariance of the Fredholm index under homotopying paths (indeed we know
it is the difference of the Morse indices of the ends):8

index (Lu) + index (Lw) = index (Lλ) (λ ≫ 0)

so dim cokerLλ = dim cokerLu + dim cokerLw = 0, so Lλ is surjective. X

➁ Why that inequality? For A,B Hilbert,

L : A → B Fredholm and surjective ⇒ A = K©⊥ A0
ff

R = (L|A0
)−1

xx

L∗

// B

where9 A0 = imL∗ and “R” stands for right-inverse since LR = I.

Cor. L : A → B Fred and surj ⇔ ∃ bdd right inverse and dimkerL < ∞

Lemma. ‖L∗b‖ ≤ c · ‖LL∗b‖ ∀b ⇔ ‖Rb‖ ≤ c · ‖b‖ ∀b

Proof. Both are equivalent to: ‖a‖ ≤ c · ‖La‖ ∀a ∈ A0. �

Upshot: Combining inequality ➁ with the Lemma:10

⇒ Lλ have uniformly bounded right inverses.
Hwk 19
⇒ ∃ unique actual solution expαλ

(L⋆
λV ) (some unique V ∈ W 1,2) and all

nearby actual solutions are of form expαλ
(k ⊕ g(k)) where k ∈ K is

small and g : K → A0 is a smooth implicit function, g(0) = expαλ
(L⋆

λV ).

So we define u#λw = expαλ
(L⋆

λV )

Rmk. The key is that L∗ provides a way to obtain uniqueness. L⋆
λV is constrained

to be inside A0, whereas if you allow vectors in the whole of A, such as k ⊕ g(k),
then you no longer get uniqueness.11 This is crucial also in Hwk 19: the contraction
mapping principle (Picard’s method) is applied to A0, not the whole of A.

Hwk 19: Picard’s method.
For F : A → B a C1-map of Hilbert spaces, by Taylor:

F (x) = c+ L · x+N(x)

where c = F (0), L = d0F linear, N non-linear. Assume L Fred & surj, so as above:

L : K ⊕A0 → B R : B → A0 LR = I.

Assume the following two estimates hold:

(1) ‖Rc‖ ≤ ε
2

(2) ‖RN(x)−RN(y)‖ ≤ C · (‖x‖+ ‖y‖) · ‖x− y‖ for all x, y ∈ ballε(0), ε ≤
1
3C .

then

• by the contraction mapping theorem for P : A0 → B, P (x) = −Rc−RN(x),
there is a unique a0 ∈ A0 ∩ ballε(0) with F (a0) = 0.

8or use formal adjoints to get isos of cokernels like for linear gluing of kernels.
9(imL∗)⊥ = kerL = K, and A0 is closed since it is the complement of a finite dim’l subspace.
10which works in our setup for the formal adjoint L⋆

λ
instead of L∗

λ
.

11Unsurprisingly, since when the Morse index difference is large, there is a large dimensional
family of actual solutions, so the actual solution u#λv is not isolated. Indeed, the family is
parametrized by K via expαλ

(k ⊕ g(k)).
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• by the implicit function theorem at a0, there is a C1-map g : K → A0 such
that F (k ⊕ g(k)) = 0 for small k ∈ K (with 0⊕ g(0) = a0).

Application: We apply Picard’s method to F = local expression of the vertical
part of our section F = ∂s +∇f : U → E in a chart around αλ ∈ U (so αλ is 0 in
the chart). So

F : W 1,2(R, α∗
λTM) → L2(R, α∗

λTM),
c = F (0) = F(αλ),
L = d0F = Dαλ

F = Lλ.

Thus g defines a parametrization of all the actual solutions F(u#λ(k)w) = 0 close
to the approximate solution F(αλ) ≈ 0, where λ(0) = λ.
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6. Morse Homology

6.1. Definition. M closed mfd, f : M → RMorse, g generic metric (⇒transversality).
The Morse(-Smale-Witten) complex is the Z/2-vector space generated by the

critical points of f :

MCk =
⊕

p∈Crit(f), |p|=k

Z/2 · p

where k ∈ Z is the Z-grading by the Morse index.
The Morse differential ∂ : MCk →MCk−1 is defined on generators p by

∂p =
∑

dimM(p,q)=0, p6=q

#M(p, q) · q

and extend ∂ linearly to MC∗. Note
1 dimM(p, q) = 0 is equivalent to |q| = |p|− 1.

Rmk. The sum is well-defined because M(p, q) is a 0-dimensional compact mani-
fold, hence finite, so can count2 the number of elements #M(p, q). Proof: It is a
smooth manifold by transversality, and it is compact by the following argument:3

dimM(p, q) = 0 ⇒ dim ∂M(p, q) < 0
⇒ ∂M(p, q) = ∅
⇒ M(p, q) =M(p, q) compact 0-dim mfd X

Thm. ∂2 = 0.

Proof. |p| = k. Compute:

∂2p = ∂
∑

|a|=k−1

#M(p, a) · a

=
∑

|a|=k−1

∑

|q|=k−2

#M(p, a) ·#M(a, q) · q

=
∑

|a|=k−1, |q|=k−2

#(M(p, a)×M(a, q)) · q

=
∑

|a|=k−1, |q|=k−2

#∂M(p, q) · q

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1
Cultural Remark: In more general situations, M(p, q) may have components of different

dimensions, and you only count the u ∈ M(p, q) in the 0-dimensional part M0(p, q).
2
Non-examinable: To work over Z instead of Z/2 you must count the elements of M(p, q) with

orientation signs ±1. Orientations of moduli spaces are an unpleasant technical detail which we
decided to omit from this course (compare with sign headaches in singular homology arguments).

3Exercise. Can you think of a simple argument which only involves using tranversality, the
compactness thm and dimension arguments, but which does not use the gluing theorem?

1
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Finally observe:

dimM(p, q) = |p| − |q| − 1 = k − (k − 2)− 1 = 1
⇒M(p, q) compact 1-mfd with boundary
⇒M(p, q) is a disjoint union of finitely many circles and closed intervals
⇒ #∂M(p, q) even, so 0 modulo 2
⇒ ∂2p = 0
⇒ ∂2 = 0 by linearity. �

Def. MH∗(M, f, g) =
ker ∂

im ∂
is the Morse homology of (M, f, g).

Rmk. If you are given a metric g, then a priori you need to perturb g unless you
know/check that transversality holds (see Hwk 1). Key Trick: perturbing g does not
affect Crit(f) and indices, this often helps.4

Examples (all homologies are over Z/2):

(1)
R

q, 0

p, 1

f

height

grading

∂p = q + q = 0
MH∗ = Z/2 ⊕ Z/2 ∼= H∗(S

1)
∗ = 0 1 ← grading

(2)

R

q, 0

f

height

p,m
∂ = 0 as the indices are ≥ 2 apart (see Rmk)
MH∗ = Z/2 ⊕ Z/2 ∼= H∗(S

m)
∗ = 0 m ← grading

(3) Thm. MH∗(M, f, g) ∼= H∗(M).
Proof. Next time we will prove invariance:

MH∗(M, f1, g1) ∼= MH∗(M, f2, g2).

So

MH∗(f) ∼= MH∗(self-indexing Morse function)
∼= Hcellular

∗ (M) (3.10 & Hwk 19)
∼= H∗(M).

(4) M compact mfd with boundary:

Ensure f |∂M = constant min < f |interior
(⇒ ∇f ⋔ ∂M ⇒ no crit pts on ∂M)

⇒M(p, q) stay away from ∂M (f decreases along flowlines)

⇒MH∗ =
ker ∂

im ∂
∼= H∗(M,∂M) (proved like in (3))

Example: M = Dm disc.
p,m R

f

height

f |∂M = min

Dm

MH∗ = Z/2 · p (in degree m)
∼= H∗(D

m, ∂Dm)
(have H0 = 0)

4Key example: if all indices are even then, after perturbing, the 0-dimensional moduli spaces
are empty for index reasons. So there is no differential. So MH∗ = MC∗, which you know.
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R

f

height

Dm

f |∂M = max

q, 0

MH∗ = Z/2 · q (in degree 0)
∼= H∗(D

m)
(compare Handle attaching)

But both are useless for LES of pair (M,∂M): cannot recover MH∗(∂M).
Instead of making ∇f ⋔ ∂M we will now try ∇f tangent to ∂M .

6.2. Morse homology for mfds with bdry. [Non-examinable]

Assume ∇f is tangent to ∂M (that is: ∇f ∈ T (∂M)). This ensures that the flow

of a point in ∂M stays in ∂M and f |∂M is Morse, so hope to recover MH∗(∂M).

b
+

a
−

Write a = a− if df(outward normal) < 0 at a

⇒ Wu(a) ⊂ ∂M (exercise)

Write b = b+ if df(outward normal) > 0 at b

⇒ Wu(b) intersects interior, ∂Wu(b) = Wu(b) ∩ ∂M

∃ Similar statements for W s reversing the roles of +,− (Proof : switch sign of f).

⇒ MC∗ = MC0
∗ ⊕MC−

∗ ⊕MC+
∗

respectively generated by p ∈ intM , a−’s, b+’s.

Bad case:5

a−, b+ ⇒ Wu(a) ⊂ ∂M, W s(b) ⊂ ∂M
⇒ cannot hope Wu(a) ⋔ W s(b) in M
⇒ require ⋔ just in ∂M.

Therefore:

dimM(a−, b+) = |a| − |b| bad case
dimM(p, q) = |p| − |q| − 1 otherwise (as usual)

Getting MH∗(∂M):

p, q ∈ ∂M ⇒ B(p, q) = {[u] ∈M(p, q) : u ⊂ ∂M} =M(p, q, f |∂M )

p ∈ ∂M ⇒ indexf |∂M
(p) =

{

|p| if p−

|p| − 1 if p+

Therefore MCk(∂M, f |∂M ) = MC−
k ⊕MC+

k+1, with differential

Bp =
∑

dimB(p,q)=0, p6=q

#B(p, q) · q

whose homology recovers MH∗(∂M).

Getting MH∗(M,∂M):
There are 2 new bad phenomena:

5We are tweaking the definition of Morse-Smale to suit the situation.
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b+, k − 1

a−, k − 11-family
inM(p, q)
breaking
twice

M ∂Mq, k − 2

p, k

➀ ∃ flowlines between same
index bdry pts! (Bad case)

b+, k − 1

p, k

a−, k − 1cannot
converge
to b since
W s(b+) ⊂ ∂M

∂MM

➁ Gluing fails for this twice
broken trajectory!

Upshot: ∂2 6= 0

The argument in 6.1 for ∂2 = 0 will yield:
∑

r∈intM

#M(p, r)·#M(r, q)+
∑

|a−|=|b+|=k−1

#M(p, a)·#B(a, b)·#M(b, q) = 0 (mod 2) (∗)

where p, q ∈ intM , |p| = k, |q| = k − 2.

Miracle: ➀ essentially fixes ➁. The two problems suggest that one should not keep
both MC+ and MC−, one should use only one of the two. Try keeping

MC0
∗ ⊕MC+

∗

Notation:6 B : MC−
k ⊕MC+

k+1 →MC−
k−1 ⊕MC+

k ,

B =

[

B−
− B+

−

B−
+ B+

+

]

Similar notation for ∂. Then (∗) can be rewritten as:

∂0
0∂

0
0 + ∂+

0 B−
+∂0

− = 0

Define a differential d by combining ∂ with B’s, so that a once-broken trajectory
breaking at an a− point is considered as if it were just one flowline.7

d =

[

∂0
0 ∂+

0

B−
+∂0

− B+
+ +B−

+∂+
−

]

: MC0
k ⊕MC+

k →MC0
k−1 ⊕MC+

k−1

⇒ d2 =

[

∂0
0∂

0
0 + ∂+

0 B−
+∂0

− •
• •

]

By (∗), the first entry is 0. Similar arguments show the other entries are zero. So

⇒ d2 = 0

Example

b+

a−

MC0
∗ = 0

MC+
∗ = Z/2 · b in degree 2

⇒ H∗(d) = Z/2 · b ∼= H∗(D
2, ∂D2)

Thm. H∗(d) ∼= H∗(M,∂M)

6The top index is “from”, the bottom index is “to”, so B+
−

goes from MC+ to MC−.
7This is to fix the two problems by pretending that ➀ is a once-broken trajectory, and that

the first breaking in ➁ is not a breaking.
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Proof Sketch. First you show that MH∗ changes by an iso if you change f . Then
you construct your favourite f by the methods of Hwk 7: one for which

df(outward normal) ≤ 0

near ∂M (so all critical a ∈ ∂M are of type a−, and no trajectory from the interior
will get arbitrarily close to ∂M unless it ends there). The claim then follows by
examples (3) & (4). �

If you instead try just keeping

MC0
∗ ⊕MC−

∗

then the appropriate differential is

δ =

[

∂0
0 ∂+

0 B−
+

∂0
− B−

− + ∂+
−B−

+

]

In the above Example, H∗(δ) is generated by a in degree |a| = 0.

Thm. H∗(δ) ∼= H∗(M)

Proof idea. Make all critical b ∈ ∂M to be of type b+. �

Def. The homologies of B, d, δ (also denoted ∂, ∂̂, ∂̌) are called:

MH ∼= H∗(∂M) “MH bar”

MH “MH from”

MH “MH to”

∼= H∗(M,∂M)

∼= H∗(M)

The hat tells you the movement of flowlines: from/to the boundary ∂M .

Thm. LES of pair (M,∂M)

MH∗ → · · ·MH∗ MH∗ MH∗−1→· · · → → →

at the chain level, the maps are:

· · · →MC− ⊕MC+ →MC0 ⊕MC− →MC0 ⊕MC+ →MC− ⊕MC+ → · · ·
[

0 ∂+
0

I ∂+
−

] [

I 0
0 B−

+

] [

∂0
− ∂+

−

0 I

]

An excellent reference for further details is the CUP book Monopoles and Three-
Manifolds by Kronheimer & Mrowka.
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6.3. Invariance Theorem. Let M be a closed mfd.

Thm. MH∗(M) does not depend on the auxiliary parameters you chose: given
Morse f0, f1 : M → R and generic metrics g0, g1, there is an isomorphism

[ϕ10] : MH∗(f0, g0)
∼=−→ MH∗(f1, g1)

and these isomorphisms satisfy

(1) [ϕ21] ◦ [ϕ10] = [ϕ20] (∀fi, gi, i = 0, 1, 2)
(2) [ϕ00] = id (∀f0, g0)

Outline

(1) Construct a continuation map

ϕ : MC−
∗ → MC+

∗ (MC±
∗ = MC∗(f

±, g±), f± Morse, g± generic)

defined on generators as follows (then extend linearly):

ϕ(p−) =
∑

dimC(p−,q+)=0

#C(p−, q+) · q+

which counts the moduli space of continuation solutions

C(p−, q+) = {v : R → M : ∂sv = −∇sfs(v),
v(s) → p−, q+ as s → −∞,+∞}

where p− ∈ Crit(f−), q+ ∈ Crit(f+), gs(∇sfs, ·) = dfs. This moduli space
depends on a choice of smooth homotopy fs, gs,

s 7→ (fs : M → R), s 7→ gs

where the functions fs need not be Morse and the metrics gs need not be
Morse-Smale for fs. The key requirement1 is that for some S:

fs =

{

f− for s ≤ −S
f+ for s ≥ S

gs =

{

g− for s ≤ −S
g+ for s ≥ S

(∗)

Rmk. Transversality for C(p−, q+) is achieved for generic paths gs.

Rmk. Note that we do not2 quotient C(p−, q+) by an R-action by shifting
s, unlike what we did for M(p, q) = W (p, q)/R.

(2) ϕ = identity for the constant data fs = f , gs = g+ = g−.

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1this is crucial for the energy estimate, later.
2indeed, cannot: ∇sfs is not invariant under shifting s 7→ s+ constant.

1
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(3) ϕ is a chain map:

ϕ ◦ ∂− = ∂+ ◦ ϕ (∂± : MC±
∗ → MC±

∗−1)

hence we get a map on homology:

[ϕ] : MH−
∗ → MH+

∗ .

(4) [ϕ] does not depend on fs, gs

Consider a homotopy (fλ
s , g

λ
s )0≤λ≤1 from f0

s , g
0
s to f1

s , g
1
s , where we assume

(∗) also for fλ
s , g

λ
s . Denote ϕ0, ϕ1 the continuations for f0

s , g
0
s and f1

s , g
1
s .

Claim ϕ0, ϕ1 are chain homotopic:

∃ K : MC−
∗ → MC+

∗+1

ϕ0 − ϕ1 = K ◦ ∂− + ∂+ ◦K

hence3 [ϕ0]− [ϕ1] = I. X
(5) Suppose f10

s , g10s is a homotopy from f0, g0 to f1, g1, and f21
s , g21s is a

homotopy from f1, g1 to f2, g2. Glue4 the (reparametrized) homotopies:

f0, g0 f10
s+2S

, g10
s+2S

−S +S

f1, g1 f21
s−2S

, g21
s−2S

s

f2, g2

second hpy (shifted)first hpy (shifted)

Claim. For S ≫ 0, the ϕ obtained for this glued homotopy equals the
composite ϕ21 ◦ ϕ10 of the continuation maps for the two homotopies.

(6) Consequences of these properties:

(4) and (5) ⇒ [ϕ21] ◦ [ϕ10] = [ϕ20] (independently of choices of hpies) X

(2) and (4) ⇒ [ϕ00] = identity (independently of choice of hpy) X

⇒ [ϕ01] ◦ [ϕ10] = [ϕ00] = identity so [ϕ10] injective
⇒ [ϕ10] ◦ [ϕ01] = [ϕ11] = identity so [ϕ10] surjective
⇒ [ϕ10] isomorphism
⇒ Theorem

Key ideas in the proofs:

(1) Redo the transversality proof, now using:

G = {Ck-paths of metrics s 7→ gs with gs =

{

g− for s ≤ −S
g+ for s ≥ S

}

F (u, gs) = ∂su−∇sfs(u) (where gs(∇sfs, ·) = dfs)

⇒ Parametric transversality, Fredholm analysis, etc. like we did for W (·, ·)

⇒
C(p−, q+) smooth mfd for generic smooth gs
dim C(p−, q+) = |p| − |q|

In (3) we explain how to compactify C(p−, q+), and it shows that C(p−, q+)
is compact when dim C(p, q) = |p| − |q| = 0. So ϕ is well-defined.

3since ∂− = 0 on ker ∂−, ∂+(K•) = 0 modulo im ∂+.
4for large S these glue correctly.
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(2) For constant data f = fs, g = gs,

C(p, q) = W (p, q).

So since g = g− = g+ is generic, W (p, q) is a smooth mfd, thus so is C(p, q).
Finally we make a dimension argument:

If v ∈ C(p, q) is a solution then v(· + constant) is a solution since ∂sv =
−∇f(v) has ∇f independent of s.
⇒ if v non-constant, then there is a 1-family of solutions v(·+ constant)
⇒ dim C(p, q) ≥ 1 if p 6= q
⇒ ϕ only counts constant solutions C(p, p) = W (p, p) = {constant at p}
⇒ ϕ(p) = p
⇒ ϕ = identity.

Rmk. The key is not to make an s-dependent perturbation of gs = g− =
g+, but rather to perturb s-independently (in fact, since we assume g− = g+

is generic, we don’t need to). This gives transversality for W (p, q) = C(p, q).

(3) Study the breaking of 1-dimensional C(p−, q+), so |p−| − |q+| = 1.
The key claim is that a once-broken continuation solution does not con-

sist of two continuation solutions, but rather consists of one continuation
solution and one f±-trajectory:5

p−

q+

p−

b+

v
0

1

q+

v

a−
1

0
u+

u−

Proof. Consider a sequence vn of continuation solutions in C(p−, q+). Con-
sider the interval [−S, S] where fs, gs depend on s. Since [−S, S] is compact,
by Arzela-Ascoli a subsequence will satisfy C0-convergence on [−S, S] so
there is no breaking there.

p−

b+

u

v

q+

vnimage of [−S, S] where
fs, gs depend on s

here can apply the
reparametrization trick

(think “stretching of an
interval [−sn,−S] or [S, sn]”)

5In the figure, we denote by v the continuation solutions, and by u± the −∇±f±-trajectories.
We write boldface numbers which indicate the Fredholm index of the linearization of the Fredholm
section. So in the figure, |b| − |q| = 1, |p| − |a| = 1. Recall that

dim(C or W spaces) = dim tangent space = dimker(surj Fred operator) = index.

For W spaces, dimension 1 implies that M = W/R has dimension 0. So solutions v, u in C,W

spaces of dim 0, 1 respectively are called rigid (or isolated).
Finally, these dimension numbers add to give the correct dimension of the breaking family

because of linear gluing (see 5.5 Step 2, details to ➀): “gluing kernels of Fred operators is iso to
kernel of glued Fred operator”. So indices add correctly under gluing.
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In the general case (when we do not assume |p|−|q| = 1): mimick the proof
of 5.3 and use the above observation ⇒ general breaking for C(p−, q+) is:

p−
u−
1

q+ u+
β

u+
1

u−
α

vn v

Here u−
i are −∇−f−-trajectories, u+

j are −∇+f+-trajectories, and v is

a continuation map for (fs, gs).

Details. Reviewing the proof of compactness for W spaces, observe that
what we needed crucially was an a priori energy estimate. In our case it is:

E(v) =
∫∞

−∞
|∂sv|2 ds

=
∫

gs(∂sv, ∂sv) ds
= −

∫

dfs(∂sv) ds (since ∂sv = −∇sfs)
= −

∫

(∂s(fs ◦ v)− (∂sfs)(v)) ds
≤ f−(p−)− f+(q+) +

∫

|∂sfs|v ds
≤ f−(p−)− f+(q+) + 2S ·max

x∈M
|∂sfs(x)|

We also needed the energy consumption trick 3.3. This can also be used in
our setup in the regions s ≤ −S, s ≥ S where fs, gs do not depend on s.

Key observation: each u+
i , u

−
j contributes to 1 to the index difference

|p−| − |q+|, since the M± spaces are empty if the index difference of the
ends is zero or negative.

Key ⇒ for |p−| − |q+| = 0 no breaking can occur ⇒ C(p−, q+) is compact.
Key ⇒ for |p−|− |q+| = 1 only 1 breaking can occur for dimension reasons.

Hence (after reproving the gluing theorem) for |p| − |q| = 1:

∂C(p−, q+) =
⊔

a−

M−
0 (p, a)× C0(a, q) ∪

⊔

b+

C0(p, b)×M+
0 (b, q)

where the numbers indicate the dimension we request6 and M± are the M
spaces for (f±, g±).

⇒ C(p, q) compact 1-mfd
⇒ #∂C(p, q) is even
⇒ ϕ ◦ ∂− + ∂+ ◦ ϕ = 0. �

(4) (fλ
s , g

λ
s )0≤λ≤1 is called homotopy of homotopies (∗)

6|p| = |b| = k, |a| = |q| = k − 1.
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Fix p−, q+ with |p−| − |q+| = 0. Look at the “movie”

Cλ = Cλ(p−, q+; fλ
s , g

λ
s )

as λ varies. This “movie” is called the parametrized moduli space

P(p−, q+) =
⊔

0≤λ≤1

Cλ

For generic data (∗), it is a smooth 1-mfd:7

P(p−, q+)

C
1

death of solutions
λ

x, y, z1, z2 = bad births/deaths

z2

C
0

C
λ

λ = 0 λ = 1

z1

yx

birth of solutions

Warning. Cλ may not be a smooth manifold for fixed λ. Genericity of the
family (in λ) does not guarantee genericity of each point of the family (fixed
λ = λ0). However, one can guarantee that each Cλ satisfies transversality
except for finitely many values of λ.

Breaking analysis: a subsequence (λn, vn) has λn → 0, 1 or λ0 ∈ (0, 1).

⇒ ∂P = C0 ⊔ C1 ⊔B

where B = {bad births/deaths}.
If B = ∅, then P is a 1-cobordism from C0 to C1,

⇒ #C0 −#C1 = #∂P = even = 0 mod 2
⇒ ϕ0 = ϕ1

If B 6= ∅, let K count the bad set B:

p−

q+

p−

b+

1

q+

a−
1

-1 v ∈ Cλ0

−1
(a, q)u+ ∈ M+

0
(b, q)

v ∈ Cλ0

−1
(p, b) u− ∈ M−

0
(p, a)

-1

Question. How is it possible that such v exist: the relevant moduli space
Cλ0 is negative dimensional!

7dimP(p, q) = |p| − |q|+ 1, where the additional 1 is because of the parameter λ.
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Answer. This happens because fλ0
s , gλ0

s is not generic.8 So “−1” is the
virtual dimension: the dimension you would get if transversality held true:

virdim Cλ0(p, q) = |p| − |q|.

Def. Such v ∈ Cλ0

−1(·, ·) (virtual dimension −1) are called rogue trajectories.

There are no rogue trajectories at λ = 0, 1 since by assumption f0
s , g

0
s

and f1
s , g

1
s are generic. So define

K : MC−
∗ → MC+

∗+1

Kx− =
∑

|y+|=|x−|+1

#(rogue trajectories from x to y) · y+

So in the above pictures, the contributions would be:

Kp− = b+ + · · ·
Ka− = q+ + · · ·
∂−p− = a− + · · ·
∂+b+ = q+ + · · ·

So ϕ0 − ϕ1 = ∂+ ◦K +K ◦ ∂− comes from counting the even number of

elements in:

∂P(p−, q+) = C0 ⊔ C1 ⊔
⊔

λ0∈(0,1),b+∈Crit f+

Cλ0

−1(p, b)×M+
0 (b, q)

⊔
⊔

λ0∈(0,1),a−∈Crit f−

M−
0 (p, a)× Cλ0

−1(a, q)

(5) This is a gluing argument: you can approximately glue solutions, then for
large S (depending on p, r, q) you can associate a “unique” actual solution.
This produces a bijection:
⊔

q1∈Critf1

C0(p
0, q1; 1st hpy)× C0(q

1, r2; 2nd hpy) → C0(p
0, r2; glued hpy)

So ϕ21 ◦ ϕ10(p0) and ϕ20(p0) have the same r2 coefficients. Therefore

ϕ21 ◦ ϕ10 = ϕ20

(there are only finitely many critical points, so you can pick the largest of
the S’s, as you vary p, q, r).9

8Just because the family (∗) is generic, does not mean that each fλ0
s , gλ0

s is generic.
9Non-examinable: In more complicated situations, when there are infinitely many generators,

you can still prove the equation at the level of homology: cycles involve finite linear combinations
of generators, so only finitely many generators are involved in showing that the two expressions
agree on a given cycle.
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7. Applications

7.1. Poincaré duality. Define

MC∗ = Morse cochain complex =
∑

p∈Crit f

Z/2 · p

δp =
∑

dimM(q,p)=0, q 6=p

#M(q, p) · q (note the changed order!)

Cor. MH∗(f)=H∗(MC∗, δ)=Morse cohomology∼=H∗(M) (proved like 6.1 (3)).

Thm. MH∗(f) ∼=MHm−∗(−f)

Proof. Note that ind−f(p) = m− indf (p). So define on generators

φ : MC∗(f) →MCm−∗(−f), p 7→ p

and extend linearly. So φ is clearly an isomorphism of vector spaces. Moreover,

M(p, q; f) ∼= M(q, p;−f)
[u(s)] 7→ [u(−s)]

so φ is a chain map:

(φ ◦ ∂)(p) =
∑

#M(p, q; f) · q =
∑

#M(q, p;−f) · q = (δ ◦ φ)(p). �

7.2. Künneth’s theorem.

Thm. Over Z/2 coefficients,

MH∗(f1 ⊕ f2)OO
∼=

∼= // MH∗(f1)⊗MH∗(f2)

∼=

��
H∗(M1 ×M2) H∗(M1)⊗H∗(M2)

where f1 :M1 → R, f2 :M2 → R are Morse functions on closed mfds.

Proof.
f1 ⊕ f2 : M1 ×M2 → R

(m1,m2) 7→ f1(m1) + f2(m2)

So d(f1 ⊕ f2) = df1 ⊕ df2 : TM1 ⊕ TM2 → R.
Also f1, f2 Morse ⇒ f1 ⊕ f2 Morse.
For g1, g2 generic metrics, we will use1 g1 ⊕ g2 on M1 ×M2. Then

W (p1 × p2, q1 × q2, f1 ⊕ f2) =W (p1, q1, f1)×W (p2, q2, f2)

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1We will see directly that transversality holds for (f1 ⊕ f2, g1 ⊕ g2).

1



2 PART III, MORSE HOMOLOGY, L21

since ∂su1 ⊕ ∂su2 = −∇f1 ⊕−∇f2. The grading is:

|p1 × p2| = |p1|+ |p2|.

To get 1-dimensional moduli spacesW (·, ·): need u1 or u2 constant, otherwise have
dim ≥ 2 by shifting s in u1 and in u2.

⇒ d counts

{

M(p1 × p2, q1 × p2) = M(p1, q1, f1)× {p2}
M(p1 × p2, p1 × q2) = {p1} ×M(p2, q2, f2)

⇒ d(p1 × p2) = ∂p1 × p2 + p1 × ∂p2

⇒MCk(f1 ⊕ f2) ∼=
⊕

k1+k2=k

MCk1(f1)⊕MCk2(f2)

is an isomorphism of chain complexes, where the differential on the right is

d = ∂1 × id + id× ∂2

and this complex is denoted (MC∗(f1)⊗MC∗(f2))grading k.
Hence, by abstract algebra,2 MH∗(f1 ⊕ f2) ∼=MH∗(f1)⊗MH∗(f2). �

MCk1
(f1)⊗MCk2

(f2)

MCk(f1)⊗MC0(f2)

MC0(f1)⊗MCk2
(f2)

id⊗ ∂2

∂1 ⊗ id

(k1 + k2 = k)

7.3. Morse-inequalities. Abbreviate:

ck = #(crit pts of Morse f of index k) = dimMCk(f)
mk = dimMHk(f)
bk = dimHk(M) (Betti numbers)

computed using Z/2 coefficients (although everything in this Section holds also if
you use Z or R coefficients3).

Cor. ck ≥ bk

Proof. ck = dimMCk ≥ mk = bk (since MHk
∼= Hk(M)). �

Lemma. If 0 −→ C0
d0−→ C1

d1−→ · · ·
dn−1

−→ Cn −→ 0, di+1 ◦ di = 0, where Ci are
vector spaces over some field, then the Euler-characteristics agree:

χ(H∗) =
∑

(−1)i dimHi =
∑

(−1)i dimCi = χ(C∗)

where H∗ is the homology of (C∗, d).

2see May, Concise Course in Algebraic Topology, p.131: this is an abstract version of Künneth’s
theorem, and it uses the fact that we work over Z/2.

3this involves orienting the moduli spaces M(p, q), and in the definition of ∂ you count the
elements of M(p, q) with orientation signs ±1. When using Z, replace dim by rank.
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Proof. Ki = kerdi, Ji+1 = im di ⊂ Ci+1,

Ci ∼= Ki ⊕ complement
di−→ Ji+1 ⊂ Ci+1

and the complement maps isomorphically onto Ji+1. So, using Hi = Ki/Ji

dimCi = dimKi + dim Ji+1

dimHi = dimKi − dim Ji

Writing ci, hi, ki, ji for the dimensions,
∑

i

(−1)ici =
∑

i

(−1)iki +
∑

i

(−1)iji+1 =
∑

i

(−1)iki −
∑

ℓ

(−1)ℓjℓ =
∑

ℓ

(−1)ℓhℓ

�

Thm (Morse inequalities).

ck − ck−1 + · · ·+ (−1)kc0 ≥ bk − bk−1 + · · ·+ (−1)kb0 ∀k

and for k = m get equality:
∑

(−1)ici =
∑

(−1)imi = χ(M).

Proof.

0 −→MC0
∂0−→MC1

∂1−→ · · ·
∂k−1

−→ MCk
∂k−→ im(∂k) −→ 0

So by the Lemma,

c0 − c1 + · · ·+ (−1)kck + (−1)k+1 dim(im ∂k) = m0 −m1 + · · ·+ (−1)kmk.

Now multiply by (−1)k and use (−1)2k+1 dim(im ∂k) ≤ 0. Finally use mi = bi. �

7.4. Products. You would like to count the following rigid configurations:

q

p

r

−∇f

−∇f

−∇f

which is an abbreviation for:

u1 : (−∞, 0] → M, ∂su1 = −∇f
u2 : (−∞, 0] → M, ∂su2 = −∇f
u3 : [0,+∞) → M, ∂su3 = −∇f
u1(0) = u2(0) = u3(0).

Note the intersection point lies in

W (p, q; r) =Wu(p) ∩Wu(q) ∩W s(r). (∗)

Problems: Firstly, such configurations are unlikely: flowlines do not intersect
unless they coincide. Secondly, we need W (p, q; r) to be a manifold. To fix both
these issues, one needs to perturb the function f on each edge,4 so we use Morse
f1, f2, f3 on the 3 edges, and we pick a Morse-Smale metric g for all three edges.5

So, for generic fi, W (p, q; r) is a manifold of codimension

codimW (p, q; r) =
∑

codims
= m− |p|+m− |q|+ |r|

4in fact, it is enough to perturb f on only one of the first two edges, since we already have
Wu(p) ⋔ W s(r). But for more general graphs, you will have to perturb all f ’s.

5a finite intersection of generic sets is generic.



4 PART III, MORSE HOMOLOGY, L21

we want this to be m (so we get dim = 0) so want |r| = |p|+ |q| −m. Thus

MCa ⊗MCb
ψ

−→MCa+b−m

p · q = ψ(p, q) =
∑

dimW (p,q;r)=0

#W (p, q; r) · r

on generators, and extend bilinearly.

Example. For the torus, you can check directly that p · q = r in the figure:

perturb f
on each edge

p

q

r

f
f

p

q f1

r3
r1

r2
f2

f3

which is Poincaré dual to the statement H1
dR⊗H1

dR → H2
dR, ds∧ dt = (area form).

Claim. ψ is a chain map

Proof. Breaking/gluing analysis:

⇒ ψ ◦ (∂1 ⊗ id + id⊗ ∂2) = ∂3 ◦ ψ �

Cor.

MHa ⊗MHb
·

intersection product

//

∼=P.D.

��

MHa+b−m

∼=P.D.

��
MHα ⊗MHβ ∪

cup product

// MHα+β

where α = m− a, β = m− b, α+ β = m− (a+ b−m).

Comparison with algebraic topology:

Claim. ψ is compatible with homotopying f1, f2, f3.
Consequence. WLOG f1, f2, f3 are self-indexing. Then MC∗ → Ccell

∗ , p 7→
Wu(p) is an isomorphism (see 3.10), and the cellular intersection product is:

Wu(p) ·Wu(q) =
∑

r

#(Wu(p) ⋔ W̃u(q) ⋔ W̃ s(r)) ·Wu(r)

where you homotope Wu(q),W s(r) to W̃u(q), W̃ s(r) to ensure the intersection
is transverse and that all intersections occur away from the boundaries6 of the
unstable/stable mfds. So in fact, we do not need to homotope if we choose f1, f2, f3
generically. This proves you recover the classical intersection product. �

6more precisely, we mean: away from the boundary of the compactification of the image.
Non-examinable: the notion of pseudo-manifolds makes these arguments very rigorous.
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Sketch of Proof of the Claim. Consider ψ ◦ (ϕ ◦ id), where ϕ is a continuation map
(so we are only homotopying f1, using a hpy fs from f0 to f1). Consider the
following two configurations:

fs

f2

f3

f1

u2

u1

f2

f3

fs#Sf1

u1#Su2

On the left, are the broken solutions counted by ψf1,f2,f3 ◦ (ϕ ◦ id) where we em-
phasize for which f ’s ψ is defined. On the right, are the glued solutions counted
by ψfs#Sf1,f2,f3 . By a gluing argument, for a large gluing parameter S, there is a
bijection between the broken solutions and the glued solutions.

Now homotopying fs#Sf1 to f0, produces a chain homotopy K like in 6.3 (4):

ψfs#Sf1,f2,f3 − ψf0,f2,f3 = ∂3 ◦K +K ◦ (∂0 ⊗ id + id⊗ ∂2).

So the maps agree on homology. So ψf1,f2,f3 ◦ (ϕ ◦ id) = ψf0,f2,f3 on homology. �
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7.5. Spectral sequences.

Spectral sequence = algebraic gadget that interlocks a bunch of exact sequences.
It usually arises for a chain complex C∗ with

d = d0 + d1 + d2 + · · ·

where d0 is “dominant” in some way over the higher order terms d1, d2, . . ., and we
hope to approximate H∗(C∗, d) by

E1 = H∗(C∗, d0), E
2 = “H∗(E

1, d1)”, . . .
cges?
⇒ H∗(C∗, d).

Def. An exact couple is an exact1 triangle of vector spaces of the form

A
i //

__

k @@
@@

@@
@ A

j��~~
~~

~~
~

E

Given an exact couple, define

d = j ◦ k : E → E

Then d2 = jkjk = 0 since kj = 0 by exactness. Thus we obtain the derived couple:

i(A)

dd

�
HH

HH
HH

HH
H

kb

i′ //
dd

k′ HH
HH

HH
HH

H
i(A)

j′zzvv
vv

vv
vv

v

6

zzvv
vv

vv
vv

v
ia

H(E; d)

[b] [ja]

Exercise. Check these maps are well-defined, and that this new triangle is exact.

Rmk. If i = inclusion, then k = 0, so d = 0, so E ≡ H(E, d) = A/iA unchanged!

7.6. Example: the spectral sequence for a bounded filtration.

Suppose (C∗, d) is a Z-graded chain complex2 with a filtration by subcomplexes3

0 = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn = C∗

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1recall exact means the kernel of one arrow equals the image of the previous arrow.
2d : Ck → Ck−1, d

2 = 0.
3dFp ⊂ Fp.

1
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⇒ 0 → Fp−1
i
→ Fp

j
→ Fp/Fp−1 → 0 exact

⇒ define Fp = 0 for p < 0, Fp = C∗ for p ≥ n. Then define

E0
p,∗−p =

⊕

p

(Fp/Fp−1)the part in Z-grading ∗

Then the LES asssociated to the above SES:4

A1 =
⊕

p H∗(Fp−1)
i1 //

jj

k1 UUUUUUUUUUUUUUUUU
/

⊕
p H∗(Fp) = A1

j1ttiiiiiiiiiiiiiiii

H∗(
⊕

p E
0
p,∗−p) =

⊕
p E

1
p,∗−p

The dash on the arrow indicates that the grading ∗ drops by 1. Abbreviate q = ∗−p
(∗ = p+ q is called the total degree). Deriving the couple, we obtain:

d1 = k1 ◦ j1 : E1
p,q → E1

p−1,(∗−1)−(p−1) = E1
p−1,q.

A2 i2 //ff

k2

MMMMMMMMMMM
/

A2

j2xxqqqqqqqqqqq

H(E1, d1) = E2

and keep deriving. So obtain Er, dr = jr ◦ kr : Er
p,q → Er

p−r,q+r−1

Er
k,0

p

q

diagonal of elements
in total degree ∗ = p+ q = k

up r − 1

left r

Er
0,k

dr

dr

dr

A1 = sum up (0 → H(F0)
i
→ H(F1)

i
→ · · ·

i
→ H(Fn)

=
→ H

=
→ · · · )

where H = H(C∗, d) = H(Fp) for p ≥ n. The image under in becomes:

An+1 = sum up (0 → inH(F0) ⊂ inH(F1) ⊂ · · · ⊂ inH(Fn) = H = · · · )

= sum up (G0 ⊂ G1 ⊂ · · · ⊂ Gn = H = · · · ) where Gp = im (H(Fp)
in

→ H).
Rmk
⇒ Er

p,∗−p = ⊕(Gp/Gp−1)the part in Z-grading ∗ = E∞
p,∗−p constant for r ≫ 0.

But now H ∼= G0 ⊕ (G1/G0)⊕ (G2/G1)⊕ · · · ⊕ (Gn/Gn−1), so rewriting:

⇒ H∗(C∗, d) ∼=
⊕

p

E∞
p,∗−p

4recall that every short exact sequence gives rise to a long exact sequence. E.g. see Hatcher’s
Algebraic Topology.
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One abbreviates this result by writing

E1
p,q ⇒ H∗(C∗, d)

(read “⇒” as “converges to”) and one says the spectral sequence E1
p,q converges.5

Warning: the last two isomorphisms are not canonical, because you are recover-
ing the group from certain successive quotients.

7.7. Leray-Serre spectral sequence.

Thm.

F // E

π
��
B

Let E be a fibre bundle with simply connected base B, and with fibre
F , where B,E, F are closed mfds. Then there is a spectral sequence

E2
p,q = MHp(B)⊗MHq(F ) ⇒ MH∗(E).

Example. Künneth’s theorem: E = B × F , then E2
p,q = E∞

p,q.

Proof. Fix Morse-Smale data:

(b : B → R, gB) (f : F → R, gF )
Crit b = {b1, b2, . . . , bn} Crit f = {y1, . . . , ym}.

Pick disjoint opens Bi around bi ∈ B with trivializations

E|Bi

fi
��

∼= // Bi × F

f
��

R R

Fix bump functions ρi : B → [0, 1], ρi =

{
0 outside Bi

1 near bi
Then we obtain a function on E:

h = b+ ε
∑

ρifi : E → R

where we abusively write b but mean b ◦ π : E → B → R.

Claim. h is Morse for 0 < ε ≪ 1.
Proof. h = b⊕ εf on (ρi = 1) ⊂ Bi × F is Morse (compare Künneth proof) X

Outside ∪i(ρi = 1): |db| > δ > 0, so for ε ≪ δ get |db| > 1
2δ > 0 (ρi, fi are

C1-bdd since F compact). �

This also proves that

Crith = Crit b× Crit f (in the trivializations). (∗)

Now want to build a metric on E such that in the above trivializations we are
in the Künneth setup:

gE = gB ⊕ gF on Bi × F
⇒ ∇h = ∇b⊕ ε∇fi on ρi = 1.

Problem: ∇h is useless: outside ρi = 1 you get ∇ρi terms and also you will need
to perturb gE to get transversality

5In our case, one also says the spectral sequence degenerates at sheet n+1 because dr = 0 for
r ≥ n+ 1, so we may identify En+1 = En+2 = · · · .
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⇒ you have no idea what dπ(∇h) is.

⇒ no idea what π ◦ (−∇h trajectory) is.
Trick: we will construct a gradient-like vector field v for h such that

{
➀ dπ ◦ v = ∇b
➁ v = ∇h = ∇b⊕ ε∇fi on ρi = 1

Hence, for e 6= e′ ∈ Crith define:

V (e, e′) = {−v flowlines converging to e, e′}/R .

Because of ➀, V (e, e′) projects via π to the moduli spaces M(bi, bj) for b : B → R,
where bi = π(e), bj = π(e′). Like for the M spaces,6

dim V (e, e′) = |e| − |e′| − 1

calculating the indices for h, since near the ends −v = −∇h by ➁.

Modifying gE: Define the vertical and horizontal subspaces of TE by

V = ker dπ,
H = V ⊥ (perpendicular for gE)

So in particular V = TF and H = TBi over Bi × F ∼= E|Bi
. Define

g̃E =

{
gE on V
π∗gB on H

and V ⊥ H for g̃E

v = ∇̃b+ ε
∑

ρi∇̃fi (∇̃ = gradient for g̃E)

Note that g̃E = gE on ∪i(ρi = 1).

Proof of ➀ and ➁: ➁ is immediate.

db = g̃E(∇̃b, •)

= g̃E(∇̃b, projectH •) since db = 0 on V

= (π∗gB)(projectH∇̃b, projectH •) since V ⊥ H for g̃E
= gB(dπ∇̃b, dπ•)

⇒ dπ · ∇̃b = ∇b

⇒ dπ · v = ∇b since7 dπ∇̃fi = 0
⇒ ➀ X

Proof v is gradient-like: dh(v) = |∇̃b|2−order(ε) > 0 outside ρi = 1, and on ρi = 1
v is the gradient of h by ➁ X.

We now construct a Morse-like complex for −v. Because of (∗), we define

C∗ = MC∗(h) = MC∗(b)⊗MC∗(f),

6indeed, the same proof holds: our index calculation shows that only the asymptotics of the
linearization of the flow matter, and at the ends the flow is a Morse flow: −v = −∇h by ➁.

7g̃E(∇̃fi,H) = dfi(H) = df(TBi) = 0 over Bi, and outside Bi have ρi = 0.
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with differential

de =
∑

dimV (e,e′)=0, e6=e′

#V (e, e′) · e′

= (d0 + d1 + d2 + · · · ) e

dpe =
∑

|πe|−|πe′|=p, dimV (e,e′)=0

#V (e, e′) · e′.

Define the filtration:

Fp =
⊕

|πe|≤p, e∈Crit h

Z/2 · e.

Observe: Fnegative = 0, FdimB = C∗, Fp−1 ⊂ Fp.

Crucial claim. Fp is a subcomplex: dFp ⊂ Fp.
Proof. if ∃ −v traj u, then π ◦ u is a −∇b traj.
⇒ |πe| − |πe′| = dimW (πe, πe′) ≥ 0
⇒ |πe′| ≤ |πe| ≤ pX

⇒ E0
p,∗−p = Fp/Fp−1 = MCp(b)⊗MC∗−p(f) with d = d0 on E0.

Claim. d0 = ∂fibre counts −∇f trajectories in the fibres.
Pf. |πe| = |πe′| ⇒ W (πe, πe′) = ∅ unless πe = πe′, in which case π ◦u =constant.X

⇒ E1
p,q

∼= MCp(b)⊗MHq(f)

Warning: this isomorphism is not canonical, because we made choices of trivial-
izations. So let us be more precise:

E1
p,q =

⊕

bi∈Crit b

Rq(bi)

Rq(bi) = MHq(Ebi , h|Ebi
= b(bi) + εfi|Ebi

)

≡ MHq(Ebi , fi|Ebi
)

and non-canonically Rq(bi) ∼= MHq(F, f) by using the choice of trivializations.

Using B simply connected. For simply connected B you can identify fibres
by following a path in B, and if you change the path then you get a homotopic
identification: hence the homology does not notice the change. Pictorial idea:8

B
bi bj

Ebi Ebj

Write Fp = Cp ⊕ Fp−1, where Cp is generated by the e with |πe| = p. Then

Fp = Cp ⊕ Fp−1

d =
[
d0 0
∂′ ∂′′

]
// Cp ⊕ Fp−1

8on the right, compare parallel transports P1, P2 along two paths: homotope to a constant the

loop that concatenates the two paths; obtain a chain homotopy between P−1

2
◦ P1 and id.
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where ∂′, ∂′′ are d1 + d2 + · · · composed with projection to Cp, Fp−1 respectively.

Fp−1 = Cp−1 ⊕ Fp−2
i

−→ Fp = Cp ⊕ Fp−1

(a, b) 7→ (0, a+ b)

H∗(Fp−1)
i1 //

gg

k1 NNNNNNNNNNN
/

H∗(Fp)

j1xxqqqqqqqqqq

H∗(Fp/Fp−1) = E1
p,∗−p

[(a, b)]
i1 // [(0, a+ b)] [(α, β)]

j1vvnnnnnnnnnnnnnn

[α]

Recall k1 is the boundary of the LES, so study the SES’s:

0 // (Fp−1)∗ //

d

��

(Fp)∗ //

d

��

(Fp/Fp−1)∗ //

d

��

0

0 // (Fp−1)∗−1
// (Fp)∗−1

// (Fp/Fp−1)∗−1
// 0

and diagram chase what happens to α:

(α, 0) //

d

��

α //

d

��

0

0 // (∂′α, 0) // d(α, 0) = (0, ∂′α) // d0α = 0 // 0

so, by definition of the boundary k1, in the triangle above we get

[(∂′α, 0)]
\\

k1 99
99

99
9
/

[α]

So d1[α] = j1k1[α] = [∂′α] = [d1α] ∈ H∗−1(Fp−1/Fp−2) (here d1 and ∂′ agree since
we quotient by Fp−2). Thus

d1[α] = [d1α]

We need to understand d1:

d1(bi ⊗ y) =
∑

|bj |=p−1, any y′∈Crit f

#V0(bi ⊗ y, bj ⊗ y′) · bj ⊗ y′

counts the 0-dimensional V spaces, and recall each u ∈ V0(bi ⊗ y, bj ⊗ y′) lies over
the −∇b trajectory π ◦ u from bi to bj .

Note d1 : R(bi) → R(bj) is a chain map (with respect to d0) since:
9

0 = d2 = d20 + (d1d0 + d0d1) + · · ·

and d20 = ∂2
fibre = 0, hence d1d0 + d0d1 = 0. (Exercise: you can also prove this last

equality by a breaking analysis like in 7.4)

Idea. d1 counts trajectories which have an index drop in the base, so we expect
the trajectories to be “constant” fibrewise. This makes sense if E is trivial (that is
how we proved the Künneth thm), but otherwise the notion of “locally constant”
depends on choices of local trivializations. So we need to keep track of choices.

9we break d2 up according to the filtration, so each summand must vanish.
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Claim. Along a trivialization over the path π ◦ u the solutions u are continuation
solutions of a Morse flow, and the count d1 of such rigid solutions defines the same
identification between R(bi) and R(bj) as the one induced on ordinary homology by
parallel translation along any path joining bi, bj.

Proof.

B

Ebi Ebj

bi πu bj

Pick a trivialization R× F agreeing10 with the given ones at bi, bj , so

h =

{
εf + constant at −∞
εf + constant at +∞

The count of isolated −v flowlines in this trivialization (which project to the ∂s
flow in R) then defines a map similar to a continuation map. Indeed, by covering
the path πu by small charts, and extending the trivialization to these charts, we
can homotope the metric g̃E to make it a direct sum metric gB ⊕ gF (which it
already is at the ends of the path πu), so that v is the gradient of a homotopy
hs = b + εfs, where fs at the ends equals f . But now this homotopy can be
homotoped to hs = b + εf + c(s), where c(s) only depends on s and at the ends
equals the constants in the above expression for h at ±∞.

Observe that ∇(b + εf + c(s)) = ∇(b + εf), so just as in the case of a constant
hpy (6.3 (2)), one proves that b+ εf + c(s) induces the identity continuation map.
Hence, our original count of flowlines is chain homotopic to the identity. Hence
on Morse homology it equals the identity. Thus the map agrees with the parallel
transport map which defined the various trivializations (see footnote 10). X

Conclusion: Recover d1 by finding the isolated −∇b trajectories on B, and doing
parallel transport in the fibres to get the map between the R(bi)’s. More precisely:

d1 on E1 =
⊕

bi

R(bi) can be identified with ∂base on MC∗(b)⊗MH∗(f)

⇒ E2
p,q = MHp(b)⊗MHq(f)

⇒ Er
p,q ⇒ H∗(C∗, d)

Finally, the last step of the proof of the Leray-Serre theorem, is:

H∗(C∗, d) ∼= MH∗(h)

This is proved by a parametrized moduli space argument like in 6.3 (4): you homo-

tope −v to −∇̃h. Note that −v = −∇̃h except in the regions where the ρi 6= 0, 1
which are small subsets of Bi \ (ρi = 1). �

10 Need to choose trivializations carefully: pick a trivialization Bi×F for some bi, then parallel
transport this over chosen paths to define the trivializations for the other Bj × F ’s. Finally we

use the fact π1B = 0 to obtain the required trivialization with prescribed ends.
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7.8. Example of applying the Leray-Serre theorem.

Let E = {v ∈ TS2 : |v| = 1} (the sphere bundle of TS2).1

S1 // E
π

��

S2

E2
p,q = MHp(S

2)⊗MHq(S
1).

Represent E2 graphically as:

Z

Z Z

Z
d2

p

q

So we can already deduce:a

H0(E) = Z

H1(E) = Z/im d2

H2(E) = ker d2

H3(E) = Z

ahere please take on trust that one can do Morse ho-
mology over Z by keeping track of orientation signs.

We take b = height function on S2, and f = height function on the fibre S1. To find
d2, we need to understand how parallel transport relates the critical points of index
1, 2. Consider how a vector at the North pole p of S2 gets parallel transported to
the South pole q when moving along four great half-circles meeting at 90◦ at p.

min
f = height

f = height

R

R
max

b = height

R

q

p

TpS
2

TqS
2

We see that two2 of the parallel transports of the vector point in the direction of
the maximum in the S1 fibre over q. Indeed, this shows that there are exactly two
great half-circles from p to q such that the minimum in the fibre over p gets parallel

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1Secretly, one knows that E ∼= SO(3) ∼= RP 3.
2secretly, this “two” is the Euler characteristic of the base S2.

1
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transported to the maximum in the fibre over q.
⇒ d2 = multiplication by 2
⇒ H∗(B) = Z ⊕ Z/2 ⊕ 0 ⊕ Z

∗ = 0 1 2 3

Rmk. One can similarly do this for the higher dimensional case Sn−1 → S(TSn) →
Sn. More generally, this method should in principle yield the Gysin sequence.

8. Morse-Bott theory

8.1. Motivation. Question. In the construction of the Leray-Serre spectral se-
quence, what happens if we let:

supports of ρi shrink to bi
and ε → 0.

Answer. the trajectories become more vertical near the critical fibres, and more
“horizontal” away from them:

bi

bj

bk

So the trajectories converge to a combination of −∇f flows along fibres and

“quantum jumps” between the fibres given by −∇̃b flows:

−∇f

−∇f

flow for finite time here

u2 : R → E

−∇f −∇̃b

−∇̃b

u1 : R → E

(whereas u1, u2, . . . are
flows for infinite time)

bkbi bj

8.2. Morse-Bott functions.

A smooth function b : M → R is called Morse-Bott if

(1) C = Crit b =
⊔

i

Ci is a finite disjoint union of connected submfds Ci ⊂ M

(2) Hesspb = Dp(db) : TpM → T ∗
pM nondegenerate transversely to Ci, meaning

TpCi = kerHesspb ∀p ∈ Ci.

Equivalently: Hesspb induces an invertible self-adjoint map on normal bdles

Hesspb : νCi
→ νCi

.

Examples.

(1) b = Morse, C = {critical points}
(2) b = 0, C = M .
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(3) b(x, y, z) = −x2 + y2 and C = z-axis inside R
3, but not b = −x3 + y2.

(4) a torus lying flat with the height function:

C1 = maxima

C2 = minima

R

b = height

(5) Fibre bundle F // E
π

��

B
b

//
R

Suppose b : B → R is Morse. Then b ◦ π : E → R is Morse-Bott with
Ci = π−1(bi) the fibres over the critical points bi of b.

8.3. Morse-Bott chain complex. Choose auxiliary Morse functions

f = ⊔fi : C = ⊔Ci → R

and a generic metric gC = ⊔gCi
on C. Write ∇f for the gradient of f w.r.t. gC .

Def. Define the grading of p ∈ Crit(fi) ⊂ Ci by:

|p| = indb(p) + indf (p) = indCi + indf (p)

Note that indb(p) is independent of p ∈ Ci and is the index of Hesspb : νCi
→ νCi

.

Key Idea: you are pretending that you perturbed b to b+ ε
∑

ρifi.

Example. In example (3): indb(C) = 1 because of the −x2. For f : C → R,
(0, 0, z) 7→ −z2 get |(0, 0, 0)| = −2, which equals the index for −x2 + y2 − εz2.

Def. Define the Morse-Bott complex by

BC∗ =
⊕

p∈Crit f

Z/2 · p

=
⊕

i

MC∗(fi) [indCi]

The [indCi] is a shift in grading: |p [indCi]| = indfi(p) + indCi, so grading 0
becomes grading indCi.

8.4. Morse-Bott differential. ∂ counts rigid Bott trajectories:

“quantum jump”
Ci

Ck

Cj

flow by −∇fi−∇b flowline

Useful Notation to summarize a Bott flowline:
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p ∈ Crit f

(can be constant)

vn : [0,∞) → M

∂svn = −∇f
(can be constant)
∂sv0 = −∇f

v0 : (−∞, 0] → M

jump u1 : R → M (nonconstant)
∂su1 = −∇b

v1 : [0, ℓ1] → M ∂sv1 = −∇f

q ∈ Crit f

finite length ℓ1 ∈ [0,∞) edge

(can be constant)

jump un (nonconstant)

Def. The moduli space of Bott flowlines with n ≥ 1 jumps is:

Wn(p, q) = {(u1, . . . , un; ℓ1, . . . , ℓn−1) : uj ∈ W (pj , qj ; b), pj 6= qj ∈ C such that
p1 ∈ Wu(p, f), qn ∈ W s(q, f), and qj , pi+1 are connected by a
finite time −∇f flowline vj : [0, ℓj] → C, ℓj ∈ [0,∞)}

W 0(p, q) = W (p, q; f) the moduli space of −∇f flowlines R → C.

Def. The moduli space of Bott trajectories is

B(p, q) =
⋃

n∈N

Wn(p, q)/Rn,

where R
n acts by shifting the s coordinates in u1, . . . , un.

8.5. Breaking of Bott trajectories.

Under C0
loc-convergence, a Bott flowline can break in two ways:

(1) some ℓj → ∞ and therefore vj breaks on some critical level set Ci:

Ci

p ∈ Crit fi

vj

(2) or some uj breaks:

CkCi

uj

Cr

where on the right we indicated the abbreviated notation for the breaking.

The broken Bott flowlines in (2) for Wn(p, q) are precisely the boundary points
of Wn+1(p, q) arising when ℓj = 0. So when we compactify B(p, q) we do not
need to artificially add these limit broken Bott trajectories since they are already
present. However, we still need to enlarge the topology so that it is recognized as
a limit in the sense of (2). So we just artificially add the breakings of type (1):

B(p, q) = B(p, q) ⊔
⊔

n≥2

B(p, p2)× B(p2, p3)× · · ·B(pn, q).

∂B(p, q) = ⊔B(p, p2)×B(p2, p3)×· · ·B(pn, q) are called the broken Bott trajectories.

8.6. Energy estimates for Bott trajectories. Define the energy:

E(v0, u1, v1, . . . , un, vn) =
∑

energies = E(v0)+E(u1)+E(v1)+· · ·+E(un)+E(vn).

Lemma.

(1) b decreases along a Bott trajectory
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(2) ∃δ > 0 such that to go from one Ci to another Cj a Bott trajectory must
consume energy ≥ δ > 0.

(3) There are at most (f(p)− f(q))/δ jumps, so Wn(p, q) = ∅ for large n.

Proof. b is constant along the vi, and b decreases along ui. (2) is proved like 3.3:
|∇b| > δ > 0 outside small nbhds of the Ci’s, etc. and (3) follows from (2). �

For generic metrics gM onM , gC on C, one can prove the corresponding transver-
sality, compactness and gluing results for B(p, q) like we did for M(p, q), thus:

B(p, q) smooth mfd
dimB(p, q) = |p| − |q| − 1
B(p, q) is a compact mfd with corners

8.7. Morse-Bott homology. Recall

BC∗ =
⊕

i

MC∗(fi)[indCi].

Define
∂ : BC∗ → BC∗−1

∂p =
∑

dimB(p,q)=0, p6=q

#B(p, q) · q.

The proof of ∂2 = 0 follows just like for Morse homology from the results in 8.6.
Hence we obain the Morse-Bott homology:

BH∗(b, f) =
ker ∂

im f

Example. In example (4) above, using height functions on the circles C1, C2:

∂p2 = 0 · q2

∂q1 = 0 · q2

q1

q2

p1

p2

∂p1 = 0 · p2 + 0 · q1

This shows ∂ = 0, so over Z/2:

BH∗ = BC∗ = Z/2 ⊕ (Z/2)2 ⊕ Z/2 ∼= H∗(torus)
∗ = 0 1 2

8.8. Invariance of Morse-Bott homology. At this stage, one has to redo some
of the work done for Morse homology:

(1) Build continuation maps,3 when homotopying b, fi, gM , gC .
(2) Prove invariance using continuation map properties.
(3) Invariance (2) implies4 BH∗(b, f) ∼= BH∗(Morse function F, 0) ∼= MH∗(F ) ∼=

H∗(M), thus:

BH∗(b, f) ∼= H∗(M)

3these are a little tricky, since homotopying b can change C drastically.
4Also, BH∗(b, f) ∼= BH∗(0,Morse function F on M) works.
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8.9. Filtration by action. For a ∈ R,

Fa = Fa(BC∗) =
⊕

y∈Crit(f), f(y)≤a

Z/2 · y

Key observations: dFa ⊂ Fa, Fa = 0 for a ≪ 0, Fa = BC∗ for a ≫ 0.
Now make it a discrete filtration, using the δ > 0 of the energy estimates:

· · · ⊂ F0 ⊂ Fδ ⊂ F2δ ⊂ · · · ⊂ Fp·δ ⊂ · · ·

⇒ E0
p,∗−p = F(p+1)δ/Fpδ, and d = d0 on E0 since if you make a quantum jump,

then you fall inside Fpδ, so d only counts −∇f trajectories in C.
⇒ E1

p,∗−p =
⊕

i MH∗(fi)[indCi]
So we deduce:

Thm. There exists a spectral sequence E1 =
⊕

i

MH∗(fi)[indCi] ⇒ BH∗(b, f)

So there is also a spectral sequence
⊕

i

H∗(Ci)[indCi] ⇒ H∗(M)

Cor. The Euler-characteristic χ(M) =
∑

(−1)indCiχ(Ci).

Proof. This follows from the Theorem and from Lemma 7.3:

χ(M) = χ(H∗(M)) = χ(E∞) = χ(E1) = χ (⊕iH∗(Ci)[ind(Ci)]) =
∑

(−1)ind(Ci)χ(Ci).

�

8.10. Filtration by the index of b. Make the following

Assumption. B(p, q) = 0 if indb(p) < indb(q).

For example, this holds in example (5) above. Define

Fp =
⊕

indbCi≤p

⊕

y∈Crit(fi)

Z/2 · y.

Then d = d0 + d1 + d2 + · · · , where

d0 = counts −∇f flowlines in C
d1 = allow one quantum jump
d2 = allow two quantum jumps
. . .

Thm. There exists a spectral sequence of the same form as above.

Example. In example (5), we obtain the Leray-Serre spectral sequence. Use b :
B → R Morse on the base, and fi : Ebi → R Morse on the fibres over bi ∈ Crit(b).

Fp =
⊕

|bi|≤p, y∈Crit f

Z/2 · y

E1 =
⊕

bi∈Crit(b)

MH∗(fi) [ |bi| ]

For π1(B) = 0, get d1 = ∂base. So

E2
p,q = MHp(B)⊗MHq(F ) ⇒ H∗(E).

Note this has the enormous advantage that we do not have to construct a special
metric and a pseudo-gradient vector field.
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9. Where to go from here

I recommend three interesting survey papers:

• Michael Hutchings, Lecture Notes on Morse homology.

This is available online. It is a very elegant treatment of many interest-
ing topics. It covers parts of this course, but sometimes using a different
approach (some proofs in Morse homology can be simplified if one uses
smooth dependence of ODE’s on initial conditions, but unfortunately these
proofs do not generalize to Floer theory so we avoided this approach).

• Dietmar Salamon, Lectures on Floer homology.

This is available online. It is the best place to learn the basics of Floer
homology. Always short and to the point, which is wonderful.

• Kenji Fukaya, Morse homotopy, A∞-category and Floer homologies.

Available online (the fonts are a little strange). This is excellent to get a
feel for the ideas involved in Floer theory.

For research directions on more advanced topics, I recommend three books:

• Dusa McDuff and Dietmar Salamon, J-Holomorphic Curves and Quantum
Cohomology, 1994 (not the similarly called 2004 version).

This is a great book and is very readable.

• Paul Seidel, Fukaya categories and Picard-Lefschetz theory.

This is a very advanced book. It is the key reference for A∞-algebras, La-
grangian Floer homology, Lefschetz fibrations, Fukaya categories. This is
useful if you become a mathematician in the area of symplectic topology.

• Peter Kronheimer and Tomasz Mrowka, Monopoles and Three-Manifolds.

This is a very detailed treatment of Seiberg-Witten Floer homology. It al-
ways motivates ideas using Morse homology, which is a great approach.


