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1.3. Sard’s theorem.

Fact.! For smooth f: M — N,

‘ Almost every point of N is a reqular value of f ‘

This means: {critical values} = f({critical points}) is a set of measure zero® in N.
Equivalently: {regular values} C N has full measure, so these points are “generic”.

Cor. {regular values} C N is dense.
Pf. Non-empty open sets in R™ have measure > 0. O
Rmk. M, N need not be compact. The result only uses that M is second countable.?

Fact. For C*-maps* f : M™ — N", the above fact holds provided k > m — n.
(Here M, N need not be smooth, just need C*-mfds: the transition maps are C*.)

Examples.
(1) f:R" R, x> 2?21
0 regular value, so f~1(0) = S™ 1 mfd of dim =m — 1.
(2) f: Matrices,x, — Symmetric Matrices,xn, A — AT A
_ . n(n+1
I regular value, so f~1(0) = O(n) mfd of dim =n? — %
(3) Hwk.®> Sard = homotopy groups 7;(S™) = 0 fori < n.

1.4. Transversality.

Motivation:
q € N regular value = f~
O submfd Q C N satisfying ...7 = f~
O submfds Q1,Q2 C N satisfying ...7 = Q1
O Pretend N/Q made sense ©

=F: M5 NSNQ27=Q/Q

Y(g) € M submfd
H@Q) € M submfd
N Q2 C N submfd

Date: May 3, 2011, © Alexander F. Ritter, Trinity College, Cambridge University.

f you are curious about its non-examinable proof, see Milnor’s Topology from the Differen-
tiable Viewpoint, or Guillemin & Pollack, Differential Topology.

2A subset S of R™ has measure zero if Ve > 0, Jcountable covering of S by cubes C;, with
> vol(C;) <e. A subset S of a mfd N has measure zero if for any chart ¢ : U — R", ¢(SNU)
has measure 0 (it’s enough to require this for a covering ¢; : U; — R™). Example: Q C R. Useful
facts: countable unions of measure 0 sets have measure 0; C'-maps between subsets of R™ always
map measure 0 sets to measure 0 sets.

3Second countable= there is a countable covering by charts. This is always part of the definition
of manifold. Consequence: any covering has a countable subcover.

41 times continuously differentiable maps, with k > 1 so “regular/critical points” are defined.

5 Non-ezaminable: the proof essentially shows Sard implies the cellular approximation theorem.
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2 PART TII, MORSE HOMOLOGY, L3
= [71Q)=F"'(q)
= f~1Q) is mfd if g regular value of F'
if d, F' surjective Vp € F~1(q)
if d, (T, M) = Ty(N/Q)
if‘dpf(TpM)JrTqQ:TqN Vpefil(Q)qugQ‘
Def. f: M — N is transverse to Q if the above box holds. Write f Q.
Thm.

F~HQ) € M submfd of codim = codim Q

fhe= { T, f~1(Q) = ker( T, M a2l TN —TN/TQ)=ker(Dpf : T,M — vq,q)

Pf. Locally Q C N is® R* C R", so “N/Q” is well-defined locally: R"/R¢. O

Ezplanation: vg = TN/TQ =normal bundle to @ C N, fibre vg , = T,N/T,Q.
D, f is abuse of notation:” ‘ Df, - X = vertical projection of d, f - X at ¢ = f(p) € Q ‘

OFor f:Q1“——= N and Q = Q2 C N,

inclusion
f_l(Q) =@Q1NQs CN.
Def. Q1,Q2 are transverse submfds of N, 1aQ2 7.0
written Q1 M Q2, if Q2 a8
T,Q1+T,Q:=T,N  Yge@inQ: g @

Examples. N M any submfd! Two vector subspaces C R™ are rh if they span R".

Cor.
N
Q@ Q1N Q2 C N submfd
Q1M Q2 = < of codim = codim Q1 + codim Qs
@ 02 T,(Q1 N Q2) = TyQ1 NTyQ2

Rmk.
1. dim Q1 +dim Qo < dim N then Q1 M Q2 & Q1 NQ2 =0

. . T Q1N Q2 finite set®
2. dim Q1+ dim Qo = dim N then Q1 M Q- @{ TO:1 & TQs = TN at g € Q1N Qs (+)

In case 2. you can define an intersection number

Q1-Q2=#(Q1NQ2) mod 2 € /27
If Q1,Q2, N oriented?®
Q1 Q2 =#(Q1NQ2) €Z,

6Hwk 3: @ — N immersion = locally has form (z1,...,24) — (z1,...,24,0,...,0) € R™.

7f is not a section of v, but the construction of that vertical projection is analogous.

8assuming Q1,Q2 are compact submanifolds. Otherwise, replace with “discrete set”.

9 Non-ezaminable: it suffices that Q1 is oriented, and Q2 is co-oriented (= normal bundle
vg, = TN/TQ2 is oriented). Assign +1 to p € Q1 N Q2 if an oriented basis of T,Q1 gives rise
to an oriented basis of v, , and —1 else. When Q1,Q2, N are oriented, this sign agrees with the
one above, if we orient so that TN|q, = vg, ® T'Q2 preserves orientation (“normals first”).
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where # counts with sign +1 if the iso (x) is orientation-preserving, —1 otherwise.
Next time, we will deduce that one can always achieve Q1 M Qo after perturbing
Q1 (or Q2), and in case 2. the value Q1 - Q2 is independent of the perturbation.

Motivation for stability and genericity. Transversality is stable and generic:
Stable: perturbing preserves the property, generic: it can be achieved by perturbing.

U] e U
SN e\

transverse still transverse nontransverse transverse

1.5. Stability.
Recall a (smooth) homotopy f; of f: M — N means a smooth map

H: M x [0,1] S N with { ft(i) :H(w,t)
fo=f

Call fo, f1 (smoothly) homotopic.

Def. A “property” P is stable for a class C' of maps f: M — N, if

f € C satisfies P

£, homotopy } = f; satisfies P for each t <e (¢ >0 depending on f, f:)

Rmk.

(1) Locally stable means Vp € M, 3 nbhd U > p such that P is stable for the
restrictions {f|lv : f € C}

(2) For compact M, one can often deduce stability from local stability, by cov-
ering M by such U, taking a finite subcover, taking min of €’s.

(3) Can use more general parameters t € S = metric space.

Stability Theorem. M compact = the following classes are stable:
{local diffeos}

{regular maps}
{maps M to a given topologically-closed submfd Q C N}

Pf. The definition of these classes locally involve the non-vanishing of some (sub)
determinant of some differential. Use Rmk (2) to globalize. O

Cor. Transversality is stable and it is an open condition.

Pf. Stability by Thm. Open: if not, find non-transverse f, — f as'® n — oo.
Produce a homotopy H of f with H(1/n,t) = f,(t). H contradicts stability. O

Rmk. Here is a more direct proof that transversality is an open condition:
Clawm 1. regular points of any smooth map f of mfds forms an open set.
Pf. Locally at regular p, d,f = (I 0). So for q close to p, dof = (T' *) for
some invertible T since invertibility is an open condition.** So q is reqular. O
Transversality can be expressed as a regularity condition, so it is also open.

L0¢he convergence is in C°. Also C! is enough: we just need the derivatives to converge.
Mf 5 is an operator with small norm (||s|| < 1 is enough), then (I+s)~1 = I—s+s2—s3+...
is a well-defined operator. If L is invertible and ||s|| < ||L|| then (L 4+ s)™! = (I + L=1s)"1L~1L.
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1.6. Local to global examples.
Thm. Any compact mfd N can be embedded in some RF.

Pf. Cover N by all possible charts'? ¢ : B(2) — N.

Pick finitely many ¢; for which ¢;(B(1)) cover N.

Let 8 = bump function'® B(2) — [0,1], 3 =1 on B(1), 8 = 0 near B(2).
= N < R(n—i—l)»#charts

P (Bl (0) @i (p), Ble; ' (p) )i=12... (zero entry for i if p ¢ imep;).
Note we are keeping track of the § values to ensure global injectivity. (]

Cultural Rmk. Whitney proved N™ — R?". Transversality techniques from this
course can easily prove N™ — R2" 1 (if you’re curious, see Guillemin € Pollack).

Def. A tubular neighbourhood is a nbhd U of S with a regular retraction
m:U— S.

(Retraction just means 7|s = idg).

Thm. Any submanifold S C M has a tubular nbhd U C M.

Pf. Pick a Riemannian metric for M, use exp map. 0O

U
geodesic L S

“
(fact: mx = closest
| point to z in 5)

7

nbhd of zero section of normal bundle vg
projection

=
-
R 1RE

(2) Converses | A closed subset S C R¥ is a submfd < S is a smooth retract'®

Pf. implicit function theorem for regular w : U — S. 0O

Non-examinable details of Pf:

Forp € U near S, let X = dpn(TpU) C R* a
v.subspace (secretly Tr()S). Then RF = X @Y
some v.subspace Y. After lin change of coords,

dr =[] XY - XY,
with p = (0,0) € X ®Y = R*. Define
F:X®Y > X®Y, F(z,y) =n(z,y) +v.

dpF = I = InvFnThm = F~'(s) = (¢(s,0),0)
for s € S defines chart s — g(s,0) at w(p) € S.

123(7’) = open ball of radius r, centre 0, in R™.

Byou gain nothing from writing out explicitly a bump function you already know exists:
Non-ezaminable: forb > a > 0, let a(z) = e~ /% forz > 0, 0 for & < 0; let y(z) = a(z—a)-a(b—z);
let §(x) = f; v/ f;)'y Then B(z) = §(|z|) is 1 on |z| < a, 0on |z| > b, B(z) € (0,1) for a < |z| < b.

Mthe same proof shows this holds for C"-mfds, 7 a C"-map, r > 1 (not just r = co).

15Smooth retract= Jopen nbhd U of S, 3smooth 7 : U — R* with 7(U) C S, 7|g = ids.



