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1.7. Genericity. Recall we defined: almost every = full measure = generic. Generic
implies dense, but not conversely (e.g. Q ⊂ R is dense but not generic).

Thm (Parametric Transversality). Let M,N be closed mfds, Q ⊂ N a submfd, and
S a mfd1 without boundary but possibly non-compact. Suppose:

F : M × S → N smooth map and F ⋔ Q

Then Fs = F (·, s) ⋔ Q for generic s ∈ S.

Proof. Consider the projection π:

M × S

π

��

F
// N W = F−1(Q)

π

��

F |W
// Q

S S

where we used F ⋔ Q to deduce W = F−1(Q) is a mfd.
Claim. s ∈ S regular for π|W ⇔ Fs ⋔ Q.

(So the Thm follows by Sard applied to π|W )
Proof of Claim. Suppose q = F (m, s) ∈ Q, so w = (m, s) ∈ W . F ⋔ Q implies:

(∗) TN = dF · T (M × S) + TQ at F (w)

and it implies

TwW = ker(T (M × S)
dF
→ TN → TN/TQ) at w

= {(~m,~s) ∈ Tw(M × S) = TmM ⊕ TsS : dF · ~m+ dF · ~s ∈ TQ}

= {(~m,~s) : dF · ~m = −dF · ~s modulo TQ}.

Finally, observe that

s regular for π|W ⇒ dπ|W : TW → TS surjective at w

⇒ ∀~s, ~s = dπ|W · (~m,~s) some (~m,~s) ∈ TwW

⇒ ∀~s, dF · ~m = −dF · ~s modulo TQ some ~m
(∗)
⇒ ∀~n ∈ TqN, ~n = dF · ~m2 + dF · ~s+ ~q some ~m2, ~s, ~q

⇒ ∀~n ∈ TqN, ~n = dF · ~m2 − dF · ~m modulo TQ

⇒ TN = dF · TM + TQ at F (w) (∗∗)

⇒ Fs ⋔ Q at w.

The proof also works by reversing the implications, which proves the converse. �
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Modern viewpoint: compute ker and coker of dπ|W at w = (m, s), F (w) = q ∈ Q:

ker(dπ|W )w = {(~m, 0) ∈ TwW}
∼= {~m ∈ TmM : dF · ~m ∈ TQ}

= ker( TmM
dF=dFs

//

DF=DFs

33
TN // TN/TQ = νQ )

Therefore ker(dπ|W )w = ker(DFs : TmM → νQ) (which is TF−1
s (Q) if Fs ⋔ Q).

Now consider coker(dπ|W )w = TsS/dπ·TW , which you can think of as measuring
how much the implication ∗ ⇒ ∗∗ fails to hold. By linear algebra,2

dπ :
TM ⊕ TS

TM + TW
→

TS

dπ · TW
= coker(dπ|W )w iso at w

F ⋔ Q ⇒ TW = ker(DF : TM ⊕ TS
surj
→ νQ) at w

⇒
TM ⊕ TS

TW
→ νQ iso at w

⇒
TM ⊕ TS

TM + TW
→

νQ
DF · TM

=
νQ

DFs · TM
= cokerDFs iso at w

So coker(dπ|W )w ∼= coker(DFs : TmM → νQ) .

These calculations only used linear algebra, so they hold also for Banach manifolds
(which use a Banach space instead of Rn for charts, more on this in Lecture 5).

Thm (Parametric Transversality 2).

F ⋔ Q ⇒

{

ker(dπ|W )w = ker(DFs : TmM → νQ)

coker(dπ|W )w ∼= coker(DFs : TmM → νQ)

⇒

{

dπ Fredholm ⇔ DF Fredholm3

dπ surjective ⇔ DF surjective

Thm (Genericity of transversality). Let f : M → N be smooth, Q ⊂ N a submfd
(M,N,Q closed mfds). Then for S =open nbhd of 0 ∈ Rk, there is F : M×S → N ,
F (·, 0) = f , with F ⋔ Q.

Proof. Embed N →֒ Rk. Pick tubular nbhd of N : U ⊂ Rk, π : U → N . Then

F : M × Rk → U → N
(m, s) 7→ f(m) + s → π(f(m) + s)

the first map is defined for small ‖s‖, and is clearly regular (think about it). The
second map is regular by definition of U . Therefore the composite is regular. So
F ⋔ anything (since dF is already surjective), in particular F ⋔ Q. �

Cor.4 f is homotopic to fs = F (·, s) ⋔ Q (for generic s).

Rmk.

2dπ : TM⊕TS → TS, dπ ·(~m,~s) = ~s is surjective. Make it injective by quotienting the domain
by TM . Now you want TS/dπ · TW as codomain, so to make the map well-defined you quotient
the domain by TM + TW .

3Fredholm = finite dimensional kernel and cokernel, more on this in Lecture 6.
4Motto: You can make things transverse by perturbing!
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(1) You only need to perturb f near f−1(nbhd(Q)), indeed by replacing s by
β(m)s where β : M → [0, 1], β = 1 near f−1(Q), β = 0 away from f−1(Q),
we still get regularity of F near F−1(Q) so F ⋔ Q.

(2) If f is already ⋔ Q on a closed set M0 ⊂ M (hence near M0 by openness
of transversality), then one only needs to perturb f away from M0: again
pick β : M → R, β = 0 on M0, β = 1 away from M0 (ensure 0 < β < 1
lies in region where f ⋔ Q, so for small enough s also fs ⋔ Q there).

(3) Instead of using N ⊂ Rk one can also use charts U ⊂ N , ϕ : U → Rn, and
consider F (m, s) = ϕ ◦ f(m)+ β(ϕ(m)) · s, β =bump function supported in
chart. So one can inductively perturb f on charts to make it ⋔ Q.

1.8. Sections of a vector bundle.

dF · v

p

DF · v

v

F (p) = 0

Ep F

0E = M
(p, 0)

Recall DpF : TpM → Ep is the vertical derivative (vertical projection of dF ).

Lemma. DpF surjective ∀p ∈ F−1(0E) ⇔ F ⋔ 0E

Proof. T(p,0)E = Tp0E ⊕ Ep, so dpF (TpM) + Tp0E = DpF (TpM) + Tp0E . �

Cor.

DF surjective along F−1(0E) ⇒







F−1(0E) ⊂ M submfd
of codim = codim 0E = rank E
TF−1(0E) = kerDF

Example. E = T ∗M → M with section F = df , where f : M → R smooth.

1.9. Morse functions.

Def. f : M → R is a Morse function if df ⋔ 0T∗M

Consequences (for M closed):

(1) df−1(0T∗M ) = Crit(f) is a 0-dim submfd, so the critical points are isolated,

so Crit(f) is finite .

(2) f Morse ⇔ all critical pts are nondegenerate (Hessian is nonsingular)

Proof. Hwk 2: at p ∈ Crit(f), Hesspf = Dp(df) =
∂2f(p)
∂xi∂xj

. �

(3) Being Morse is stable.

(4) Being Morse is open in the C2-topology

dg

df
Proof. For Morse f :
f, g C2-close ⇒ df, dg C1-close

⇒ dg ⋔ 0 since df ⋔ 0

⇒ g Morse. �
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(5) Morse functions are dense in the C0-topology

(Means: ∀ε > 0, h : M → R ⇒ ∃ Morse f : M → R, sup |f − h| < ε)

Proof.5 WLOG6 M ⊂ Rk, h : Rk → R (extend to Rk via a tubular nbhd and
bump function). WLOG h smooth (since C∞ ⊂ C0 dense). For q ∈ Rn,

Lq : R
k → R, Lq(x) = 〈q, x〉Rk =

∑

qi · xi

is called a height function.
Claim. h+Lq is Morse for almost every q (and C0-close to h for small q)
Proof. Consider F (x, q) = d(h+ Lq):

M × Rk

π

��

F
// T ∗M

Rk

We want F ⋔ 0T∗M , then d(h+Lq) ⋔ 0T∗M for generic q X. View its vertical
component F loc as a map Rk × Rk → T ∗

xR
k (later restrict to M ⊂ Rk):

F loc(x, q) =
∑

i(
∂h
∂xi

(x) + qi) dxi

DF(x,q) · (~x, ~q) =
∑

i(
∑

j
∂2h

∂xj∂xi
dxj(~x) + dqi(~q)) dxi

Key remark: dqi(~q) is arbitrary as you vary ~q ∈ TqR
k. Now restrict:

DF(x,q) : TxM × TqR
k F
−→ T ∗

xR
k pullback

−→ T ∗
xM

The first map is surjective by the Key remark (can still freely vary ~q), the
second map is surjective because M →֒ Rk is embedded so TxM →֒ TxR

k

is injective so its dual is surjective. So DF(x,q) surjective, so F ⋔ 0 �

Cor. Almost any height function on M ⊂ Rk is Morse (take h = 0).

(6) Morse Lemma

f Morse ⇔

{

∃ local coords near each crit point p (called Morse chart)
such that f(x) = f(p)− x2

1 − · · · − x2
i + x2

i+1 + · · ·+ x2
m

Proof. See Hwk 4. Key idea: Taylor f(x) = f(p) + 1
2

∑

Aij(x)xixj with
A(x) symmetric. Diagonalize A(x) smoothly in x. Then rescale coords. �

Def. The Morse index of p ∈ Crit(f) is the index i in the Morse Lemma:

|p| = indf (p) = i = #(negative evalues of Hessp(f) in local coords)

which equals the dimension of the maximal vector subspace of TpM on which
TpM ⊗ TpM → R, (v, w) 7→ Dp(df) · (v, w) is negative definite.7

(7) Morse functions are generic Proof. Hwk 6.

5A messier alternative (avoiding M →֒ Rk, and works for noncompact M): inductively perturb
f on charts by adding φj(x) · Lqj (x), where φj is a partition of unity subordinate to a countable
locally finite cover by charts, qj are generic and small chosen inductively so that f stays Morse

on charts where you already perturbed.
6Without Loss Of Generality.
7Dp(df) : TpM → T ∗

pM , so Dp(df) eats two vectors and outputs a number.


