LECTURE 4.

PART III, MORSE HOMOLOGY, 2011 HTTP://MORSEHOMOLOGY.WIKISPACES.COM

1.7. **Genericity.** Recall we defined: $almost\ every = full\ measure = generic$. Generic implies dense, but not conversely (e.g. $\mathbb{Q} \subset \mathbb{R}$ is dense but not generic).

Thm (Parametric Transversality). Let M, N be closed mfds, $Q \subset N$ a submfd, and S a mfd¹ without boundary but possibly non-compact. Suppose:

$$F: M \times S \to N$$
 smooth map and $F \cap Q$

Then $F_s = F(\cdot, s) \cap Q$ for generic $s \in S$.

Proof. Consider the projection π :

$$\begin{array}{ccc} M\times S \xrightarrow{F} N & W = F^{-1}(Q) \xrightarrow{F|_W} Q \\ \downarrow^\pi & \downarrow^\pi \\ S & S \end{array}$$

where we used $F \cap Q$ to deduce $W = F^{-1}(Q)$ is a mfd.

Claim. $s \in S$ regular for $\pi|_W \Leftrightarrow F_s \pitchfork Q$.

(So the Thm follows by Sard applied to $\pi|_W$)

Proof of Claim. Suppose $q = F(m, s) \in Q$, so $w = (m, s) \in W$. $F \cap Q$ implies:

(*)
$$TN = dF \cdot T(M \times S) + TQ$$
 at $F(w)$

and it implies

$$T_w W = \ker(T(M \times S) \stackrel{dF}{\to} TN \to TN/TQ) \quad \text{at } w$$
$$= \{ (\vec{m}, \vec{s}) \in T_w(M \times S) = T_m M \oplus T_s S : dF \cdot \vec{m} + dF \cdot \vec{s} \in TQ \}$$
$$= \{ (\vec{m}, \vec{s}) : dF \cdot \vec{m} = -dF \cdot \vec{s} \text{ modulo } TQ \}.$$

Finally, observe that

$$\begin{array}{lll} s \ \operatorname{regular} \ \operatorname{for} \ \pi|_W & \Rightarrow & d\pi|_W : TW \to TS \ \operatorname{surjective} \ \operatorname{at} \ w \\ & \Rightarrow & \forall \vec{s}, \ \vec{s} = d\pi|_W \cdot (\vec{m}, \vec{s}) \ \operatorname{some} \ (\vec{m}, \vec{s}) \in T_w W \\ & \Rightarrow & \forall \vec{s}, \ dF \cdot \vec{m} = -dF \cdot \vec{s} \ \operatorname{modulo} \ TQ \ \operatorname{some} \ \vec{m} \\ & \stackrel{(*)}{\Rightarrow} & \forall \vec{n} \in T_q N, \ \vec{n} = dF \cdot \vec{m}_2 + dF \cdot \vec{s} + \vec{q} \ \operatorname{some} \ \vec{m}_2, \vec{s}, \vec{q} \\ & \Rightarrow & \forall \vec{n} \in T_q N, \ \vec{n} = dF \cdot \vec{m}_2 - dF \cdot \vec{m} \ \operatorname{modulo} \ TQ \\ & \Rightarrow & TN = dF \cdot TM + TQ \ \operatorname{at} \ F(w) \\ & \Rightarrow & F_s \pitchfork Q \ \operatorname{at} \ w. \end{array}$$

The proof also works by reversing the implications, which proves the converse. \Box

1

Modern viewpoint: compute ker and coker of $d\pi|_W$ at $w=(m,s), F(w)=q\in Q$:

$$\ker(d\pi|_{W})_{w} = \{(\vec{m}, 0) \in T_{w}W\}$$

$$\cong \{\vec{m} \in T_{m}M : dF \cdot \vec{m} \in TQ\}$$

$$= \ker(T_{m}M \xrightarrow{dF = dF_{s}} TN \xrightarrow{TN/TQ} TN/TQ = \nu_{Q})$$

Therefore $\ker(d\pi|_W)_w = \ker(DF_s: T_mM \to \nu_Q)$ (which is $TF_s^{-1}(Q)$ if $F_s \pitchfork Q$).

Now consider $\operatorname{coker}(d\pi|_W)_w = T_s S/d\pi \cdot TW$, which you can think of as measuring how much the implication $*\Rightarrow **$ fails to hold. By linear algebra,²

$$d\pi: \frac{TM \oplus TS}{TM + TW} \to \frac{TS}{d\pi \cdot TW} = \operatorname{coker}(d\pi|_W)_w \quad \text{iso at } w$$

$$F \pitchfork Q \quad \Rightarrow \quad TW = \ker(DF: TM \oplus TS \xrightarrow{\sup} \nu_Q) \quad \text{at } w$$

$$\Rightarrow \quad \frac{TM \oplus TS}{TW} \to \nu_Q \quad \text{iso at } w$$

$$\Rightarrow \quad \frac{TM \oplus TS}{TM + TW} \to \frac{\nu_Q}{DF \cdot TM} = \frac{\nu_Q}{DF_s \cdot TM} = \operatorname{coker}DF_s \quad \text{iso at } w$$
So
$$\boxed{\operatorname{coker}(d\pi|_W)_w \cong \operatorname{coker}(DF_s: T_mM \to \nu_Q)}.$$

These calculations only used linear algebra, so they hold also for Banach manifolds (which use a Banach space instead of \mathbb{R}^n for charts, more on this in Lecture 5).

Thm (Parametric Transversality 2).

$$F \pitchfork Q \quad \Rightarrow \quad \begin{cases} \ker(d\pi|_W)_w = \ker(DF_s : T_mM \to \nu_Q) \\ \operatorname{coker}(d\pi|_W)_w \cong \operatorname{coker}(DF_s : T_mM \to \nu_Q) \end{cases}$$
$$\Rightarrow \quad \begin{cases} d\pi \text{ Fredholm} \Leftrightarrow DF \text{ Fredholm}^3 \\ d\pi \text{ surjective} \Leftrightarrow DF \text{ surjective} \end{cases}$$

Thm (Genericity of transversality). Let $f: M \to N$ be smooth, $Q \subset N$ a submfd $(M, N, Q \ closed \ mfds)$. Then for $S = open \ nbhd \ of \ 0 \in \mathbb{R}^k$, there is $F: M \times S \to N$, $F(\cdot, 0) = f$, with $F \cap Q$.

Proof. Embed $N \hookrightarrow \mathbb{R}^k$. Pick tubular nbhd of $N: U \subset \mathbb{R}^k, \pi: U \to N$. Then

$$F: \quad M \times \mathbb{R}^k \quad \to \quad U \quad \to \quad N \\ (m,s) \quad \mapsto \quad f(m) + s \quad \to \quad \pi(f(m) + s)$$

the first map is defined for small ||s||, and is clearly regular (think about it). The second map is regular by definition of U. Therefore the composite is regular. So $F \cap \text{anything}$ (since dF is already surjective), in particular $F \cap Q$.

Cor.⁴ f is homotopic to $f_s = F(\cdot, s) \cap Q$ (for generic s). Rmk.

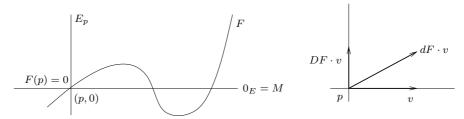
 $^{^2}d\pi:TM\oplus TS\to TS, d\pi\cdot(\vec{m},\vec{s})=\vec{s}$ is surjective. Make it injective by quotienting the domain by TM. Now you want $TS/d\pi\cdot TW$ as codomain, so to make the map well-defined you quotient the domain by TM+TW.

³Fredholm = finite dimensional kernel and cokernel, more on this in Lecture 6.

⁴Motto: You can make things transverse by perturbing!

- (1) You only need to perturb f near $f^{-1}(nbhd(Q))$, indeed by replacing s by $\beta(m)s$ where $\beta: M \to [0,1]$, $\beta = 1$ near $f^{-1}(Q)$, $\beta = 0$ away from $f^{-1}(Q)$, we still get regularity of F near $F^{-1}(Q)$ so $F \pitchfork Q$.
- (2) If f is already $\pitchfork Q$ on a closed set $M_0 \subset M$ (hence near M_0 by openness of transversality), then one only needs to perturb f away from M_0 : again pick $\beta: M \to \mathbb{R}$, $\beta = 0$ on M_0 , $\beta = 1$ away from M_0 (ensure $0 < \beta < 1$ lies in region where $f \pitchfork Q$, so for small enough s also $f_s \pitchfork Q$ there).
- (3) Instead of using $N \subset \mathbb{R}^k$ one can also use charts $U \subset N$, $\varphi : U \to \mathbb{R}^n$, and consider $F(m,s) = \varphi \circ f(m) + \beta(\varphi(m)) \cdot s$, $\beta = bump$ function supported in chart. So one can inductively perturb f on charts to make it f f.

1.8. Sections of a vector bundle.



Recall $D_pF:T_pM\to E_p$ is the vertical derivative (vertical projection of dF).

Lemma.
$$D_p F$$
 surjective $\forall p \in F^{-1}(0_E) \Leftrightarrow F \pitchfork 0_E$

Proof.
$$T_{(p,0)}E = T_p 0_E \oplus E_p$$
, so $d_p F(T_p M) + T_p 0_E = D_p F(T_p M) + T_p 0_E$.

Cor.

$$DF \ surjective \ along \ F^{-1}(0_E) \Rightarrow \left\{ \begin{array}{l} F^{-1}(0_E) \subset M \ submfd \\ of \ codim = codim \ 0_E = rank \ E \\ TF^{-1}(0_E) = \ker DF \end{array} \right.$$

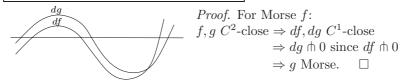
Example. $E = T^*M \to M$ with section F = df, where $f: M \to \mathbb{R}$ smooth.

1.9. Morse functions.

Def. $f: M \to \mathbb{R}$ is a Morse function if $df \pitchfork 0_{T^*M}$

Consequences (for M closed):

- (1) $df^{-1}(0_{T^*M}) = \text{Crit}(f)$ is a 0-dim submfd, so the critical points are isolated, so Crit(f) is finite.
- (2) f Morse \Leftrightarrow all critical pts are nondegenerate (Hessian is nonsingular) Proof. Hwk 2: at $p \in Crit(f)$, $Hess_p f = D_p(df) = \frac{\partial^2 f(p)}{\partial x_i \partial x_j}$. \square
- (3) Being Morse is stable.
- (4) Being Morse is open in the C^2 -topology



(5) Morse functions are dense in the C^0 -topology

(Means: $\forall \varepsilon > 0, h : M \to \mathbb{R} \Rightarrow \exists \text{ Morse } f : M \to \mathbb{R}, \sup |f - h| < \varepsilon$)

*Proof.*⁵ WLOG⁶ $M \subset \mathbb{R}^k$, $h : \mathbb{R}^k \to \mathbb{R}$ (extend to \mathbb{R}^k via a tubular nbhd and bump function). WLOG h smooth (since $C^{\infty} \subset C^0$ dense). For $q \in \mathbb{R}^n$,

$$L_q: \mathbb{R}^k \to \mathbb{R}, \ L_q(x) = \langle q, x \rangle_{\mathbb{R}^k} = \sum q_i \cdot x_i$$

is called a *height function*.

Claim. $h + L_q$ is Morse for almost every q (and C^0 -close to h for small q) *Proof.* Consider $F(x,q) = d(h + L_q)$:

$$M \times \mathbb{R}^k \xrightarrow{F} T^*M$$

$$\downarrow^{\pi}$$

$$\mathbb{R}^k$$

We want $F \pitchfork 0_{T^*M}$, then $d(h+L_q) \pitchfork 0_{T^*M}$ for generic $q \checkmark$. View its vertical component F^{loc} as a map $\mathbb{R}^k \times \mathbb{R}^k \to T^*_x \mathbb{R}^k$ (later restrict to $M \subset \mathbb{R}^k$):

$$F^{loc}(x,q) = \sum_{i} \left(\frac{\partial h}{\partial x_{i}}(x) + q_{i}\right) dx_{i}$$

$$DF_{(x,q)} \cdot (\vec{x}, \vec{q}) = \sum_{i} \left(\sum_{j} \frac{\partial^{2} h}{\partial x_{j} \partial x_{i}} dx_{j}(\vec{x}) + dq_{i}(\vec{q})\right) dx_{i}$$

Key remark: $dq_i(\vec{q})$ is arbitrary as you vary $\vec{q} \in T_q \mathbb{R}^k$. Now restrict:

$$DF_{(x,q)}: T_xM \times T_q\mathbb{R}^k \xrightarrow{F} T_x^*\mathbb{R}^k \xrightarrow{\text{pullback}} T_x^*M$$

The first map is surjective by the Key remark (can still freely vary \vec{q}), the second map is surjective because $M \hookrightarrow \mathbb{R}^k$ is embedded so $T_xM \hookrightarrow T_x\mathbb{R}^k$ is injective so its dual is surjective. So $DF_{(x,q)}$ surjective, so $F \pitchfork 0$

Cor. Almost any height function on $M \subset \mathbb{R}^k$ is Morse (take h = 0).

(6) Morse Lemma

$$f \text{ Morse} \Leftrightarrow \left\{ \begin{array}{l} \exists \text{ local coords near each crit point } p \text{ (called } \textit{Morse chart)} \\ \text{ such that } f(x) = f(p) - x_1^2 - \dots - x_i^2 + x_{i+1}^2 + \dots + x_m^2 \end{array} \right.$$

Proof. See Hwk 4. Key idea: Taylor $f(x) = f(p) + \frac{1}{2} \sum A_{ij}(x) x_i x_j$ with A(x) symmetric. Diagonalize A(x) smoothly in x. Then rescale coords. \square

Def. The Morse index of $p \in Crit(f)$ is the index i in the Morse Lemma:

$$|p| = ind_f(p) = i = \#(negative\ evalues\ of\ Hess_p(f)\ in\ local\ coords)$$

which equals the dimension of the maximal vector subspace of T_pM on which $T_pM \otimes T_pM \to \mathbb{R}$, $(v, w) \mapsto D_p(df) \cdot (v, w)$ is negative definite.⁷

(7) Morse functions are generic *Proof.* Hwk 6.

 $^{^5}$ A messier alternative (avoiding $M \hookrightarrow \mathbb{R}^k$, and works for noncompact M): inductively perturb f on charts by adding $\phi_j(x) \cdot L_{q_j}(x)$, where ϕ_j is a partition of unity subordinate to a countable locally finite cover by charts, q_j are generic and small chosen inductively so that f stays Morse on charts where you already perturbed.

⁶Without Loss Of Generality.

 $^{{}^{7}}D_{p}(df):T_{p}M\to T_{p}^{*}M$, so $D_{p}(df)$ eats two vectors and outputs a number.