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1.7. Genericity. Recall we defined: almost every = full measure = generic. Generic
implies dense, but not conversely (e.g. @ C R is dense but not generic).

Thm (Parametric Transversality). Let M, N be closed mfds, Q C N a submfd, and
S a mfd" without boundary but possibly non-compact. Suppose:

F:M xS — N smooth map and F h Q
Then Fs = F(-,8) M Q for generic s € S.

Proof. Consider the projection 7:

MxS—2sN W= F(Q)
S S

where we used F' M Q to deduce W = F~1(Q) is a mfd.
Claim. s € S regular for 7|y < Fs h Q.
(So the Thm follows by Sard applied to 7| )
Proof of Claim. Suppose ¢ = F(m,s) € Q, so w = (m,s) € W. F h Q implies:
(x) TN=dF T(MxS8)+TQ  at F(w)
and it implies

T,W = ker(T(M x S) %5 TN - TN/TQ)  atw
= {(7,5) € Tu(M x S) = TM & T,S : dF -1 + dF - 5 € TQ}
= {(m,8) :dF -m = —dF - § modulo TQ}.
Finally, observe that
dr|w : TW — TS surjective at w
Vs, §=dr|w - (m, 8) some (m,5) € T,W
Vs, dF - m = —dF - § modulo T'Q) some m
Vit € TyN, 7t = dF - mo 4+ dF - 5§+ ¢ some 13, 5,
Vi€ TyN, i = dF - my — dF - m modulo T'Q
TN =dF -TM +TQ at F(w) (%)
F,hQ at w.

The proof also works by reversing the implications, which proves the converse. [

s regular for 7|y
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Modern viewpoint: compute ker and coker of dr|w at w = (m, s), F(w) =q € Q:
ker(drlw)w = {(m,0) € T,,W}
~ {meT,M:dF -meTQ}

2

= ker( T, M= N — = TN/TQ = vg )
\_/

DF=DF

Therefore ‘ ker(drn|w )w = ker(DFs : T,, M — vg) ‘ (which is TF7Y(Q) if Fs h Q).

Now consider coker(dr|w ) = TsS/dr-TW, which you can think of as measuring
how much the implication % = %x fails to hold. By linear algebra,?

 TM®TS TS
" TMATW  dn TW
FhQ = TW=ker(DF :TMaTS™ vg) atw

d

= coker(drm|w)w iso at w

TM&TS N . ¢
TW Z/Q 1SO atl w
TM TS vQ . vQ

= cokerDF, iso at w

N —
TM+TW DF-TM  DF,-TM
So ‘ coker(dm|w )w = coker(DFy : T, M — vq) ‘

These calculations only used linear algebra, so they hold also for Banach manifolds
(which use a Banach space instead of R™ for charts, more on this in Lecture 5).

Thm (Parametric Transversality 2).
ker(drm|w )w = ker(DFs : Tp,M — vg)
coker(dm|w )w = coker(DFy : T, M — vq)

dr Fredholm < DF Fredholm?
dr surjective < DF surjective

Frh@

R

Thm (Genericity of transversality). Let f : M — N be smooth, Q C N a submfd
(M, N,Q closed mfds). Then for S =open nbhd of 0 € R¥, thereis F : M xS — N,
F(-,0) = f, with F h Q.

Proof. Embed N — R*. Pick tubular nbhd of N: U C R*, 7 : U — N. Then
F: MxRF — U — N
(m,s) = flm)+s — =(f(m)+s)
the first map is defined for small ||s||, and is clearly regular (think about it). The
second map is regular by definition of U. Therefore the composite is regular. So

F M anything (since dF is already surjective), in particular F' M Q. O
Cor.* f is homotopic to f, = F(-,5) h Q (for generic s).
Rmk.

24r : TM®TS — TS, drc- (1, §) = §is surjective. Make it injective by quotienting the domain
by TM. Now you want T'S/dm - TW as codomain, so to make the map well-defined you quotient
the domain by TM + TW.

3Fredholm = finite dimensional kernel and cokernel, more on this in Lecture 6.

4Motto: You can make things transverse by perturbing!
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(1) You only need to perturb f near f~1(nbhd(Q)), indeed by replacing s by
B(m)s where 8: M — [0,1], 8 =1 near f~1(Q), 8 =0 away from f~1(Q),
we still get regularity of F near F~1(Q) so F h Q.

(2) If f is already M Q on a closed set My C M (hence near My by openness
of transversality), then one only needs to perturb f away from My: again
pick B : M — R, 8 =0 on My, 8 =1 away from My (ensure 0 < 5 < 1
lies in region where f M Q, so for small enough s also fs th Q there).

(3) Instead of using N C R* one can also use charts U C N, ¢ : U — R"™, and
consider F(m,s) = po f(m)+ B(e(m)) - s, B =bump function supported in
chart. So one can inductively perturb f on charts to make it M Q.

1.8. Sections of a vector bundle.

B, P

dF -v
F-v

D
Op =M
(p, 0) u p v

Recall D,F' : T,M — E, is the vertical derivative (vertical projection of dF).

F(p)=0

Lemma. ‘ D, F surjective Vp € F~1(0g) < F h 0p ‘

Proof. Ty 0 E =T,0r ® Ep, so dpyF(T,M)+T,05 = D,F(T,M) + T,0g. O
Cor.

F~Y0g) C M submfd
DF surjective along F~*(0g) = { of codim = codim O = rank E
TF-'(0p) = ker DF

Example. F=T*M — M with section F = df, where f : M — R smooth.

1.9. Morse functions.

Def. f: M — R is a Morse function if | df h Op«ps
Consequences (for M closed):
(1) df ~1(0p=«pr) = Crit(f) is a 0-dim submfd, so the critical points are isolated,
so | Crit(f) is finite |

(2) ‘ f Morse < all critical pts are nondegenerate (Hessian is nonsingular) ‘
. 82
Proof. Hwk 2: at p € Crit(f), Hess, f = D,(df) = #{;2. O
(3) Being Morse is stable.

(4) ‘ Being Morse is open in the CQ—topology‘

Zg Proof. For Morse f:
/R / f, g C?-close = df,dg C'-close

= dg M0 since df M0
= g Morse. [J
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(5) ‘ Morse functions are dense in the C’O—topology‘
(Means: Ve > 0,h: M — R =3 Morse f: M — R,sup|f — h| < ¢)
Proof? WLOG® M C R*, h:R* — R (extend to R¥ via a tubular nbhd and
bump function). WLOG h smooth (since C* C C? dense). For g € R",
Ly : R* - R, Lq(x) = (¢ x)re = Z(Zi " T

is called a height function.
Claim. h+ L, is Morse for almost every ¢ (and C%-close to h for small q)
Proof. Consider F(x,q) = d(h+ L,):

M x RF —2>T* 0
Rk

We want F' i Op+«az, then d(h+Lg) M Op«as for generic g v'. View its vertical
component F'°¢ as a map R* x R*¥ — T*R* (later restrict to M C R¥):

FlOC(x, q) = Zz(g—:l(w) + Qi) dx;
DF(yq) - (Z,0) = Xi(2; g de; (2) + das(@)) da;
Key remark: dg;(q) is arbitrary as you vary ¢ € Tqu. Now restrict:
DF(y g : ToM x T,RF 5 TrRF PR3 1y

The first map is surjective by the Key remark (can still freely vary ¢), the
second map is surjective because M < R* is embedded so T,M — T,RF
is injective so its dual is surjective. So DFy, ,) surjective, so F'th 0 O

Cor. Almost any height function on M C R* is Morse (take h =0).

(6) Morse Lemma

3 local coords near each crit point p (called Morse chart)
such that f(z) = f(p) —af — - —af + a7, +- -+ a2,

f Morse < {

Proof. See Hwk 4. Key idea: Taylor f(z) = f(p) + 1 3 Ajj(x)ziz; with
A(z) symmetric. Diagonalize A(x) smoothly in . Then rescale coords. O

Def. The Morse index of p € Crit(f) is the index i in the Morse Lemma:

Ip| = indy(p) = i = #(negative evalues of Hess,(f) in local coords)

which equals the dimension of the mazimal vector subspace of T, M on which
T,M @ T,M — R, (v,w) — D,(df) - (v,w) is negative definite.”

(7) ‘ Morse functions are generic‘ Proof. Hwk 6.

5A messier alternative (avoiding M < RF and works for noncompact M): inductively perturb
[ on charts by adding ¢;(z) - Lq, (%), where ¢; is a partition of unity subordinate to a countable
locally finite cover by charts, g; are generic and small chosen inductively so that f stays Morse
on charts where you already perturbed.

SWithout Loss Of Generality.

TDp(df) : TyM — Ty M, so Dy(df) eats two vectors and outputs a number.



