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Motivation. Morse theory = studying the space of {−∇f flowlines }.

3. Flowlines and Topology

3.1. Flowlines. M closed mfd, V smooth vector field.

p = ϕ(p, 0) ϕ(p, s)

flowline timeV
initial condition

Thm.

There exists a unique solution ϕ : M × R → M of

∂ϕ

∂s
= V ◦ ϕ ϕ(·, 0) = id.

ϕs = ϕ(·, s) : M → M is a diffeo, with ϕs ◦ ϕt = ϕs+t.

Def. ϕ is the flow of V , and s 7→ ϕ(p, s) is the flowline through p.
By uniqueness, flowlines never intersect unless they coincide (up to s 7→ s+ const).

Proof. Locally: y : [−ε, ε] → R
m, y(s) = ϕ(p, s) solves the ODE

y′(s) = V (y(s)) y(0) = p.

ODE theory1 ⇒ for small ε > 0, ∃ unique solution y which depends smoothly on
the initial condition p.

Globally: ∀p ∈ M , local result yields a unique smooth map2

ϕ : Up × [−εp, εp] → M (∗)

Take a finite cover of M by Up’s, and ε = smallest of the εp’s. So:

ϕ : M × [−ε, ε] → M (∗∗)

Trick: ϕs ◦ ϕt = ϕs+t for small s, t, since both solve y(0) = ϕt(p), y
′(s) = V (y(s)).

⇒ ϕs diffeo with inverse ϕ−s

⇒ extend3 ϕs to s ∈ R: ϕs = ϕs/k ◦ · · · ◦ ϕs/k

(k composites, with k ≫ 0 so that |s/k| < ε) �

Rmk. ODE theory ⇒ If V is Ck then ϕ is Ck.

If M is just a Ck-mfd and4 V is Ck−1 then ϕ is Ck−1.

Rmk.

Date: May 1, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1Lang, Undergraduate Analysis, or Lang, Differential Manifolds, prove this in great detail.
2pick the open nbhd Up of p small enough, so that ϕ lands in the given chart.
3ϕs is well-defined, indeed: (ϕs/k′ )k

′

= (ϕs/kk′ )kk
′

= (ϕs/k)
k .

4Since TM is just Ck−1, any higher differentiability of vector fields does not make sense.
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(1) If Vs depends on s, you pass to M ×R, V (p, s) = Vs(p)⊕
∂
∂s . Since the mfd

is now non-compact, (∗) holds but (∗∗) can fail (if ε(p,s) → 0 as |s| → ∞).

Fact. If V is C1-bounded then (∗∗) holds.5 So Thm holds.

(2) For non-compact mfd M or Banach mfd M , (∗) holds by the same proof,

but for (∗∗) we need the condition:

∃K,R > 0 such that ∀p ∈ M , ∃ chart ϕp : Up → R
m or B, such that V is

C1-bounded by K in chart and6 ϕp(Up) ⊃ ball with centre ϕp(p) radius R.

3.2. Negative gradient flowlines.

(M, g) closed Riemannian mfd. Write |v| = g(v, v)1/2 for the norm.
f : M → R smooth function.

Def. The gradient vector field ∇f is defined by

g(∇f, ·) = df

Locally:7 ∇f = g−1∂f =
∑

∂if · gij · ∂j.

Rmk. p ∈ Crit(f) ⇔ dpf = 0 ⇔ (∇f)p = 0 ⇔ |∇f |p = 0

For a −∇f flowline u : [a, b] → M (so u′ = −∇f) we care how f varies along u:

∂s(f ◦ u) = df · u′ = df(−∇f) = g(∇f,−∇f) = −|∇f |2

f(u(b))− f(u(a)) =
∫ b

a ∂s(f ◦ u) ds = −
∫ b

a |(∇f)u(s)|
2 ds ≤ 0

Def. So it is natural to introduce the notion of Energy of a path u : (a, b) → M :

E(u) =

∫ b

a

|(∇f)u(s)|
2 ds ≥ 0.

Note that E(u) = 0 iff u is constantly equal to a critical point.

Cor. f decreases along −∇f flowlines, and there is an a priori energy estimate:8

for any −∇f flowline from x to y,

E(u) = f(x)− f(y).

In particular, E(u) is a homotopy invariant relative to the ends.

Rmk (Novikov theory). A generalization of Morse theory, called Novikov theory,
replaces df by a closed 1-form α. This gives rise to a vector field via g(V, ·) = α,

and one studies −V flowlines. The energy E(u) =
∫ b

a
|Vu(s)|

2 ds ≥ 0 is zero iff u
is constantly equal to a zero of α. There is no a priori energy estimate. However,

E(u) is still a homotopy invariant of −V flowlines relative to the ends. Indeed:

E(u) = −

∫
[a,b]

u∗α

5Why C1? Locally it implies V is Lipschitz by the mean value theorem, which is what’s needed
to solve the ODE. C1 bounds guarantee the Lipschitz constant is bounded uniformly.

6The C1 bounds are calculated in a chart, but they can always be achieved by rescaling a

chart. So the second condition is crucial (for example: consider V = ∂
∂x

on R \ {0}).
7gij = inverse matrix of gij = g(∂i, ∂j), ∂j = ∂

∂xj
.

8a priori refers to the fact that the estimate only depends on boundary conditions x, y, not u.
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since u∗α = α · u′ = −α(V ) = −g(V, V ) = −|V |2.
Proof: if H : [a, b]× [0, 1] → M is a homotopy relative ends9, by Stokes’s theorem

∫
[a,b]

u∗
0α−

∫
[a,b]

u∗
1α =

∫
[a,b]×[0,1]

dH∗α = 0

(dH∗α = H∗dα = 0, since α is closed). For α = df the energy estimate is Stokes:

E(u) = −
∫
[a,b]

u∗df = −
∫
[a,b]

d(u∗f) = f(u(a))− f(u(b)) for −∇f flowlines u.

3.3. Energy consumption.

∇f ≈ 0 so consume little energy

|∇f | ≥ K > 0 so consume energy

p
r

q

Br

Bq

Bp

Lemma. A −∇f flowline from x to y landing in a region where |∇f | ≥ K > 0 has

E(u) ≥ K · dist(x, y).

Pf.10 Loosely:11 E(u) =
∫
|∇f |2 ≥ K

∫
|∇f | = K

∫
|u′| = K length(u) ≥ Kdist(x, y).

For example, this proof shows that: in the complement of small balls centred at
the critical points of a Morse function f , any −∇f flowline must consume at least
some fixed amount δ > 0 of energy to flow from one ball to another.

Notation. A ⊂⊂ B (compactly contained) means: A,B open, and A ⊂ A ⊂ B.

Ap

u Bp

p

No escape Lemma. Let p ∈ Ap ⊂⊂ Bp with Bp ∩ Crit(f) = {p}. Then ∃δ > 0
such that any −∇f flowline needs E ≥ δ to go from ∂Ap to ∂Bp, or vice-versa.

Proof. Consider the region Bp \Ap, apply the Lemma. �

Energy quantum Lemma.12 Pick disjoint nbhds Br of each r ∈ Crit(f). ∃δ > 0
such that any −∇f flowline from Bp to Bq for p 6= q consumes energy E ≥ δ.

Proof. Consider the region M \ ∪Br, apply the Lemma. �

9H(a, ·) = x, H(b, ·) = y, H(0, ·) = u0, H(1, ·) = u1.
10This proof works similarly if we use α instead of df (see previous Rmk).
11Distance dist(x, y) = infimum of lenth(u) =

∫
|u′(s)| ds over all curves u from x to y. Rmk.

length is parametriz’n indep:
∫
|(u ◦ φ)′(s))| ds =

∫
|u′(φ(s))|φ′(s) ds =

∫
|u′(s)| ds (φ′(s) > 0).

12Note: you could have f(p) = f(q), so the energy estimate doesn’t imply result immediately.
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3.4. Convergence at the ends.

Thm. For f : M → R Morse, M closed mfd, any −∇f flowline u : R → M must

converge at the ends to critical points, hence ∃p, q ∈ Crit(f) with

u ∈ W (p, q) = {−∇f flowlines R → M converging to p, q at −∞,∞}.

In particular, W (p, p) = {constant flowline at p}, since there E = f(p)− f(p) = 0.

Proof. 13 Case s → +∞ (for s → −∞ apply proof to −f). No Escape Lemma: for
each p ∈ Crit(f) pick Ap, Bp’s (small), get δ > 0. f ◦ u decreases in s, but f is
bounded (M compact), so f ◦ u → r ∈ R, so for s ≫ 0, f ◦ u is within δ of r.
Suppose u /∈ ∪Bp for some s ≫ 0. Then u hasn’t enough energy left to reach ∪Ap

for larger s. So u /∈ ∪Ap for s ≫ 0. But |∇f | ≥ K > 0 on M \∪Ap, so f ◦u → −∞,
absurd. So u ∈ ∪Bp for s ≫ 0, and Bp is arbitrarily small. �

3.5. Topology of sublevel sets. Ma = {x ∈ M : f(x) ≤ a} are the sublevel sets.

f−1(a)

f−1(b)

Thm. If [a, b] contains no critical values of f , then Mb
∼= Ma

are diffeo.

Proof. ϕ = flow of − β(f)
|∇f |2 ·∇f , where β : R → [0, 1] is a bump

function, β = 1 on [a, b] and β = 0 on away from [a, b] (in
particular β = 0 at all critical values of f).

∂s(f ◦ ϕ) = df · ∂sϕ = g(∇f,−β(f)∇f
|∇f |2 ) = −β(f)

which equals −1 on [a, b]. So ϕ(·, b− a) : Mb → Ma diffeo. �

Rmk. The −∇f flowlines are orthogonal to the regular level sets f−1(a).
Pf. g(−∇f, v) = −df · v = 0 for v ∈ Tf−1(a) = kerdf |f−1(a).

Rmk. There is a deformation retraction14 of Mb onto Ma: r : Mb × [0, 1] → Mb,

r(x, s) = x if x ∈ Ma, and r(x, s) = ϕ(x, s(f(x) − a)) if x ∈ f−1[a, b].

X YM

Def. A cobordism between possibly-disconnected

closed Xn, Y n is a compact mfd Mn+1 with ∂M =
X ⊔ Y . Call it h-cobordism if in addition X,Y
are deformation retracts of M .

Fact.15 Equivalent definitions of h-cobordism:

M h-cobordism ⇔ (X,Y →֒ M hpy equivalences ) ⇔ (π∗(M,X) = π∗(M,Y ) = 0)

For X,Y,M simply connected: (M h-cobordism ) ⇔ (H∗(M,X) = 0)

13Curiosity: ∃non-insightful elementary proof by contradiction, avoiding energy arguments.
14Deformation retraction r : X × [0, 1] → X of X onto A means: r cts, r|A =id, r(X, 1) = A.

Note r is a hpy from idX to a retraction r1 = r(·, 1) of X onto A (means r1(X) = A, r1|A = idA).
15Non-examinable: By Whitehead’s theorem and LES for relative hpy: inclusions X,Y →֒ M

are hpy equivalences ⇔ they are isos on hpy gps ⇔ π∗(M,X) = π∗(M,Y ) = 0. By hpy theory:16M
deform retracts onto X ⇔ π∗(M,X) = 0. The 2nd fact uses Hurewicz: if π1(X) = 0, π1(M,X) =
0 then the first non-zero πk(M,X) is iso to the first non-zero Hk(M,X); and it uses the Poincaré
duality isoH∗(M,X) ∼= Hm−∗(M,Y ) (by universal coefficients, H∗(M,Y ) = 0 ⇔ H∗(M,Y ) = 0).

16Hilton, An Introduction to Homotopy Theory, Thm 1.7 p.98: if π∗(Y, Y0) = 0, then ∀ subcx
A of a CW cx X, any (X,A) → (Y, Y0) can be homotoped to X → Y0 keeping it constant on A.
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h-cobordism Thm17 (Smale 1962) If X,Y are simply connected of dim ≥ 5 then

the h-cobordism M is trivial: M ∼= Y × [0, 1] diffeo. In particular X ∼= Y diffeo.

Lemma. If there exists a Morse function f : M → [a, b] with no critical points,

X = f−1(a), Y = f−1(b), then M is a trivial h-cobordism.

Proof. In notation of previous Rmk: f−1(b)×[0, 1] → M, (x, s) 7→ ϕ(x, s(b−a)). �

Cor. An h-cobordism is trivial ⇔ it admits a Morse function as in the Lemma.

Idea of Pf of Thm.(hard!) Start with a Morse function on the cobordism. Sys-
tematically “cancel out” the crit points in pairs by locally modifying f and the flow,
until there are no crit points left. Key: the use of gradient-like vector fields:
V ∈ C∞(TM), V (f) > 0 (except at Crit(f)), such that at each p ∈ Crit(f), ∃
Morse chart in which

f(x) = f(p)− x2
1 − . . .− x2

i + x2
i+1 + . . .+ x2

m

V = −x1∂1 − . . .− xi∂i + xi+1∂i+1 + . . .+ xm∂m.

The flow you consider is the flow of −V , not that of −∇f . This means you know
exactly what v is near critical points: up to a constant, it is the Euclidean gradient
in the Morse chart (whereas −∇f is unknown since the metric in general is not
Euclidean in the Morse chart!). The V (f) > 0 ensures that f still decreases along
−V flowlines, and you get good estimates of the energy E =

∫
|V |2.

The idea behind cancelling out critical points in pairs is as follows. Consider the
sphere with two discs cut out:

chop

cobordism between two circles

You would like to push down one of the hills:

In general, you do not know what the manifold looks like globally, so you actually
just modify f, v locally near the trail going up the hill:18

17Standard great reference: Milnor, Lectures on the h-cobordism theorem.
18in the figure, we modify f, v in the shaded region.
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Thus cancelling out the two critical points with index difference 1.


