LECTURE 7.
PART I, MORSE HOMOLOGY, 2011

HTTP://MORSEHOMOLOGY.WIKISPACES.COM

Motivation. Morse theory = studying the space of {—V f flowlines }.

3. FLOWLINES AND TOPOLOGY

3.1. Flowlines. M closed mfd, V' smooth vector field.

flowline ti
initial condition\\\\ v e
p=¢(p,0) #(p, s)

Thm.
There exists a unique solution ¢ : M x R — M of

¢

— =V - 0) = id.

B o (-, 0) =1

ws =@(+,8) : M — M is a diffeo, with @50 o1 = Psit.

Def. ¢ is the flow of V, and s — ¢(p, s) is the flowline through p.
By uniqueness, flowlines never intersect unless they coincide (up to s — s+ const).

Proof. Locally: y : [—¢e,e] = R™, y(s) = ¢(p, s) solves the ODE

y'(s) =V(y(s)) y(0) = p.
ODE theory! = for small € > 0, 3 unique solution y which depends smoothly on

the initial condition p.
Globally: ¥p € M, local result yields a unique smooth map?

0 :Up X [—€p,ep] = M (%)
Take a finite cover of M by U,’s, and ¢ = smallest of the ¢,’s. So:
o: M X [—g,e] > M (%)
Trick: ¢ 0 @y = @syq for small s, ¢, since both solve y(0) = ¢ (p), ¥'(s) = V(y(s)).
= @, diffeo with inverse ¢_g

= extend? pstos ER: s = 0 0Qg
(k composites, with k> 0 so that |s/k| <€) O

Rmk. ODE theory = If V is C* then ¢ is C*.
If M is just a C*-mfd and* V is C*=1 then ¢ is C*~1.

Rmk.
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1Lang, Undergraduate Analysis, or Lang, Differential Manifolds, prove this in great detail.

2pick the open nbhd Up of p small enough, so that ¢ lands in the given chart.

kk _ k

4Since TM is just C*~1, any higher differentiability of vector fields does not make sense.
1

34, is well-defined, indeed: (Lps/k/)k/ = (Ps/kk’
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(1) If Vs depends on s, you pass to M X R, V(p,s) = Vi(p) ® %. Since the mfd
is now non-compact, (x) holds but (xx) can fail (if £, 5 — 0 as |s| = c0).
Fact. If V is C'-bounded then (%) holds.> So Thm holds.

(2) For non-compact mfd M or Banach mfd M, (x) holds by the same proof,
but for (xx) we need the condition:

JK, R > 0 such that Vp € M, 3 chart ¢, : U, — R™ or B, such that V is
C'-bounded by K in chart and® ¢,(U,) D ball with centre ¢, (p) radius R.

3.2. Negative gradient flowlines.

(M, g) closed Riemannian mfd. Write |v| = g(v,v)
f+ M — R smooth function.

1/2 for the norm.

Def. The gradient vector field V f is defined by
9(Vf,) =df
Locally:” Vf =g t0f =Y0;f g7 - 0;.
Rmk. p e Crit(f) @ d,f =0< (Vf),=0< |[Vf],=0
For a —V f flowline w : [a,b] = M (so ' = =V f) we care how f varies along u:
Os(fou) =df -u' =df(~=Vf) =g(Vf,-Vf)=—|Vf]?
F(u(®) = fu(@) = [} 0u(f o u)ds = = [/ |V )ugo ds <0
Def. So it is natural to introduce the notion of Energy of a path u : (a,b) — M:

b
E(u) :/ [(Vf)ugs)|* ds > 0.
Note that E(u) = 0 iff u is constantly equal to a critical point.

Cor. f decreases along —V f flowlines, and there is an a priori energy estimate:®
for any —V f flowline from x to vy,

E(u) = f(z) = f(y)-
In particular, E(u) is a homotopy invariant relative to the ends.

Rmk (Novikov theory). A generalization of Morse theory, called Novikov theory,
replaces df by a closed 1-form «. This gives rise to a vector field via g(V,-) = a,

and one studies —V flowlines. The energy E(u) = f; [Vius)|? ds > 0 is zero iff u
is constantly equal to a zero of a. There is no a priori energy estimate. However,
E(u) is still a homotopy invariant of =V flowlines relative to the ends. Indeed:

E(u) = —/ U
[a,b]

5Why C1? Locally it implies V is Lipschitz by the mean value theorem, which is what’s needed
to solve the ODE. C! bounds guarantee the Lipschitz constant is bounded uniformly.

6The C! bounds are calculated in a chart, but they can always be achieved by rescaling a
cha;t. So the second condition is crucial (for example: consider V = % on R\ {0}).

g% = inverse matrix of g;; = g(9;,0;), 0; = Do
J

84 priori refers to the fact that the estimate only depends on boundary conditions x,y, not w.
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since u*a = a-u' = —a(V) = —g(V,V) = —|V|2.
Proof: if H : [a,b] x [0,1] — M is a homotopy relative ends®, by Stokes’s theorem

/ uga—/ ufa:/ dH* o =0
[a,b] [a,b] [a,b]x[0,1]

(dH*oo = H*dow = 0, since « is closed). For o = df the energy estimate is Stokes:
E(u)=— f[a,b] w*df = — f[a,b] d(u*f) = f(u(a)) — f(u(d)) for =V f flowlines u.

3.3. Energy consumption.

S|V f| > K > 0 so consume energy

V f = 0 so consume little energy

Lemma. A —Vf flowline from x to y landing in a region where |V f| > K > 0 has
E(u) > K - dist(z, y).

Pf0 Loosely:'' E(u) = [|Vf|>? > K [|Vf] =K [|v/| = K length(u) > Kdist(z,y).

For example, this proof shows that: in the complement of small balls centred at

the critical points of a Morse function f, any —V f flowline must consume at least
some fixed amount 6 > 0 of energy to flow from one ball to another.

Notation. A < B (compactly contained) means: A, B open, and A C A C B.

No escape Lemma. Letp € A, CC B, with B, N Crit(f) = {p}. Then 36 >0
such that any —V f flowline needs E > 0 to go from 0A, to 0B,, or vice-versa.

o]
]

Proof. Consider the region B, \ A,, apply the Lemma. O

Energy quantum Lemma.!? Pick disjoint nbhds B, of each r € Crit(f). 36 > 0
such that any —V f flowline from B, to B, for p # ¢ consumes energy E > J.

Proof. Consider the region M \ UB,, apply the Lemma. O

9H(a,-) =z, H(b,) =y, H(0,-) = uo, H(1,-) = uy.

10T his proof works similarly if we use « instead of df (see previous Rmk).

U Distance dist(z,y) = infimum of lenth(u) = [ |u’(s)|ds over all curves u from z to y. Rmk.
length is parametriz’n indep: [ [(uo ¢)'(s))|ds = [ |u/(¢(s))| ¢'(s)ds = [|u/(s)|ds (¢'(s) > 0).

12Note: you could have f(p) = f(q), so the energy estimate doesn’t imply result immediately.
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3.4. Convergence at the ends.

Thm. For f : M — R Morse, M closed mfd, any —V [ flowline u : R — M must
converge at the ends to critical points, hence Ip,q € Crit(f) with

u € Wi(p,q) ={-Vf flowlines R — M converging to p,q at — 00,00}.
In particular, W (p, p) = {constant flowline at p}, since there E = f(p) — f(p) = 0.

Proof. 13 Case s — +oo (for s — —oco apply proof to —f). No Escape Lemma: for
each p € Crit(f) pick Ay, Bp’s (small), get 6 > 0. f ou decreases in s, but f is
bounded (M compact), so fou —r € R, so for s > 0, f ow is within § of .

Suppose u ¢ UB,, for some s > 0. Then u hasn’t enough energy left to reach UA,
for larger s. So u ¢ UA, for s > 0. But |[Vf| > K > 0on M \UA,, so fou — —o0,
absurd. So u € UB,, for s > 0, and B,, is arbitrarily small. O

3.5. Topology of sublevel sets. M, = {x € M : f(x) < a} are the sublevel sets.

Thm. If [a,b] contains no critical values of f, then My = M,
F1b) are diffeo.

) ‘
Proof. ¢ = flow of —2Y) .V £, where 8: R — [0,1] is a bump

[VfI?
function, 8 = 1 on [a,b] and § = 0 on away from [a,b] (in
particular 8 = 0 at all critical values of f).

0,(f o p) = df - dyp = g(V f, =5 L) = —B(f)
which equals —1 on [a,b]. So ¢(-,b—a) : My — M, diffeo. O

Rmk. The —Vf flowlines are orthogonal to the reqular level sets f~1(a).
Pf. g(=Vf,v)=—df -v=0 forve Tf ' (a) = kerdf|s-1(q)-

Rmk. There is a deformation retraction** of My onto My: v : My x [0,1] — My,
r(z,s) =x if v € My, and r(z,s) = p(z,s(f(x) —a)) if v € f~a,b].

Def. A cobordism between possibly-disconnected

closed X™, Y™ is a compact mfd M™ 1 with OM =

X UY. Call it h-cobordism if in addition X,Y
X M v are deformation retracts of M.

Fact.'® Equivalent definitions of h-cobordism:
M h-cobordism < (X,Y < M hpy equivalences ) < (m.(M,X) = m.(M,Y) =0)
For X,Y, M simply connected: (M h-cobordism ) < (H.(M,X) =0) ‘

13Curiosity: dnon-insightful elementary proof by contradiction, avoiding energy arguments.

M Deformation retraction v : X % [0,1] — X of X onto A means: r cts, r|4 =id, r(X,1) = A.
Note r is a hpy from idx to a retraction r1 = r(-,1) of X onto A (means r1(X) = A, r1|a =ida).

L5 Non-ezaminable: By Whitehead’s theorem and LES for relative hpy: inclusions X,Y — M
are hpy equivalences < they are isos on hpy gps < 7. (M, X) = 7. (M,Y) = 0. By hpy theory:'6 M
deform retracts onto X < 7w« (M, X) = 0. The 2nd fact uses Hurewicz: if 71(X) =0, m1 (M, X) =
0 then the first non-zero m (M, X) is iso to the first non-zero Hy (M, X); and it uses the Poincaré
duality iso Hy (M, X) = H™*(M,Y’) (by universal coefficients, H«(M,Y) =0< H*(M,Y) = 0).

16Hilton, An Introduction to Homotopy Theory, Thm 1.7 p.98: if 7. (Y,Yp) = 0, then V subex
Aof a CW cx X, any (X, A) — (Y, Yp) can be homotoped to X — Y keeping it constant on A.
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h-cobordism Thm'” (Smale 1962) If X,Y are simply connected of dim > 5 then
the h-cobordism M is trivial: M =Y x [0,1] diffeo. In particular X 2Y diffeo.

Lemma. If there exists a Morse function f : M — [a,b] with no critical points,
X = f~Ya), Y = f~X(b), then M is a trivial h-cobordism.

Proof. In notation of previous Rmk: f~1(b)x[0,1] — M, (z, s) — o(z, s(b—a)). O

Cor. An h-cobordism is trivial < it admits a Morse function as in the Lemma.

Idea of Pf of Thm.(hard!) Start with a Morse function on the cobordism. Sys-
tematically “cancel out” the crit points in pairs by locally modifying f and the flow,
until there are no crit points left. Key: the use of gradient-like vector fields:
Ve C®(TM), V(f) > 0 (except at Crit(f)), such that at each p € Crit(f), 3
Morse chart in which

fz) = flp)—a}—... —a?+al, +... .+
V = —x101—...—2;0; +xi+16i+1 + .+ 2O

The flow you consider is the flow of —V, not that of —V f. This means you know
exactly what v is near critical points: up to a constant, it is the Euclidean gradient
in the Morse chart (whereas —V f is unknown since the metric in general is not
Euclidean in the Morse chart!). The V(f) > 0 ensures that f still decreases along
—V flowlines, and you get good estimates of the energy E = [ V2.

The idea behind cancelling out critical points in pairs is as follows. Consider the
sphere with two discs cut out:

cobordism between two circles

You would like to push down one of the hills:

In general, you do not know what the manifold looks like globally, so you actually
just modify f, v locally near the trail going up the hill:'8

17Standard great reference: Milnor, Lectures on the h-cobordism theorem.
18in the figure, we modify f,v in the shaded region.
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Thus cancelling out the two critical points with index difference 1.



