LECTURE 7.

PART III, MORSE HOMOLOGY, 2011 HTTP://MORSEHOMOLOGY.WIKISPACES.COM

Motivation. Morse theory = studying the space of $\{-\nabla f \text{ flowlines }\}$.

3. Flowlines and Topology

3.1. Flowlines. M closed mfd, V smooth vector field.

Thm.

There exists a unique solution $\varphi: M \times \mathbb{R} \to M$ of

$$\frac{\partial \varphi}{\partial s} = V \circ \varphi \qquad \qquad \varphi(\cdot, 0) = id.$$

 $\varphi_s = \varphi(\cdot, s) : M \to M \text{ is a diffeo, with } \varphi_s \circ \varphi_t = \varphi_{s+t}.$

Def. φ is the flow of V, and $s \mapsto \varphi(p,s)$ is the flowline through p. By uniqueness, flowlines never intersect unless they coincide (up to $s \mapsto s + const$).

Proof. Locally: $y: [-\varepsilon, \varepsilon] \to \mathbb{R}^m$, $y(s) = \varphi(p, s)$ solves the ODE

$$y'(s) = V(y(s)) y(0) = p.$$

ODE theory¹ \Rightarrow for small $\varepsilon > 0$, \exists unique solution y which depends smoothly on the initial condition p.

Globally: $\forall p \in M$, local result yields a unique smooth map²

$$\varphi: U_p \times [-\varepsilon_p, \varepsilon_p] \to M$$
 (*)

Take a finite cover of M by U_p 's, and $\varepsilon =$ smallest of the ε_p 's. So:

$$\varphi: M \times [-\varepsilon, \varepsilon] \to M \tag{**}$$

Trick: $\varphi_s \circ \varphi_t = \varphi_{s+t}$ for small s, t, since both solve $y(0) = \varphi_t(p), y'(s) = V(y(s))$.

$$\Rightarrow \varphi_s$$
 diffeo with inverse φ_{-s}

$$\Rightarrow$$
 extend³ φ_s to $s \in \mathbb{R}$: $\varphi_s = \varphi_{s/k} \circ \cdots \circ \varphi_{s/k}$ (k composites, with $k \gg 0$ so that $|s/k| < \varepsilon$)

Rmk. ODE theory \Rightarrow If V is C^k then φ is C^k . If M is just a C^k -mfd and V is C^{k-1} then φ is C^{k-1} .

Rmk.

Date: May 1, 2011, © Alexander F. Ritter, Trinity College, Cambridge University.

¹Lang, Undergraduate Analysis, or Lang, Differential Manifolds, prove this in great detail.

²pick the open nbhd U_p of p small enough, so that φ lands in the given chart.

 $^{^{3}\}varphi_{s}$ is well-defined, indeed: $(\varphi_{s/k'})^{k'} = (\varphi_{s/kk'})^{kk'} = (\varphi_{s/k})^{k}$.

⁴Since TM is just C^{k-1} , any higher differentiability of vector fields does not make sense.

- (1) If V_s depends on s, you pass to $M \times \mathbb{R}$, $V(p,s) = V_s(p) \oplus \frac{\partial}{\partial s}$. Since the mfd is now non-compact, (*) holds but (**) can fail (if $\varepsilon_{(p,s)} \to 0$ as $|s| \to \infty$). Fact. If V is C^1 -bounded then (**) holds. So Thm holds.
- (2) For non-compact mfd M or Banach mfd M, (*) holds by the same proof, but for (**) we need the condition: $\exists K, R > 0$ such that $\forall p \in M, \exists \text{ chart } \varphi_p : U_p \to \mathbb{R}^m \text{ or } B$, such that V is C^1 -bounded by K in chart and $\varphi_p(U_p) \supset \text{ ball with centre } \varphi_p(p)$ radius R.

3.2. Negative gradient flowlines.

(M,g) closed Riemannian mfd. Write $|v|=g(v,v)^{1/2}$ for the norm. $f:M\to\mathbb{R}$ smooth function.

Def. The gradient vector field ∇f is defined by

$$g(\nabla f, \cdot) = df$$

Locally: $\nabla f = g^{-1} \partial f = \sum \partial_i f \cdot g^{ij} \cdot \partial_i$.

Rmk. $p \in Crit(f) \Leftrightarrow d_p f = 0 \Leftrightarrow (\nabla f)_p = 0 \Leftrightarrow |\nabla f|_p = 0$

For a $-\nabla f$ flowline $u:[a,b]\to M$ (so $u'=-\nabla f$) we care how f varies along u:

$$\partial_s(f \circ u) = df \cdot u' = df(-\nabla f) = g(\nabla f, -\nabla f) = -|\nabla f|^2$$

$$f(u(b)) - f(u(a)) = \int_a^b \partial_s(f \circ u) \, ds = -\int_a^b |(\nabla f)_{u(s)}|^2 \, ds \le 0$$

Def. So it is natural to introduce the notion of Energy of a path $u:(a,b)\to M$:

$$E(u) = \int_{a}^{b} |(\nabla f)_{u(s)}|^{2} ds \ge 0.$$

Note that E(u) = 0 iff u is constantly equal to a critical point.

Cor. f decreases along $-\nabla f$ flowlines, and there is an a priori energy estimate.⁸ for any $-\nabla f$ flowline from x to y,

$$E(u) = f(x) - f(y).$$

In particular, E(u) is a homotopy invariant relative to the ends.

Rmk (Novikov theory). A generalization of Morse theory, called Novikov theory, replaces df by a closed 1-form α . This gives rise to a vector field via $g(V, \cdot) = \alpha$, and one studies -V flowlines. The energy $E(u) = \int_a^b |V_{u(s)}|^2 ds \ge 0$ is zero iff u is constantly equal to a zero of α . There is no a priori energy estimate. However, E(u) is still a homotopy invariant of -V flowlines relative to the ends. Indeed:

$$E(u) = -\int_{[a,b]} u^* \alpha$$

 $^{^5}$ Why C^1 ? Locally it implies V is Lipschitz by the mean value theorem, which is what's needed to solve the ODE. C^1 bounds guarantee the Lipschitz constant is bounded uniformly.

⁶The C^1 bounds are calculated in a chart, but they can always be achieved by rescaling a chart. So the second condition is crucial (for example: consider $V = \frac{\partial}{\partial x}$ on $\mathbb{R} \setminus \{0\}$).

 $^{^{7}}g^{ij}$ = inverse matrix of $g_{ij} = g(\partial_i, \partial_j), \ \partial_j = \frac{\partial}{\partial x_i}$.

⁸a priori refers to the fact that the estimate only depends on boundary conditions x, y, not u.

since $u^*\alpha = \alpha \cdot u' = -\alpha(V) = -g(V, V) = -|V|^2$. Proof: if $H: [a, b] \times [0, 1] \to M$ is a homotopy relative ends⁹, by Stokes's theorem

$$\int_{[a,b]} u_0^* \alpha - \int_{[a,b]} u_1^* \alpha = \int_{[a,b] \times [0,1]} dH^* \alpha = 0$$

 $(dH^*\alpha = H^*d\alpha = 0, since \ \alpha \ is \ closed).$ For $\alpha = df$ the energy estimate is Stokes: $E(u) = -\int_{[a,b]} u^*df = -\int_{[a,b]} d(u^*f) = f(u(a)) - f(u(b))$ for $-\nabla f$ flowlines u.

3.3. Energy consumption.

Lemma. $A - \nabla f$ flowline from x to y landing in a region where $|\nabla f| \geq K > 0$ has

$$E(u) \ge K \cdot \operatorname{dist}(x, y).$$

$$Pf^{10}$$
 Loosely: $E(u) = \int |\nabla f|^2 \ge K \int |\nabla f| = K \int |u'| = K \operatorname{length}(u) \ge K \operatorname{dist}(x, y).$

For example, this proof shows that: in the complement of small balls centred at the critical points of a Morse function f, any $-\nabla f$ flowline must consume at least some fixed amount $\delta > 0$ of energy to flow from one ball to another.

Notation. $A \subset B$ (compactly contained) means: A, B open, and $A \subset \overline{A} \subset B$.

No escape Lemma. Let $p \in A_p \subset B_p$ with $\overline{B_p} \cap Crit(f) = \{p\}$. Then $\exists \delta > 0$ such that any $-\nabla f$ flowline needs $E \geq \delta$ to go from ∂A_p to ∂B_p , or vice-versa.

Proof. Consider the region
$$\overline{B_p} \setminus A_p$$
, apply the Lemma.

Energy quantum Lemma. Pick disjoint nbhds $\overline{B_r}$ of each $r \in \text{Crit}(f)$. $\exists \delta > 0$ such that any $-\nabla f$ flowline from B_p to B_q for $p \neq q$ consumes energy $E \geq \delta$.

Proof. Consider the region
$$M \setminus \bigcup \overline{B_r}$$
, apply the Lemma.

 $^{{}^{9}}H(a,\cdot)=x, H(b,\cdot)=y, H(0,\cdot)=u_0, H(1,\cdot)=u_1.$

 $^{^{10}}$ This proof works similarly if we use α instead of df (see previous Rmk).

¹¹ Distance dist(x,y) = infimum of lenth $(u) = \int |u'(s)| ds$ over all curves u from x to y. **Rmk.** length is parametriz'n indep: $\int |(u \circ \phi)'(s)| ds = \int |u'(\phi(s))| \phi'(s) ds = \int |u'(s)| ds$ ($\phi'(s) > 0$).

¹²Note: you could have f(p) = f(q), so the energy estimate doesn't imply result immediately.

3.4. Convergence at the ends.

Thm. For $f: M \to \mathbb{R}$ Morse, M closed mfd, any $-\nabla f$ flowline $u: \mathbb{R} \to M$ must converge at the ends to critical points, hence $\exists p, q \in Crit(f)$ with

$$u \in W(p,q) = \{-\nabla f \text{ flowlines } \mathbb{R} \to M \text{ converging to } p,q \text{ at } -\infty,\infty\}.$$

In particular, $W(p,p) = \{constant flowline at p\}$, since there E = f(p) - f(p) = 0.

Proof. ¹³ Case $s \to +\infty$ (for $s \to -\infty$ apply proof to -f). No Escape Lemma: for each $p \in \operatorname{Crit}(f)$ pick A_p, B_p 's (small), get $\delta > 0$. $f \circ u$ decreases in s, but f is bounded (M compact), so $f \circ u \to r \in \mathbb{R}$, so for $s \gg 0$, $f \circ u$ is within δ of r. Suppose $u \notin \cup B_p$ for some $s \gg 0$. Then u hasn't enough energy left to reach $\cup A_p$ for larger s. So $u \notin \cup A_p$ for $s \gg 0$. But $|\nabla f| \geq K > 0$ on $M \setminus \cup A_p$, so $f \circ u \to -\infty$, absurd. So $u \in \cup B_p$ for $s \gg 0$, and B_p is arbitrarily small.

3.5. Topology of sublevel sets. $M_a = \{x \in M : f(x) \le a\}$ are the sublevel sets.

Thm. If [a,b] contains no critical values of f, then $M_b \cong M_a$ are diffeo.

Proof. $\varphi = \text{flow of } -\frac{\beta(f)}{|\nabla f|^2} \cdot \nabla f$, where $\beta : \mathbb{R} \to [0,1]$ is a bump function, $\beta = 1$ on [a,b] and $\beta = 0$ on away from [a,b] (in particular $\beta = 0$ at all critical values of f).

$$\partial_s(f \circ \varphi) = df \cdot \partial_s \varphi = g(\nabla f, -\frac{\beta(f)\nabla f}{|\nabla f|^2}) = -\beta(f)$$

which equals -1 on [a,b]. So $\varphi(\cdot,b-a):M_b\to M_a$ diffeo. \square

Rmk. The $-\nabla f$ flowlines are orthogonal to the regular level sets $f^{-1}(a)$. Pf. $g(-\nabla f, v) = -df \cdot v = 0$ for $v \in Tf^{-1}(a) = \ker df|_{f^{-1}(a)}$.

Rmk. There is a deformation retraction¹⁴ of M_b onto M_a : $r: M_b \times [0,1] \to M_b$, r(x,s) = x if $x \in M_a$, and $r(x,s) = \varphi(x,s(f(x)-a))$ if $x \in f^{-1}[a,b]$.

Def. A cobordism between possibly-disconnected closed X^n, Y^n is a compact $mfd\ M^{n+1}$ with $\partial M = X \sqcup Y$. Call it h-cobordism if in addition X, Y are deformation retracts of M.

Fact. 15 Equivalent definitions of h-cobordism:

M h-cobordism $\Leftrightarrow (X, Y \hookrightarrow M \text{ hpy equivalences }) \Leftrightarrow (\pi_*(M, X) = \pi_*(M, Y) = 0)$ For X, Y, M simply connected: $(M \text{ h-cobordism }) \Leftrightarrow (H_*(M, X) = 0)$

 $^{^{13}\}mathrm{Curiosity:}\ \exists \mathrm{non\text{-}insightful}\ \mathrm{elementary}\ \mathrm{proof}\ \mathrm{by}\ \mathrm{contradiction},\ \mathrm{avoiding}\ \mathrm{energy}\ \mathrm{arguments}.$

¹⁴Deformation retraction $r: X \times [0,1] \to X$ of X onto A means: r cts, $r|_A = \mathrm{id}$, r(X,1) = A. Note r is a hpy from id_X to a retraction $r_1 = r(\cdot,1)$ of X onto A (means $r_1(X) = A$, $r_1|_A = \mathrm{id}_A$).

¹⁵Non-examinable: By Whitehead's theorem and LES for relative hpy: inclusions $X, Y \hookrightarrow M$ are hpy equivalences \Leftrightarrow they are isos on hpy gps $\Leftrightarrow \pi_*(M, X) = \pi_*(M, Y) = 0$. By hpy theory: ^{16}M deform retracts onto $X \Leftrightarrow \pi_*(M, X) = 0$. The 2nd fact uses Hurewicz: if $\pi_1(X) = 0$, $\pi_1(M, X) = 0$ then the first non-zero $\pi_k(M, X)$ is iso to the first non-zero $H_k(M, X)$; and it uses the Poincaré duality iso $H_*(M, X) \cong H^{m-*}(M, Y)$ (by universal coefficients, $H_*(M, Y) = 0 \Leftrightarrow H^*(M, Y) = 0$).

¹⁶Hilton, An Introduction to Homotopy Theory, Thm 1.7 p.98: if $\pi_*(Y, Y_0) = 0$, then \forall subcx A of a CW cx X, any $(X, A) \to (Y, Y_0)$ can be homotoped to $X \to Y_0$ keeping it constant on A.

h-cobordism Thm¹⁷ (Smale 1962) If X, Y are simply connected of dim ≥ 5 then the h-cobordism M is trivial: $M \cong Y \times [0, 1]$ diffeo. In particular $X \cong Y$ diffeo.

Lemma. If there exists a Morse function $f: M \to [a,b]$ with no critical points, $X = f^{-1}(a), Y = f^{-1}(b)$, then M is a trivial h-cobordism.

Proof. In notation of previous Rmk: $f^{-1}(b) \times [0,1] \to M, (x,s) \mapsto \varphi(x,s(b-a)).$

Cor. An h-cobordism is trivial \Leftrightarrow it admits a Morse function as in the Lemma.

Idea of Pf of Thm.(hard!) Start with a Morse function on the cobordism. Systematically "cancel out" the crit points in pairs by locally modifying f and the flow, until there are no crit points left. Key: the use of $\operatorname{gradient-like}$ vector fields : $V \in C^{\infty}(TM), V(f) > 0$ (except at $\operatorname{Crit}(f)$), such that at each $p \in \operatorname{Crit}(f)$, \exists Morse chart in which

$$\begin{array}{rcl} f(x) & = & f(p) - x_1^2 - \ldots - x_i^2 + x_{i+1}^2 + \ldots + x_m^2 \\ V & = & -x_1 \partial_1 - \ldots - x_i \partial_i + x_{i+1} \partial_{i+1} + \ldots + x_m \partial_m. \end{array}$$

The flow you consider is the flow of -V, not that of $-\nabla f$. This means you know exactly what v is near critical points: up to a constant, it is the Euclidean gradient in the Morse chart (whereas $-\nabla f$ is unknown since the metric in general is not Euclidean in the Morse chart!). The V(f) > 0 ensures that f still decreases along -V flowlines, and you get good estimates of the energy $E = \int |V|^2$.

The idea behind cancelling out critical points in pairs is as follows. Consider the sphere with two discs cut out:

You would like to push down one of the hills:

In general, you do not know what the manifold looks like globally, so you actually just modify f, v locally near the trail going up the hill:¹⁸

¹⁷Standard great reference: Milnor, Lectures on the h-cobordism theorem.

 $^{^{18}}$ in the figure, we modify f, v in the shaded region.

Thus cancelling out the two critical points with index difference 1.