LECTURE 11.

PART III, MORSE HOMOLOGY, 2011

HTTP://MORSEHOMOLOGY.WIKISPACES.COM

SOBOLEV SPACES

The book by Adams, Sobolev spaces, gives a thorough treatment of this material. We will treat Sobolev spaces with greater generality than necessary (we only use $W^{1,2}$ and L^2), since these spaces are ubiquitously used in geometry.

4.1. $W^{k,p}$ spaces on Euclidean space. Notation: $k \ge 0$ integer, $1 \le p < \infty$ real.

Def. For an open set $X \subset \mathbb{R}^n$, $W^{k,p}(X) = W^{k,p}(X,\mathbb{R})$ is the completion of $C^{\infty}(X) = \{smooth \ u : X \to \mathbb{R}\}$ with respect to the $\|\cdot\|_{k,p}$ -norm

$$||u||_{k,p} = \sum_{|I| \le k} ||\partial^I u||_p = \sum_{|I| \le k} \left(\int_X |\partial^I u|^p \, dx \right)^{1/p}$$

 $W^{k,\infty}(X)$ is defined analogously using $||u||_{k,\infty} = \sum_{|I| \le k} \sup |\partial^I u|$.

Def. $W^{k,p}(X,\mathbb{R}^m)$ is the completion of $C^{\infty}(X,\mathbb{R}^m)$ using

$$||u||_{k,p} = \sum_{i=1,\dots,m} ||u^i||_{W^{k,p}(X)}$$

where u^i are the coordinates of u. An equivalent norm³ can be defined using the previous definition, replacing $|\partial^I u|$ by $|\partial^I u|_{\mathbb{R}^n}$.

Rmks.

- (1) C^{∞} is dense in C^k with respect to $\|\cdot\|_{k,p}$, so completing C^k is the same as completing C^{∞} . Fact. When ∂X smooth (or C^1), $C^{\infty}(\overline{X}) \subset W^{k,p}(X)$ is dense $(\overline{X} = closure \ of \ X \subset \mathbb{R}^n)$, so it is the same as completing $C^{\infty}(\overline{X})$.

 (2) $W_0^{k,p}$ is the completion of C_c^{∞} inside $W^{k,p}$, where⁴

$$C_c^{\infty}(X) = \{ smooth \ compactly \ supported \ functions \ \phi: X \to \mathbb{R} \}$$

These spaces typically arise in geometry when you globalize a locally defined function after multiplying by a bump function.

Example.
$$\phi \in C_c^{\infty}(X), u \in W^{k,p}(X) \Rightarrow \phi \cdot u \in W_0^{k,p}(X)$$

Example. $\phi \in C_c^{\infty}(X)$, $u \in W^{k,p}(X) \Rightarrow \phi \cdot u \in W_0^{k,p}(X)$. **Warning.** Usually $W_0 \neq W$ since the u's must = 0 on ∂X , unlike $C^{\infty}(\overline{X})$.

Date: May 3, 2011, © Alexander F. Ritter, Trinity College, Cambridge University.

¹it is always understood that we complete the subset of C^{∞} of u's with bounded $||u||_{k,p}$.

²where $I = (i_1, i_2, ..., i_n)$, $\partial^I = (\partial_1)^{i_1} \cdots (\partial_n)^{i_n}$, $\partial_j = \frac{\partial}{\partial x_j}$, $|I| = i_1 + \cdots + i_n$.

³Two norms $\|\cdot\|$, $\|\cdot\|'$ are equivalent if \exists constants a, b > 0 such that $a\|x\| \leq \|x\|' \leq b\|x\|$, $\forall x$.

⁴The support of ϕ is supp $(\phi) = \{x \in X : \phi(x) \neq 0\}$.

(3) $W_{loc}^{k,p} = \text{locally } W^{k,p} \text{ maps} = completion of } C_c^{\infty} \text{ with respect to the topology:}^5$ $u_n \to u \Leftrightarrow u_n|_C \to u|_C \quad \forall C \subset X$

Loosely think of this as saying: the restriction to any compact is $W^{k,p}$. Warning. This is not a normed space, but it is a complete metric space.

(4) All these spaces are separable: there is a countable dense subset, namely the polynomials with rational coefficients.

4.2. L^p theory.

 $L^p=W^{0,p}$ with $\|u\|_p=\left(\int_X|u|^p\,dx\right)^{1/p}$, and $L^\infty=W^{0,\infty}$ with $\|u\|_\infty=\sup|u|$. Recall **Hölder's inequality**⁶

$$\int_{X} |u \cdot v| \, dx \le ||u||_{p} ||v||_{q} \qquad \text{for } \frac{1}{p} + \frac{1}{q} = 1.$$

 $\begin{array}{ll} \textbf{Lemma.} \ \ p \geq q \Rightarrow \operatorname{vol}(X)^{-1/q} \cdot \|u\|_q \leq \operatorname{vol}(X)^{-1/p} \cdot \|u\|_p \\ \Rightarrow L^p(X) \hookrightarrow L^q(X) \ \ is \ \ bounded \ \ for \ X \ \ bounded. \end{array}$

Proof. For $u \in C^{\infty}$, let $A = \int |u|^p$, then

$$\frac{\|u\|_q}{\|u\|_p} = \frac{(\int |u|^q)^{1/q}}{A^{\frac{1}{p}}} = \left(\int \left(\frac{|u|^p}{A}\right)^{q/p} \cdot 1\right)^{1/q} \le \left[\left(\int \frac{|u|^p}{A}\right)^{q/p} \cdot (\int 1)^{1-\frac{q}{p}}\right]^{1/q} = \text{vol}(X)^{\frac{1}{q} - \frac{1}{p}}$$

using Hölder in the inequality. Therefore $(C^{\infty} \cap L^p, \|\cdot\|_p) \to (C^{\infty} \cap L^q, \|\cdot\|_q)$ is a bdd inclusion, so we can complete it:⁷ $L^p \to L^q$, $[u_n] \mapsto [u_n]$.

Example. $L^{\infty}(X) \subset L^{p}(X)$ is clearly true for bdd X, and clearly false for $X = \mathbb{R}$.

Cor.
$$p \ge q \Rightarrow W^{k,p}(X) \hookrightarrow W^{k,q}(X)$$
 is bdd for X bdd.

Motivation. $k > k' \Rightarrow W^{k,p} \hookrightarrow W^{k',p}$ is clearly bounded, and one might even suspect that it is compact because of a mean value thm argument. So can one combine this with the Corollary and get optimal conditions on k, p simultaneously?

Def. Recall a linear map $L: X \to Y$ is bounded if $||Lx|| \le c||x|| \ \forall x$, and compact if any bounded sequence gets mapped to a sequence having a cgt subsequence.⁸

4.3. Sobolev embedding theorems. Let⁹

$$p^* = \begin{cases} \frac{np}{n-kp} & \text{if } kp < n \\ \infty & \text{if } kp \ge n \end{cases}$$

From now on, assume $X \subset \mathbb{R}^n$ open, ∂X smooth (or C^1).

Thm.
$$W^{k,p}(X) \stackrel{bdd}{\hookrightarrow} L^q(X) \text{ for } p \leq q \leq p^*$$
 (require $q \neq \infty$ if $kp = n$).

Rmk. For X bdd one can omit $p \leq q$ by the Lemma.

⁵recall $C \subset X$ means C, X open and $C \subset \overline{C} \subset X$.

⁶The generalization of the Cauchy-Schwarz inequality (p = q = 2).

⁷the inequality shows that L^p -Cauchy implies L^q -Cauchy, and the map $[u_n] \mapsto [u_n]$ is well-defined since $u_n \to 0$ in L^p implies $u_n \to 0$ in L^q , again by the inequality.

 $^{^{8}}$ equivalently: the closure of the image of the unit ball is compact.

⁹Unexpected results happen at the Sobolev borderline kp = n. Example: $\log \log (1 + \frac{1}{|x|})$ on the unit ball in \mathbb{R}^n is $W^{1,n}$ but neither C^0 nor L^{∞} .

Cor. Under the same assumptions, $W^{k+j,p}(X) \hookrightarrow W^{j,q}(X)$ is bdd.

Proof. Idea: $u \in W^{j,q} \Leftrightarrow \partial^I u \in L^q$, $\forall |I| < j$. For smooth u (afterwards complete):

$$\|u\|_{j,q} = \sum_{|I| \le j} \|\partial^I u\|_q \le c \sum_{|I| \le j} \|\partial^I u\|_{k,p} \le c' \|u\|_{k+j,p}. \quad \Box$$

$$\mathbf{Thm.}^{10} \qquad W^{k+j,p}(X) \overset{bdd}{\hookrightarrow} C^j_b(\overline{X}) \ for \ kp > n$$

$$\mathbf{Thm.}^{10} \ \boxed{ W^{k+j,p}(X) \overset{bdd}{\hookrightarrow} C^j_b(\overline{X}) \ \textit{for} \ kp > n}$$

Thm (Rellich). X bdd & inequalities are strict \Rightarrow above embeddings are compact.

Example.
$$W^{1,2}(\mathbb{R},\mathbb{R}^m) \hookrightarrow C_b^0(\mathbb{R},\mathbb{R}^m) = \{ \text{bdd cts } \mathbb{R} \to \mathbb{R}^m \} \ (kp = 2 > n = 1 \checkmark).$$

$$W^{1,2}(\mathbb{R},\mathbb{R}^m) \xrightarrow{\text{restr}} W^{1,2}((0,1),\mathbb{R}^m) \hookrightarrow C^0([0,1],\mathbb{R}^m) \text{ is compact.}$$

Idea of Proof of First Theorem for kp < n, X bdd

Note: $kp < n, q \le p^* \Leftrightarrow 0 > k - \frac{n}{p} \ge -\frac{n}{q}$. By induction reduce to k = 1:

$$\begin{array}{lll} u \in W^{k,p} & \Rightarrow & u, \partial_j u \in W^{k-1,p} \\ & \Rightarrow & (\text{induction}) & u, \partial_j u \in L^{p'} & 0 > k-1-\frac{n}{p} = 0 - \frac{n}{p'} \\ & \Rightarrow & u \in W^{1,p'} \\ & \Rightarrow & (k=1) & u \in L^q & 0 > 1 - \frac{n}{p'} = k - \frac{n}{p} \ge 0 - \frac{n}{q} \end{array}$$

Sketch: You start from fund. thm of calculus " $u(x) = \int_{-\infty}^{x_i} \partial_i u(\cdots) dx_i$ " (p=1), then everything else¹¹ is repeated integrations and Hölder's inequalities. For general p, you just use clever exponents.

Fact. can extend $u \in W^{1,p}(X)$ to a compactly supported $\overline{u} \in W^{1,p}(\mathbb{R}^n)$ in a way that $\|\overline{u}\|_{W^{1,p}(\mathbb{R}^n)} \leq c\|u\|_{W^{1,p}(X)}$. Then approximate by $C_c^{\infty}(\mathbb{R}^n)$ and use (*).

Rmks.

- (1) Can replace W by W_0 (then no conditions on ∂X are needed).
- (2) (*) holds $\forall u \in W_0^{1,p}(X)$ $(0 > 1 \frac{n}{p} > 0 \frac{n}{q})$, a version of Poincaré's ineq.
- (3) kp > n is wonderful since $W^{k,p} \subset C^0$, so you can represent elements as continuous functions, avoiding the Cauchy rubbish.

4.4. Derivatives on $W^{k,p}$.

Method 1: via completions

$$\begin{array}{l} \partial_s: (C^{\infty}, \|\cdot\|_{k,p}) \rightarrow (C^{\infty}, \|\cdot\|_{k-1,p}) \\ \partial_s: W^{k,p} \rightarrow W^{k-1,p}, [u_n] \rightarrow [\partial_s u_n] \end{array}$$

Method 2: for p=2, use the Fourier transform to replace ∂^I by multiplication by x^I (up to a constant factor). See Hwk 11.

Method 3: Using weak derivatives

First we want to avoid completions, and work with actual functions:

$$L^p(X) = \{ \text{Lebesgue measurable } u: X \to \mathbb{R} \text{ with } \|u\|_p < \infty \} \, / \, \, \underset{\text{almost everywhere}}{^{u \sim v \text{ if } u = v}}$$

 $^{^{10}\}text{using }\|u\|_{C^j}=\sum_{|I|\leq j}\sup|\partial^I u|\text{ on }C^j(\overline{X})\text{: call }C^j_b\text{ the subset of }u\text{'s with bdd }\|u\|_{C^j}.$

¹¹If you're curious, see Evans, Partial Differential Equations, p.263.

For our purposes, we don't need a deep understanding of measure theory, just a vague nod: Lebesque measure is a good notion of volume for certain subsets of \mathbb{R}^n . These subsets are called *measurable*. For example open subsets and closed subsets. The notion of volume for cubes and balls is what you think, and there are various axioms, the most important of which is: the volume of a countable disjoint union of subsets is the sum of the individual volumes. Define:

f is measurable if f^{-1} (any open set) is measurable.

Examples. Continuous functions, since f^{-1} (open) is open. Step functions (for example f = 1 on some open set, f = 0 outside it). Also: can add, scale, multiply, take limits of measurable fns to get measurable fns. 12

Convention. If $u \sim \text{continuous fn}$, then we always represent u by the cts fn!

Fact. The above $(L^p(X), \|\cdot\|_p)$ is complete and $C^{\infty}(X) \subset L^p(X)$ dense, so $L^p(X) \cong$ completion of $(C^{\infty}(X), \|\cdot\|_p)$ (as usual, only allow smooth u with $\|u\|_p < \infty$).

Def. $f_I \in L^p(X)$ is an *I*-th weak derivative of f if $\forall \phi \in C_c^{\infty}(X)$,

$$\int_X f_I \cdot \phi \, dx = (-1)^{|I|} \int_X f \cdot \partial^I \phi \, dx.$$

For smooth f this is just integration by parts with $f_I = \partial^I f$.

Exercise. weak derivatives are unique if they exist. So just write $f_I = \partial^I f$.

Key Fact. if f_I is cts, then the usual $\partial^I f$ exists and equals f_I .

See Lieb & Loss, Analysis, 2nd ed. Non-examinable: If $u \in W_{loc}^{k,p}$ then $u \in W_{loc}^{1,1}$ by Lemma 4.2 (loc gives finite vol), hence the FTC holds (L&L p.143): $u(x+y) - u(x) = \int_0^1 y \cdot \nabla u(x+ty) dt$ for a.e. x, all small y. Their proof shows that this is true for all x if u, ∇u are continuous. The key fact is proved in L&L p.145. Example: Suppose $u \in W^{1,2}(\mathbb{R}, \mathbb{R}^m)$ with cts weak $\partial_s u$, then $\frac{u(s+y)-u(s)}{y} = \int_0^1 \partial_s u(s+ty) dt \to \partial_s u(s)$ as $y \to 0$ by cty, so u is C^1 with deriv = weak deriv. Proof of FTC for $u \in W^{1,2}(\mathbb{R},\mathbb{R})$: for $\phi \in C_c^{\infty}(\mathbb{R},\mathbb{R})$, write $\widetilde{\phi}(s) = \phi(s - ty)$.

$$\int \phi(s) (\int_0^1 y \cdot \partial_s u(s+ty) \, dt) \, ds = \int_0^1 y (\int \phi(s) \cdot \partial_s u(s+ty) \, ds) dt = -\int_0^1 \int y \cdot \partial_s \widetilde{\phi}(s) \cdot u(s) \, ds \, dt$$

$$= \int \int_0^1 \partial_t \widetilde{\phi}(s) \, dt \, u(s) \, ds = \int \phi(s-y) u(s) \, ds - \int \phi(s) u(s) \, ds = \int \phi(s) (u(s+y)-u(s)) \, ds.$$

Hence $\int_0^1 y \cdot \partial_s u(s+ty) dt = u(s+y) - u(s)$ for a.e. s (all s if $u, \partial_s u$ cts (u is cts by Sobolev)).

Rmks.

(1) Weak derivatives behave as you expect:

$$\partial^I: W^{k,p} \to W^{k-|I|,p}$$
 is linear.

Also $\phi \in C_c^{\infty}$, $u \in W^{k,p} \Rightarrow \phi \cdot u \in W^{k,p}$ with $\partial^I(\phi \cdot u) = Leibniz$ formula.

$$\begin{array}{lll} u \in W^{k,p}(X) & \Rightarrow & u = (\|\cdot\|_{k,p}\text{-}Cauchy \ sequence \ of \ smooth \ } u_n : X \to \mathbb{R}) \\ & \Rightarrow & \partial^I u_n \ are \ \|\cdot\|_p\text{-}Cauchy \ \forall |I| \le k \\ & \Rightarrow & \partial^I u_n \to u_I \ in \ L^p, \ some \ u_I \in L^p(X) \ (by \ completeness \ of \ L^p). \end{array}$$

But $\int \partial^I u_n \cdot \phi = (-1)^I \int u_n \cdot \partial^I \phi$, take $n \to \infty$, deduce $u_I = \text{weak derivs!}$

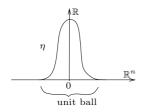
Thm. Define

$$W^{k,p}(X) = \{u \in L^p(X) : u \text{ has weak derivatives } \partial^I u \in L^p(X), \forall |I| \leq k\}$$

then $C^{\infty}(\overline{X}) \cap W^{k,p}(X) \subset W^{k,p}(X)$ dense, so $W^{k,p}(X) \cong completion \ construction$.
Pf uses a standard method to smoothly approximate measurable fins: **mollifiers**.¹³

¹²Non-examinable: Any measurable fn is a limit of simple fns. Simple fns are linear combinations of characteristic fns χ_S of measurable subsets S ($\chi_S(s) = 1 \,\forall s \in S$, else $\chi_S = 0$).

13An explicit η is the following: $c \cdot \exp(\frac{1}{|x|^2 - 1})$ for $|x| \leq 1$, and 0 otherwise.



 $\eta: \mathbb{R}^n \to \mathbb{R}$ smooth bump function, normalized so that $\int_{\mathbb{R}^n} \eta \, dx = 1$.

For
$$\varepsilon > 0$$
, define $\frac{14}{\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \cdot \eta(\frac{x}{\varepsilon})}$

Observe: $\eta_{\varepsilon} \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$, supp $\eta_{\varepsilon} \subset \varepsilon$ -ball, and $\int_{\mathbb{R}^n} \eta_{\varepsilon} dx = 1$.

For $u: X \to \mathbb{R}$ in $L^1_{loc}(X)$, define ε -mollification as a convolution:

$$\begin{array}{rcl} u_{\varepsilon}(x) & = & (\eta_{\varepsilon} * u)(x) \\ & = & \int_{X} \eta_{\varepsilon}(x-y) \, u(y) \, dy \\ & = & \int_{\varepsilon\text{-ball}} \eta_{\varepsilon}(y) \, u(x-y) \, dy \end{array}$$

defined for $x \in X_{\varepsilon} = \{ \text{points of } X \text{ at distance } > \varepsilon \text{ from } \partial X \}.$

Fact.15

- (1) $u_{\varepsilon}(x)$ only depends on values of u near x (Pf. 2nd integral.)
- $(2)\ u_{\varepsilon}\in C^{\infty}(X_{\varepsilon}) \quad \ (\textit{Pf. differentiate 1st integral.})$
- (3) $u_{\varepsilon}(x) \to u(x)$ for almost any x as $\varepsilon \to 0$
- (4) u continuous $\Rightarrow u_{\varepsilon} \to u$ uniformly on compacts (hence $C^{\infty} \subset C^0$ is dense)
- (5) $u \in L^p_{loc}(X) \Rightarrow u_{\varepsilon} \to u \text{ in } L^p_{loc}(X)$

Cor. $u \in W^{k,p}(X) \Rightarrow u_{\varepsilon} \to u \text{ in } W^{k,p}_{loc}(X)$

Proof. Easy computation:

$$\partial^I u_\varepsilon = \eta_\varepsilon * \partial^I u \qquad (\text{in } X_\varepsilon)$$

but $\partial^I u \in L^p(X)$, so by (5), $\eta_{\varepsilon} * \partial^I u \to \partial^I u$ in L^p_{loc} .

This corollary essentially implies the theorem by a clever 16 partition of unity argument (non-examinable).

4.5. Elementary proof of Sobolev/Rellich for $W^{1,2}$.

Theorem 1. $W^{1,2}(\mathbb{R}) \stackrel{bdd}{\hookrightarrow} C_b^0(\mathbb{R}) = \{bdd \ cts \ \mathbb{R} \to \mathbb{R}\}, \ and \ W^{1,2}(\mathbb{R}) \stackrel{cpt}{\to} C^0([-S,S]).$

Proof. For $u \in W^{1,2}$, pick $u_n \in C^0 \cap W^{1,2}$ converging to u in $W^{1,2}$ (by mollification, $C^0 \cap W^{1,2} \subset W^{1,2}$ is dense). So u_n is $W^{1,2}$ -bdd and by Cauchy-Schwarz

$$|u_n(b) - u_n(a)| \le \int_a^b |\partial_s u_n| \, ds \le \sqrt{|b - a|} \cdot ||u_n||_{1,2} \le \operatorname{const} \cdot \sqrt{|b - a|} \qquad (*)$$

so u_n is equicts. To check u_n is equibdd, suppose $u_n(a)$ is unbdd (fixed a). By (*)

$$\left| \min_{b \in [a-1,a+1]} u_n(b) - u_n(a) \right| \le C$$

so that minimum is also unbdd. So u_n is L^2 -unbdd, contradicting $W^{1,2}$ -bdd.

¹⁴as $\varepsilon \to 0$, intuitively " $\eta_{\varepsilon} \to \text{Dirac delta}$ ".

¹⁵If you're curious: Evans, Partial Differential Equations, p.630.

¹⁶If you're curious: Evans, Partial Differential Equations, p.251-254. The Corollary gives the Thm for $C^{\infty}(X)$, and to get $C^{\infty}(\overline{X})$ one needs a little care near the boundary ∂X because the convolution requires having an ε -ball around x inside the domain. The fix is to locally (on a small open $V \subset X$) translate u: $\widetilde{u}(x) = u(x - c\varepsilon \vec{n})$ where \vec{n} is the outward normal along ∂X and c is a large constant. Then $\eta_{\varepsilon} * \widetilde{u} \in C^{\infty}(\overline{V})$ cges to u in $W^{k,p}(V)$.

By Arzela-Ascoli, there is a subsequence $u_n|_{[-S,S]} \to v$ in $C^0[-S,S]$, so also in $L^2[-S,S]$, so $v=u|_{[-S,S]}$, so u is cts since S was arbitrary.

Need to check u is C^0 -bounded. As in (*), $|u(s+1) - u(s)| \le ||u||_{[s,s+1]}||_{1,2}$, so

$$|u(s+m)-u(s)| \le ||u|_{[s,s+1]}||_{1,2} + \dots + ||u|_{[s+m-1,s+m]}||_{1,2} = ||u|_{[s,s+m]}||_{1,2} \le ||u||_{1,2}$$

so u is bdd at $\pm \infty$, hence bdd on \mathbb{R} by cty.

4.6. $W^{k,p}$ for manifolds. Let N^n be a compact mfd and M^m any mfd.

 $W^{k,p}(N) = W^{k,p}(N,\mathbb{R})$ and $W^{k,p}(N,M)$ are the completion of $C^{\infty}(N)$ and $C^{\infty}(N,M)$ w.r.t. the $\|\cdot\|_{k,p}$ norm defined below. Equivalently, they are the space of measurable functions/maps¹⁷ which are k-times weakly differentiable (in the charts below) and which have bounded $\|\cdot\|_{k,p}$ -norm.

Def. $W^{k,p}(N,\mathbb{R}^m)$ for N^n compact mfd: pick a finite cover by charts¹⁸

$$\varphi_i: (ball\ B_i \subset \mathbb{R}^n) \to U_i \subset N$$

For $u: N \to \mathbb{R}^m$, define $\boxed{\|u\|_{k,p} = \sum \|u \circ \varphi_i\|_{W^{k,p}(B_i,\mathbb{R}^m)}}$ $W^{k,p}(N,M)$, any mfd M^m : fix smooth embedding $j: M \hookrightarrow \mathbb{R}^a$. For $u: N \to M$ let¹⁹

$$||u||_{k,p} = ||j \circ u||_{W^{k,p}(N,\mathbb{R}^a)}.$$

Rmk.

- (1) N compact \Rightarrow get equivalent norms if change charts
- (2) $X, Y \subset \mathbb{R}^n$ open, $k \geq 1$, call $\phi : X \to Y$ a C^k -diffeo if: ϕ is a homeomorphism, $\phi \in C^k(\overline{X}, \overline{Y})$, $\phi^{-1} \in C^k(\overline{Y}, \overline{X})$ and both have bdd C^k -norm.

Fact. $W^{k,p}(Y) \xrightarrow{\circ \phi} W^{k,p}(X)$ is bdd with bdd inverse.

Cor. N compact \Rightarrow get equivalent norm if change φ_i, U_i .

- (3) $\phi: X \to Y$ has $bdd\ C^k$ -norm $\Rightarrow W^{k,p}(N,X) \xrightarrow{\phi \circ} W^{k,p}(N,Y)$ bdd $\pmb{Rmk.}$ just bound $\phi \circ u$ in terms of $\|\phi\|_{k,p}$, $\|u\|_{C^k}$. If you wanted to bound $\phi \circ u$ in terms of $\|\phi\|_{k,p}$, $\|u\|_{k,p}$, then even for smooth ϕ you need kp > n. $\pmb{Cor.}\ M\ compact \Rightarrow choice\ of\ j\ does\ not\ matter\ (for\ non-cpt\ M\ it\ matters)$
- 4.7. $W^{k,p}$ for vector bundles. For a vector bundle $E \to N$,

$$W^{k,p}(E) = \{W^{k,p} \text{ sections } u : N \to E\}$$

In this case, you can avoid picking j:

$$\begin{array}{l} B_i \times \mathbb{R}^r \stackrel{\varphi_i}{\cong} U_i \times \mathbb{R}^r \stackrel{\mathrm{triv}}{\cong} E|_{U_i} \\ \mathrm{view} \ u \circ \varphi_i \ \mathrm{as} \ \mathrm{a} \ \mathrm{map} \ B_i \to \mathbb{R}^r \\ \|u\|_{k,p} = \sum \|(\rho_i \cdot u) \circ \varphi_i\|_{W^{k,p}(B_i,\mathbb{R}^r)} \end{array}$$

 $^{^{17}}W^{k,p}(N,M)\subset W^{k,p}(N,\mathbb{R}^a)$, the $u:N\to\mathbb{R}^a$ with $u(n)\in M\subset\mathbb{R}^a$ for almost every $n\in N$. 18 strictly speaking these are *parametrizations*: they go from \mathbb{R}^n to N. If you want charts $\varphi_i:U_i\to\mathbb{R}^n$, then you need bump functions ρ_i subordinate to the $U_i:\sum\|(\rho_i\cdot u)\circ\varphi_i^{-1}\|_{W^{1,2}(\mathbb{R}^n,\mathbb{R})}$. 19 Using charts on M would be a bad idea: think about why that would not work.

Alternatively, pick: a Riem metric g_N on N, a metric g_E on E (smoothly varying inner product for each fibre), and a connection ∇ on E. Then define:²⁰

$$||u||_{k,p} = \sum_{i \le k} \left(\int_N |\nabla^i u|^p \operatorname{vol}_N \right)^{1/p}$$

Lemma 2. N compact \Rightarrow those two definitions give equivalent norms.

Proof. Choice of local trivializations doesn't matter since they change by multiplication by a smooth matrix-valued map (use Rmk 3 above).

Pick local trivializes using smooth local orthonormal sections. So $|\cdot|$ differs from $|\cdot|_{\mathbb{R}^a}$ only by use of g_N^* in $\Omega^i(N)$ directions. So get bounds since N is compact.

Locally $\nabla = d + A$ (A local section of End(E)), hence can bound $u, \dots, \nabla^{i-1}u, \nabla^i u$ in terms of $||A||_{\infty}$, u, $\partial^{I}u$ ($|I| \leq i$). Vice-versa can bound $\partial^{I}u$ in terms of $||A||_{\infty}$, $\nabla^i u$ $(i \leq |I|)$ by the triangle inequality.

4.8. Sobolev theorems for manifolds. For a compact mfd N, any mfd M:

$$L^{p}(N) \overset{\text{bdd}}{\hookrightarrow} L^{q}(N) \quad \text{for } p \geq q \quad \text{(since vol}(N) < \infty)$$

$$W^{k,p}(N,M) \overset{\text{bdd}}{\hookrightarrow} W^{k',p'}(N,M) \quad \text{for } \begin{cases} k \geq k' \\ k - \frac{n}{p} \geq k' - \frac{n}{p'} \end{cases} \quad \text{(compact if strict > 's)}$$

$$W^{k,p}(N,M) \overset{\text{bdd \& cpt}}{\hookrightarrow} C^{k'}(N,M) \quad \text{for } k - \frac{n}{p} > k'$$

$$Warning \quad \text{Fails for non-compact } N \quad \text{unless you have control of the geometry at } M \text{ and } M \text{ are control of the geometry at } M \text{ and } M \text{ are control of the geometry at } M \text{ and } M \text{ are control of the geometry at } M \text{ and } M \text{ are control of the geometry at } M \text{ and } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ and } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry at } M \text{ are control of the geometry } M \text{ are$$

Warning. Fails for non-compact N, unless you have control of the geometry at ∞ : for example for $N = \mathbb{R}, \mathbb{R}^n$ the above still holds.

$$\textbf{Def.}\ \ W^{k,p}_{loc}(N,M)=\{u:N\to M:\ \ u|_C\in W^{k,p}(C,M),\ \ \forall C\subset N\}$$

Warning. the $W^{k,p}_{loc}$ are not normed, but they are complete metric spaces with the topology: $u_n \to u$ in $W^{k,p}_{loc} \Leftrightarrow u_n|_C \to u|_C$ in $W^{k,p}(C,M) \, \forall C \subset N$. **Exercise.** $u \in W^{k,p}_{loc} \Leftrightarrow \exists u_n \in C^\infty_c, \ u_n \to u \text{ in } W^{k,p}_{loc}$. So $W^{k,p}_{loc} \cong \text{completion defn.}$

Cor. Sobolev embeddings hold for 21 W_{loc} , L_{loc} , C_{loc} even for non-compact N.

Proof.
$$u \in W_{loc}^{k,p}(N,M) \Rightarrow u|_C \in W^{k,p}(C,M) \Rightarrow u|_C \in W^{k',p'}(C,M) \Rightarrow u \in W^{k',p'}(N,M)$$

²⁰where $\nabla^0 u = u$, $\nabla^i : C^\infty(E) \to \Omega^i(N) \otimes C^\infty(E)$ (extending ∇ to higher forms by Leibniz: $\nabla(\omega \otimes s) = d\omega \otimes s + \omega \otimes \nabla s$), and $\operatorname{vol}_N = \sqrt{|\det g_N|} \, dx_1 \wedge \cdots \wedge dx_n$, and the norm in the integral combines the norm from g_E on E and the norm from the dual metric g_N^* on T^*N (which induces a metric on the exterior product $\Lambda^i T^*N$ - explicitly, use g_N to locally define an orthonormal frame for TN by Gram-Schmidt, declare the dual of that to be an o.n. frame for T^*N , this determines g_N^* , and taking ordered *i*-th wedge products you declare what an o.n. frame for $\Lambda^i T^*N$ is). $^{21}C_{loc}^k$ just means C^k -convergence on compact subsets.