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SOBOLEV SPACES

The book by Adams, Sobolev spaces, gives a thorough treatment of this material.
We will treat Sobolev spaces with greater generality than necessary (we only use
W 1,2 and L2), since these spaces are ubiquitously used in geometry.

4.1. W k,p spaces on Euclidean space. Notation: k ≥ 0 integer, 1 ≤ p < ∞ real.

Def. For an open set X ⊂ R
n, W k,p(X) = W k,p(X,R) is the completion1 of

C∞(X) = {smooth u : X → R} with respect to the ‖ · ‖k,p-norm
2

‖u‖k,p =
∑

|I|≤k

‖∂Iu‖p =
∑

|I|≤k

(
∫

X

|∂Iu|p dx

)1/p

W k,∞(X) is defined analogously using ‖u‖k,∞ =
∑

|I|≤k

sup |∂Iu|.

Def. W k,p(X,Rm) is the completion of C∞(X,Rm) using

‖u‖k,p =
∑

i=1,...,m

‖ui‖Wk,p(X)

where ui are the coordinates of u. An equivalent norm3 can be defined using the

previous definition, replacing |∂Iu| by |∂Iu|Rn .

Rmks.

(1) C∞ is dense in Ck with respect to ‖ · ‖k,p, so completing Ck is the same as

completing C∞. Fact. When ∂X smooth (or C1), C∞(X) ⊂ W k,p(X) is

dense (X = closure of X ⊂ R
n), so it is the same as completing C∞(X).

(2) W k,p
0 is the completion of C∞

c inside W k,p, where4

C∞
c (X) = {smooth compactly supported functions φ : X → R}

These spaces typically arise in geometry when you globalize a locally defined

function after multiplying by a bump function.

Example. φ ∈ C∞
c (X), u ∈ W k,p(X) ⇒ φ · u ∈ W k,p

0 (X).

Warning. Usually W0 6= W since the u’s must = 0 on ∂X, unlike C∞(X).

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1it is always understood that we complete the subset of C∞ of u’s with bounded ‖u‖k,p.
2where I = (i1, i2, . . . , in), ∂I = (∂1)i1 · · · (∂n)in , ∂j = ∂

∂xj
, |I| = i1 + · · ·+ in.

3Two norms ‖ · ‖, ‖ · ‖′ are equivalent if ∃ constants a, b > 0 such that a‖x‖ ≤ ‖x‖′ ≤ b‖x‖, ∀x.
4The support of φ is supp(φ) = {x ∈ X : φ(x) 6= 0}.
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2 PART III, MORSE HOMOLOGY, L11

(3) W k,p
loc = locallyW k,p maps= completion of C∞

c with respect to the topology:5

un → u ⇔ un|C → u|C ∀C ⊂⊂ X

Loosely think of this as saying: the restriction to any compact is W k,p.

Warning. This is not a normed space, but it is a complete metric space.

(4) All these spaces are separable: there is a countable dense subset, namely

the polynomials with rational coefficients.

4.2. Lp theory.

Lp = W 0,p with ‖u‖p =
(∫

X
|u|p dx

)1/p
, and L∞ = W 0,∞ with ‖u‖∞ = sup |u|.

Recall Hölder’s inequality6

∫

X

|u · v| dx ≤ ‖u‖p‖v‖q for 1
p + 1

q = 1.

Lemma. p ≥ q ⇒ vol(X)−1/q · ‖u‖q ≤ vol(X)−1/p · ‖u‖p
⇒ Lp(X) →֒ Lq(X) is bounded for X bounded.

Proof. For u ∈ C∞, let A =
∫

|u|p, then

‖u‖q
‖u‖p

=
(
∫

|u|q)1/q

A
1
p

=

(

∫
(

|u|p

A

)q/p

· 1

)1/q

≤

[

(
∫

|u|p

A

)q/p

· (
∫

1)1−
q

p

]1/q

= vol(X)
1
q
− 1

p

using Hölder in the inequality. Therefore (C∞ ∩ Lp, ‖ · ‖p) → (C∞ ∩ Lq, ‖ · ‖q) is a
bdd inclusion, so we can complete it:7 Lp → Lq, [un] 7→ [un]. �

Example. L∞(X) ⊂ Lp(X) is clearly true for bdd X , and clearly false for X = R.

Cor. p ≥ q ⇒ W k,p(X) →֒ W k,q(X) is bdd for X bdd.

Motivation. k > k′ ⇒ W k,p →֒ W k′,p is clearly bounded, and one might even
suspect that it is compact because of a mean value thm argument. So can one
combine this with the Corollary and get optimal conditions on k, p simultaneously?

Def. Recall a linear map L : X → Y is bounded if ‖Lx‖ ≤ c‖x‖ ∀x, and compact

if any bounded sequence gets mapped to a sequence having a cgt subsequence.8

4.3. Sobolev embedding theorems. Let9

p∗ =

{ np
n−kp if kp < n

∞ if kp ≥ n

From now on, assume X ⊂ R
n open, ∂X smooth (or C1).

Thm. W k,p(X)
bdd
→֒ Lq(X) for p ≤ q ≤ p∗ (require q 6= ∞ if kp = n).

Rmk. For X bdd one can omit p ≤ q by the Lemma.

5recall C ⊂⊂ X means C,X open and C ⊂ C ⊂ X.
6The generalization of the Cauchy-Schwarz inequality (p = q = 2).
7the inequality shows that Lp-Cauchy implies Lq-Cauchy, and the map [un] 7→ [un] is well-

defined since un → 0 in Lp implies un → 0 in Lq , again by the inequality.
8equivalently: the closure of the image of the unit ball is compact.
9Unexpected results happen at the Sobolev borderline kp = n. Example: log log(1 + 1

|x|
) on

the unit ball in R
n is W 1,n but neither C0 nor L∞.
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Cor. Under the same assumptions, W k+j,p(X) →֒ W j,q(X) is bdd.

Proof. Idea: u ∈ W j,q ⇔ ∂Iu ∈ Lq, ∀|I| ≤ j. For smooth u (afterwards complete):

‖u‖j,q =
∑

|I|≤j

‖∂Iu‖q ≤ c
∑

|I|≤j

‖∂Iu‖k,p ≤ c′ ‖u‖k+j,p. �

Thm.10 W k+j,p(X)
bdd
→֒ Cj

b (X) for kp > n

Thm (Rellich). X bdd & inequalities are strict ⇒ above embeddings are compact.

Example. W 1,2(R,Rm) →֒ C0
b (R,R

m) = {bdd cts R → R
m} (kp = 2 > n = 1X).

W 1,2(R,Rm)
restr
−→ W 1,2((0, 1),Rm) →֒ C0([0, 1],Rm) is compact.

Idea of Proof of First Theorem for kp < n, X bdd
Note: kp < n, q ≤ p∗ ⇔ 0 > k − n

p ≥ −n
q . By induction reduce to k = 1:

u ∈ W k,p ⇒ u, ∂ju ∈ W k−1,p

⇒ (induction) u, ∂ju ∈ Lp′

0 > k − 1− n
p = 0− n

p′

⇒ u ∈ W 1,p′

⇒ (k = 1) u ∈ Lq 0 > 1− n
p′

= k − n
p ≥ 0− n

q

To prove W 1,p →֒ Lq seek

‖u‖q ≤ c‖du‖p ∀u ∈ C∞
c (X) (fails for u = 1) (∗)

Sketch: You start from fund. thm of calculus “u(x) =
∫ xi

−∞
∂iu(· · · ) dxi” (p = 1),

then everything else11 is repeated integrations and Hölder’s inequalities. For general
p, you just use clever exponents.

Fact. can extend u ∈ W 1,p(X) to a compactly supported u ∈ W 1,p(Rn) in a way
that ‖u‖W 1,p(Rn) ≤ c‖u‖W 1,p(X). Then approximate by C∞

c (Rn) and use (∗). �

Rmks.

(1) Can replace W by W0 (then no conditions on ∂X are needed).

(2) (∗) holds ∀u ∈ W 1,p
0 (X) (0 > 1− n

p > 0− n
q ), a version of Poincaré’s ineq.

(3) kp > n is wonderful since W k,p ⊂ C0, so you can represent elements as

continuous functions, avoiding the Cauchy rubbish.

4.4. Derivatives on W k,p.
Method 1: via completions

∂s : (C
∞, ‖ · ‖k,p) → (C∞, ‖ · ‖k−1,p)

∂s : W
k,p → W k−1,p, [un] → [∂sun]

Method 2: for p = 2, use the Fourier transform to replace ∂I by multiplication
by xI (up to a constant factor). See Hwk 11.

Method 3: Using weak derivatives
First we want to avoid completions, and work with actual functions:

Lp(X) = {Lebesgue measurable u : X → R with ‖u‖p < ∞} / u∼v if u=v
almost everywhere

10using ‖u‖Cj =
∑

|I|≤j sup |∂Iu| on Cj(X): call Cj
b
the subset of u’s with bdd ‖u‖Cj .

11If you’re curious, see Evans, Partial Differential Equations, p.263.
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For our purposes, we don’t need a deep understanding of measure theory, just a
vague nod: Lebesgue measure is a good notion of volume for certain subsets of Rn.
These subsets are called measurable. For example open subsets and closed subsets.
The notion of volume for cubes and balls is what you think, and there are various
axioms, the most important of which is: the volume of a countable disjoint union
of subsets is the sum of the individual volumes. Define:

f is measurable if f−1(any open set) is measurable.

Examples. Continuous functions, since f−1(open) is open. Step functions (for
example f = 1 on some open set, f = 0 outside it). Also: can add, scale, multiply,
take limits of measurable fns to get measurable fns.12

Convention. If u ∼ continuous fn, then we always represent u by the cts fn!

Fact. The above (Lp(X), ‖·‖p) is complete and C∞(X) ⊂ Lp(X) dense, so Lp(X) ∼=
completion of (C∞(X), ‖ · ‖p) (as usual, only allow smooth u with ‖u‖p < ∞).

Def. fI ∈ Lp(X) is an I-th weak derivative of f if ∀φ ∈ C∞
c (X),

∫

X

fI · φdx = (−1)|I|
∫

X

f · ∂Iφdx.

For smooth f this is just integration by parts with fI = ∂If .

Exercise. weak derivatives are unique if they exist. So just write fI = ∂If .

Key Fact. if fI is cts, then the usual ∂If exists and equals fI .

See Lieb & Loss, Analysis, 2nd ed. Non-examinable: If u ∈ W
k,p

loc
then u ∈ W

1,1
loc

by Lemma 4.2 (loc gives finite

vol), hence the FTC holds (L&L p.143): u(x + y) − u(x) =
∫ 1
0 y · ∇u(x + ty) dt for a.e. x, all small y. Their

proof shows that this is true for all x if u,∇u are continuous. The key fact is proved in L&L p.145. Example:

Suppose u ∈ W1,2(R, Rm) with cts weak ∂su, then
u(s+y)−u(s)

y
=

∫ 1
0 ∂su(s+ ty) dt → ∂su(s) as y → 0 by cty,

so u is C1 with deriv = weak deriv. Proof of FTC for u ∈ W1,2(R, R): for φ ∈ C∞

c (R,R), write φ̃(s) = φ(s− ty).

∫
φ(s)(

∫ 1
0 y · ∂su(s + ty)dt) ds =

∫ 1
0 y(

∫
φ(s) · ∂su(s + ty) ds)dt = −

∫ 1
0

∫
y · ∂sφ̃(s) · u(s) ds dt

=
∫ ∫ 1

0 ∂tφ̃(s) dt u(s) ds =
∫
φ(s − y)u(s)ds −

∫
φ(s)u(s) ds =

∫
φ(s)(u(s + y) − u(s)) ds.

Hence
∫ 1
0 y · ∂su(s + ty)dt = u(s + y) − u(s) for a.e. s (all s if u, ∂su cts (u is cts by Sobolev)).

Rmks.

(1) Weak derivatives behave as you expect:

∂I : W k,p → W k−|I|,p is linear.

Also φ ∈ C∞
c , u ∈ W k,p ⇒ φ · u ∈ W k,p with ∂I(φ · u) = Leibniz formula.

(2) Observe:

u ∈ W k,p(X) ⇒ u = (‖ · ‖k,p-Cauchy sequence of smooth un : X → R)
⇒ ∂Iun are ‖ · ‖p-Cauchy ∀|I| ≤ k
⇒ ∂Iun → uI in Lp, some uI ∈ Lp(X) (by completeness of Lp).

But
∫

∂Iun · φ = (−1)I
∫

un · ∂Iφ, take n → ∞, deduce uI = weak derivs!

Thm. Define

W k,p(X) = {u ∈ Lp(X) : u has weak derivatives ∂Iu ∈ Lp(X), ∀|I| ≤ k}

then C∞(X)∩W k,p(X) ⊂ W k,p(X) dense, so W k,p(X) ∼= completion construction.

Pf uses a standard method to smoothly approximate measurable fns:mollifiers.13

12Non-examinable: Any measurable fn is a limit of simple fns. Simple fns are linear combina-
tions of characteristic fns χS of measurable subsets S (χS(s) = 1∀s ∈ S, else χS = 0).

13An explicit η is the following: c · exp( 1
|x|2−1

) for |x| ≤ 1, and 0 otherwise.
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0

unit ball

R
n

R

η

η : Rn → R smooth bump function,
normalized so that

∫

Rn η dx = 1.

For ε > 0, define14 ηε(x) =
1
εn · η(xε )

Observe: ηε ∈ C∞(Rn,R), supp ηε ⊂ ε-ball,
and

∫

Rn ηε dx = 1.

For u : X → R in L1
loc(X), define ε-mollification as a convolution:

uε(x) = (ηε ∗ u)(x)
=

∫

X
ηε(x − y)u(y) dy

=
∫

ε-ball ηε(y)u(x− y) dy

defined for x ∈ Xε = {points of X at distance > ε from ∂X}.

Fact.15

(1) uε(x) only depends on values of u near x (Pf. 2nd integral.)
(2) uε ∈ C∞(Xε) (Pf. differentiate 1st integral.)
(3) uε(x) → u(x) for almost any x as ε → 0
(4) u continuous ⇒ uε → u uniformly on compacts (hence C∞ ⊂ C0 is dense)
(5) u ∈ Lp

loc(X) ⇒ uε → u in Lp
loc(X)

Cor. u ∈ W k,p(X) ⇒ uε → u in W k,p
loc (X)

Proof. Easy computation:

∂Iuε = ηε ∗ ∂
Iu (in Xε)

but ∂Iu ∈ Lp(X), so by (5), ηε ∗ ∂
Iu → ∂Iu in Lp

loc. �

This corollary essentially implies the theorem by a clever16 partition of unity
argument (non-examinable).

4.5. Elementary proof of Sobolev/Rellich for W 1,2.

Theorem 1. W 1,2(R)
bdd
→֒ C0

b (R) = {bdd cts R → R}, and W 1,2(R)
cpt
→ C0([−S, S]).

Proof. For u ∈ W 1,2, pick un ∈ C0∩W 1,2 converging to u in W 1,2 (by mollification,
C0 ∩W 1,2 ⊂ W 1,2 is dense). So un is W 1,2-bdd and by Cauchy-Schwarz

|un(b)− un(a)| ≤

∫ b

a

|∂sun| ds ≤
√

|b− a| · ‖un‖1,2 ≤ const ·
√

|b− a| (∗)

so un is equicts. To check un is equibdd, suppose un(a) is unbdd (fixed a). By (∗)
∣

∣

∣

∣

min
b∈[a−1,a+1]

un(b)− un(a)

∣

∣

∣

∣

≤ C

so that minimum is also unbdd. So un is L2-unbdd, contradicting W 1,2-bdd.

14as ε → 0, intuitively “ηε →Dirac delta”.
15If you’re curious: Evans, Partial Differential Equations, p.630.
16If you’re curious: Evans, Partial Differential Equations, p.251-254. The Corollary gives the

Thm for C∞(X), and to get C∞(X) one needs a little care near the boundary ∂X because the
convolution requires having an ε-ball around x inside the domain. The fix is to locally (on a small
open V ⊂ X) translate u: ũ(x) = u(x− cε~n) where ~n is the outward normal along ∂X and c is a

large constant. Then ηε ∗ ũ ∈ C∞(V ) cges to u in W k,p(V ).
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By Arzela-Ascoli, there is a subsequence un|[−S,S] → v in C0[−S, S], so also in

L2[−S, S], so v = u|[−S,S], so u is cts since S was arbitrary.

Need to check u is C0-bounded. As in (∗), |u(s+ 1)− u(s)| ≤ ‖u|[s,s+1]‖1,2, so

|u(s+m)−u(s)| ≤ ‖u|[s,s+1]‖1,2+ · · ·+‖u|[s+m−1,s+m]‖1,2 = ‖u|[s,s+m]‖1,2 ≤ ‖u‖1,2

so u is bdd at ±∞, hence bdd on R by cty. �

4.6. W k,p for manifolds. Let Nn be a compact mfd and Mm any mfd.
W k,p(N) = W k,p(N,R) and W k,p(N,M) are the completion of C∞(N) and

C∞(N,M) w.r.t. the ‖ · ‖k,p norm defined below. Equivalently, they are the space
of measurable functions/maps17 which are k-times weakly differentiable (in the
charts below) and which have bounded ‖ · ‖k,p-norm.

Def. W k,p(N,Rm) for Nn compact mfd: pick a finite cover by charts18

ϕi : (ball Bi ⊂ R
n) → Ui ⊂ N

For u : N → R
m, define ‖u‖k,p =

∑

‖u ◦ ϕi‖Wk,p(Bi,Rm)

W k,p(N,M), any mfd Mm: fix smooth embedding j :M →֒R
a. For u : N→M let19

‖u‖k,p = ‖j ◦ u‖Wk,p(N,Ra).

Rmk.

(1) N compact ⇒ get equivalent norms if change charts

(2) X,Y ⊂ R
n open, k ≥ 1, call φ : X → Y a Ck-diffeo if: φ is a homeomor-

phism, φ ∈ Ck(X,Y ), φ−1 ∈ Ck(Y ,X) and both have bdd Ck-norm.

Fact. W k,p(Y )
◦φ
−→ W k,p(X) is bdd with bdd inverse.

Cor. N compact ⇒ get equivalent norm if change ϕi, Ui.

(3) φ : X → Y has bdd Ck-norm ⇒ W k,p(N,X)
φ◦
−→ W k,p(N, Y ) bdd

Rmk. just bound φ ◦ u in terms of ‖φ‖k,p, ‖u‖Ck. If you wanted to bound

φ ◦ u in terms of ‖φ‖k,p, ‖u‖k,p, then even for smooth φ you need kp > n.
Cor. M compact⇒choice of j does not matter (for non-cpt M it matters)

4.7. W k,p for vector bundles. For a vector bundle E → N ,

W k,p(E) = {W k,p sections u : N → E}

In this case, you can avoid picking j:

Bi × R
r

ϕi
∼= Ui × R

r
triv
∼= E|Ui

view u ◦ ϕi as a map Bi → R
r

‖u‖k,p =
∑

‖(ρi · u) ◦ ϕi‖Wk,p(Bi,Rr)

17W k,p(N,M) ⊂ W k,p(N,Ra), the u : N → R
a with u(n) ∈ M ⊂ R

a for almost every n ∈ N .
18strictly speaking these are parametrizations: they go from R

n to N . If you want charts
ϕi : Ui → R

n, then you need bump functions ρi subordinate to the Ui:
∑

‖(ρi·u)◦ϕ
−1
i ‖W1,2(Rn,R).

19Using charts on M would be a bad idea: think about why that would not work.
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Alternatively, pick: a Riem metric gN on N , a metric gE on E (smoothly varying
inner product for each fibre), and a connection ∇ on E. Then define:20

‖u‖k,p =
∑

i≤k

(
∫

N

|∇iu|p volN

)1/p

Lemma 2. N compact ⇒ those two definitions give equivalent norms.

Proof. Choice of local trivializations doesn’t matter since they change by multipli-
cation by a smooth matrix-valued map (use Rmk 3 above).

Pick local trivializns using smooth local orthonormal sections. So | · | differs from
| · |Ra only by use of g∗N in Ωi(N) directions. So get bounds since N is compact.

Locally∇ = d+A (A local section of End(E)), hence can bound u, . . . ,∇i−1u,∇iu
in terms of ‖A‖∞, u, ∂Iu (|I| ≤ i). Vice-versa can bound ∂Iu in terms of ‖A‖∞,
∇iu (i ≤ |I|) by the triangle inequality. �

4.8. Sobolev theorems for manifolds. For a compact mfd N , any mfd M :

Lp(N)
bdd
→֒ Lq(N) for p ≥ q (since vol(N) < ∞)

W k,p(N,M)
bdd
→֒ W k′,p′

(N,M) for

{

k ≥ k′

k − n
p ≥ k′ − n

p′

(p′ 6=∞ if kp=n)

(compact if strict > ’s)

W k,p(N,M)
bdd & cpt

→֒ Ck′

(N,M) for k − n
p > k′

Warning. Fails for non-compact N , unless you have control of the geometry at
∞: for example for N = R,Rn the above still holds.

Def. W k,p
loc (N,M) = {u : N → M : u|C ∈ W k,p(C,M), ∀C ⊂⊂ N}

Warning. the W k,p
loc are not normed, but they are complete metric spaces with the

topology: un → u in W k,p
loc ⇔ un|C → u|C in W k,p(C,M)∀C ⊂⊂ N .

Exercise. u ∈ W k,p
loc ⇔ ∃un ∈ C∞

c , un → u in W k,p
loc . So W k,p

loc
∼= completion defn.

Cor. Sobolev embeddings hold for21 Wloc, Lloc, Cloc even for non-compact N .

Proof. u ∈ W k,p
loc (N,M) ⇒ u|C ∈ W k,p(C,M) ⇒ u|C ∈ W k′,p′

(C,M) ⇒ u ∈

W k′,p′

(N,M) �

20where ∇0u = u, ∇i : C∞(E) → Ωi(N) ⊗ C∞(E) (extending ∇ to higher forms by Leibniz:

∇(ω⊗ s) = dω⊗ s+ω⊗∇s), and volN =
√

| det gN | dx1 ∧ · · ·∧ dxn, and the norm in the integral
combines the norm from gE on E and the norm from the dual metric g∗

N
on T ∗N (which induces a

metric on the exterior product ΛiT ∗N - explicitly, use gN to locally define an orthonormal frame
for TN by Gram-Schmidt, declare the dual of that to be an o.n. frame for T ∗N , this determines
g∗
N
, and taking ordered i-th wedge products you declare what an o.n. frame for ΛiT ∗N is).
21Ck

loc
just means Ck-convergence on compact subsets.


