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5.3. Convergence to broken trajectories (continued). Recall that by the
reparametrization trick, for any sequence un ∈ W (p, q) without a convergent sub-
sequence, ∃sn ∈ R with wn = un(·+ sn) → w in C0

loc with f(w(R)) ∩ f(u(R)) = ∅.

Thm. un ∈ W (p, q) ⇒ ∃ subseq un such that:

• ∃ sin ∈ R i = 1, . . . , N
• ∃ui ∈ W (pi, pi+1) p = p1, q = pN+1

• f(p1) > f(p2) > · · · > f(pN+1)

with

ui
n = un(·+ sin) → ui in W (pi, pi+1)

un

uN
pN

p3

u1p = p1

q = pN+1

p2

u2

Proof. Cover [f(p), f(q)] by closures of disjoint intervals obtained by the reparametriza-
tion trick. This is a finite cover by Trick 3.3.1 �

Def. Call (u1, u2, . . . , uN ) ∈ W (p1, p2)× · · · ×W (pN , pN+1) a broken flowline.

5.4. Compactness theorem.

Rmk. In the Theorem, ui
n ∈ W (p, q) are different lifts of the same [un] ∈ M(p, q).

Def. In the Theorem, denote vn = [un] = [ui
n] ∈ M(p, q), vi = [ui] ∈ M(pi, pi+1).

Then we summarize the conclusion of the Theorem by the broken limit symbol

vn ⇉ v1# · · ·#vN

and we call v1# · · ·#vN ∈ M(p, p2)×· · ·M(pN , q) an (N -times) broken trajectory.

Cor. vn ∈ M(p, q) ⇒ ∃ subseq vn ⇉ v1# · · ·#vN with vi ∈ M(pi, pi+1)
(f(p) = f(p1) > · · · > f(pN+1) = f(q), p = p1, q = pN+1).
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1you consume energy ≥ length of interval ≥ δ > 0.
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Rmk. From now on, assume transversality holds (it does for a generic metric). So

|p| = |p1| > |p2| > · · · > |pN+1| = |q|

since M(pi, pi+1) = ∅ if 2 |pi| ≤ |pi+1| (note dimM(pi, pi+1) = |pi|−|pi+1|−1 < 0).

Repeat the Key idea 5.0 for the compactification of M(p, q):

(1) sequences un ∈ M(p, q) which do not have a convergent subsequence:
those with a subsequence ⇉ broken trajectory

(2) artificially add limit points to M(p, q):

M(p, q) = M(p, q) ∪ ∂M(p, q)

∂M(p, q) =
⋃

N≥2,|p|>|p2|>···>|q|

M(p, p2)× · · · ×M(pN , q)

(3) enlarge the topology to make them limit points:
topology of ⇉ convergence to broken trajectories

Upshot: Theorem. M(p, q) is compact.

Two problems:

• 5.3 ; every broken flowline arises as a ⇉ limit

• M(p, q) smooth mfd (with corners)?

Answer: Yes, by the gluing theorem! (next section)
We will only study once-broken trajectories, so there are no corners. But, for

example, you should think of a 2-dimensional moduli space as follows:

once broken:

twice broken:
corner of codim = 2

the boundary (so codim = 1)
(λ1, λ2) ∈ R

2

no breaking

5.5. Gluing theorem. For once broken flowlines (for simplicity):

dimW (p, q) = |p| − |q| = 2
dimM(p, q) = 1

Thm. (Assuming transversality) For all a ∈ Crit(f) with |p| − |a| = 1 = |a| − |q|,
there is a gluing map

# : W (p, a)×W (a, q)× (λ0,∞) → W (p, q)
(u,w, λ) 7→ u#λw

(1) # induces a smooth embedding on M(·, ·) spaces
(2) u#λw ⇉ u#w as λ → ∞
(3) if vn ⇉ u#w then for n ≫ 0, vn = [u#λn

w] ∈ M(p, q), for some λn → ∞

Cor. dimM(p, q) = 1 ⇒ M(p, q) smooth compact 1-mfd with bdry ∂M(p, q).

Proof. Thm ⇒ ∃ (collar nbhd of u#w) ∼=
∞λ

u#wu#λw
λ0 ⊂ R. �

2pi 6= pi+1 since f(pi) > f(pi+1).
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Sketch of Proof of Theorem3

αλ

p

q

u

w

αλ

a

Step 1. construct a smooth approximate solution of F (u) = 0:

αλ(s) =







u(s+ 2λ) for s ≤ −λ

a for s ∈ [−λ+ 1, λ− 1]
w(s − 2λ) for s ≥ λ

and we use expa(·) to interpolate this data.4

Then:

• F (αλ(s)) 6= 0 since you would need5 ∞ time s to reach the crit pt a
• (∗) F (αλ(s)) → 0 as λ → ∞ since

F (u(·+ 2λ)) = 0 = F (w(· − 2λ))
F (s 7→ a) = −∇fa = 0
F (interpolation) ≈ −∇fa = 0

Step 2. (∗) ⇒ ∃ “unique” actual solution u#λw close to αλ,

F (u#λw) = 0.

This “⇒” is proved using the contraction mapping theorem and the implicit func-
tion theorem. “Unique” is imprecise: one can construct a cts bijection αλ → u#λw.

Step 3. αλ(s) ⇉ u#w, indeed make s-shifts by −2λ and +2λ when you lift αλ.

Ideas used in Step 2. Lu = DuF , Lw = DwF , Lλ = Dαλ
F

Rmk. DuF , DwF , Lλ are Fredholm (Thm 4.146)

Technical Fact:

Lu, Lw surjective
(by transversality)

⇒











➀ Lλ surjective for λ ≫ 0
➁ ∃c > 0 s.t. for λ ≫ 0 :

‖L⋆
λV ‖1,2 ≤ c · ‖LλL

⋆
λV ‖2 ∀V ∈ W 1,2(R, α∗

λTM)

➀ One can patch7 together elements in kerLu, kerLw to obtain approximate
solutions to LλV = 0, and one proves that for λ ≫ 0 this defines an isomorphism:

kerLu ⊕ kerLw
∼
→ kerLλ

Vu ⊕ Vw 7→ (orthogonal projection) · (Vu#λVw)

where # is the patching. This we call linear gluing. It is quite simple to prove
because it just involves linear subspaces. This linear gluing map arises as the
differential of the gluing map, and this isomorphism is used to prove the embedding
property in (2).

3This would take too many Lectures to prove in detail, and the details are not enlightening.
4
Non-examinable: expa(β(−s−λ+1)·u(s+2λ)) for s ∈ [−λ,−λ+1]; expa(β(s−λ+1)·w(s−2λ))

for s ∈ [λ− 1, λ], where β : R → [0, 1] is increasing with β = 0 on s ≤ 0, β = 1 on s ≥ 1.
5Hwk 22. ex. 2
6recall the theorem only used that the path was Ck, not that F (path) = 0.
7
Non-examinable: For operators L,K which are asymptotically constant at +∞,−∞ respec-

tively, then for λ ≫ 0 we can glue L(·+2λ)#K(·−2λ) = L#λK, then kerL⊕kerK
∼
→ ker(L#λK)

is the orthog projection of the patching V#λW = V (·+2λ) +W (· − 2λ) (for fixed s this is small
for λ ≫ 0 since the solutions V,W decay to zero fast at the ends). This map is an iso for λ ≫ 0.
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By invariance of the Fredholm index under homotopying paths (indeed we know
it is the difference of the Morse indices of the ends):8

index (Lu) + index (Lw) = index (Lλ) (λ ≫ 0)

so dim cokerLλ = dim cokerLu + dim cokerLw = 0, so Lλ is surjective. X

➁ Why that inequality? For A,B Hilbert,

L : A → B Fredholm and surjective ⇒ A = K©⊥ A0
ff

R = (L|A0
)−1

xx

L∗

// B

where9 A0 = imL∗ and “R” stands for right-inverse since LR = I.

Cor. L : A → B Fred and surj ⇔ ∃ bdd right inverse and dimkerL < ∞

Lemma. ‖L∗b‖ ≤ c · ‖LL∗b‖ ∀b ⇔ ‖Rb‖ ≤ c · ‖b‖ ∀b

Proof. Both are equivalent to: ‖a‖ ≤ c · ‖La‖ ∀a ∈ A0. �

Upshot: Combining inequality ➁ with the Lemma:10

⇒ Lλ have uniformly bounded right inverses.
Hwk 19
⇒ ∃ unique actual solution expαλ

(L⋆
λV ) (some unique V ∈ W 1,2) and all

nearby actual solutions are of form expαλ
(k ⊕ g(k)) where k ∈ K is

small and g : K → A0 is a smooth implicit function, g(0) = expαλ
(L⋆

λV ).

So we define u#λw = expαλ
(L⋆

λV )

Rmk. The key is that L∗ provides a way to obtain uniqueness. L⋆
λV is constrained

to be inside A0, whereas if you allow vectors in the whole of A, such as k ⊕ g(k),
then you no longer get uniqueness.11 This is crucial also in Hwk 19: the contraction
mapping principle (Picard’s method) is applied to A0, not the whole of A.

Hwk 19: Picard’s method.
For F : A → B a C1-map of Hilbert spaces, by Taylor:

F (x) = c+ L · x+N(x)

where c = F (0), L = d0F linear, N non-linear. Assume L Fred & surj, so as above:

L : K ⊕A0 → B R : B → A0 LR = I.

Assume the following two estimates hold:

(1) ‖Rc‖ ≤ ε
2

(2) ‖RN(x)−RN(y)‖ ≤ C · (‖x‖+ ‖y‖) · ‖x− y‖ for all x, y ∈ ballε(0), ε ≤
1
3C .

then

• by the contraction mapping theorem for P : A0 → B, P (x) = −Rc−RN(x),
there is a unique a0 ∈ A0 ∩ ballε(0) with F (a0) = 0.

8or use formal adjoints to get isos of cokernels like for linear gluing of kernels.
9(imL∗)⊥ = kerL = K, and A0 is closed since it is the complement of a finite dim’l subspace.
10which works in our setup for the formal adjoint L⋆

λ
instead of L∗

λ
.

11Unsurprisingly, since when the Morse index difference is large, there is a large dimensional
family of actual solutions, so the actual solution u#λv is not isolated. Indeed, the family is
parametrized by K via expαλ

(k ⊕ g(k)).
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• by the implicit function theorem at a0, there is a C1-map g : K → A0 such
that F (k ⊕ g(k)) = 0 for small k ∈ K (with 0⊕ g(0) = a0).

Application: We apply Picard’s method to F = local expression of the vertical
part of our section F = ∂s +∇f : U → E in a chart around αλ ∈ U (so αλ is 0 in
the chart). So

F : W 1,2(R, α∗
λTM) → L2(R, α∗

λTM),
c = F (0) = F(αλ),
L = d0F = Dαλ

F = Lλ.

Thus g defines a parametrization of all the actual solutions F(u#λ(k)w) = 0 close
to the approximate solution F(αλ) ≈ 0, where λ(0) = λ.


