LECTURE 19.

PART III, MORSE HOMOLOGY, 2011

HTTP://MORSEHOMOLOGY.WIKISPACES.COM

6. Morse Homology

6.1. **Definition.** M closed mfd, $f: M \to \mathbb{R}$ Morse, g generic metric (\Rightarrow transversality). The Morse(-Smale-Witten) complex is the $\mathbb{Z}/2$ -vector space generated by the

critical points of f:

$$MC_k = \bigoplus_{p \in Crit(f), |p|=k} \mathbb{Z}/2 \cdot p$$

where $k \in \mathbb{Z}$ is the \mathbb{Z} -grading by the Morse index.

The Morse differential $\partial: MC_k \to MC_{k-1}$ is defined on generators p by

$$\partial p = \sum_{\dim \mathcal{M}(p,q)=0, \ p \neq q} \# \mathcal{M}(p,q) \cdot q$$

and extend ∂ linearly to MC_* . Note $\dim \mathcal{M}(p,q)=0$ is equivalent to |q|=|p|-1.

Rmk. The sum is well-defined because $\mathcal{M}(p,q)$ is a 0-dimensional compact manifold, hence finite, so can count² the number of elements $\#\mathcal{M}(p,q)$. Proof: It is a smooth manifold by transversality, and it is compact by the following argument:³

$$\dim \mathcal{M}(p,q) = 0 \quad \Rightarrow \quad \dim \partial \mathcal{M}(p,q) < 0$$

$$\Rightarrow \quad \partial \mathcal{M}(p,q) = \emptyset$$

$$\Rightarrow \quad \mathcal{M}(p,q) = \overline{\mathcal{M}}(p,q) \text{ compact 0-dim mfd } \checkmark$$

Thm. $\partial^2 = 0$.

Proof. |p| = k. Compute:

$$\begin{array}{lcl} \partial^{2} p & = & \partial \sum_{|a|=k-1} \# \mathcal{M}(p,a) \cdot a \\ \\ & = & \sum_{|a|=k-1} \sum_{|q|=k-2} \# \mathcal{M}(p,a) \cdot \# \mathcal{M}(a,q) \cdot q \\ \\ & = & \sum_{|a|=k-1, \, |q|=k-2} \# (\mathcal{M}(p,a) \times \mathcal{M}(a,q)) \cdot q \\ \\ & = & \sum_{|a|=k-1, \, |q|=k-2} \# \partial \mathcal{M}(p,q) \cdot q \end{array}$$

Date: May 3, 2011, © Alexander F. Ritter, Trinity College, Cambridge University.

¹Cultural Remark: In more general situations, $\mathcal{M}(p,q)$ may have components of different dimensions, and you only count the $u \in \mathcal{M}(p,q)$ in the 0-dimensional part $\mathcal{M}_0(p,q)$.

²Non-examinable: To work over \mathbb{Z} instead of $\mathbb{Z}/2$ you must count the elements of $\mathcal{M}(p,q)$ with orientation signs ± 1 . Orientations of moduli spaces are an unpleasant technical detail which we decided to omit from this course (compare with sign headaches in singular homology arguments).

³Exercise. Can you think of a simple argument which only involves using tranversality, the compactness thm and dimension arguments, but which does not use the gluing theorem?

Finally observe:

$$\dim \mathcal{M}(p,q) = |p| - |q| - 1 = k - (k-2) - 1 = 1$$

$$\Rightarrow \overline{\mathcal{M}}(p,q) \text{ compact 1-mfd with boundary}$$

$$\Rightarrow \overline{\mathcal{M}}(p,q) \text{ is a disjoint union of finitely many circles and closed intervals}$$

$$\Rightarrow \#\partial \mathcal{M}(p,q) \text{ even, so 0 modulo 2}$$

$$\Rightarrow \partial^2 p = 0$$

$$\Rightarrow \partial^2 = 0 \text{ by linearity.} \quad \square$$

Def.
$$MH_*(M, f, g) = \frac{\ker \partial}{\operatorname{im} \partial}$$
 is the Morse homology of (M, f, g) .

Rmk. If you are given a metric g, then a priori you need to perturb g unless you know/check that transversality holds (see Hwk 1). Key Trick: perturbing g does not affect Crit(f) and indices, this often helps.⁴

Examples (all homologies are over $\mathbb{Z}/2$):

(1)
$$p, 1$$
 grading $p, 1$ \mathbb{R} $\partial p = q + q = 0$ $MH_* = \mathbb{Z}/2 \oplus \mathbb{Z}/2 \cong H_*(S^1)$ $* = 0$ 1 \leftarrow grading p, m ∂P ∂

(2)
$$\begin{array}{cccc}
& f \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

(3) **Thm.** $MH_*(M, f, g) \cong H_*(M)$. *Proof.* Next time we will prove *invariance*:

$$MH_*(M, f_1, g_1) \cong MH_*(M, f_2, g_2).$$

So

$$\begin{array}{rcl} MH_*(f) & \cong & MH_*(\text{self-indexing Morse function}) \\ & \cong & H_*^{\text{cellular}}(M) \quad (3.10 \ \& \ \text{Hwk } 19) \\ & \cong & H_*(M). \end{array}$$

(4) M compact mfd with boundary:

Ensure
$$f|_{\partial M} = \text{constant min} < f|_{\text{interior}}$$

 $(\Rightarrow \nabla f \pitchfork \partial M \Rightarrow \text{no crit pts on } \partial M)$
 $\Rightarrow \mathcal{M}(p,q)$ stay away from ∂M (f decreases along flowlines)
 $\Rightarrow MH_* = \frac{\ker \partial}{\operatorname{im} \partial} \cong H_*(M, \partial M)$ (proved like in (3))

Example: $M = D^m$ disc.

$$D^{m} \xrightarrow{f} \underbrace{\frac{f}{\text{height}}} \uparrow^{\mathbb{R}} MH_{*} = \frac{\mathbb{Z}/2 \cdot p \text{ (in degree } m)}{\cong H_{*}(D^{m}, \partial D^{m})}$$

$$(\text{have } H_{0} = 0)$$

⁴Key example: if all indices are even then, after perturbing, the 0-dimensional moduli spaces are empty for index reasons. So there is no differential. So $MH_* = MC_*$, which you know.

$$D^{m} \xrightarrow{q,0} \xrightarrow{f} \stackrel{\mathbb{R}}{\text{height}} \stackrel{\mathbb{R}}{\uparrow} MH_{*} = \mathbb{Z}/2 \cdot q \text{ (in degree 0)}$$

$$\cong H_{*}(D^{m}) \text{ (compare Handle attaching)}$$

But both are useless for LES of pair $(M, \partial M)$: cannot recover $MH_*(\partial M)$. Instead of making $\nabla f \cap \partial M$ we will now try ∇f tangent to ∂M .

6.2. Morse homology for mfds with bdry. [Non-examinable]

Assume ∇f is tangent to ∂M (that is: $\nabla f \in T(\partial M)$). This ensures that the flow of a point in ∂M stays in ∂M and $f|_{\partial M}$ is Morse, so hope to recover $MH_*(\partial M)$.

 \exists Similar statements for W^s reversing the roles of +, -(Proof: switch sign of <math>f).

$$\Rightarrow \boxed{MC_* = MC_*^0 \oplus MC_*^- \oplus MC_*^+}$$

respectively generated by $p \in \text{int } M, a^-$'s, b^+ 's.

Bad case:⁵

$$\begin{array}{ll} a^-,b^+ & \Rightarrow & W^u(a) \subset \partial M, \ W^s(b) \subset \partial M \\ & \Rightarrow & \text{cannot hope} \ W^u(a) \pitchfork W^s(b) \ \text{in} \ M \\ & \Rightarrow & \text{require} \ \pitchfork \ \text{just in} \ \partial M. \end{array}$$

Therefore:

$$\dim \mathcal{M}(a^-, b^+) = |a| - |b|$$
 bad case $\dim \mathcal{M}(p, q) = |p| - |q| - 1$ otherwise (as usual)

Getting $MH_*(\partial M)$:

$$p, q \in \partial M \Rightarrow B(p, q) = \{[u] \in \mathcal{M}(p, q) : u \subset \partial M\} = \mathcal{M}(p, q, f|_{\partial M})$$

$$p \in \partial M \Rightarrow \operatorname{index}_{f|_{\partial M}}(p) = \begin{cases} |p| & \text{if } p^-\\ |p| - 1 & \text{if } p^+ \end{cases}$$
Therefore $MC_k(\partial M, f|_{\partial M}) = MC_k^- \oplus MC_{k+1}^+$, with differential

$$Bp = \sum_{\dim B(p,q)=0, \ p \neq q} \#B(p,q) \cdot q$$

whose homology recovers $MH_*(\partial M)$.

Getting $MH_*(M, \partial M)$:

There are 2 new bad phenomena:

 $^{^5\}mathrm{We}$ are tweaking the definition of Morse-Smale to suit the situation.

 \odot \exists flow lines between same index bdry pts! (Bad case)

2 Gluing fails for this twice broken trajectory!

Upshot: $\partial^2 \neq 0$

The argument in 6.1 for $\partial^2 = 0$ will yield:

$$\sum_{r \in \text{int } M} \# \mathcal{M}(p,r) \cdot \# \mathcal{M}(r,q) + \sum_{|a^-| = |b^+| = k-1} \# \mathcal{M}(p,a) \cdot \# B(a,b) \cdot \# \mathcal{M}(b,q) = 0 \pmod{2} \quad (*)$$

where $p, q \in \text{int } M$, |p| = k, |q| = k - 2.

Miracle: ① essentially fixes ②. The two problems suggest that one should not keep both MC^+ and MC^- , one should use only one of the two. Try keeping

$$MC^0_* \oplus MC^+_*$$

 $\boxed{MC_*^0\oplus MC_*^+}$ Notation: $^6B:MC_k^-\oplus MC_{k+1}^+\to MC_{k-1}^-\oplus MC_k^+,$

$$B = \left[\begin{array}{cc} B_{-}^{-} & B_{-}^{+} \\ B_{+}^{-} & B_{+}^{+} \end{array} \right]$$

Similar notation for ∂ . Then (*) can be rewritten as:

$$\partial_0^0 \partial_0^0 + \partial_0^+ B_+^- \partial_-^0 = 0$$

Define a differential d by combining ∂ with B's, so that a once-broken trajectory breaking at an a^- point is considered as if it were just one flowline.⁷

$$d = \begin{bmatrix} \partial_0^0 & \partial_0^+ \\ B_-^- \partial_-^0 & B_+^+ + B_+^- \partial_-^+ \end{bmatrix} : MC_k^0 \oplus MC_k^+ \to MC_{k-1}^0 \oplus MC_{k-1}^+$$

$$\Rightarrow d^2 = \begin{bmatrix} \partial_0^0 \partial_0^0 + \partial_0^+ B_+^- \partial_-^0 & \bullet \\ \bullet & \bullet \end{bmatrix}$$

By (*), the first entry is 0. Similar arguments show the other entries are zero. So

$$\Rightarrow d^2 = 0$$

Example

Thm.
$$H_*(d) \cong H_*(M, \partial M)$$

⁶The top index is "from", the bottom index is "to", so B_{-}^{+} goes from MC^{+} to MC^{-} .

⁷This is to fix the two problems by pretending that ① is a once-broken trajectory, and that the first breaking in ② is not a breaking.

Proof Sketch. First you show that MH_* changes by an iso if you change f. Then you construct your favourite f by the methods of Hwk 7: one for which

$$df$$
(outward normal) ≤ 0

near ∂M (so all critical $a \in \partial M$ are of type a^- , and no trajectory from the interior will get arbitrarily close to ∂M unless it ends there). The claim then follows by examples (3) & (4).

If you instead try just keeping

$$MC^0_* \oplus MC^-_*$$

then the appropriate differential is

$$\delta = \begin{bmatrix} \partial_0^0 & \partial_0^+ B_+^- \\ \partial_-^0 & B_-^- + \partial_-^+ B_+^- \end{bmatrix}$$

In the above Example, $H_*(\delta)$ is generated by a in degree |a| = 0.

Thm.
$$H_*(\delta) \cong H_*(M)$$

Proof idea. Make all critical $b \in \partial M$ to be of type b^+ . \square

Def. The homologies of B, d, δ (also denoted $\overline{\partial}, \hat{\partial}, \check{\partial}$) are called:

$$\overline{MH} \cong H_*(\partial M)$$
 "MH bar"
 $\widehat{MH} \cong H_*(M, \partial M)$ "MH from"
 $\widetilde{MH} \cong H_*(M)$ "MH to"

The hat tells you the movement of flowlines: from/to the boundary ∂M .

Thm. LES of pair $(M, \partial M)$

$$\cdots \to \overline{MH}_* \to \widetilde{MH}_* \to \widehat{MH}_* \to \widehat{MH}_{*-1} \to \cdots$$

at the chain level, the maps are:

$$\cdots \to MC^- \oplus MC^+ \to MC^0 \oplus MC^- \to MC^0 \oplus MC^+ \to MC^- \oplus MC^+ \to \cdots$$

$$\begin{bmatrix} 0 & \partial_0^+ \\ I & \partial_-^+ \end{bmatrix} \quad \begin{bmatrix} I & 0 \\ 0 & B_+^- \end{bmatrix} \quad \begin{bmatrix} \partial_-^0 & \partial_-^+ \\ 0 & I \end{bmatrix}$$

An excellent reference for further details is the CUP book *Monopoles and Three-Manifolds* by Kronheimer & Mrowka.