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6. Morse Homology

6.1. Definition. M closed mfd, f : M → RMorse, g generic metric (⇒transversality).
The Morse(-Smale-Witten) complex is the Z/2-vector space generated by the

critical points of f :

MCk =
⊕

p∈Crit(f), |p|=k

Z/2 · p

where k ∈ Z is the Z-grading by the Morse index.
The Morse differential ∂ : MCk →MCk−1 is defined on generators p by

∂p =
∑

dimM(p,q)=0, p6=q

#M(p, q) · q

and extend ∂ linearly to MC∗. Note
1 dimM(p, q) = 0 is equivalent to |q| = |p|− 1.

Rmk. The sum is well-defined because M(p, q) is a 0-dimensional compact mani-
fold, hence finite, so can count2 the number of elements #M(p, q). Proof: It is a
smooth manifold by transversality, and it is compact by the following argument:3

dimM(p, q) = 0 ⇒ dim ∂M(p, q) < 0
⇒ ∂M(p, q) = ∅
⇒ M(p, q) =M(p, q) compact 0-dim mfd X

Thm. ∂2 = 0.

Proof. |p| = k. Compute:

∂2p = ∂
∑

|a|=k−1

#M(p, a) · a

=
∑

|a|=k−1

∑

|q|=k−2

#M(p, a) ·#M(a, q) · q

=
∑

|a|=k−1, |q|=k−2

#(M(p, a)×M(a, q)) · q

=
∑

|a|=k−1, |q|=k−2

#∂M(p, q) · q

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1
Cultural Remark: In more general situations, M(p, q) may have components of different

dimensions, and you only count the u ∈ M(p, q) in the 0-dimensional part M0(p, q).
2
Non-examinable: To work over Z instead of Z/2 you must count the elements of M(p, q) with

orientation signs ±1. Orientations of moduli spaces are an unpleasant technical detail which we
decided to omit from this course (compare with sign headaches in singular homology arguments).

3Exercise. Can you think of a simple argument which only involves using tranversality, the
compactness thm and dimension arguments, but which does not use the gluing theorem?
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Finally observe:

dimM(p, q) = |p| − |q| − 1 = k − (k − 2)− 1 = 1
⇒M(p, q) compact 1-mfd with boundary
⇒M(p, q) is a disjoint union of finitely many circles and closed intervals
⇒ #∂M(p, q) even, so 0 modulo 2
⇒ ∂2p = 0
⇒ ∂2 = 0 by linearity. �

Def. MH∗(M, f, g) =
ker ∂

im ∂
is the Morse homology of (M, f, g).

Rmk. If you are given a metric g, then a priori you need to perturb g unless you
know/check that transversality holds (see Hwk 1). Key Trick: perturbing g does not
affect Crit(f) and indices, this often helps.4

Examples (all homologies are over Z/2):

(1)
R

q, 0

p, 1

f

height

grading

∂p = q + q = 0
MH∗ = Z/2 ⊕ Z/2 ∼= H∗(S

1)
∗ = 0 1 ← grading

(2)

R

q, 0

f

height

p,m
∂ = 0 as the indices are ≥ 2 apart (see Rmk)
MH∗ = Z/2 ⊕ Z/2 ∼= H∗(S

m)
∗ = 0 m ← grading

(3) Thm. MH∗(M, f, g) ∼= H∗(M).
Proof. Next time we will prove invariance:

MH∗(M, f1, g1) ∼= MH∗(M, f2, g2).

So

MH∗(f) ∼= MH∗(self-indexing Morse function)
∼= Hcellular

∗ (M) (3.10 & Hwk 19)
∼= H∗(M).

(4) M compact mfd with boundary:

Ensure f |∂M = constant min < f |interior
(⇒ ∇f ⋔ ∂M ⇒ no crit pts on ∂M)

⇒M(p, q) stay away from ∂M (f decreases along flowlines)

⇒MH∗ =
ker ∂

im ∂
∼= H∗(M,∂M) (proved like in (3))

Example: M = Dm disc.
p,m R

f

height

f |∂M = min

Dm

MH∗ = Z/2 · p (in degree m)
∼= H∗(D

m, ∂Dm)
(have H0 = 0)

4Key example: if all indices are even then, after perturbing, the 0-dimensional moduli spaces
are empty for index reasons. So there is no differential. So MH∗ = MC∗, which you know.
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R

f

height

Dm

f |∂M = max

q, 0

MH∗ = Z/2 · q (in degree 0)
∼= H∗(D

m)
(compare Handle attaching)

But both are useless for LES of pair (M,∂M): cannot recover MH∗(∂M).
Instead of making ∇f ⋔ ∂M we will now try ∇f tangent to ∂M .

6.2. Morse homology for mfds with bdry. [Non-examinable]

Assume ∇f is tangent to ∂M (that is: ∇f ∈ T (∂M)). This ensures that the flow

of a point in ∂M stays in ∂M and f |∂M is Morse, so hope to recover MH∗(∂M).

b
+

a
−

Write a = a− if df(outward normal) < 0 at a

⇒ Wu(a) ⊂ ∂M (exercise)

Write b = b+ if df(outward normal) > 0 at b

⇒ Wu(b) intersects interior, ∂Wu(b) = Wu(b) ∩ ∂M

∃ Similar statements for W s reversing the roles of +,− (Proof : switch sign of f).

⇒ MC∗ = MC0
∗ ⊕MC−

∗ ⊕MC+
∗

respectively generated by p ∈ intM , a−’s, b+’s.

Bad case:5

a−, b+ ⇒ Wu(a) ⊂ ∂M, W s(b) ⊂ ∂M
⇒ cannot hope Wu(a) ⋔ W s(b) in M
⇒ require ⋔ just in ∂M.

Therefore:

dimM(a−, b+) = |a| − |b| bad case
dimM(p, q) = |p| − |q| − 1 otherwise (as usual)

Getting MH∗(∂M):

p, q ∈ ∂M ⇒ B(p, q) = {[u] ∈M(p, q) : u ⊂ ∂M} =M(p, q, f |∂M )

p ∈ ∂M ⇒ indexf |∂M
(p) =

{

|p| if p−

|p| − 1 if p+

Therefore MCk(∂M, f |∂M ) = MC−
k ⊕MC+

k+1, with differential

Bp =
∑

dimB(p,q)=0, p6=q

#B(p, q) · q

whose homology recovers MH∗(∂M).

Getting MH∗(M,∂M):
There are 2 new bad phenomena:

5We are tweaking the definition of Morse-Smale to suit the situation.
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b+, k − 1

a−, k − 11-family
inM(p, q)
breaking
twice

M ∂Mq, k − 2

p, k

➀ ∃ flowlines between same
index bdry pts! (Bad case)

b+, k − 1

p, k

a−, k − 1cannot
converge
to b since
W s(b+) ⊂ ∂M

∂MM

➁ Gluing fails for this twice
broken trajectory!

Upshot: ∂2 6= 0

The argument in 6.1 for ∂2 = 0 will yield:
∑

r∈intM

#M(p, r)·#M(r, q)+
∑

|a−|=|b+|=k−1

#M(p, a)·#B(a, b)·#M(b, q) = 0 (mod 2) (∗)

where p, q ∈ intM , |p| = k, |q| = k − 2.

Miracle: ➀ essentially fixes ➁. The two problems suggest that one should not keep
both MC+ and MC−, one should use only one of the two. Try keeping

MC0
∗ ⊕MC+

∗

Notation:6 B : MC−
k ⊕MC+

k+1 →MC−
k−1 ⊕MC+

k ,

B =

[

B−
− B+

−

B−
+ B+

+

]

Similar notation for ∂. Then (∗) can be rewritten as:

∂0
0∂

0
0 + ∂+

0 B−
+∂0

− = 0

Define a differential d by combining ∂ with B’s, so that a once-broken trajectory
breaking at an a− point is considered as if it were just one flowline.7

d =

[

∂0
0 ∂+

0

B−
+∂0

− B+
+ +B−

+∂+
−

]

: MC0
k ⊕MC+

k →MC0
k−1 ⊕MC+

k−1

⇒ d2 =

[

∂0
0∂

0
0 + ∂+

0 B−
+∂0

− •
• •

]

By (∗), the first entry is 0. Similar arguments show the other entries are zero. So

⇒ d2 = 0

Example

b+

a−

MC0
∗ = 0

MC+
∗ = Z/2 · b in degree 2

⇒ H∗(d) = Z/2 · b ∼= H∗(D
2, ∂D2)

Thm. H∗(d) ∼= H∗(M,∂M)

6The top index is “from”, the bottom index is “to”, so B+
−

goes from MC+ to MC−.
7This is to fix the two problems by pretending that ➀ is a once-broken trajectory, and that

the first breaking in ➁ is not a breaking.
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Proof Sketch. First you show that MH∗ changes by an iso if you change f . Then
you construct your favourite f by the methods of Hwk 7: one for which

df(outward normal) ≤ 0

near ∂M (so all critical a ∈ ∂M are of type a−, and no trajectory from the interior
will get arbitrarily close to ∂M unless it ends there). The claim then follows by
examples (3) & (4). �

If you instead try just keeping

MC0
∗ ⊕MC−

∗

then the appropriate differential is

δ =

[

∂0
0 ∂+

0 B−
+

∂0
− B−

− + ∂+
−B−

+

]

In the above Example, H∗(δ) is generated by a in degree |a| = 0.

Thm. H∗(δ) ∼= H∗(M)

Proof idea. Make all critical b ∈ ∂M to be of type b+. �

Def. The homologies of B, d, δ (also denoted ∂, ∂̂, ∂̌) are called:

MH ∼= H∗(∂M) “MH bar”

MH “MH from”

MH “MH to”

∼= H∗(M,∂M)

∼= H∗(M)

The hat tells you the movement of flowlines: from/to the boundary ∂M .

Thm. LES of pair (M,∂M)

MH∗ → · · ·MH∗ MH∗ MH∗−1→· · · → → →

at the chain level, the maps are:

· · · →MC− ⊕MC+ →MC0 ⊕MC− →MC0 ⊕MC+ →MC− ⊕MC+ → · · ·
[

0 ∂+
0

I ∂+
−

] [

I 0
0 B−

+

] [

∂0
− ∂+

−

0 I

]

An excellent reference for further details is the CUP book Monopoles and Three-
Manifolds by Kronheimer & Mrowka.


