Symplectic cohomology via circle-actions, and

 generation results for Fukaya categories.The cohomological McKay correspondence via Floer theory.

Alexander F. Ritter
Mathematical Institute, Oxford

Winter School on Mirror Symmetry
Center for Quantum Structures in Modules and Spaces (QSMS) Seoul National University, 23 \& 24 February 2021.

The big picture

Symplectic manifolds are locally $\left(\mathbb{C}^{n}, \omega_{0}\right)$, so we seek global invariants.

	M closed	M open or closed with ∂M
"closed strings"	$H F^{*}(H) \cong Q H^{*}(M)$ Floer $/$ Quantum cohomology	$S H^{*}(M)$ Symplectic cohomology
"open strings"	$H F^{*}\left(L_{1}, L_{2}\right)$	$H W^{*}\left(L_{1}, L_{2}\right)$
Lagrangian Floer cohomology	Wrapped Floer cohomology	

The big picture

Symplectic manifolds are locally $\left(\mathbb{C}^{n}, \omega_{0}\right)$, so we seek global invariants.
\(\left.\begin{array}{|l|c|c|}\hline \& M closed \& M open or closed with \partial M

\hline "closed strings" \& H F^{*}(H) \cong Q H^{*}(M) \& S H^{*}(M)

Floer / Quantum cohomology\end{array}\right]\)| Symplectic cohomology |
| :---: |
| "open strings" |
| $H F^{*}\left(L_{1}, L_{2}\right)$ |
| Lagrangian Floer cohomology | | $H W^{*}\left(L_{1}, L_{2}\right)$ |
| :---: |
| Wrapped Floer cohomology |

Lots of algebraic structure: $\operatorname{HF}^{*}\left(L_{1}, L_{2}\right)$ are $Q H^{*}(M)$-modules. Fukaya category $\mathcal{F}(M)$: package all Lagrangians $L \subset M$ up into A_{∞}-category, $\operatorname{Mor}\left(L_{1}, L_{2}\right)=$ chain complex underlying $H F^{*}\left(L_{1}, L_{2}\right)$. Wrapped Fukaya category $\mathcal{W}(M)$: allow non-compact L, use $H W^{*}$. Homological Mirror symmetry (Kontsevich '94): Often have mirror pairs (X, J) complex variety and (M, ω) symplectic manifold:

Category of Coherent Sheaves on X
 Fukaya category
 $\mathcal{F}(M)$ of M

Loosely, relate Lagrangians $L \subset M$ to holo vector bundles $V \rightarrow X$.
Closed-open string map: $Q H^{*}(M) \rightarrow \operatorname{HH}^{*}(\mathcal{F}(M)) \cong H^{*}\left(D^{b} \operatorname{Coh}(X)\right)$, and $S H^{*}(M) \rightarrow \mathrm{HH}^{*}(\mathcal{W}(M)) \cong \mathrm{HH}^{*}\left(D^{b} \operatorname{Coh}(X)\right)$. Sometimes isos.

The big picture in a little picture

Example 1: $\quad X=\mathbb{C}^{*} \quad$ and $\quad M=T^{*} S^{1}$
$D^{b} \operatorname{Coh}(X)$ generated by structure sheaf $\mathcal{O}, \operatorname{Mor}(\mathcal{O}, \mathcal{O})=\mathbb{K}[X]=\mathbb{K}\left[x, x^{-1}\right]$. $D^{\pi} \mathcal{F}(M)$ gen. by $L=0$-section $\quad D^{\pi} \mathcal{W}(M)$ gen. by $L=$ fiber $\subset T^{*} S^{1}$ $\operatorname{Mor}(L, L)=\mathbb{K} \oplus \mathbb{K} \simeq C_{1-*}\left(S^{1}\right) \quad \operatorname{Mor}(L, L)=\mathbb{K}\left[x, x^{-1}\right] \simeq C_{1-*}\left(\Omega S^{1}\right)$

$Q H^{*}(M) \cong H^{*}(M) \cong \mathbb{K} \oplus \mathbb{K}$
flow L a lot

$S H^{*}(M) \cong H_{1-*}\left(\mathcal{L} S^{1}\right) \cong \mathbb{K}\left[x, x^{-1}\right] \otimes H^{*}\left(S^{1}\right)$

The big picture in a little picture

Example 1: $\quad X=\mathbb{C}^{*} \quad$ and $\quad M=T^{*} S^{1}$
$D^{b} \operatorname{Coh}(X)$ generated by structure sheaf $\mathcal{O}, \operatorname{Mor}(\mathcal{O}, \mathcal{O})=\mathbb{K}[X]=\mathbb{K}\left[x, x^{-1}\right]$.
$D^{\pi} \mathcal{F}(M)$ gen. by $L=0$-section $\quad D^{\pi} \mathcal{W}(M)$ gen. by $L=$ fiber $\subset T^{*} S^{1}$
$\operatorname{Mor}(L, L)=\mathbb{K} \oplus \mathbb{K} \simeq C_{1-*}\left(S^{1}\right)$
$\operatorname{Mor}(L, L)=\mathbb{K}\left[x, x^{-1}\right] \simeq C_{1-*}\left(\Omega S^{1}\right)$

flow L a lot

$Q H^{*}(M) \cong H^{*}(M) \cong \mathbb{K} \oplus \mathbb{K}$
$S H^{*}(M) \cong H_{1-*}\left(\mathcal{L S} S^{1}\right) \cong \mathbb{K}\left[x, x^{-1}\right] \otimes H^{*}\left(S^{1}\right)$
Example 2: $\quad X=\mathbb{C P}^{2} \quad$ and $\quad M=$ Landau-Ginzburg model $\left(\left(\mathbb{C}^{*}\right)^{2}, W\right)$ $D^{b} \operatorname{Coh}(X)$ generated by 3 vector bundles $\mathcal{O}, \mathcal{O}(-1), \mathcal{O}(-2)$

Moment polytope of $\mathbb{C P}^{2}$
$e_{0}=(1,0)$

$$
e_{2}=(-1,-1)
$$

$W=z_{1}+z_{2}+z_{1}^{-1} z_{2}^{-1}:\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{C}$ $\mathcal{F}(M, W)=$ "Fukaya-Seidel category" $D^{b}(\mathcal{F}(M, W))$ generated by 3 objects $L=S^{1} \times S^{1}$ with 3 "holonomies" $\in H^{1}(L ; \mathbb{C})$
$\leftrightarrow 3$ Critical points of W.
$M=\mathbb{C P}^{2}: " D^{\pi}(\mathcal{F}(M)) \cong H^{0}(\mathcal{M F}(W)) ", \mathcal{M F}(W)=$ Cat. Matrix Factorizations. Actually pieces $\mathcal{F}_{\lambda}(M), \mathcal{M} \mathcal{F}(W-\lambda): Q H^{*}(M)=\mathbb{K}[x] /\left(x^{3}-\lambda^{3}\right) \cong \mathbb{K} \oplus \mathbb{K} \oplus \mathbb{K}$.
For non-compact M, expect $D^{\pi}(\mathcal{F}(M)) \cong D^{b} \operatorname{Perf}(X)$ for singular variety X.

Floer, Quantum and Symplectic Cohomology

Floer, Quantum and Symplectic Cohomology

M non-compact: $Q H^{*}(M) \cong H F^{*}\left(H_{\text {small }}\right) \rightarrow S H^{*}(M)=\underset{\longrightarrow}{\lim H F^{*}(H) \text { ring hom }\left(\mathrm{R} .{ }^{\prime} 12\right) ~}$
$(M \backslash\{$ compact $\}, \omega) \cong(\Sigma \times(1, \infty), d(R \alpha))$ for contact $\operatorname{mfd}(\Sigma, \alpha) ; H$ linear in R at ∞

Examples

- $S H^{*}\left(\mathbb{C}^{n}\right)=0$. Also (Cieliebak 2002): $S H^{*}($ subcrit. Stein mfd $)=0$
- $\widetilde{\mathbb{C}^{n}}=\mathbb{C}^{n}$ blown up at 0, (R. 2013):
$S H^{*}\left(\widetilde{\mathbb{C}^{n}}\right)=Q H^{*}\left(\widetilde{\mathbb{C}^{n}}\right) /($ generalised 0 -espace of $\omega) \cong \mathbb{K}[\omega] /\left(\omega^{n}+t\right)$
$\mathbb{K}=$ formal Laurent series in t over a field.
- In the Fano regime $1 \leq k \leq m$, (R. 2013):

$$
\begin{array}{rllll}
S H^{*}\left(\mathcal{O}_{\mathbb{P}^{m}}(-k)\right) & \cong \mathbb{K}[\omega] /\left(\begin{array}{cccl}
\omega^{1+m-k} & - & t(-k)^{k} &) \\
Q H^{*}\left(\mathcal{O}_{\mathbb{P}^{m}}(-k)\right) & \cong \mathbb{K}[\omega] /\left(\begin{array}{cc}
1+m & - \\
\omega^{1+m} & t(-k)^{k} \omega^{k}
\end{array}\right) \\
\text { compare: } Q H^{*}\left(\mathbb{P}^{m}\right) & \cong \mathbb{K}[\omega] /\left(\begin{array}{ccc}
\omega^{1+m} & - & t
\end{array}\right)
\end{array} . \begin{array}{ll}
&
\end{array}\right)
\end{array}
$$

- $S H^{*}\left(T^{*} N\right) \cong H_{n-*}(\mathcal{L N}) \quad$ (Viterbo 1996)
(also: Abbondandolo-Schwarz 2004, Salamon-Weber 2003)
- $\pi: E \rightarrow B$ negative vector bundle over sympl.mfd., (R. 2013):
$S H^{*}(E) \cong Q H^{*}(E)_{[B]} \cong$
$Q H^{*}(E) /$ (generalised 0-eigensummand of $\pi^{*} c_{\text {top }}(E)$)
- M compact toric Fano: $\operatorname{Jac}(W) \cong Q H^{*}(M)$ (Batyrev 93/Givental 96) (R. 2015): For "many" non-compact Fano toric varieties: $\operatorname{Jac}(W) \cong S H^{*}(M) \cong Q H^{*}(M)_{\mathrm{PD}\left[D_{1}\right], \ldots, \operatorname{PD}\left[D_{r}\right]} \operatorname{not} Q H^{*}(M)!$

Fukaya and Wrapped Fukaya categories $\mathcal{F}(M), \mathcal{W}(M)$

(M, ω) Symplectic Manifold $\quad L_{j} \subset M$ Lagrangian submanifolds $\left(\left.\omega\right|_{L}=0\right.$, locally $\left.L=\mathbb{R}^{n} \subset \mathbb{C}^{n}=M\right)$

Fukaya and Wrapped Fukaya categories $\mathcal{F}(M), \mathcal{W}(M)$

M non-cpt \Rightarrow Wrapped cat. $\mathcal{W}(M)$ allow non-cpt Lags. Morphs: " $\underset{\longrightarrow}{\lim " C F^{*}}\left(\varphi_{H}^{1}\left(L_{0}\right), L_{1}\right)$ (M exact (Fukaya-Seidel-Smith 2007 / Abouzaid 2010), M Fano (R./Smith 2012))

The open-closed and closed-open string maps $\mathcal{O C}, \mathcal{C O}$

$\mathcal{O C}: \mathrm{HH}_{*}(\mathcal{F}(M)) \rightarrow Q H^{*}(M)$
(String maps appeared in Seidel's ICM talk '02)

Here $\mathcal{O C}_{4}$ on Hochschild Homology bar complex, $C F^{*}\left(L_{4}, L_{0}\right) \otimes C F^{*}\left(L_{3}, L_{4}\right) \otimes \ldots \otimes C F^{*}\left(L_{0}, L_{1}\right) \rightarrow Q H^{*}(M)$
(0-part $\mathcal{O C}_{0}: H F^{*}(L, L) \rightarrow Q H^{*}(M)$ is: $\mathcal{O C} 0$ by Albers '05, Biran-Cornea '08)

$\mathcal{O C}: \mathrm{HH}_{*}(\mathcal{W}(M)) \rightarrow S H^{*}(M) \quad$ In particular, $\mathcal{O C}_{0}: H W^{*}(L, L) \rightarrow S H^{*}(M)$

(Abouzaid 2010 in exact case)
(R. \& Smith 2012-17 in monotone case)
"Dually" $\mathcal{C O}: Q H^{*}(M) \rightarrow H H^{*}(\mathcal{F}(M))$ and $S H^{*}(M) \rightarrow H H^{*}(\mathcal{W}(M))$. e.g. counts of the picture above defines the following factor of HH^{4} :
$\operatorname{Hom}\left(C F^{*}\left(L_{3}, L_{4}\right) \otimes C F^{*}\left(L_{2}, L_{3}\right) \otimes C F^{*}\left(L_{1}, L_{2}\right) \otimes C F^{*}\left(L_{0}, L_{1}\right), C F^{*}\left(L_{0}, L_{4}\right)\right)$
Generation Criterion (Abouzaid exact '10, R./Smith monotone '17)
Restrict $\mathcal{O C}$ to a subcategory generated by L_{1}, \ldots, L_{n}, then:
If $\mathcal{O C}$ hits $1 \Rightarrow L_{1}, \ldots, L_{n}$ split-generate whole category.

Module structure

Theorem (R. \& Smith '12-'17, independently Ganatra '13 for exact M)

- $\mathrm{HH}_{*}(\mathcal{F}(M))$ is $Q H^{*}(M)$-module
- $\mathrm{HH}_{*}(\mathcal{W}(M))$ is $\mathrm{SH}^{*}(M)$-module
- $\mathcal{O C}$ is a $Q H^{*}(M)$-module hom, respectively an $S H^{*}(M)$-module hom
- $\mathcal{C O}$ is a unital algebra homomorphism.

Module structure

Theorem (R. \& Smith '12-'17, independently Ganatra '13 for exact M)

- $\mathrm{HH}_{*}(\mathcal{F}(M))$ is $Q H^{*}(M)$-module
- $\mathrm{HH}_{*}(\mathcal{W}(M))$ is $S H^{*}(M)$-module
- $\mathcal{O C}$ is a $Q H^{*}(M)$-module hom, respectively an $S H^{*}(M)$-module hom
- $\mathcal{C O}$ is a unital algebra homomorphism.

Monotonicity and c_{1}-eigenvalues (Kontsevich, Seidel, Auroux) Monotone Lagrangians $L \subset$ monotone M with $H F^{*}(L, L) \neq 0$, the unit $[L] \in H F^{*}$ satisfies $c_{1}(T M) *[L]=\lambda[L], \quad \lambda \in\left\{\right.$ evalues of $\left.c_{1}(T M) \in Q H^{*}\right\}$ In fact, to ensure (Floer differential) ${ }^{2}=0$, restrict to $\mathcal{F}_{\lambda}(M)=\{$ only such $L\}$.
Eigensummand decomposition (R./Smith) $\oplus \mathcal{O C}_{\lambda}: H_{*}\left(\mathcal{F}_{\lambda}(M)\right) \rightarrow Q H^{*}(M)_{\lambda}$
Corollary Hitting invertible in $Q H^{*}(M)_{\lambda} \Rightarrow$ Generation for $\mathcal{F}_{\lambda}(M)$.
Example. If eigensummands $Q H^{*}(M)_{\lambda}$ are 1-dimensional (so field!) then:
$\mathcal{O} \mathcal{C}_{\lambda}$ non-zero \Rightarrow hit invertible \Rightarrow Generation for $\mathcal{F}_{\lambda}(M)$

Applications to Fano toric varieties

$Q H^{*}\left(\mathbb{C P}^{2}\right)=\mathbb{K}[x] /\left(x^{3}-t\right)=\frac{\mathbb{K}[x]}{x-1 t} \oplus \frac{\mathbb{K}[x]}{x-\zeta t} \oplus \frac{\mathbb{K}[x]}{x-\zeta^{2} t} \quad \zeta=e^{2 \pi i / 3}$
Trick: $[p t] \in C_{*}(L) \simeq C F^{*}(L, L)$, leading $\mathcal{O C}([p t])$ term is constant disc, $\mathcal{O C}([p t])=\mathrm{PD}($ point $)+$ higher $t \Rightarrow$ non-zero \Rightarrow generation if $\exists L, \mathfrak{d}[\mathrm{pt}]=0$
Key: (Cho-Oh'06) Crit $(W) \leftrightarrow$ tori L with $\lambda=W(z)$, and $\mathfrak{d}[\mathrm{pt}]=0$. $W=Z_{1}+Z_{2}+t Z_{1}^{-1} Z_{2}^{-1}$ has 3 crit points, crit vals $=$ three evals of c_{1}. Batyrev'93/Givental' $96: Q H^{*}(M) \cong \operatorname{Jac}(W)=\mathbb{K}\left[z_{1}^{ \pm 1}, \ldots\right] /\left(\partial_{z_{1}} W, \ldots\right), c_{1}(M) \mapsto W$ \Rightarrow trick works for closed Fano M, Morse W_{M}. But don't need Morse by Cho-Hong-Lau'19 \& Lekili-Evans'19. Don't need Fano by Abouzaid-FOOO

Applications to Fano toric varieties

$Q H^{*}\left(\mathbb{C P}^{2}\right)=\mathbb{K}[x] /\left(x^{3}-t\right)=\frac{\mathbb{K}[x]}{x-1 t} \oplus \frac{\mathbb{K}[x]}{x-\zeta t} \oplus \frac{\mathbb{K}[x]}{x-\zeta^{2} t} \quad \zeta=e^{2 \pi i / 3}$
Trick: $[p t] \in C_{*}(L) \simeq C F^{*}(L, L)$, leading $\mathcal{O C}([p t])$ term is constant disc,
$\mathcal{O C}([p t])=\mathrm{PD}($ point $)+$ higher $t \Rightarrow$ non-zero \Rightarrow generation if $\exists L, ~ \mathfrak{~}[\mathrm{pt}]=0$
Key: (Cho-Oh'06) Crit(W) ↔ tori L with $\lambda=W(z)$, and $\mathfrak{d}[p t]=0$. $W=Z_{1}+Z_{2}+t Z_{1}^{-1} Z_{2}^{-1}$ has 3 crit points, crit vals $=$ three evals of c_{1}. Batyrev'93/Givental' $96: Q H^{*}(M) \cong \mathrm{Jac}(W)=\mathbb{K}\left[z_{1}^{ \pm 1}, \ldots\right] /\left(\partial_{z_{1}} W, \ldots\right), c_{1}(M) \mapsto W$ \Rightarrow trick works for closed Fano M, Morse W_{M}. But don't need Morse by Cho-Hong-Lau'19 \& Lekili-Evans'19. Don't need Fano by Abouzaid-FOOO

Theorem (R./Smith '12-'17, R.'16)

$\mathcal{W}\left(\mathcal{O}_{\mathbb{P}^{m}}(-k)\right)$ for $1 \leq k \leq m$ is split-generated by Lagrangian torus \mathcal{L} with $1+m-k$ choices of holonomy. ($\mathcal{L}=$ lift Clifford torus to sphere bundle)
Sketch Proof. $S H^{*}(M)=\Lambda[\omega] /\left(\omega^{1+m-k}-(-k)^{k} t\right) \cong \operatorname{Jac}(W)$, and
$\mathcal{O C}([p t])=(-k \mu) t \cdot \operatorname{PD}($ fiber $)+\mathcal{O}\left(t^{2}\right) \neq 0$
(leading term: disc in fibre $\cong \mathbb{C}$ bounding S^{1}, it hits $\left[\mathbb{P}^{m}\right]$ in 1 point) \square Theorem. (R.'16) Works for any monotone toric negative line bundle $E \rightarrow B$ with W_{B} Morse. Key ingredient R.'16: $S H^{*}(E)=\operatorname{Jac}\left(W_{E}\right)$.

A message from our sponsor: Technicalities

Fukaya-Oh-Ohta-Ono over the years have carried out major foundational work on Floer theory: no assumptions on M (closed sympl.), use Kuranishi structures. Instead we use non-compact M, use explicit perturbations of auxiliary data, but require assumptions on L, M. At $\infty: \omega=d(R \alpha), L$ "conical" (Legendrian $\times \mathbb{R}$). "Exact" means: $\omega=d \theta$ globally on M, exact Lags L.
(1) Well-defined (single-valued) action functionals for Floer theory!
(2) Easy energy estimates, no holo curves, no bubbling problems
(3) e.g. $T^{*} N$ and (Wein)Stein manifolds, but no interesting Kähler mfds
(4) Can avoid direct limits: use Hamiltonians quadratic in R in A_{∞}-category: $C F\left(\varphi_{H}^{1}(L), L\right) \otimes C F\left(\varphi_{H}^{1}(L), L\right) \equiv C F\left(\varphi_{H}^{1}(L), L\right) \otimes C F\left(\varphi_{H}^{2}(L), \varphi_{H}^{1}(L)\right) \xrightarrow{\mu^{2}} C F\left(\varphi_{H}^{2}(L), L\right)$ Abouzaid '10: canonical $C F\left(\varphi_{H}^{2}(L), L\right) \cong C F\left(\varphi_{H}^{1}(L), L\right)$ via $\partial_{R^{-}}$-flow (Liouville) "Monotone" : $c_{1}(M)=k \omega, k>0$, orientable monotone $L(\omega(u)=\operatorname{Maslov}(u) / 2 \lambda$ for discs $)$
(1) Bubbling controllable: $\omega(u)>0 \Rightarrow c_{1}(u)>0 \Rightarrow$ positive Fredholm index
(2) Energy: Novikov ring formal variable t, high energy \Rightarrow high t-power
(3) Interesting mfds: negative line bundles over closed Kähler mfds, blow-ups
(4) Must use direct limit over Hamiltonians linear in R in A_{∞}-category

A message from our sponsor: Technicalities (brace voursef)

Key issue: implement the direct limit at the chain level.
Exact: A_{∞}-algebra $C W^{*}(L, L)$ of one Lagrangian: Abouzaid-Seidel '10.
Monotone: A_{∞}-category: R.-Smith '17 (works also for Exact).
Fix $H: M \rightarrow \mathbb{R}$, linear at ∞.

$$
C W^{*}\left(L_{i}, L_{j}\right)=\bigoplus_{w=1}^{\infty} C F^{*}\left(L_{i}, L_{j} ; w H\right)[\mathbf{q}]
$$

- CF ${ }^{*}\left(L_{i}, L_{j} ; w H\right)$ generated by 1 -orbits of $X_{w H}$ from L_{i} to L_{j}, the "chords".
- \mathbf{q} formal variable of degree -1 satisfying $\mathbf{q}^{2}=0$.
$\Rightarrow T$ wo copies $C F^{*}\left(L_{i}, L_{j} ; w H\right)[\mathbf{q}]=C F^{*}\left(L_{i}, L_{j} ; w H\right) \oplus C F^{*}\left(L_{i}, L_{j} ; w H\right) \mathbf{q}$.
Differential: $\quad \mu^{1}(x+\mathbf{q} y)=(-1)^{|x|} \mathfrak{d} x+(-1)^{|y|}(\mathbf{q} d y+\mathfrak{K} y-y)$
- $\mathfrak{d}: C F^{*}\left(L_{i}, L_{j} ; w H\right) \rightarrow C F^{*+1}\left(L_{i}, L_{j} ; w H\right)$ usual Floer differential \mathfrak{d} counts strips u bounding L_{i}, L_{j}, asymptotic to chords, $d u-w X_{H} \otimes d t$ holo.
- $\mathfrak{K}: C F^{*}\left(L_{i}, L_{j} ; w H\right) \rightarrow C F^{*}\left(L_{i}, L_{j} ;(w+1) H\right)$ Floer continuation map.
- if $\mathfrak{d}(y)=0$ then $\mathbf{q} y$ identifies y and $\mathfrak{K} y$ at the cohomology level.

Cohomology direct limit: $[y]=[\mathfrak{K} y] \in \underset{\longrightarrow}{\lim } H F^{*}\left(\varphi_{w H}^{1}(L), L\right)=H W^{*}(L, L)$.

- subcomplex $\left(\partial_{\mathbf{q}}=0\right)$ yields representatives of $\oplus H F^{*}\left(L_{i}, L_{j} ; w H\right)$.

Analogously for symplectic cohomology: $S C^{*}(M)=\oplus C F^{*}(w H)[\mathbf{q}]$

A message from our sponsor: Technicalities (theres morer)

Rough idea of how one counts the Floer PDE solutions: $\left(d u-X_{H} \otimes \gamma\right)^{0,1}=0$ for $u:($ decorated disc with bdry punctures) $\rightarrow M$.

- $\gamma=1$-form on punctured disc
- $\gamma=w_{i} d t$ near input puncture for $x_{i} \in C F^{*}\left(L_{i-1}, L_{i} ; w_{i} H\right)$ (local strip-like coords)
- Crucial: $d \gamma(\cdot, J \cdot) \leq 0$ so a max principle stops solutions going to ∞
- Stokes's theorem $\Rightarrow 0 \leq-\int d \gamma=w_{0}-\sum_{\text {inputs }} w_{i} \quad$ (so need a big output weight w_{0} !)

Picture: $\pm t^{\text {Energy }} x_{0}$ contribution to A_{∞}-map

$$
\mu^{3}\left(\mathbf{q} x_{3} \otimes x_{2} \otimes \mathbf{q} x_{1}\right) \in C F^{*}\left(L_{0}, L_{4} ; w_{0} H\right)
$$

- x_{j} has $\mathbf{q} \leftrightarrow$ (geodesic $x_{0} x_{j}$ has marker) $\leftrightarrow \exists \beta_{j}$
- $\gamma=w_{1} \alpha_{1}+w_{2} \alpha_{2}+w_{3} \alpha_{3}+\beta_{1}+\beta_{3}$
- $\alpha_{i}=d t$ near x_{0}, x_{i}, else 0 at bdry; $d \alpha_{i}=0$
- $\beta_{j}=d t$ near x_{0}, else 0 at bdry; $d \beta_{j} \leq 0 \neq 0$ only near marker
- $w_{0}=w_{1}+w_{2}+w_{3}+1+1$, due to β_{1}, β_{3}
- $\mathbf{q} x_{0}$-output: determined by asking μ^{3} is $\partial_{\mathbf{q}}$-linear. Geometrically it corresponds to one of the markers escaping to x_{0}.

Example A_{∞}-eqns:

The role of monotonicity

- For (Fredholm) index 0 solution counts, bubbling is not an issue: non-constant bubbles have positive area so positive index.
\Rightarrow main component of the broken solution would have virdim <0.
- Proof $\mathfrak{d}^{2}=0$: index 2 solutions $\Rightarrow \exists$ Maslov 2 (Chern 1) J-holo sphere bubble? No: generic $J \Rightarrow\{$ spheres $\}$ smooth moduli space codim $_{\mathbb{R}}=4$
- Proof $\mathfrak{d}^{2}=0: \exists$ Maslov 2 disc bubble with boundary on one L ?

Lazzarini ' $10 \Rightarrow\{$ discs $\}$ smooth moduli space. (2 is min Maslov: L orientable) Key: Moduli space of Maslov 2 discs with boundary marked point, evaluation at marker $=$ locally finite $(\operatorname{dim} L)$-cycle so a multiple of top class $[L]$,

$$
\mathfrak{m}_{0}(L)=\sum t^{\omega[\beta]} \mathrm{ev}_{*}\left[\mathcal{M}_{1}(\beta)\right]=m_{0}(L)[L] \in C_{\operatorname{dim}(L)}^{\mathrm{lf}}(L ; \text { NovikovRing }) .
$$

Oh '93/'95 $\Rightarrow \mathfrak{d} \circ \mathfrak{d}(x)=\left(m_{0}\left(L_{i}\right)-m_{0}\left(L_{j}\right)\right) x$. Serious problem!
Conclusion: Break up A_{∞}-category so $\mu^{1} \circ \mu^{1}=0$: $\mathcal{F}_{\lambda}(M)$: only allow L with $m_{0}(L)=\lambda$

Compare: Cat of Matrix Factorizations, $\partial^{2}\left(f: \mathcal{M F}(W-\lambda) \rightarrow \mathcal{M} \mathcal{F}\left(W-\lambda^{\prime}\right)\right)=\left(\lambda-\lambda^{\prime}\right) f$. CONVENTION: from now on $\mathcal{F}(M), \mathcal{W}(M)$ means $\mathcal{F}_{\lambda}(M), \mathcal{W}_{\lambda}(M)$.

The λ are eigenvalues of $c_{1}(M) \cdot: Q H^{*}(M) \rightarrow Q H^{*}(M)$.

Kontsevich, Seidel and Auroux (Auroux '07):

$$
H F^{*}(L, L) \neq 0 \Rightarrow m_{0}(L) \text { is an eigenvalue of } c_{1}(M)
$$

$1 \star$ Suppose L disjoint from If-cycle D representing $c_{1}(M)$. (so $\left.P D\left(c_{1}(M)\right)=D\right)$
$2 \star$ Suppose MaslovIndex $(J$-holo $u:(\mathbb{D}, \partial \mathbb{D}) \rightarrow(M, L))=2 \#(u \cap D)$.
\Rightarrow discs counted by $m_{0}(L)$ hit D once, reparametrise: $u(0) \in D$
Use unital ring homomorphism $\mathcal{C O}: Q H^{*}(M) \rightarrow H F^{*}(L, L)$:
out
$\mathcal{C O}(D)=$ "(the discs u above)" $=m_{0}(L)[L]$. $\mathcal{C O}$ (unit $[M])=$ "(constant discs)" $=[L]$. (Maslov 0 discs) $\Rightarrow \mathcal{C O}\left(c_{1}(M)-m_{0}(L)[M]\right)=0$ not invertible! (unit $[L \neq 0$)
Finally: unital ring hom sends invertibles \mapsto invertibles.
Claim (R.-Smith '17): \star conditions hold for us.
Proof: MaslovIndex = homological intersection number with PD of Maslov cycle $\mu_{L} \in H^{2}(M, L)$ (dualise MaslovIndex: $H_{2}(M, L) \rightarrow \mathbb{Z}$). Also $\mu_{L} \mapsto 2 c_{1}(M)$ via $H^{2}(M, L) \rightarrow H^{2}(M)$. Recall $P D\left(c_{1}(M)\right)=$ zero locus of generic smooth section s of a complex line bundle \mathcal{E} on M with $c_{1}(\mathcal{E})=c_{1}(M)$. But $\left.c_{1}(M)\right|_{L}=\left.k \omega\right|_{L}=0 \Rightarrow \mathcal{E}$ trivial near $L \Rightarrow$ can ensure $s \neq 0$ near $L \quad \square$

Eigensummand decomposition of the string maps

Let $c=c_{1}(M)-\lambda i d$
Let $Q H^{*}(M)_{\lambda}=\operatorname{ker} c^{\text {large }}=$ generalised λ-eigensummand of $c_{1}(M)$
Sketch proof that $\mathcal{O C}: H_{*}\left(\mathcal{F}_{\lambda}(M)\right) \rightarrow Q H^{*}(M)_{\lambda}:$

Picture: $Q C^{*}$-action ψ_{c} on $\underline{x_{7}} \otimes x_{6} \otimes \cdots \otimes x_{0} \in \mathrm{CC}_{7}$, showing contribution $\psi_{c}\left(x_{0} \otimes \underline{x_{7}} \otimes \underline{x_{6}} \otimes x_{5}\right) \otimes x_{4} \otimes \cdots \otimes x_{1} \in \mathrm{CC}_{4}$, in picture: out $\otimes x_{4} \otimes x_{3} \otimes x_{2} \otimes x_{1} \in \mathrm{CC}_{4}$.
"Length of word" keeps decreasing if keep applying ψ_{c}, unless apply ψ_{c} to just one element so hit $C F^{*}(L, L)$. But ψ_{c} on $H F^{*}(L, L)$ is μ^{2}-product by $\mathcal{C O}(c)=0$ (previous slide)

Eigensummand decomposition of the string maps

Let $c=c_{1}(M)-\lambda i d$
Let $Q H^{*}(M)_{\lambda}=\operatorname{ker} c^{\text {large }}=$ generalised λ-eigensummand of $c_{1}(M)$
Sketch proof that $\mathcal{O C}: \operatorname{HH}_{*}\left(\mathcal{F}_{\lambda}(M)\right) \rightarrow Q H^{*}(M)_{\lambda}:$

Picture: $Q C^{*}$-action ψ_{c} on $\underline{x_{7}} \otimes x_{6} \otimes \cdots \otimes x_{0} \in \mathrm{CC}_{7}$, showing contribution $\psi_{c}\left(x_{0} \otimes \underline{x_{7}} \otimes \underline{x_{6}} \otimes x_{5}\right) \otimes x_{4} \otimes \cdots \otimes x_{1} \in \mathrm{CC}_{4}$, in picture: out $\otimes x_{4} \otimes x_{3} \otimes x_{2} \otimes x_{1} \in \mathrm{CC}_{4}$.
"Length of word" keeps decreasing if keep applying ψ_{c}, unless apply ψ_{c} to just one element so hit $C F^{*}(L, L)$. But ψ_{c} on $H F^{*}(L, L)$ is μ^{2}-product by $\mathcal{C O}(c)=0$ (previous slide)
Acceleration Diagram (R/Smith'17) Not as simple as it looks! Cannot allow $w=0$ in $C W^{*}=\oplus C F^{*}\left(L_{0}, L_{1} ; w H\right)$.
$\mathrm{HH}_{*}\left(\mathcal{F}_{\lambda}(M)\right) \xrightarrow{\mathrm{HH}_{*}(\mathcal{A F})} \mathrm{HH}_{*}\left(\mathcal{W}_{\lambda}(M)\right) \begin{aligned} & \text { in } C W^{*}=\oplus C F^{*}\left(L_{0}, L_{1} ; w H\right) \text { New } A_{\infty} \text {-category } \mathcal{W}_{\diamond}(M) \text { : for compact Lags }\end{aligned}$ OC \mid oc L_{0}, L_{1}, extra summand ${C F^{*}\left(L_{0}, L_{1}\right)[\mathbf{q}]}^{\text {OC }}$ (perturb $C F^{*}\left(\varphi_{K}^{1}\left(L_{0}\right), L_{1}\right)$ by compactly supported K as in Seidel). $Q H^{*}(M)_{\lambda} \xrightarrow{c^{*}} S H^{*}(M)_{\lambda} \quad$ Also $S C_{\diamond}^{*}=Q C^{*}(M)[\mathbf{q}] \oplus S C^{*}$.
The natural functor $\mathcal{W}(M) \rightarrow \mathcal{W}_{\diamond}(M)$ is a quasi-isomorphism. In an A_{∞}-category one can always invert quasi-isos. So:

$$
\mathcal{A} \mathcal{F}: \mathcal{F}(M) \xrightarrow{\text { include }} \mathcal{W}_{\diamond}(M) \xrightarrow{\text { quasi-iso }} \mathcal{W}(M) .
$$

Rebooting...

Generators and relations for $S H^{*}(M)$ for toric M

Seidel representation

Theorem (Seidel 1997)

There is a representation $\mathcal{S}: \pi_{1} \widetilde{\operatorname{Ham}}(M) \rightarrow \operatorname{Aut}\left(Q H^{*}(M)\right)$ where $\mathcal{S}(\widetilde{g})=$ quantum product by an invertible element $\mathcal{S}(\widetilde{g})(1)$.

At the chain level: $\quad \mathcal{S}: C F^{*}(H) \xrightarrow{\text { identification }} C F^{*}\left(g^{*} H\right)$

$$
\widetilde{x} \longmapsto \tilde{g}^{-1} \cdot \tilde{x}
$$

$g^{*} H=H \circ g-K_{g} \circ g$ ensures $g^{*} d \mathbb{A}_{H}=d \mathbb{A}_{g^{*} H}(\mathbb{A}=$ Floer action $)$, thus generators and moduli spaces are identified. As $H F^{*}(H) \cong Q H^{*}(M)$ independently of H, one gets an automorphism of $Q H^{*}(M)$:

Remark. $\mathcal{S}(\widetilde{g})$ can be phrased as a 2-point GW-invariant counting holomorphic sections of a bundle over S^{2}, fibre M, transition g.

Example: $M=\mathbb{C P}^{1}$

$D_{0}=\left\{z_{0}=0\right\}$

Hamiltonian S^{1}-actions which rotate about the toric divisors $D_{j}=\left\{z_{j}=0\right\}$

$$
\begin{aligned}
& g_{0}(t) z=\left[e^{2 \pi i t} z_{0}: z_{1}\right] \\
& g_{1}(t) z=\left[z_{0}: e^{2 \pi i t} z_{1}\right]
\end{aligned}
$$

determine invertibles in $Q H^{*}\left(\mathbb{C P}^{1}\right)$:

$$
\begin{aligned}
& x_{0}=\mathcal{S}\left(\widetilde{g}_{0}\right)(1)=\operatorname{PD}\left[D_{0}\right]=\omega \\
& x_{1}=\mathcal{S}\left(\widetilde{g}_{1}\right)(1)=\operatorname{PD}\left[D_{1}\right]=\omega
\end{aligned}
$$

$$
\begin{aligned}
{\left[\lambda z_{0}: z_{1}\right]=\left[z_{0}: \lambda^{-1} z_{1}\right] } & \Rightarrow \widetilde{g}_{0}=\widetilde{g}_{1}^{-1} \cdot t \\
& \Rightarrow x_{0}=\mathcal{S}\left(\widetilde{g}_{0}\right)=\mathcal{S}\left(\widetilde{g}_{1}^{-1} \cdot t\right)=x_{1}^{-1} \cdot t \\
& \Rightarrow x_{0} x_{1}=t, \text { therefore } \omega * \omega=t .
\end{aligned}
$$

Theorem (McDuff-Tolman 2006)

For closed Fano toric symplectic manifolds, the relations among the S^{1}-rotations around the toric divisors $D_{j}=\left\{z_{j}=0\right\}$ yield, via \mathcal{S}, the non-classical relations among the $x_{j}=\operatorname{PD}\left[D_{j}\right]$.

$$
Q H^{*}(M)=\mathbb{K}\left[x_{0}, x_{1}, \ldots\right] /\binom{\text { homology relations among } x_{j}=\operatorname{PD}\left[D_{j}\right]}{\mathcal{S}\left(\text { relations among rotations about } D_{j}\right)}
$$

Landau-Ginzburg Superpotential W

Moment polytope $\Delta=\left\{y \in \mathbb{R}^{m}:\left\langle y, e_{i}\right\rangle \geq \lambda_{i}\right\}$
$W:\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{K}=$ Novikov Ring

$$
e_{0}=(1,0) \quad{ }^{e_{2}=(-1,-1)}
$$

$W\left(Z_{1}, \ldots, Z_{m}\right)=\sum t^{-\lambda_{j}} Z^{e_{j}}$
Example. $\mathbb{C P}^{2}, W=Z_{1}+Z_{2}+t Z_{1}^{-1} Z_{2}^{-1}$.
Polytope for $\mathbb{C P}^{2}$

By Batyrev (1993):
$Q H^{*}(M)=\frac{\mathbb{K}\left[x_{0}, x_{1}, \ldots, x_{r}\right]}{\binom{\text { linear relations }}{\text { SR-relations }}} \cong \operatorname{Jac}(W)=\frac{\mathbb{K}\left[Z_{1}^{ \pm 1}, \ldots, Z_{m}^{ \pm 1}\right]}{\left(\partial_{Z_{1}} W, \ldots, \partial_{Z_{m}} W\right)}$

$$
x_{j}=\mathrm{PD}\left[D_{j}\right] \quad \mapsto \quad t^{-\lambda_{j}} Z^{e_{j}}
$$

linear relations \rightarrow relations $\partial_{Z_{i}} W=0$.
The kernel includes the SR-relations since these correspond to (primitive) relations among edges, so relations among the $Z^{e_{i}}$.
Remark. The Z_{j} are automatically invertible in $\operatorname{Jac}(W)$.
The $x_{j}=\mathcal{S}\left(\widetilde{g}_{j}\right)$ are invertible because $g_{j}^{-1} \in \pi_{1} \operatorname{Ham}(M)$.
Ostrover-Tyomkin'08 $p \in \operatorname{Crit}(W)$ non-degenerate \Rightarrow field summand $\subset \operatorname{Jac}(W)$.
R.'16 Perturb $\omega \Rightarrow W$ Morse $\Rightarrow \operatorname{Jac}(W)$ becomes semi-simple $=\oplus$ fields, so get Generation results for Fukaya/Wrapped Cat.

Generators and relations in $S H^{*}(M)$ from S^{1}-actions

For M non-compact, I constructed homs similar to the Seidel rep.

$$
\begin{aligned}
r: \pi_{1} \widetilde{\operatorname{Ham}}_{\text {linear,slope }>0}(M) & \rightarrow \operatorname{End}\left(Q H^{*}(M)\right) \\
\mathcal{R}: \pi_{1} \widetilde{\operatorname{Ham}}_{\text {linear }}(M) & \rightarrow \operatorname{Aut}\left(S H^{*}(M)\right)
\end{aligned}
$$

$(M \backslash\{$ compact $\}, \omega) \cong(\Sigma \times(1, \infty), d(R \alpha))$ for contact $\operatorname{mfd}(\Sigma, \alpha)$

Theorem (R. '14)

If on $M \backslash$ \{compact $\}$ the Reeb flow on Σ arises as a Hamiltonian S^{1}-action g on M, then there is an $r(g) \in Q H^{*}(M)$ with

$$
S H^{*}(M)=Q H^{*}(M)_{r(g)} \quad \text { (localisation) }
$$

Theorem (R. '16)

For any non-compact Fano toric variety M (\& technical conditions),

$$
\begin{array}{rlll}
S H^{*}(M) & \cong \quad Q H^{*}(M)_{\operatorname{PD}\left[D_{1}\right], \ldots, \operatorname{PD}\left[D_{r}\right]} & \cong \operatorname{Jac}(W) \\
r\left(g_{j}\right) & \mapsto & \operatorname{PD}\left[D_{j}\right] & \mapsto t^{-\lambda_{j}} z^{e_{j}}
\end{array}
$$

Example(R.'16) $E \rightarrow B$ Fano toric neg.line bdle.: $Q H^{*}(E)$ vs $Q H^{*}(B)$?

- same generators x_{0}, \ldots, x_{m}, same linear relations
- quantum relations: replace $t_{B} \mapsto t_{E}(-k x)^{k} \equiv t_{E} c_{1}(E)^{k}$ $S H^{*}(E) \cong Q H^{*}(E)_{x} \quad\left(x=\left[\omega_{E}\right]=\pi^{*}\left[\omega_{B}\right], c_{1}[B]=\sum x_{i}\right)$

Example: the blow-up of \mathbb{C}^{2} at 0 , namely $\mathcal{O}_{\mathbb{C P}^{1}}(-1)$

Hirzebruch surface $\mathrm{Bl}_{\mathrm{pt}}\left(\mathbb{C P}^{2}\right)$

$W=z_{1}+z_{2}+t^{-1} z_{1} z_{2} \Rightarrow \partial_{z_{1}} W=1+t^{-1} z_{2}$, similarly for z_{2} $\operatorname{Jac}(W)=\mathbb{K}\left[z_{1}^{ \pm 1}, z_{2}^{ \pm 1}\right] /\left(z_{1}+t, z_{2}+t\right) \cong \mathbb{K}$

$$
\begin{aligned}
Q H^{*} & =Q H^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \\
& =\mathbb{K}[x] /\left(x^{2}+t x\right) \not \approx \mathbb{K}
\end{aligned}
$$

Agrees with Batyrev presentation:
SR-reln $e_{1}+e_{2}=e_{3}$, so $x_{1} x_{2}=x_{3} \cdot t$
Linear reln $x_{1}=x_{2}=-x_{3}$. Put $x=x_{1}$.
SR-relation comes from the relation among rotations $\widetilde{g}_{1} \tilde{g}_{2}=\tilde{g}_{3} \cdot t$.
Localize at $x_{j}: S H^{*}=\mathbb{K}\left[x^{ \pm 1}\right] /\left(x^{2}+t x\right) \cong \mathbb{K}[x] /(x+t) \cong \mathbb{K}$.
$S H^{*} \rightarrow \operatorname{Jac}(W), x_{1} \mapsto z_{1} \equiv-t, x_{2} \mapsto z_{2} \equiv-t, x_{3} \mapsto t^{-1} z_{1} z_{2} \equiv t$.

Symplectic vs Quantum when there is an S^{1}-action

$(M \backslash\{$ compact $\}, \omega) \cong(\Sigma \times(1, \infty), d(R \alpha))$ for contact $\operatorname{mfd}(\Sigma, \alpha)$

Theorem (R. '14)

If on $M \backslash$ \{compact $\}$ the Reeb flow on Σ arises as a Hamiltonian S^{1}-action g on M, then there is an $r(g) \in Q H^{*}(M)$ with

$$
\left.S H^{*}(M)=Q H^{*}(M)_{r(g)} \quad \text { (localisation }\right)
$$

Fix small H_{0}. Let $H_{k+1}=\left(g^{-1}\right)^{*} H_{k}=H_{k} \circ g^{-1}+K \circ g^{-1} \quad(k$ generates $g)$
(1) Canonically: $C F^{*}\left(H_{k}\right) \cong C F^{*}\left(H_{k+1}\right), x \mapsto g^{-1} \cdot x$ (Seidel 1997)
(2) $g \cdot\left[H F^{*}\left(H_{k}\right) \rightarrow H F^{*}\left(H_{k+1}\right)\right]=\left[H F^{*}\left(H_{k+1}\right) \rightarrow H F^{*}\left(H_{k+2}\right)\right]$
(3) $S H^{*}(M)=\underset{\longrightarrow}{\lim }\left(Q H \cong H F\left(H_{0}\right) \rightarrow H F\left(H_{1}\right) \rightarrow H F\left(H_{2}\right) \rightarrow \cdots\right)$

$$
\cong \xrightarrow{\lim _{\longrightarrow}}(Q H \xrightarrow{* r} Q H \xrightarrow{* r} Q H \xrightarrow{* r} \cdots)
$$

$$
\cong \overrightarrow{Q H}^{*}(M) /(\text { generalized } 0 \text {-espace of } r)
$$

(4) Description of $Q H \xrightarrow{* r} Q H$:

$$
Q H^{*}(M) \longrightarrow H F^{*}\left(H_{0}\right) \underset{\text { canonical }}{\cong} H F^{*}\left(H_{-1}\right) \xrightarrow[\text { unknown }]{ } H F^{*}\left(H_{0}\right) \longrightarrow Q H^{*}(M)
$$ continuation map

More precise statement of the toric presentation (R. '16)

Let X be a non-compact Fano toric manifold, such that the Hamiltonians generating the rotations g_{j} about the toric divisors satisfy the Floer theory maximum principle.

Let $\mathcal{J}=$ ideal generated by the linear and SR-relations. Then:
$Q H^{*}(X) \cong \mathbb{K}\left[x_{1}, \ldots, x_{r}\right] / \mathcal{J}, \operatorname{PD}\left[D_{j}\right] \mapsto x_{j}$ (Batyrev presentation) $S H^{*}(X) \cong \mathbb{K}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm}\right] / \mathcal{J}, \quad r\left(g_{j}\right) \mapsto x_{j}$
$c^{*}: Q H^{*}(X) \rightarrow S H^{*}(X)$ is the localization at $\mathrm{PD}\left[D_{j}\right]$.
$S H^{*}(X) \cong \operatorname{Jac}(W), x_{j} \mapsto t^{-\lambda_{j}} z^{e_{j}}$.
$Q H^{*}(X) \cong R_{X} /\left(\partial_{z_{1}} W, \ldots\right)$ for the \mathbb{K}-subalgebra $R_{X} \subset \mathbb{K}\left[x_{1}^{ \pm 1}, \ldots\right]$ generated by z^{e} for $e \in \operatorname{Span}_{\mathbb{N}}\left(e_{i}\right)$.
$c_{1}(T X)=\sum \operatorname{PD}\left[D_{j}\right]=\sum x_{j}$ corresponds to $W \in \operatorname{Jac}(W)$.
Details about max principle: at infinity, want Hamiltonians to have the form $f(y) \cdot R$, where R is the radial coordinate, and $f: \Sigma \rightarrow \mathbb{R}$ is invariant under the Reeb flow. This is a slightly broader class of Hamiltonians than $k \cdot R$, and these can be used to define $S H^{*}$.

The cohomological McKay Correspondence

Joint work with Mark McLean

Stony Brook University N.Y.

The big picture: resolutions of quotient singularities

Let $G \subset S L(n, \mathbb{C})$ be a finite subgroup $\neq 1$. Quotient \mathbb{C}^{n} by G-action,

$$
X=\mathbb{C}^{n} / G
$$

$\Rightarrow \operatorname{Sing}(X)=\{[z] \in X: g \cdot z=z$ some $g \neq 1 \in G\}$.
$\Rightarrow X$ singular at 0 and possibly elsewhere. Take a resolution

$$
\pi: Y \rightarrow X
$$

meaning: Y non-singular quasi-proj. var., π proper birational morphism, isomorphism away from the exceptional locus $E=\pi^{-1}(\operatorname{Sing}(X))$.

Question:

$\{$ Geometry of $Y\} \stackrel{?}{\longleftrightarrow}\{$ Representation theory of $G\}$.
Example A_{1}. For $G=\{ \pm I\} \subset S L(2, \mathbb{C})$, first embed

$$
\nu_{2}: \mathbb{C}^{2} /\{ \pm I\} \hookrightarrow \mathbb{C}^{3}, \quad(x, y) \mapsto\left(x^{2}, x y, y^{2}\right)
$$

Image $=\operatorname{Variety}\left(X Z-Y^{2}=0\right)$. Then blow-up 0 to get $Y=T^{*} \mathbb{C P}^{1}=\mathcal{O}_{\mathbb{C P}^{1}}(-2)$. Generators of $H^{*}(Y)=\left\langle 1, \omega_{\mathbb{P}^{1}}\right\rangle$
\leftrightarrow irreducible representations $1 \in G L(\mathbb{C})$ and $\pm 1 \in G L(\mathbb{C})$.

Classical McKay correspondence: $\operatorname{dim}=2, G \subset S L(2, \mathbb{C})$

Finite subgroups of $S L(2, \mathbb{C})$ are classified up to conjugation $\left(\mathbb{Z}_{n}, \tilde{\mathbb{D}}_{2 n}\right.$, $\tilde{\mathbb{T}}_{12}, \tilde{\mathbb{O}}_{24}, \tilde{\mathbb{I}}_{60}$), in 1:1 correspondence with $A D E$ Dynkin Diagrams.
$\mathbb{C}[x, y]^{G}=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ determine a surface $\mathbb{C}^{2} / G \hookrightarrow \mathbb{C}^{3}$ singular at 0 . Klein / 1934 Du Val: up to analytic isomorphism, such equations classify the simple surface singularities (rational double points).
Example: Quaternion group $\tilde{\mathbb{D}}_{4} \subset S L(2, \mathbb{C}), X=\left\{x^{2}+z y^{2}+z^{3}=0\right\} \subset \mathbb{C}^{3}$:

Exceptional divisors

Dynkin Diagram D_{4}

In the minimal resolution $Y \rightarrow \mathbb{C}^{2} / G$, exceptional divisors E_{i} are in 1:1 correspondence with the non-trivial irreducible representations of G. Remark: E_{i} generate $H_{*}(Y), \quad \#($ Irreducible Reps $)=\#($ Conj. Classes). 1980 McKay: McKay quiver for \mathbb{C}^{2} is the extended Dynkin diagram. 1983 Gonzalez-Sprinberg, Verdier: K-theory $K_{0}(Y) \cong \operatorname{Rep}(G)$. 2000 Kapranov, Vasserot: $D^{b}(\operatorname{Coh}(Y)) \simeq D^{b}\left(\operatorname{Coh}\left(\mathbb{C}^{2}\right)^{G}\right)$.

Higher dimensions: generalized McKay correspondence

Let $\pi: Y \rightarrow X=\mathbb{C}^{n} / G$ be a crepant resolution, so $K_{Y}=\pi^{*} K_{X}(=0)$. In general: $K_{Y}=\pi^{*} K_{X}+\sum a_{i} E_{i}$ for $a_{i} \geq 0$. Exceptional divisors E_{i} with $a_{i}=0$ must appear on any resolution. Crepant resolutions may not exist. Dixon-Harvey-Vafa-Witten '85 / Atiyah-Segal '89 / Hirzebruch-Höfer '90 Conjecture: $\chi(Y)=\#$ Conj.Classes (G)
Miles Reid '92 stated the Cohomological McKay correspondence:

$$
\begin{gathered}
H^{\text {odd }}(Y, \mathbb{C})=0 \text { and } \operatorname{dim} H^{2 k}(Y, \mathbb{C})=\# \text { (age k conjugacy classes) } \\
g^{-1} \in \operatorname{Aut}\left(\mathbb{C}^{n}\right) \text { has evalues } e^{i a_{1}}, \ldots, e^{i a_{n}}, a_{j} \in[0,2 \pi) \text {, define } \\
\text { age }(g)=\frac{1}{2 \pi} \sum a_{j} \in[0, n) .
\end{gathered}
$$

Proofs: $\operatorname{dim}=3$ Ito-Reid 1994, abelian G Batyrev-Dais 1996, in general Batyrev 1999 \& Denef-Loeser 2002 (Motivic integration). Many ideas: Ito-Nakamura 1999, Ito-Nakajima 2000, Bridgeland-King-Reid 2001, Open problem: find a "natural" basis for $H^{*}(Y, \mathbb{C}) \leftrightarrow$ Conj.classes (G) Kaledin 2002: \exists basis if $G \subset S p(m) \subset S L(2 m, \mathbb{C})$ (Valuations).
Nelson, et al. 2015: A_{n}-surface sing. $\Rightarrow \operatorname{dim} E S H_{+}^{*}(Y)=n+1=\left|\operatorname{Conj}\left(\mathbb{Z}_{n+1}\right)\right|$ Abreu-Macarini 2016: G abelian, \mathbb{C}^{n} / G isolated $\Rightarrow \chi_{\text {mean }}($ Link $)=\frac{1}{2} \chi(Y)$.

Main Theorem

Theorem (McLean - R. 2018)

Let \mathbb{C}^{n} / G be an isolated singularity for $G \subset S L(n, \mathbb{C})$ a finite subgroup. Given any crepant resolution $\pi: Y \rightarrow \mathbb{C}^{n} / G$, there is a bijection

Conj $_{k}(G)=\{$ age k conjugacy classes $\} \rightarrow\left(\right.$ basis of $\left.H^{2 k}(Y ; \mathcal{K})\right)$ and $H^{\text {odd }}(Y ; \mathcal{K})=0$.

Rmk. 1 Singularity at 0 is isolated if elements $\neq 1$ do not have eigenvalue 1 . We are currently writing up the paper for the non-isolated case.
Rmk. 2 Any field \mathcal{K} of characteristic 0 works. For finite characteristic we need to assume char $\mathcal{K} \notin\{2,3, \ldots,|G|\}$.
Key Idea: Build a \mathbb{Z}-graded symplectic invariant $S H_{+}^{*}(Y)$, and an iso

$$
\partial_{S C}: S H_{+}^{*-1}(Y) \cong H^{*}(Y)
$$

Generators are certain Hamiltonian orbits $x_{g}: S^{1} \rightarrow Y$ inside Y, related to eigenvectors in \mathbb{C}^{n} of the $g \in G$. Gradings:

$$
\mathrm{CZ}\left(x_{g}\right)-1=2 \text { age }(g)
$$

Warm-up: Hamiltonian orbits in $X=\mathbb{C}^{n} / G$

Can assume $G \subset S U(n)$, by an averaging argument.
Diagonal \mathbb{C}^{*}-action on \mathbb{C}^{n} descends to $X=\mathbb{C}^{n} / G$.
The S^{1}-action by $e^{i t}$ rotation is the Hamiltonian flow for $h=\frac{1}{2}\|z\|^{2}$.
Suppose $H_{k}: X \rightarrow \mathbb{R}$ convex function of h, so that flow on each slice

$$
\mathcal{S}=\{\|z\|=\text { constant }>0\} \cong S^{2 n-1} / G
$$

is $e^{i a t}$ with a "speed" a that increases $\rightarrow k$ as we move to infinity in X.
What are the 1-periodic orbits?
Want $\left[e^{i a} z\right]=[z]$ in \mathbb{C}^{n} / G.
$\Leftrightarrow \quad e^{i a} z=g \cdot z$ for some $g \in G$.
$\Leftrightarrow \quad z$ is an $e^{i a}$-eigenvector of some $g \in G$.
Given an $e^{i a}$-eigenvector $z \in \mathbb{C}^{n}$ of $g \in G$ we get a 1-periodic orbit in \mathcal{S} :

$$
x_{g}(t)=e^{i a t} z
$$

If G acts freely on $\mathbb{C}^{n} \backslash\{0\}$ (so \mathbb{C}^{n} / G isolated) then from z we recover g uniquely, since z has no stabiliser. Thus orbits in $X \backslash\{0\}$ are uniquely labeled by elements of G. Only the conjugacy class $\left\{h g h^{-1}: h \in G\right\} \in \operatorname{Conj}(G)$ matters since identify $[z]=[h \cdot z]$ in X.

Hamiltonian orbits in Y

Key. Diagonal \mathbb{C}^{*}-action on $X=\mathbb{C}^{n} / G$ lifts to Y (uses Y crepant). Can pick Kähler form on Y so that the S^{1}-action is Hamiltonian, $h: Y \rightarrow \mathbb{R}$. Floer theory. Pick $H_{k}: X \rightarrow \mathbb{R}$ increasing at infinity as $k \rightarrow \infty$.
Example 1: $H_{k}=(k+\varepsilon) \cdot h$
Example 2: $H_{k}=c_{k}(h) \cdot h$ for a cut-off c_{k} growing from 0 to $k+\varepsilon$.

Symplectic cohomology $S H^{*}(Y)=\underset{\longrightarrow}{\lim } H F^{*}\left(H_{k}\right)$, where:
Floer complex: generators are the 1-periodic orbits of H_{k}.
Differential counts cylinders $u: \mathbb{R} \times S^{1} \rightarrow Y$ connecting such $\partial_{s} u+J \partial_{t} u=-\nabla H$ orbits and satisfying a certain elliptic PDE (Floer's equation).
For \mathbb{C}^{n} / G isolated, away from the exceptional divisor $E=\pi^{-1}(0)$, $Y \backslash E \cong X \backslash 0$ so we have the "same" 1-periodic orbits x_{g} arising in slices $\mathcal{S} \cong S^{2 n-1} / G$ as for X. (When not isolated \exists several lifts of x_{g} to Y, related to eigenvectors $z \in \operatorname{Sing}(X)$ having non-trivial stabilisers)
McLean-R. (mimicking R.2010): $S H^{*}(Y)=0$ by a grading trick.
Compare: $S H^{*}\left(\mathbb{C}^{n}\right)=0$ because the only 1-periodic orbit 0 for $H=(k+\varepsilon) \frac{1}{2}\|z\|^{2}$ has Conley-Zehnder index $\rightarrow-\infty$ as $k \rightarrow \infty$.

Positive Symplectic Cohomology SH

Aim. Only care about orbits in \mathcal{S}-slices, ignore constant orbits over 0 .
We want to kill the Morse subcomplex of orbits living over 0.
McLean-R. Build a new filtration allowing generalisation of Viterbo '96: Use $H_{k}=c_{k}(h) \cdot h$, have SES: $0 \rightarrow C F^{*}\left(H_{0}\right) \rightarrow C F^{*}\left(H_{k}\right) \rightarrow C F_{+}^{*}\left(H_{k}\right) \rightarrow 0$,

$$
\cdots \rightarrow H^{*}(Y) \rightarrow S H^{*}(Y) \rightarrow S H_{+}^{*}(Y) \rightarrow H^{*+1}(Y) \rightarrow \cdots
$$

For our resolution, $S H^{*}(Y)=0$ so

$$
S H_{+}^{*-1}(Y) \cong H^{*}(Y)
$$

McLean-R. Our filtration also yields a Morse-Bott spectral sequence (like Morse-Bott spectral sequence in exact case in Kwon - van Koert '16) : $\mathcal{O}_{\mathbf{g}, a}:=$ moduli space of 1 -orbits associated to eigenvectors $[z] \in \mathbb{C}^{n} / G$ with eigenvalue $e^{i a}$, for each conjugacy class $\mathbf{g} \in \operatorname{Conj}(G)$. Then

$$
\bigoplus \quad H^{*}\left(\mathcal{O}_{\mathbf{g}, a}\right)\left[-\mu_{\mathbf{g}, a}\right] \Rightarrow S H_{+}^{*}(Y)
$$

$$
\mathbf{g} \in \operatorname{Conj}(G), a \geq 0
$$

where $\mu_{\mathbf{g}, a} \in \mathbb{Z}$ is a grading shift (Conley-Zehnder index of $\mathcal{O}_{\mathbf{g}, a}$). We believe the generators of $\mathrm{SH}_{+}^{*}(Y)$ to be precisely the maxima x_{g} of Morse-Bott submfds $\mathcal{O}_{\mathbf{g}, a}$ for $0<a \leq 2 \pi$ minimal for each $\mathbf{g} \in \operatorname{Conj}(G)$.

Example: A_{1}-singularity $\mathbb{C}^{2} / \pm I$ and $Y=T^{*} \mathbb{C P}^{1}$

Slices $=\mathbb{R} \mathbb{P}^{3}=S^{3} / \pm I$ and $H^{*}\left(\mathbb{R} \mathbb{P}^{3}\right)=\mathbb{K}[0] \oplus \mathbb{K}[-3]($ for char $(\mathbb{K})=0)$
Any initial point works, so

$$
\mathcal{O}_{-l, \text { odd } \cdot \pi}=\mathbb{R P}^{3} \quad \mathcal{O}_{+l, \text { even } \cdot \pi}=\mathbb{R}^{3} .
$$

Morse-Bott spectral sequence $\oplus H^{*}\left(\mathcal{O}_{\mathrm{g}, \mathrm{a}}\right)\left[-\mu_{\mathrm{g}, \mathrm{a}}\right] \Rightarrow S H_{+}^{*}(Y)$:

Explanation: (0),(2) $=$ Morse Complex of exceptional divisor $E=\mathbb{P}^{1}$.
$\mathrm{O}=1$-orbits which lift from $\mathbb{C}^{2} / \pm I$ to \mathbb{C}^{2} (Conj.Class +I)
$\mathbf{C}=1$-orbits which don't lift (Conj.Class $-\mathbf{I}$)
Thus $S H_{+}^{*}(Y)$ is generated by:
$\diamond+1$ half-great circle of age 1 in $1^{\text {st }}$ slice $\mathbb{R P}^{3}$, in $S H_{+}^{1}(Y)=H^{2}(Y)$.
For $(-I)^{-1} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ have evals $e^{\pi i}, e^{\pi i}$ so age $=2 \pi / 2 \pi=1$.
$\diamond-1$ great circle of age 0 in $2^{\text {nd }}$ slice $\mathbb{R P}^{3}$, in $S H_{+}^{-1}(Y)=H^{0}(Y)$
Age grading: for $I^{-1} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ have evals $e^{0 i}, e^{0 i}$ so age $=0 / 2 \pi=0$.

S^{1}-Equivariant Symplectic Cohomology ESH*

Want to avoid using $H^{*}(Y)$ in the argument [used it in the example].
Ordinary $S H^{*}$: is defined over the Novikov field \mathbb{K}. Think $\mathbb{C}((t))$. S^{1}-Equivariant $S H^{*}$: over $\mathbb{K}[[u]]$-module $\mathbb{F}=\mathbb{K}((u)) / u \mathbb{K}[[u]],|u|=2$. Typical element: $k_{p} u^{-p}+\cdots+k_{0} u^{0}$. Differential $\delta=\partial+u \delta_{1}+u^{2} \delta_{2}+\cdots$ Again $E S H^{*}(Y)=0 \Rightarrow E S H_{+}^{*}(Y)[1] \cong E H^{*}(Y ; \mathbb{K})=H^{*}(Y ; \mathbb{K}) \otimes \mathbb{F}$.
$\Rightarrow E S H_{+}^{*}(Y)=\oplus \mathbb{F}\left[-d_{i}\right]$ supported in degrees $d_{i} \in\{-1,0, \ldots, 2 n-2\}$.
Key: Now take $E H^{*}\left(\mathcal{O}_{\mathbf{g}, a}\right)$ not the ordinary $H^{*}\left(\mathcal{O}_{\mathbf{g}, a}\right)$.
EXAMPLE (continued): $\mathbb{C}^{2} / \pm I$. Each $\mathcal{O}_{\mathrm{g}, a}=\mathbb{R} \mathbb{P}^{3}$ contributes $H_{S^{1}}^{*}\left(\mathcal{O}_{\mathbf{g}, a}\right)=H^{*}\left(\mathbb{R} \mathbb{P}^{3} / S^{1}\right) \cong H^{*}\left(S^{3} / S^{1}\right) \cong H^{*}\left(\mathbb{C} \mathbb{P}^{1}\right)=\mathbb{K}[0] \oplus \mathbb{K}[-2]$ E_{1}-page of the spectral sequence $\oplus E H^{*}\left(\mathcal{O}_{\mathbf{g}, a}\right) \Rightarrow E S H_{+}^{*}(Y)$:

+1	-1	-3	-5	-7	-9	-11	\ldots
-1	-3	-5	-7	-9	-11	-13	\ldots

Miracle: no differentials since all generators are in odd degrees! General story: each $\mathcal{O}_{\mathbf{g}, a} / S^{1}$ is a finite quotient of $\mathbb{C P}^{k}$ some k. For $\operatorname{char}(\mathbb{K})=0, E H^{*}\left(\mathcal{O}_{\mathbf{g}, a}\right) \cong H^{*-1}\left(\mathbb{C P} \mathbb{P}^{k}\right)$ always in odd degrees, so:

$$
E S H_{+}^{*}(Y)=\oplus H^{*}\left(\mathbb{C P}^{k_{\mathbf{g}, \mathbf{a}}}\right)\left[-1-\mu_{\mathbf{g}, \mathrm{a}}\right]
$$

The Gysin sequence relating $S H^{*}$ and $E S H^{*}$

Example (continued): $\mathbb{C}^{2} / \pm I$, we find $E S H_{+}^{*}$ but need to recover $S H_{+}^{*}$. $E S H_{+,-1}^{*}=\mathbb{K}[-\mathbf{1}] \oplus \mathbb{K}[1] \oplus \mathbb{K}[3] \oplus \cdots=\mathbb{K}[-\mathbf{1}] \oplus \mathbb{K}[-\mathbf{1}] u^{-1} \oplus \cdots=\mathbb{F}[-\mathbf{1}]$ $E S H_{+,+1}^{*}=\mathbb{K}[+1] \oplus \mathbb{K}[3] \oplus \mathbb{K}[5] \oplus \cdots=\mathbb{K}[+1] \oplus \mathbb{K}[+1] u^{-1} \oplus \cdots=\mathbb{F}[+1]$
The Symplectic Gysin sequence (Bourgeois-Oancea 2013):

$$
\cdots \rightarrow S H_{+}^{*}(Y) \rightarrow E S H_{+}^{*}(Y) \xrightarrow{\mu} E S H_{+}^{*+2}(Y) \rightarrow S H_{+}^{*+1}(Y) \rightarrow \cdots
$$

Remark. Classical Gysin sequence for S^{1}-bundle $\pi: E \rightarrow M$

$$
\cdots \longrightarrow H_{*}(E) \xrightarrow{\pi_{*}} H_{*}(M) \xrightarrow{\cap e} H_{*-2}(M) \xrightarrow{\pi^{-1}} H_{*-1}(E) \rightarrow \cdots
$$

which for $M=\mathcal{L} Y \times{ }_{S^{1}} S^{\infty}$ (and $E=\mathcal{L} Y \times S^{\infty} \simeq \mathcal{L} Y$) becomes $\cdots \longrightarrow H_{*}(\mathcal{L} Y) \longrightarrow E H_{*}(\mathcal{L} Y) \longrightarrow E H_{*-2}(\mathcal{L} Y) \longrightarrow H_{*-1}(\mathcal{L} Y) \longrightarrow \cdots$ Recall $E S H_{+}^{*}(Y)=\oplus \mathbb{F}\left[-d_{i}\right]$. Thus:

$$
0 \rightarrow S H_{+}^{\text {odd }}(Y) \rightarrow \oplus \mathbb{F}\left[-d_{i}\right] \xrightarrow{u} \oplus \mathbb{F}\left[-d_{i}\right] \rightarrow S H_{+}^{\text {even }}(Y) \rightarrow 0
$$

But $\mathbb{F} \xrightarrow{\longrightarrow} \mathbb{F}$ always surjective. So $S H_{+}^{\text {even }}(Y)=0\left(\right.$ so $\left.H^{\text {odd }}(Y)=0\right)$ and $H^{2 k}(Y) \cong S H_{+}^{2 k-1}(Y)=$ ker u of $\operatorname{dim}_{\mathbb{K}}=\mathrm{rk}_{\mathbb{F}} E S H_{+}^{2 k-1}(Y)=\# \operatorname{Conj}_{k}(G)$ (the last equality is a non-trivial Conley-Zehnder index calculation). In the example: $S H_{+}^{*}(Y)=\mathbb{K}[-\mathbf{1}] \oplus \mathbb{K}[+1]=H^{2}(Y) \oplus H^{0}(Y)$.

Thank you for listening

