Symplectic topology, Floer theory, and Fukaya categories

Prof. Alexander F. Ritter

Associate Professor Mathematical Institute University of Oxford

A very brief survey of the research area. December 2014.

The big picture

A symplectic manifold (M, ω) is a smooth manifold with a closed non-degenerate 2-form ω .

- $M = \mathbb{C}^n$, $\omega_0 = \sum dx_j \wedge dy_j$
- $M = \text{orientable surface}, \omega = \text{area form}$
- Cotangent bundles T^*N , $\omega = \sum dp_j \wedge dq_j = d(\sum p_j dq_j)$. In dynamical systems q = position, p = momentum.
- Kähler manifolds.

Key: all locally look like $(\mathbb{C}^n, \omega_0) \Rightarrow$ no *local* symplectic invariants. \Rightarrow To tell them apart, need global invariants:

Approach 1: use geometrical objects to distinguish them A submanifold $L^n \subset M^{2n}$ is **Lagrangian** if $\omega|_L = 0$.

- $L = \mathbb{R}^n \subset \mathbb{C}^n$
- Any embedded curve inside an orientable surface, e.g. ${\mathcal S}^1 \subset {\mathbb C}$
- Clifford Torus $S^1 \times \cdots \times S^1 \subset \mathbb{CP}^m$
- $L = \operatorname{graph}(\alpha) \subset T^*N$ is Lagrangian $\Leftrightarrow \alpha$ closed 1-form on N
- The torus in the sphere bundle of $\mathcal{O}(-k) \to \mathbb{CP}^m$ which projects to the Clifford torus

The big picture

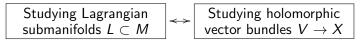
Approach 2: construct cohomological invariants of symplectic mfds

	M closed	<i>M</i> open or with ∂M
"closed strings"	$HF^*(H) \cong QH^*(M)$	$SH^*(M)$
	Floer cohomology	Symplectic cohomology
"open strings"	$HF^*(L_1,L_2)$	$HW^*(L_1,L_2)$
	Lagrangian Floer c.	Wrapped Floer c.

Fukaya category: loosely, package all Lagrangians $L \subset M$ up into a category, using $HF^*(L_1, L_2)$ as morphism spaces.

Lots of algebraic structure: $HF^*(L_1, L_2)$ are $QH^*(M)$ -modules.

Mirror symmetry conjecture (Kontsevich '94): There are mirror pairs, (M, ω) symplectic manifold and (X, J) complex variety,

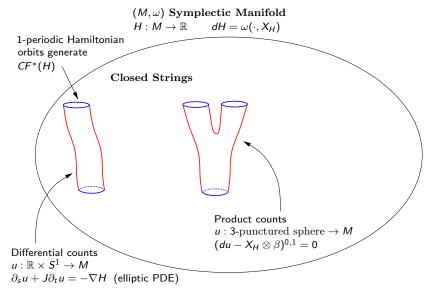


Fukaya category $\mathcal{F}(M)$ of M

Category of Coherent Sheaves on X

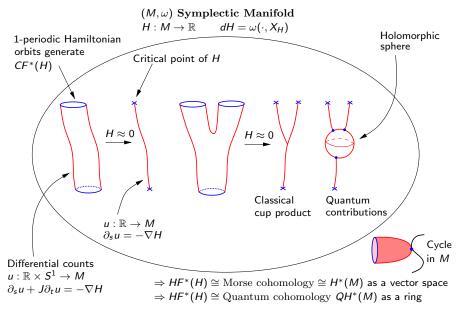
Often $SH^*(M) \cong HH_*(wrapped \mathcal{F}(M)) \cong HH_*(D^bCoh(X)).$

What is Floer cohomology?



Floer cohomology is formally the Morse cohomology of an action functional on the free loop space of M.

What is Floer cohomology?

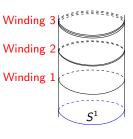


▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙

The choice of H

Floer '87: Closed $M \Rightarrow H$ does not matter: $HF^*(H) \cong QH^*(M)$. Example: $QH^*(\mathbb{P}^m) = \Lambda[\omega]/(\omega^{1+m} - t)$, where $\Lambda = \mathbb{Z}((t))$.

For non-compact (and convex) M: growth of H matters Example: T^*S^1 : can ensure Hamiltonian flow = geodesic flow

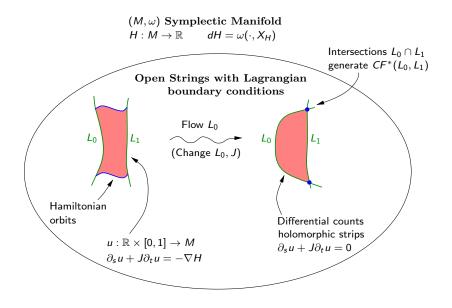


Increase slope of H at $\infty \Rightarrow$ new 1-periodic geodesics. Symplectic cohomology: $SH^*(T^*S^1) = \varinjlim HF^*(H) = \bigoplus_{\mathbb{Z}} H^*(S^1) \cong H_*(\mathcal{L}S^1)$ Viterbo '94: $SH^*(T^*N; \mathbb{Z}/2) \cong H_{n-*}(\mathcal{L}N; \mathbb{Z}/2)$ (Free loop space: $\mathcal{L}N = C^{\infty}(S^1, N)$) Also proved by Abbondandolo-Schwarz, and Salamon-Weber.

In general: there is a map $QH^*(M) \to SH^*(M)$, however $SH^*(M)$ is usually zero or infinite dimensional.

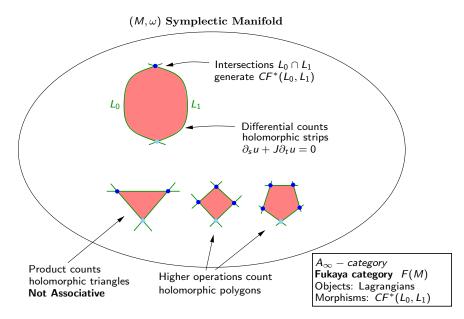
If $SH^*(M) \neq 0$ you usually don't stand a chance at calculating it.

What is the Fukaya category?



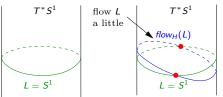
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is the Fukaya category?



Dependence on *H*:

Example: $L = \text{zero section } S^1 \subset T^*S^1$:



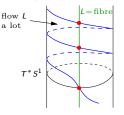
Lagrangian Floer cohomology: $HF^*(L,L) = \mathbb{Z} \oplus \mathbb{Z} \cong H_*(L)$

 L_0

For non-compact (and convex) M: growth of H matters

Wrapped Fukaya category W(M): Obj: also non-compact Lagrangians (Legendrian at ∞). Morphs: $CW^*(L_0, L_1)$ generated by Hamiltonian orbits

Example: $L = \text{fibre} \subset T^*S^1$:



Wrapped Floer cohomology: $HW^*(L, L) = \varinjlim_{HF^*}(\operatorname{flow}_H(L), L) = \bigoplus_{\mathbb{Z}} \mathbb{Z}$ $\cong H^*_*(\Omega S^1)$ (based loop space) Abbondandolo-Schwarz '05: for $L = \operatorname{fibre} \subset T^*N$,

$$HW^*(L,L;\mathbb{Z}/2)\cong H_{n-*}(\Omega N;\mathbb{Z}/2)$$

Relating the Floer cohomology to the Fukaya category

