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Introduction

The Chowla-Selberg formula is an identity, which computes certain elliptic
integrals in terms of special values of Euler’s Gamma function.

A (complete) elliptic integral (of the first kind) is an integral of the type

K (k) :=

∫ π/2

0

dθ√
1− k2 sin2(θ)

=

∫ 1

0

dt√
(1− t2)(1− k2t2)

where k is a real number. A related (but less interesting) integral is the
(complete elliptic) integral (of the second kind)

T (k) :=

∫ π/2

0

√
1− k2 sin2(θ)dθ =

∫ 1

0

√
(1− t2)(1− k2t2)dt
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Examples

• If k =
√

1− b2/a2 then 4aT (k) is

4a

∫ π/2

0

√
1− (1− b2/a2) sin2(θ) dθ = 4

∫ π/2

0

√
a2 sin2(x) + b2 sin2(x) dx

This is the arclength of the ellipse with (semi-) minor and major axes a
and b.

• If k = 1/
√

2, then

2
√

2K (k) = 2
√

2

∫ π/2

0

dθ√
1− 1

2 sin2(θ)
dθ

is the arclength of the Bernoulli lemniscate given in polar coordinates by

r2 = cos(2θ)
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Bernoulli Lemniscate
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The integral computing the length of the ellipse was first considered by
Wallis in 1655, who wrote down a power series development for it as he
was unable to compute it in elementary terms.

The lemniscate first appeared in 1694 in the work of the Bernoulli
brothers, as a solution to a problem posed by Leibniz in 1689 (the problem
of paracentric isochrones). It can be described as the locus

{z ∈ C | |z − 1/
√

2| · |z + 1/
√

2| = 1/2}

It is Jakob Bernoulli who dubbed the above curve above lemniscate, a

word with a Greek root meaning ”ribbon of wool”.
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The duplication formula

The change of variable u =
√

1− t2 gives the identity

K (1/
√

2) := 2
√

2

∫ 1

0

dt√
(1− t2)(1− t2/2)

= 4

∫ 1

0

dt√
1− t4

In this form, the lemniscatic integral was studied by G. Fagnano. In 1718,
he proved the intriguing identity∫ z

0

dt√
1− t4

= 2

∫ u

0

dt√
1− t4

valid for any two z , u ∈ [0, 1] such that z = 2u
√
1−u4

1+u4
.
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Figure: G. Fagnano (1682-1766) lived in Sinigaglia, where he was a magistrate.
Most of his work was in Euclidean geometry. He was elected to the Royal Society
in 1723. His tombstone bears the inscription Veritas Deo ∞ gloria.
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Note the analogy between this identity and the duplication formula
satisfied by the arcsin function (which computes the arclength of the
circle):

arcsin(z) =

∫ z

0

dt√
1− t2

= 2

∫ u

0

dt√
1− t2

= 2 arcsin(u) (∗)

valid if z = 2u
√

1− u2 and u ≤ 1/
√

2.

In both cases, z and u are related by a polynomial relation.

This theme was picked up by Euler, who was sent a copy of Fagnano
complete works in 1751.

This led to Euler’s addition formula for elliptic integrals of the first kind,
which in particular generalises Fagnano’s identity to any k ∈ (0, 1).
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The theory of elliptic functions

Legendre continued the study of elliptic integrals in his treatises Exercices
de calcul intégral (published from 1811 to 1819) and Traité des fonctions
elliptiques et des intégrales Euleriennes (published from 1825 to 1828).

Abel also turned to the study of elliptic integrals around 1827 and he was
the first one to consider the inverse sn(z) of the function

z 7→
∫ z

0

dt√
(1− t2)(1− k2t2)

.

This inverse – the elliptic sin – turns out to be meromorphic on the
complex plane, and it is doubly periodic if k 6= 0. It satisfies the
differential equation(d sn(z)

dz

)2
= (1− sn(z)2)(1− k2sn(z)2).

Jacobi studied these functions in depth in 1829 in his treatise Fundamenta
nova theoriae functionum ellipticarum and a different presentation of the
theory was given by Weierstrass in the 1850s.
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The upshot of this theory is that

• The elliptic integral K (k) is associated with the algebraic curve
y2 = (1− x2)(1− k2x2).

• If k ∈ (0, 1) this (projectivised) curve can be identified via the elliptic sin
and its derivative with quotients C/Λ, where Λ := [4K (k), 2iK (

√
1− k2)]

is a lattice.

• For k = 0 (resp. k = 1) the elliptic sin reduces to the trigonometric
(resp. hyperbolic) sin function.

• The duplication formula proved by Fagnano and generalised by Euler is
the algebraic translation of the additive group law of C/Λ on the curve
y2 = (1− x2)(1− k2x2).
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Figure: Jacobi’s treatise on elliptic functions is still in use now. Although it is the
theory of Weierstrass which is now taught in most undergraduate courses, the
theory of Jacobi is better suited for numerical computations.
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The evaluation of elliptic integrals

A. M. Legendre seems to have been the first one to attempt to relate the
elliptic integrals K (k) to other known integrals for some specific values of
k .

In the treatises mentioned above, he described in particular the following
computation for the length of the lemniscate:

1

4
K (1/

√
2) =

∫ 1

0

dt√
1− t4

=
1

4

∫ 1

0

du

u3/4(1− u)1/2
=: β(1/4, 1/2)

=
Γ(1/4)Γ(1/2)

Γ(3/4)
=

Γ(1/4)2

4
√

2π

The 2nd equality arises from the change of variable t4 = u. The function

β(z1, z2) =

∫ 1

0
uz1−1(1− u)z2−1 du

is Euler’s beta integral.
12 / 33



The function β(z1, z2) satisfies the identity (due to Euler)

β(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)

where Γ(·) is Euler’s well-known Gamma function

Γ(z) :=

∫ ∞
0

tz−1e−t dt.
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The formula for the length of the lemniscate

1

4
K (1/

√
2) =

1

4

∫ 1

0

du

u3/4(1− u)1/2
=

Γ(1/4)2

4
√

2π

can be understood as an analogue of the identity

4K (0) = 4

∫ 1

0

dt√
1− t2

= 2π

computing the length of the circle.
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Legendre also provided an ingenious proof of the equalities

K (sin(
π

12
)) = K (

√
2−
√

3

2
) =

4
√

3
√
π

6

Γ(1/6)

Γ(2/3)
=

1

2 4
√

3
β(1/3, 1/2)

using Cauchy’s integral formula.

Until the late 19th century, the computations of Legendre were the only
available evaluations of special values of K (k).

Is there something specific about the values k = 1/
√

2 and k = sin( π12)?
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Complex Multiplication

We note that the lattice Λ1/
√
2 = [1, 2i ] associated with k = 1/

√
2 is

contained in the lattice Λ = Z[i ] = [1, i ] of the Gaussian integers.

Also, the lattice Λsin(π/12) = [1, 2i
√

3] associated with k = sin(π/12) has
the property that

4 · [1, 1

2
+ i

√
3

2
] ⊆ [1, 2i

√
3]

where [1, 12 + i
√
3
2 ] = [1, e2iπ/3] is the ring of integers of the field

Q(µ3) = Q(e2iπ/3).

In particular, both lattices are proportional to lattices invariant under
multiplication by certain complex numbers, namely i and e2iπ/3.

This implies that the corresponding elliptic curves C/Λ• have symmetries
different from the multiplication by n maps arising from the group
structure.

Elliptic curves with exotic symmetries are said to have complex
multiplication or CM for short.
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In Legendre’s computations, the fact that the elliptic curves have CM
plays a key role.

Also, in both computations, one first obtains a Euler beta function, before
the final evaluation via Gamma functions.

This suggests the following:

• There should be a formula for K (k) in terms of special values of the
Gamma function, whenever k is associated with a CM elliptic curve.

• It should be possible to obtain this formula by elementary manipulations,
leading to certain beta integrals first.

However, nobody seems to have suspected the existence of such a formula
(or noticed the existence of the supplementary symmetries) before the end
of the 19th century.
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The formula of M. Lerch

In his article Sur quelques formules relatives au nombre de classe (1897),
the Czech mathematician Matyas Lerch states the following general
formula, now known as the Chowla-Selberg formula.

Let d > 0 be a square free integer and suppose for simplicity that d − 3 is
divisible by 4. Suppose also for simplicity that the class group of Q(

√
−d)

is 1. Then we have

|η(
1 + i

√
d)

2
|4 =

1

2πd

d−1∏
j=1

Γ(
j

d
)(−d

j ) (∗)

where

η(z) = e iπz/12
∞∏
n=1

(1− e2niπz)

is the Dedekind η-function (where Im(z) > 0).
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Figure: Matyas Lerch (1860-1922) was a Czech mathematician who grew up in
Susice (Bohemia), studied in Germany and became a professor in Fribourg
(Switzerland) in 1896. His was mainly interested in Gauss’s theory of quadratic
forms. The Lerch zeta functions, which generalise the Riemann zeta function, are
named after him, and (amusingly) these functions can be used as an alternative
to the logarithm of the Gamma function in the derivation of the CS formula,
although he was apparently not aware of this.

19 / 33



The link with elliptic integrals is the following.

• If the elliptic curve y2 = (1− x2)(1− k2x2) is associated with a lattice
proportional to [1, (1 + i

√
d)/2] (= ring of integers of Q(

√
−d)), then k is

an algebraic number and we have

K (k)/K (
√

1− k2) ∈ Q(
√
−d).

• In that case, we have

K (k) = (algebraic number) · |η(
1 + i

√
d

2
)|2.

and thus

K (k) = (algebraic number) · 1√
2πd

d−1∏
j=1

Γ(
j

d
)(−d

j )/2
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The proof given by Lerch of (∗) is based on two ingredients:

(1) The Kronecker limit formula, which shows that the derivative L′(1) of

the Dirichlet L-function of Q(
√
−d) at 1 can be related to |η(1+i

√
d

2 )|.

(2) A formula of Kummer giving the Fourier development of the logarithm
of the Γ-function, which can be used to relate L′(1) to special values of
the Gamma function.

Note that apparently Lerch did not notice that |η(1+i
√
d

2 )| could be related
to an elliptic integral.

This was first seen by E. Landau in 1902 and made explicit by S. Chowla
and A. Selberg in 1949.
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Lerch’s version of the Chowla-Selberg formula

I02 PREMIÈRE PÀUTIE. 
de sorte que la formule de Kronecker s'écrira 

/ ,*N P' (~- ) n i . « "V i H(w,)H(w,) 

OÙ 
— // -H « i / ï 6 -H l|/S 

tat5.=: 1— , (i>fr= * 
2 C C 

Je vais prouver que la somme P/(—A) peut s'exprimer sous 
forme finie à l'aide de la transcendante gamma. Pour ce but 
j'emploie la formule de Kummer 

! i o g r ( # ) ^ i o g - ^ ~ ^ / # ^ 

1 Î=l 
( o < # < i ) , 

et la formule également connue 

<»> fe)--^-^)^ 
À = l 

qui a lieu pour les discriminants fondamentaux et pour un entier* 

positif m quelconque. En posant dans la formule (a) x = -r > multi-

pliant par (-7—) et faisant la somme pour h = 1, 2, •.., A — 1, on 

a d'abord 

ƒ - ≤ ' ƒ - ≤ . hö 
s m < 

2 ( T Í M é K 2 ( ç Í ) ' - » - - -
* * A.= i 

•(o^^»>2(:r)(Ì-i)-ÍTSr.S(çi)i 

&=1 À = i 
ƒ — ≤ * ƒ - i 

ÁnÀÚt 
sm —r-

ƒ 
Ä = ≤ ' ' ' ˇ=- l A = ≤ 

En faisant usage des équations identiques 

2 (rr) = °> 2 (̂ r)Iog sin x = °> 
h A 

le premier membre devient 

| (T ) '^ ( ï ) -<^^*>2 (T )r 
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MÉLANGES. 3o3 
et le second se transforme, à l'aide de la formule (Ô), en série 

^2(^)^r --« £-•<-»• 
»z=i 

En faisant usage de la formule ( i) on a, par conséquent, 

r A - i 

ç i » ( - A ) « 2 ( ^ ) , o « r ( ^ 
A = - i 

ou bien 
A~t 

(-4) p'(-A>=^-2(:^)^r(ï)-^(C-t-l0g:lK)a(-A)-
A~i 

L'équation ( i4) 
P ( _ A ) « 2 * Cl(-A) 

permet donc d'écrire 

<"> ^ * 0 + ' ° s — ; * T - _ > 2 X T M Ï ) -
h 5-5 i 

Grâce à cette relation, la formule (a3*) de Kronecker prend 
une forme plus simple 

<*> _ S t e ) - * ' ® - ' . . '»4l/¥H<»'>•<->] 
A sa i a, b,c 

íù>≤ = —- 6 ◊- „Y‰ _ ‹ -+-ˆ/‰\ 
ac ac V 

que nos méthodes permettent d'ailleurs d'obtenir plus direc-
tement. 

NOTE. 

La formule (6) nous fournit une nouvelle propriété du signe de 
Legendre, Pour l'obtenir, je multiplie les deux membres par e~~uxdx et 
j'intègre de zéro à l'infini; il vient 

Figure: The CS formula is stated at the end of Lerch’s paper. Lerch refers to an
article in the Mémoires de l’académie impériale de Prague for the proof. I could
not find this article, which was probably written in Czech.
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The period 1950-present time

S. Chowla and A. Selberg announced their formula (identical to Lerch’s) in
1949 and finally published a proof in 1967, in their paper On Epstein’s
zeta-function.

This formula is difficult to understand conceptually, because although it
computes a large class of elliptic integrals, the computation does not
involve any elementary manipulations (= variable change, integration by
parts, fundamental theorem of calculus) and in particular does not lead to
β-integrals.

A. Weil was the first one to attempt to approach the formula via
elementary manipulations. He provided a few pointers about this (but no
general proof) in his 1976 paper Sur les périodes des intégrales abéliennes.

In particular, he gave a proof of the CS formula for an elliptic curve with
CM by Q(

√
−7) by relating it to the so-called Klein curve, where

β-integrals can be obtained.

24 / 33



However, after a discussion with A. Weil, the Harvard mathematician B.
Gross, devised a completely new proof of the CS formula, which involved a
deformation argument.

His proof worked roughly as follows:

(1) construct a family of algebraic varieties, where one element of the
family is a self-product of a CM elliptic curve, and another element is a
piece of the Jacobian of a Fermat curve xn + yn = zz ; that this should be
possible follows from the Kronecker-Weber theorem;

(2) show that a type of elliptic integral exists for all the elements of the
family, and that these integrals are essentially constant in the family;

(3) compute the integral corresponding to the piece of the Jacobian of the
Fermat curve; this turns out be a β-integral and can be identified with the
right-hand side of the CS formula.
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Figure: Benedict Gross, an American mathematician who has been a professor at
Harvard since 1985, is mainly famous for his work with D. Zagier on the Birch
and Swinnerton-Dyer conjecture. 26 / 33



B. Gross’s proof is much closer to what A. Weil had in mind, but it still
did not provide a completely elementary approach to the CS formula.

What was still missing? After some work by P. Deligne in the early 1980s,
which was inspired by B. Gross’s work, it became clear that this new proof
suggested (but did not provide) the following solution.

(1) Any CM elliptic curve E has internal symmetries which look like some
of the internal symmetries of some Fermat curve xn + yn = zn, again by
the Kronecker-Weber theorem.

(2) Replacing the Fermat curve by its Jacobian Fn, there should be
subvarieties in the product E × Fn, which are compatible with the
symmetries on both sides. This would follow from a central conjecture in
algebraic geometry, the so-called Hodge conjecture.

(3) These subvarieties encode elementary operations relating the elliptic
integral on the first factor to the β-integrals on the second factor. So if
the Hodge conjecture holds in this situation, we would finally have an
elementary approach to the CS formula.
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Epilogue

However, to this day, nobody knows how to prove the Hodge conjecture in
this situation.

In fact, A. Weil proposed this as a challenge in the 1980s, and in a very
recent article, B. Gross worked out precisely what subvarieties in E × Fn
have to be exhibited.

B. Gross’s proof also suggests that if any algebraic variety has a finite
group of symmetries, then some integrals associated with it (the so-called
period integrals) should be given by β-integrals. This was formalised in the
Gross-Deligne conjecture.

A weak form of this statement was proven in 2004 by V. Maillot and the
speaker, using more advanced deformation-theoretic methods.
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Figure: Weil’s challenge in a specific situation. Extract of B. Gross’s article On
the periods of abelian varieties (2018).
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