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Abstract

We prove that the Adams-Riemann-Roch theorem in degree one (ie at the level of
the Picard group) can be lifted to an isomorphism of line bundles, compatibly with
base change.

1 Introduction

The aim of this text is to provide a proof of the following theorem.

Let B be a scheme.

Let Sline,B be the category whose objects are pairs (S,M), where S is a locally noetherian
B-scheme and where M is a line bundle (ie a locally free sheaf of rank one) on S. An
arrow (S ′,M ′) → (S,M) in Sline,B is a morphism of B-schemes φ : S ′ → S, together with
an isomorphism φ∗(M) ∼= M ′.

Let Srel,line,B be the category, whose objects are pairs (Y → S, L), where Y → S is a smooth
and locally projective morphism of B-schemes with geometrically connected fibres and
constant relative dimension, S is a locally noetherian B-scheme and L is a line bundle on
Y . An arrow (Y ′ → S ′, L′)→ (Y → S, L) in Srel,line,B is a cartesian diagram of B-schemes

Y ′
ρ //

��

Y

��
S ′ // S
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together with an isomorphism ρ∗(L) ∼= L′.

If (Y → S, L) is an object of Srel,line,B, we shall write dim(Y/S) for the dimension of some
(and hence any) geometric fibre of the morphism Y → S.

Recall that to say that Y → S is locally projective means that every point in S has an
open neighbourhood U , such that there is a factorisation of π|U into a closed U -immersion
YU → PNU followed by projection to U , for some N ≥ 0 which depends on U .

We let Srel,line,cf,B be the full subcategory of Srel,line,B, which consists of those pairs

(π : Y → S, L),

where L is cohomologically flat over S. Recall that to say that L is cohomologically flat
over S means that Riπ∗(L) is a locally free sheaf for all i ≥ 0.

If π : Y → S is a proper and flat morphism of locally noetherian schemes and F is a vector
bundle (ie a coherent locally free sheaf) on Y , we shall write λ(F ) := det(R•π∗(F )). Here
det(·) is the Knudsen-Mumford determinant of a perfect complex (note that R•π∗(F ) is a
perfect complex by the semicontinuity theorem because π is proper and flat). We shall
denote by Symk(F ) the k-th symmetric power of F and we shall write F∨ := Hom(F,OX)

for the dual of F . If M is a line bundle on Y and k ∈ Z, we define M⊗k := ⊗ki=1M if k ≥ 0

and M⊗k := ⊗−ki=1M
∨ if k < 0. As is costumary, we shall write ΩY/S = Ωπ for the sheaf of

differentials of π.

Note that the rule, which associates the line bundle

λ(L)⊗22 dim(Y/S)+2

with the object (Y → S, L) of Srel,line,B, naturally defines a functor from Srel,line,B to Sline,B.
We shall denote this functor LRR.

Similarly, the rule, which associates the line bundle

2 dim(Y/S)⊗
j=0

λ(L⊗2 ⊗ Symj(ΩY/S))⊗(−1)j
∑2 dim(Y/S)−j

i=0 (2 dim(Y/S)+1
i )

with the object (Y → S, L) of Srel,line,B, naturally defines a functor from Srel,line,B to Sline,B.
We shall denote this functor RRR.

Theorem 1.1. Suppose that B = SpecZ[1
2
]. Then the restrictions of the functors LRR and RRR

to Srel,line,cf,B are isomorphic.

In other words, it is possible to associate with any locally projective and smooth morphism of
locally noetherian Z[1

2
]-schemes Y → S and any line bundle L on Y , which is cohomologically
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flat over S, an isomorphism

λ(L)⊗22 dim(Y/S)+2 ∼=
2 dim(Y/S)⊗

j=0

λ(L⊗2 ⊗ Symj(ΩY/S))⊗(−1)j
∑2 dim(Y/S)−j

i=0 (2 dim(Y/S)+1
i ) (1)

compatibly with base change to any locally noetherian scheme.

Remark 1.2. (1) We conjecture that the assumption that L is cohomologically flat over
S is unnecessary. In other words, we conjecture that the functors LRR and RRR are
isomorphic if B = SpecZ[1

2
] (and not only their restrictions to Srel,line,cf,B). Proving this

boils down to a problem in the linear algebra of perfect complexes. See Remark 7.4 below
for details.

(2) Note if S is a scheme of characteristic 0 then the trivial line bundle OY is cohomologi-
cally flat over S by a theorem of Deligne (see [4, Th. 5.5]).

(3) It is actually plausible that LRR and RRR are isomorphic if B = SpecZ (this would
generalise conjecture (1) above in this remark). This is suggested by Proposition 1.3 be-
low and Deligne’s theorem [3, Th. 9.9 (3)]. See the discussion after Proposition 1.3.

(4) Our construction of the isomorphism I between the restrictions of the functors LRR

and RRR to Srel,line,cf,B depends on a slew of arbitrary combinatorial choices. These
choices are all contained in the proof of Lemma 4.1 below. One might conjecture that,
up to sign, the isomorphism I does not depend on these choices but proving this seems
to be a formidable task. Presumably it is possible to show that there is only one isomor-
phism I , up to sign, provided it satisfies some axiomatic conditions. It would be very
interesting to determine such conditions.

For example, suppose that dim(Y/S) = 1. We then get an isomorphism

λ(L)⊗16 ∼= λ(L⊗2)⊗7 ⊗ λ(L⊗2 ⊗ ΩY/S)⊗(−4) ⊗ λ(L⊗2 ⊗ Ω⊗2
Y/S) (2)

In particular, writing λk := λ(Ω⊗kY/S) for any k ≥ 0, (2) gives

λ⊗16
k
∼= λ⊗7

2k ⊗ λ
⊗(−4)
2k+1 ⊗ λ2k+2.

By Grothendieck duality, there is a canonical isomorphism λ0
∼= λ1. Thus, setting k = 0

we obtain an isomorphism
λ⊗13

1
∼= λ2. (3)

In [26] Mumford also constructs such an isomorphism and also proves that it is invariant
under base change (and he does not need the assumption that 2 is invertible on S). Our
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isomorphism presumably coincides with his up to a universal constant of the form ±2k

(k ∈ Z) but we did not verify this.

Suppose that π : Y → S is an elliptic scheme (ie an abelian scheme of relative dimension
1) over S. We then have a canonical isomorphism Ω⊗kY/S

∼= π∗(π∗(Ω
⊗k
Y/S)) for any k ∈ Z.

Furthermore, we have
R1π∗(OY/S) ∼= π∗(ΩY/S)∨

by Grothendieck duality. Using the projection formula, we can thus compute

λk = det((OS−R1π∗(OY/S))⊗π∗(ΩY/S)⊗k) = det(π∗(ΩY/S)⊗k−π∗(ΩY/S)⊗(k−1)) ∼= π∗(ΩY/S)

for all k ≥ 0. In particular, we are provided with an isomorphism (π∗(ΩY/S))⊗12 ∼= OS .
Again, possibly up to multiplication by a term of the form±2k (k ∈ Z), this is presumably
the classical discriminant modular form (but we did not verify this). This suggests that
the isomorphism in Theorem 1.1 is in some sense optimal.

When Y is an elliptic scheme over S and L is a non trivial torsion line bundle, whose
order is prime to the characteristic of all the residue fields of S, then R•π∗(L) = 0. In
that case, both sides of (1) are canonically isomorphic to the trivial line bundle. Thus
the isomorphism (1) provides an element of Γ(S,O∗S), in other words an elliptic unit. It
seems likely that one can construct all the Siegel units in this way but to prove this, one
will have probably have to wait for a metric version of Theorem 1.1. See below for a
discussion.

Returning to the general situation, recall that if S is of characteristic 0, the trivial sheaf
OY is cohomologically flat over S by a result of Deligne. Let us suppose that S is of
characteristic 0 and dim(Y/S) = 2. We then get the isomorphism

λ(OY )⊗64 ∼= λ(OY )⊗31⊗λ(ΩY/S)⊗(−26)⊗λ(Sym2(ΩY/S))⊗16⊗λ(Sym3(ΩY/S))⊗(−6)⊗λ(Sym4(ΩY/S)).

from Theorem 1.1. This is equivalent to

λ(OY )⊗33 ⊗ λ(ΩY/S)⊗26 ⊗ λ(Sym3(ΩY/S))⊗6 ∼= λ(Sym2(ΩY/S))⊗16 ⊗ λ(Sym4(ΩY/S)).

and there are similar identities in any relative dimension.

Here is our method of proof. We first give a proof of the geometric fixed formula for an
involution, which avoids any reference to K-theory and uses only the geometric prop-
erties of quotients. This is Theorem 6.1, which is of independent interest. The idea to
use quotients to prove the fixed point formula is due to Thomason (see [30]) and most
probably many earlier authors but our proof relies on the crucial fact that when the fixed
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point scheme is a Cartier divisor then the quotient morphism is flat. This seems to be a
well known fact (J. Oesterlé kindly explained the proof to me many years ago) but we
could find no proof of it in the literature in the required generality and we provide one
in Proposition 2.5 (1). Our proof of the geometric fixed point formula is sufficiently ex-
plicit to provide isomorphisms at every step (rather than equalities in the Picard group)
but ends with an error term, which turns out to be a line bundle arising from a higher
dimensional version of the Deligne pairing. This pairing was studied by Ducrot in [7]
and we use his results to show that this line bundle is canonically trivial, compatibly
with any base change to a locally noetherian scheme. We then apply this formula to
the space Y ×S Y with the involution swapping the factors. Nori (see [27]) was appar-
ently the first one to notice that the fixed point formula applied to this situation recovers
the Adams-Riemann-Roch for the Adams operation ψ2 and using our method we thus
recover a refinement of this formula (in degree one). This is formula (1).

In [10] Eriksson gives a proof of a functorial refinement of the Adams-Riemann-Roch
formula (see also [9] for an announcement), which can also be used to prove a weaker
version of Theorem 1.1. It is weaker in the sense that the provided isomorphism, al-
though invariant under base change, will include a 2∞-torsion line bundle, which is un-
determined and also because the resulting linear combination in the symmetric powers
of ΩY/S will a priori depend on the dimension of the total space.

Similarly, using Franke’s work in [11], it is possible to prove a weak version of Theorem
1.1, where an undetermined (not necessarily 2∞) torsion line bundle will be included (but
on the other hand the linear combination in the symmetric powers of ΩY/S should be the
same as ours and should thus not depend on the dimension of the total space).

One interesting aspect of our result is thus that it removes this indeterminacy. However,
the main interest of the present text is the method of proof, which is elementary (whereas
Franke’s and Eriksson’s approaches require a vast categorical apparatus and use higher
K-theory, resp. the homotopy theory of schemes). Our isomorphism is constructed very
explicitly, making it in principle possible to compute its norm, when both sides are en-
dowed with metrics (eg Quillen metrics). We hope to return to this question in a later
article.

Note that other constructions of the higher dimensional Deligne pairing were given in
[31] and [8] but they cannot be used in our context, because they are not described in
terms of determinants of cohomology and therefore cannot easily be compared with
our error term. In [1], a canonical isomorphism between Ducrot’s pairing and Zhang’s
pairing is announced (in a restricted setting), which could be used to bypass the use of
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Ducrot’s pairing in certain situations. However, the details of the proof of Theorem 1 of
[1] have not appeared yet (thank you to one of the referees for pointing this out). In [5]
Ducrot’s pairing is also considered.

Finally, note that in the situation where dim(Y/S) = 1, Deligne also constructed an iso-
morphism similar to (1) (see [3]). Deligne’s work was in fact the initial motivation for
the work of Franke and Eriksson. Under the assumptions of Theorem 1.1 and when
dim(Y/S) = 1, Deligne’s theorem [3, Th. 9.9 (3)] provides in particular an isomorphism

λ(L)⊗18 ∼= λ(OY )18 ⊗ λ(L⊗2 ⊗ Ω∨Y/S)⊗6 ⊗ λ(L⊗ Ω∨Y/S)⊗(−6), (4)

which is invariant under any base change to a locally noetherian scheme (note that
Deligne’s theorem is expressed in terms of the Deligne pairing; Deligne’s pairing can
be expressed using the determinant of cohomology - see section 4 below - and (4) is the
expression one obtains when using only the determinant of cohomology). This can be
seen as a variant of the isomorphism (1) when dim(Y/S) = 1 and Deligne shows that it
holds even if 2 is not invertible on S and L is not cohomologically flat over S.

Using Theorem 1.1 for dim(Y/S) = 1, we prove

Proposition 1.3. Under the assumptions of Theorem 1.1 and when dim(Y/S) = 1, there is an
isomorphism(

λ(L)⊗18
)⊗8 ∼=

(
λ(OY )18 ⊗ λ(L⊗2 ⊗ Ω∨Y/S)⊗6 ⊗ λ(L⊗ Ω∨Y/S)⊗(−6)

)⊗8

, (5)

which is invariant under any base change to a locally noetherian scheme.

In other words, we give a new proof of Deligne’s theorem, up to a torsion line bundle
of order 8 (and under the running assumption that 2 is invertible on S and that L is
cohomologically flat over S). The proof of Proposition 1.3 actually also shows that one
can deduce Theorem 1.1 for dim(Y/S) = 1 from Deligne’s theorem, up to a torsion line
bundle of order 9. Thus, when dim(Y/S) = 1 and under the running assumption that 2

is invertible on S and that L is cohomologically flat over S, Theorem 1.1 and Deligne’s
theorem are equivalent up to torsion.

The structure of the article is as follows. In section 2 we recall various facts about quo-
tients of schemes by finite groups and we prove various supplementary properties of
these in the situation where the group is isomorphic to a diagonalisable group scheme,
whose order is prime and invertible in the base scheme and the fixed point scheme is a
Cartier divisor. In section 4 we recall the part of Ducrot’s work that is relevant to this text.
In section 6, we give a proof of a local refinement of the fixed formula for an involution,
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in the situation where the fixed scheme is regularly immersed. In section 7, we apply this
formula to the fibre product of a relative scheme by itself and we prove Theorem 1.1. In
the final section 8 we give the proof of Proposition 1.3. Note that the core of the proof
of Theorem 1.1 amounts to a detailed analysis of the geometry of the blow-up along the
diagonal of the relative fibre product of X with itself. This is intriguing, since this partic-
ular space was believed to be relevant to a possible solution of the standard conjectures
in the early days of scheme theory. It would be interesting to relate our construction to
statements about algebraic cycles.

Notation. We shall say that a morphism h : Z → T of schemes is strongly projective if
there is a factorisation of h into a closed T -immersion Z → PNT followed by projection to
T , for some N ≥ 0. The notion of locally projective morphism is defined at the beginning
of the introduction. If Z is a locally noetherian scheme, we write Coh(Z) for the category
of coherent sheaves on Z. If F is an OZ-module on a scheme Z and l ≥ 0, we shall
write F⊗l :=

⊗l
k=1 F . If Z is a scheme, we write D(Z) (resp. Db(Z)) for the derived

category of complexes ofOZ-modules (resp. the derived category of bounded complexes
of OZ-modules) on Z.

Acknowledgments. We are grateful to Jean-Michel Bismut and Vincent Maillot for inter-
esting discussions around this article. Warm thanks to the referees, whose very detailed
reading (to say the least!) led to many improvements. This text would be much less clear
without their input.

2 The geometry of quotients by finite groups

Let G be a finite group.

A scheme T together with a group homomorphism G → Aut(T ) will be called a G-
equivariant scheme, or an equivariant scheme for short (if there is no ambiguity). A
G-equivariant morphism of G-equivariant schemes is a morphism commuting with the
action of G on source and target. We shall say that the action of G on the G-equivariant
scheme T is trivial if the image of G→ Aut(T ) is the identity morphism.

A G-equivariant sheaf (or equivariant sheaf for short) F on a G-equivariant scheme is a
quasi-coherent sheaf F together with a morphism of sheaves αg = αF,g : F → g∗(F ) for
every g ∈ G, such that g∗(αh) ◦ αg = αg◦h for any g, h ∈ G and αIdG

= IdF .

Suppose that T is aG-equivariant scheme with trivial action and that F is aG-equivariant
sheaf on T . The G-equivariant structure on F then amounts to a homomorphism of
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groups G→ Aut(F ). We then write FG for the quasi-coherent sheaf on T such that

FG(U) = F (U)G

for every open set U ⊆ T . Here F (U)G is the subgroup of elements of F (U), which are
fixed under the action of G.

Suppose that φ : T → Z is a morphism of schemes, where T is locally noetherian. Assume
also that T carries G-equivariant structure and that φ ◦ g = φ for all g ∈ G. Let F be
a G-equivariant sheaf. Then the sheaf φ∗(F ) is also quasi-coherent. Furthermore, if Z
is viewed as a G-equivariant scheme carrying the trivial G-equivariant structure, then
φ∗(F ) carries the G-equivariant structure given for any g ∈ G by the composition of
arrows

φ∗(F )
∼−→φ∗(g∗(F ))

∼−→φ∗(F )

arising from the equivariant structure on F and the identity φ ◦ g = φ.

Suppose that φ : T → Z is a morphism of schemes, that T carries a G-equivariant struc-
ture and that φ ◦ g = φ for all g ∈ G. View Z as a G-equivariant scheme endowed with
the trivial G-equivariant structure. Let F be a G-equivariant sheaf on Z. Then the quasi-
coherent sheaf φ∗(F ) carries a natural G-equivariant structure, given for any g ∈ G by
the composition of arrows

φ∗(F )
φ∗(g∗)
∼−→ φ∗(F )

∼−→ g−1,∗(φ∗(F )) = g∗(φ
∗(F ))

where the first arrow comes by functoriality from the arrow g∗(F ) → g∗(F ), the second
arrow from the identity φ ◦ g = φ and the third arrow from the identification of functors
g−1,∗ = g∗.

If x ∈ X , then we define Gd(x) to be the stabiliser in G of x viewed as a subset of X .
This group is called the decomposition group of x. The group Gd(x) naturally acts on the
residue field κ(x) of x. The kernel of the homomorphism Gd(x)→ Aut(κ(x)) is called the
inertia group Gi(x) of x.

Suppose that X is a G-equivariant scheme. A (categorical) quotient X/G of X by G

(if it exists) is a G-equivariant scheme X/G together with an G-equivariant morphism
q : X → X/G, with the following properties:

- X/G carries the trivial action;

- if X ′ is a scheme with a trivial G-action and q′ : X → X ′ is a morphism then there is a
unique morphism h : X/G→ X ′, such that h ◦ q = q′.

These properties clearly determine X/G up to unique isomorphism.
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We recall the following

Proposition 2.1. Let X be a G-equivariant scheme. Suppose that the orbit of every point in X is
contained in an affine open subscheme. Then the quotient X/G of X by G exists and

(1) The canonical morphism q : X → X/G is integral and surjective.

(2) The natural morphism of sheavesOX/G → q∗(OX) factors through (q∗(OX))G and induces
an isomorphism OX/G → (q∗(OX))G.

(3) The underlying set of X/G is the quotient of the set X by the action of G and the topology
of X/G is the quotient topology.

(4) if Z → X/G is a flat morphism then the natural morphism (Z ×X/G X)/G → Z is an
isomorphism.

(5) Consider the X/G-morphism φ : G ×X → X ×X/G X given in set-theoretic notation by
the formula (g, x) 7→ (g(x), x). Suppose that φ is an isomorphism. Then

- q is étale;

- if M is a G-equivariant locally free sheaf of finite rank on X then the natural morphism
q∗(q∗M)G →M is an isomorphism.

(6) If Gi(x) = 0 then OX,x is étale over OX/G,q(x).

Proof. See [15, chap. V, §1 and §2].

Corollary 2.2. Suppose that there is a morphism of finite type f : X → S, where S is a locally
noetherian scheme. Assume that the action of G on X factors through AutS(X) and that the orbit
of every point in X is contained in an affine open subscheme. Then the quotient X/G of X by G
exists and the morphism q : X → X/G is finite.

Corollary 2.2 follows from the fact that under the listed assumptions, the quotient mor-
phism is integral and of finite type and hence finite.

Suppose that X is a G-equivariant scheme. Suppose given a morphism X → S and as-
sume that the action ofG onX factors through AutS(X). We say thatX is aG-equivariant
S-scheme. The fixed schemeXG (if it exists) is a closed subscheme ofX , which represents
the functor on S-schemes

T 7→ X(T )G.
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Note the following link with decomposition and inertia groups: if x ∈ X and

Gd(x) = Gi(x) = G

then x ∈ XG. This simply follows from the fact that the morphism Specκ(x)→ X then
lies in X(Specκ(x))G.

Proposition 2.3. Suppose that X is separated over S. Then XG exists.

Proof. For each g ∈ G, let Γg be the graph of g in X ×S X . Let ∆ = ΓIdX
∼= X be the

diagonal ofX over S. From the separatedness assumption, each Γg is a closed subscheme
of X×SX . The closed subscheme XG = ∩g∈GΓg is naturally a closed subscheme of ∆ and
can thus be viewed as a closed subscheme of X . It follows from the definitions that XG

is the fixed scheme of G.

If XG exists, we shall write NXG/X for the conormal sheaf of XG in X . Recall that if I is
the ideal sheaf of XG in X , we have by definition NXG/X = I/I2. The sheaf I/I2 has
a natural structure of OXG

-module. The conormal sheaf NXG/X is thus a quasi-coherent
sheaf on XG and it carries a natural action of G.

Suppose now that G is a finite cyclic group of order n. Let us write G̃ for the group
scheme over SpecZ corresponding toG. Note that we then have a canonical identification
G̃(SpecZ) ∼= G. Suppose now that G̃S

∼= µn,S , where µn = SpecZ[t]/(1 − tn) is the
diagonalisable group scheme associated with the cyclic group Z/nZ. Note that there
exists an isomorphism G̃S

∼= µn,S is iff n is invertible in S and the polynomial xn−1 splits
into linear factors in Γ(S,OS). We fix an isomorphism GS

∼= µn,S .

Note the following two facts.

Suppose in this paragraph only that X = SpecR is affine. Then the action of G on X is
given by a ring grading R ∼= ⊕k∈Z/nZRk, such that the morphism X → S factors through
SpecR0. Furthermore, the ideal of XG is then R ·R6=0, where

R6=0 := ⊕k∈Z/nZ, k 6=0Rk.

See [30, proof of Prop. 3.1] (this is also a good exercise for the reader).

Suppose that the action of G on X is trivial. Let F be a G-equivariant sheaf on X . The
G-equivariant structure on F is then given by a Z/nZ-grading of OX-modules

F ∼= ⊕k∈Z/nZFk.

Let g ∈ G. By the above, the element g gives an element of G̃(SpecZ) and hence after
base change an element z ∈ G(S). Applying the isomorphism GS

∼= µn,S we obtain an
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element z ∈ µn(S). The action of g on F is then by construction given by the formula

g((f0, f1, . . . , fn−1)) = (1 · f0, z · f1, . . . , z
n−1 · fn−1),

where fk is a local section of Fk. In particular, we have F0 = FG.

We record the following

Lemma 2.4. Let X be an G-equivariant S-scheme. Suppose that the orbit of every point in X is
contained in an affine open subscheme. Assume that G is a finite cyclic group of order n and that
GS
∼= µn,S . If Z → X/G is a morphism then the natural morphism (Z ×X/G X)/G → Z is an

isomorphism.

In other words, when GS
∼= µn,S , the quotient construction commutes with any base

change on X/G (not only flat base changes as in Proposition 2.1 (4)).

Proof. By Proposition 2.1 (4), we may assume that Z and X are affine, say Z = SpecB

and X = SpecA. In this case, we have to prove that the morphism of A0-modules

B → (B ⊗A0 A)0

given by the formula b 7→ b⊗ 1 is an isomorphism. We have

B ⊗A0 A = B ⊗A0

⊕
k∈Z/nZ

Ak =
⊕

k∈Z/nZ

B ⊗A0 Ak

so that (B ⊗A0 A)0 = B ⊗A0 A0 = B, proving the assertion.

The next proposition collects the main results of this section.

Proposition 2.5. Suppose that X is a G-equivariant S-scheme such that S is locally noetherian
and the morphism X → S is separated and of finite type. Assume that the orbit of every point
in X is contained in an affine open subscheme. Finally, suppose that G is a finite cyclic group of
order n and that GS

∼= µn,S . Let ι : XG → X be the fixed point scheme of X . Then:

(1) Suppose that n is prime and that XG is a (possibly empty) Cartier divisor. Then q is flat.

(2) Suppose that XG is a Cartier divisor. Then (NXG/X)0 = 0.

(3) The morphism q ◦ ι : XG → X/G is a closed immersion and we have the set-theoretic
equality q−1(q(XG)) = XG. Thus we have a natural isomorphism (X/G)\q(XG) ∼=
(X\XG)/G.
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(4) Let U = X\XG (so that U/G = (X/G)\q(XG) by (3)). Consider the U/G-morphism

φ : G× U → U ×U/G U

given in set-theoretic notation by the formula (g, u) 7→ (g(u), u). If n is prime then φ is an
isomorphism.

(5) LetM be aG-equivariant locally free sheaf of finite rank onX . Suppose that ι∗M carries the
trivial action, that q is flat and that n is prime. Then the natural morphism q∗(q∗M)0 →M

is an isomorphism.

(6) If X → S is smooth and XG → S is flat then XG → S is smooth.

(7) If X → S is smooth, XG is a Cartier divisor in X and XG → S is flat then X/G → S is
also smooth.

Remark 2.6. A variant (for algebraic varieties) of (5) is proven in [6, Th. 2.3]. See also
[20, Lemma 4.8] and [21, Proposition (3.3.4.i)], where most of the above proposition is
proven in the restricted context of algebraic varieties.

Proof. We begin with (1). We may suppose thatX = Spec(R) is affine. ThenX/G = Spec(R0)

by Proposition 2.1 (2). To show that R is flat over R0, it is sufficient to show that for all
p ∈ Spec(R), the ring Rp is flat over the ring R0,p∩R0 . If p 6⊇ R · R6=0, then p 6∈ XG by the
previous discussion. Thus Gi(x) 6= G and thus Gi(x) = 0 since n is prime; thus Rp is flat
over the ring R0,p∩R0 by Proposition 2.1 (6). Thus we may assume that p ⊇ R · R6=0. The
prime ideal p is then graded by construction (if r ∈ p, write r = r0 + · · · + rn−1, where
the ri are homogenous for the grading; by assumption r1, . . . , rn−1 ∈ p; thus r0 ∈ p as
well). The ring Rp is thus naturally a Z/nZ-graded local ring. Now notice that we have a
natural identification

R0,p∩R0 = (Rp)0

(use the fact that R\p ⊆ R0). Also by construction the ideal generated by the image of
the ideal R · R6=0 in Rp is Rp · Rp, 6=0. Thus the assumption that R · R6=0 is a Cartier divisor
implies that there exists t ∈ Rp, which is not a zero divisor, such that (t) = Rp ·Rp, 6=0.

Thus we may assume without restriction of generality that R is a local ring and that
R ·R6=0 is generated by an element t, which is not a zero divisor.

We claim that t can be taken to be homogenous of degree 6= 0 (mod n). To verify the
claim, let

R ·R6=0 = (a1, . . . , ak)
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where the ai ∈ R6=0 are homogenous and of degree 6= 0 (mod n) (recall that R is noethe-
rian). We take k minimal. We may assume that k > 1, otherwise there is nothing to prove.
Then for some family of xi 6= 0, we have

x1a1 + · · ·+ xkak = t

Let b1 ∈ R be such that a1 = t · b1. If b1 is a unit then R · R6=0 = (a1) contradicting the
assumption that k > 1. Thus b1 is not a unit and thus 1 − x1b1 is a unit since R is local.
We compute

t =
x2

1− x1b1

a2 + · · ·+ xk
1− x1b1

ak

contradicting minimality again. Thus k = 1 and the claim is verified.

So we may suppose that (t) = R ·R6=0 where t is homogenous of degree 6= 0 (mod n).

I am grateful to one of the referees for suggesting the argument below.

sub-lemma 2.7. For any i ∈ Z/nZ, we have ti ·R0 = Ri deg(t).

Proof. (of the sublemma) The proof is by induction on i, where i is viewed as an element
of the ordered set {0, . . . n − 1}. The identity of course holds if i = 0. We suppose that
tj · R0 = Rj deg(t) for all j < i. Note first that we certainly have ti · R0 ⊆ Ri·deg(t). To
conclude the proof, we need to show that Ri·deg(t) ⊆ ti · R0. To show this, let e ∈ Ri·deg(t).
By assumption e can be written in the form e = t · r, with r ∈ R. For k ∈ {0, . . . , n − 1},
let rk be the homogenous component of degree k of r. We have

e = t · r = t · r0 + · · ·+ t · rn−1

so that t · r(i−1)·deg(t) = t · r = e. By induction, we have r(i−1)·deg(t) ∈ ti−1R0 so that
e ∈ t · (ti−1R0) = ti ·R0, as required.

Now since n is prime and deg(t) 6= 0 (mod n), every element of Z/nZ is a multiple of
deg(t). We can thus conclude from the sublemma that R is a direct sum of copies of R0 so
in particular R is flat over R0.

To prove (2), localising at points of XG, we may still assume that X = Spec(R), where R
is a local ring and R · R 6=0 is generated by a single element t, which is not a zero divisor.
In the proof of (1), it was shown that we may suppose that t is homogenous of degree
6= 0. The sheaf NXG/X corresponds to the R-module (t)/(t2) and thus (NXG/X)0 = 0, since
t is of degree 6= 0 (mod n).

Proof of (3). We may suppose that X = SpecR is affine. The first statement now cor-
responds to the statement that R0 → R/(R · R6=0) is surjective. This follows from the
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definitions. The fact that q−1(q(XG)) = XG follows from Proposition 2.1 (3). The third
assertion follows from Proposition 2.1 (4).

Proof of (4). Note that for all x ∈ X\XG, we have Gi(x) 6= G and thus Gi(x) = 0, since
n is prime. By Proposition 2.1 (6) this implies that q is étale, in particular flat. Hence the
morphism U → U/G is finite and flat.

We first compute its degree. For this, let u0 ∈ U/G and let H be the spectrum of the strict
henselisation of OU/G,u0 . Then H ∼= (U ×U/GH)/G by Proposition 2.1 (4) and the fact that
H is flat overOU/G,u0 (see [12, I, §1, 1.20] for this). We only have to compute the degree of
U×U/GH overH . Now note that U×U/GH is a disjoint union

∐
i∈I Hi of copies ofH , since

H is strictly henselian and U ×U/G H → H is étale. Furthermore, the group G permutes
theHi and also the closed points of theHi. Hence the degree is the cardinality of the orbit
of a closed point P ∈ Hi0 (i0 arbitrary). Since Gi(P ) = Gd(P ), we must have Gd(P ) = 0,
since n is prime and (U ×U/GH)G is empty. Hence the orbit of P has n elements and thus
the degree of U → U/G is n.

Now consider the morphism φ : G × U → U ×U/G U . Let T be a connected scheme. The
map G(T )×U(T )→ U(T )×(U/G)(T )U(T ) is injective. To see this note that otherwise there
is e ∈ U(T ) and g ∈ G(T ) such that g 6= 0 and g(e) = e; since G(T ) is of prime order this
means that e ∈ U(T )G and thus e ∈ UG(T ), which is not possible, since UG is empty. Since
T was arbitrary, the morphism φ is a monomorphism of schemes. Since it is also proper
(becauseG×U and U×U/GU are proper over U/G), it is a closed immersion (see [14, IV.3,
8.11.5] for this). Since both G× U and U ×U/G U are flat and finite of the same rank over
U by the previous paragraph, this implies that φ is an isomorphism.

Proof of (5). Consider the natural morphism

α : q∗(q∗M)0 →M

The restriction αX\XG
is an isomorphism by (4) and Proposition 2.1 (5). Now both sides

are locally free of finite rank by (1). Thus, by Nakayama’s lemma, it is sufficient to show
that ακ(x) is surjective for x ∈ XG. In particular, it is sufficient to show that the restric-
tion ι∗(α) of α to XG is an isomorphism. Now note that since q is an affine morphism,
the natural adjunction morphism α : q∗(q∗M) → M is a surjection and thus we have a
surjection

ι∗(q∗(q∗M))→ ι∗(M)

restricting α. Hence we have a surjection

ι∗(q∗((q∗M)0))→ ι∗(M)0
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and since ι∗(M)0 = ι∗(M) by assumption we get a surjection

ι∗(q∗((q∗M)0))→ ι∗(M)

which must be an isomorphism, since both sides are locally free of the same rank.

Proof of (6). We need to check that the geometric fibres X/G → S are regular. So let
Spec k → S be a geometric point. By assumption, Xk is regular and by [30, Prop. 3.1] ,
(Xk)G = (XG)k is then also regular.

Proof of (7). Since q is faithfully flat, we see that X/G→ S is also flat. To see that X/G→
S is smooth, we need to check that the geometric fibres X/G→ S are regular. Now since
XG is flat over S and a Cartier divisor, we see that for any base change T → S, (XT )G → T

is also flat and a Cartier divisor. Furthermore, by Lemma 2.4, for any base change T → S,
we have (X/G)T ∼= (XT )/G. So let Spec k → S be a geometric point. By assumption Xk

is regular and since (Xk)G is a Cartier divisor, we see that (Xk)/G = (X/G)k is regular,
since qk is faithfully flat by (1) and Proposition 2.1 (1).

3 Free algebras

This section is mainly here to fix some notation that will be needed in section 4. Let I be
a finite set. We shall write 〈I〉 for the free monoid generated by the set I . See for instance
[24, chap. I] for this. Recall that the set 〈I〉 consists of all the finite words written in the
alphabet I . A finite word is a map {1, . . . , n} → I , where n is a positive integer. The
integer n is called the length of the word. If

w1 : {1, . . . , n1} → I

and
w2 : {1, . . . , n2} → I

are two finite words, their concatenation w1w2 is by definition the map

w1w2 : {1, . . . , n1 + n2} → I,

such that w1w2(k) = w1(k) if k ≤ n1 and w1w2(k) = w2(k − n1) if k > n1. The monoid
structure of 〈I〉 is given by the concatenation of finite words. We shall write Z〈I〉 for the
free Z-module with basis the elements of 〈I〉. If I = {X1, . . . , Xn} then we shall use the
shorthand

Z{X1, . . . Xn} := Z〈{X1, . . . , Xn}〉
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The set Z〈I〉 has the structure of a unital ring, where the addition is given by the addition
on Z〈I〉 provided by its structure of Z-module and the multiplication · is given by the
formula

(
∑
w∈〈I〉

nw · w) · (
∑
v∈〈I〉

mv · v) :=
∑
h∈〈I〉

(
∑

w,v∈〈I〉, wv=h

nw ·mv) · h.

Note that there is an equivalence relation ∼ro on 〈I〉, defined as follows. If w1 and
w2 are two finite words as above, then w1∼row2 iff n1 = n2 and there is a bijection
σ : {1, . . . , n1} → {1, . . . , n1} such thatw1 = w2◦σ. We shall write [w]ro for the equivalence
class of a finite word w in 〈I〉.

We shall write Z[I] for the polynomial ring over the set I (ie the polynomial ring with
coefficients in Z where each element of I is a variable). This is by definition the free
Z-module with basis the free commutative monoid generated by I .

Note that there is an obvious surjective map of rings

Z〈I〉 → Z[I]

Lemma 3.1. An element
∑

w∈〈I〉 nw ·w is in the kernel of Z〈I〉 → Z[I] iff for all v ∈ 〈I〉, we have∑
w∈[v]ro

nw = 0

Proof. Left to the reader.

Abusing language, we shall say that Z〈I〉 is the ring of non commutative polynomials
with variables I and with coefficients in Z. In particular Z{X1, . . . Xn} is the ring of non
commutative polynomials in the variables X1, . . . , Xn and coefficients in Z.

If P ∈ Z〈I〉, then for each w ∈ 〈I〉, the integer Pw is defined by the equality

P =
∑
w∈〈I〉

Pw · w

4 The determinant of cohomology and Ducrot’s generali-
sation of the Deligne pairing

Let f : X → S be a flat and strongly projective morphism. Suppose that S is locally
noetherian. Let I be a finite set. Let {Fi}i∈I be a collection of vector bundles onX indexed
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by I . If w = i1i2 . . . ik is a non empty word in the alphabet I , then we shall write

λ(w) := λ(
k⊗
t=1

Fit)

where λ(Fit) := det(R•f∗(Fit)) is the determinant of cohomology of the vector bundle
Fit , relatively to f (see beginning of the introduction). If w is the empty word then by
convention λ(w) := λ(OX).

If we are given a non commutative polynomial P = P ((Fi)i∈I) with variables in I and
integral coefficients (see section 3), we shall write

λ(P ) :=
⊗
w∈〈I〉

λ(w)⊗Pw

Note that with this definition, if P and Q are two non commutative polynomials with
variables in I and integral coefficients, then in view of the distributivity of the tensor
product, there is a canonical isomorphism

λ(P +Q) ∼= λ(P )⊗ λ(Q).

Abusing language, we shall mostly write non commutative polynomials P = P ((Fi)i∈I)

with variables in I using the Fi as variable symbols instead of the elements of the index
set I . Also we shall mostly use the tensor product symbol ⊗ instead of the symbol ·. So
eg if I = {X1, X2}we would write

F1 ⊗ F2 + F2 ⊗ F2

instead of X1 ·X2 +X2 ·X2.

Lemma 4.1. Let {Fi}i∈I be a finite collection of vector bundles onX . Let P = P ((Fi)i∈I) ∈ Z〈I〉
be a non commutative polynomial with integral coefficients in the Fi and suppose that P lies in
the kernel of the natural map of rings Z〈I〉 → Z[I]. Then there is an isomorphism λ(P ) ∼= OS ,
which can be chosen compatibly with any base change to a locally noetherian scheme.

Proof. Let us write O for the set of equivalence classes of the relation ∼ro in 〈I〉 (see
section 3 for the definition). Choose a representative w′(o) ∈ o (arbitrary but fixed) for
each o ∈ O. Furthermore, for each o ∈ O and each w ∈ o, choose an automorphism
σw of {1, . . . , length(w′(o))} such that w′(o) = σw ◦ w. Finally, choose an isomorphism
αo : o ∼= {1, . . . ,#o} for each o ∈ O.

According to Lemma 3.1, if we write

P =
∑
o∈O

∑
w∈o

Pw · w
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then
∑

w∈o Pw = 0 for each o ∈ O. On the other hand, by the definition of λ(P ) and the
distributivity of the tensor product, we have a canonical isomorphism

λ(P ) ∼=
⊗
o∈O

⊗
w∈o

λ(w)Pw

and by the commutativity of the tensor product, there is a canonical isomorphism

λ(w) ∼= λ(w′(o))

for each w ∈ o, which depends of the choice of the automorphism σw. Hence there is a
canonical isomorphism

λ(P ) ∼=
⊗
o∈O

λ(w′(o))
∑

w∈o Pw ,

which depends on the isomorphism αo. The conclusion follows. Note that this isomor-
phism depends a priori on the choices of the representatives w′(o) ∈ o and of the auto-
morphisms σw and αo. One might conjecture that different choices of representatives and
automorphisms will lead to the same isomorphism λ(P ) ∼= OS , up to sign (but this is
irrelevant to the conclusion of the lemma, which contains no unicity statement).

Let L1, . . . Ld+1 be line bundles on X . Suppose that X is of constant relative dimension d
over S. We shall write

IX/S(L1, . . . , Ld+1) := λ((OX − L1)⊗ (OX − L2)⊗ · · · ⊗ (OX − Ld+1))⊗(−1)d

where the expression defining IX/S(L1, . . . , Ld+1) is to be read with the above notational
conventions in mind. In particular, the expression (OX−L1)⊗(OX−L2)⊗· · ·⊗(OX−Ld+1)

should be understood as a non commutative polynomial in the line bundlesOX , L1, . . . , Ld+1

and λ((OX − L1) ⊗ (OX − L2) ⊗ · · · ⊗ (OX − Ld+1)) is to be computed according to the
conventions described above.

So for example, if d = 1,

IX/S(L1, L2)∨ = λ((OX − L1)⊗ (OX − L2))

= λ(OX ⊗OX −OX ⊗ L2 − L1 ⊗OX + L1 ⊗ L2)

= λ(OX ⊗OX)⊗ λ(OX ⊗ L2)∨ ⊗ λ(L1 ⊗OX)∨ ⊗ λ(L1 ⊗ L2)

∼= λ(OX)⊗ λ(L2)∨ ⊗ λ(L1)∨ ⊗ λ(L1 ⊗ L2). (6)

Ducrot showed in [7, §5] that the line bundle IX/S(L1, . . . , Ld+1) is multiadditive in the
line bundles L1, . . . Ld+1. In particular, he shows that if Q is a line bundle on X , then
there is a canonical isomorphism

IX/S(L1 ⊗Q, . . . , Ld+1) ∼= IX/S(L1, . . . , Ld+1)⊗ IX/S(Q, . . . , Ld+1) (7)
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The canonical isomorphism (7) is compatible with any base change to a locally noetherian
scheme. See [7, Th. 4.2 (BC)].

We may thus compute

λ((OX −Q)⊗ (OX − L1)⊗ (OX − L2)⊗ · · · ⊗ (OX − Ld+1))
(1)∼= λ((OX − L1)⊗ (OX − L2)⊗ · · · ⊗ (OX − Ld+1))

⊗ λ((Q−Q⊗ L1)⊗ (OX − L2)⊗ (OX − L3)⊗ · · · ⊗ (OX − Ld+1))∨

(2)∼= λ((OX − L1)⊗ (OX − L2)⊗ · · · ⊗ (OX − Ld+1))

⊗ λ(
(
OX − L1 ⊗Q− (OX −Q)

)
⊗ (OX − L2)⊗ (OX − L3)⊗ · · · ⊗ (OX − Ld+1))∨

(3)∼= IX/S(L1, . . . , Ld+1)⊗(−1)d

⊗ IX/S(L1 ⊗Q,L2, . . . , Ld+1)⊗(−1)d+1 ⊗ IX/S(Q,L2, . . . , Ld+1)⊗(−1)d

(4)∼= IX/S(L1, L2, . . . , Ld+1)⊗(−1)d ⊗ IX/S(L1, L2, . . . , Ld+1)⊗(−1)d+1

⊗ IX/S(Q,L2, . . . , Ld+1)⊗(−1)d+1 ⊗ IX/S(Q,L2, . . . , Ld+1)⊗(−1)d
(5)∼= OX

and this trivialisation is invariant under any base change to a locally noetherian scheme.
The isomorphisms (1), (2), (3) are formal consequences of Lemma 4.1 and of the polyno-
mial equalities

(1− y)(1− x1) · · · (1− xd+1)

= (1− x1) · · · (1− xd+1)− (y − yx1)(1− x2) . . . (1− xd+1)

= (1− x1) · · · (1− xd+1)− ((1− x1y)− (1− y))(1− x2) . . . (1− xd+1)

= (1− x1) · · · (1− xd+1)− (1− x1y)(1− x2) . . . (1− xd+1) + (1− y)(1− x2) . . . (1− xd+1)

(in the same order). The isomorphism (4) comes from the multiadditivity of the symbol
IX/S described above. Isomorphism (5) is just a cancellation.

The following theorem summarises the discussion and it is one of the main consequences
of the theory developed in [7].

Theorem 4.2. Suppose that X → S is flat, strongly projective and of relative dimension d.
Suppose that S is locally noetherian. Let L1, . . . , Ld+2 be line bundles on X . Then the line bundle

λ((OX − L1)⊗ (OX − L2)⊗ · · · ⊗ (OX − Ld+2))

is canonically trivial and the trivialisation is invariant under base change to any locally noetherian
scheme.
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See also [2, Th. A.21, Appendix], where it is verified that some noetherian assumptions
in Theorem 4.2 can be removed (we do not exploit this because noetherian assumptions
are needed elsewhere in this text).

Corollary 4.3. Let F := n1M1 + · · ·+ nkMk, where Mi is a line bundle on X (resp. ni ∈ Z) for
all i ∈ {1, . . . , k}. Let L1, . . . , Ld+1 be line bundles on X . Suppose that

∑
i ni = 0. Then the line

bundle
λ(F ⊗ (OX − L1)⊗ (OX − L2)⊗ · · · ⊗ (OX − Ld+1))

is canonically trivial and the trivialisation is invariant under base change to any noetherian
scheme.

Proof. (of Corollary 4.3). By Theorem 4.2, there is a canonical isomorphism

λ((niMi)⊗(OX−L1)⊗(OX−L2)⊗· · ·⊗(OX−Ld+1)) ∼= λ((OX−L1)⊗(OX−L2)⊗· · ·⊗(OX−Ld+1))⊗ni

for any ni. The Corollary follows from this.

5 Equivariant derived functors

We first recall the definition of a perfect complex. Let Z be a locally noetherian scheme.
We shall as usual write Db(Z) for the derived category of bounded complexes of OZ-
modules. A complex J• of OZ-modules is said to be of finite tor-dimension if there are
integers a < b such that for allOZ-modules M , we have Tork(J•,M) = 0 if k < a or k > b.
A bounded complex J• is said to be perfect if

- the homology sheavesHk(J•) are coherent for all k ∈ Z;

- there is a covering (Ui) ofZ by open subschemes, such that J•|Ui
is of finite tor-dimension.

In view of this definition, we see that the property of being perfect depends only on the
image of J• in the category Db(Z).

LetG be a finite group. If Z is aG-equivariant locally noetherian scheme, we let Coheq(Z)

be the category of coherent G-equivariant sheaves on Z. Recall also that Coh(Z) refers
to the category of coherent sheaves on Z. Note that the category Coheq(Z) has a nat-
ural structure of abelian category. We shall write Db(Coheq(Z)) for the derived cate-
gory of bounded complexes in Coheq(Z). Note that there is a natural forgetful func-
tor from Db(Coheq(Z)) to Db(Coh(Z)) and thus also to Db(Z) via the forgetful functor
Db(Coh(Z))→ Db(Z).
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Lemma 5.1. Suppose that f : X → Y is a strongly projective morphism ofG-equivariant noethe-
rian schemes. Let J• be a bounded complex of G-equivariant coherent sheaves on X . Then there
is a bounded complex H• of G-equivariant f -acyclic coherent sheaves on X and a G-equivariant
quasi-isomorphism J• → H•.

Recall that if F is a quasi-coherent sheaf on X , one says that F is f -acyclic if Rkf∗(F ) = 0

when k > 0.

Proof. When the action of G on X and Y is trivial, this is standard. The proof in the
equivariant situation is completely similar and we skip it.

In view of Lemma 5.1 and [18, Th. I.5.1], in the situation of Lemma 5.1 the functor f eq
∗ has

a right derived functor

R•f eq
∗ : Db(Coheq(X))→ Db(Coheq(S)).

The functor R•f eq
∗ is compatible with the usual right derived functor

R•f∗ : Db(Coh(X))→ Db(Coh(Y ))

via the forgetful functors Db(Coheq(X)) → Db(Coh(X)) and Db(Coheq(Y )) → Db(Y ). If
f : X → Y and h : X → Y are strongly projective morphism of G-equivariant noetherian
schemes then we have a natural isomorphism of functors R•(h◦f)eq

∗
∼= R•heq

∗ ◦R•f eq
∗ . This

follows from [18, Prop. 5.4 and following remark]. We leave the details to the reader. The
point is that for any bounded complex of G-equivariant coherent sheaves J• on X , there
is a bounded complex H• of G-equivariant coherent sheaves on X , which is both f− and
h ◦ f -acyclic, and a G-equivariant quasi-isomorphism J• → H•.

If F is a G-equivariant locally free sheaf on a G-equivariant locally noetherian scheme
Z, we have a functor F ⊗ (·) : Db(Coheq(Z)) → Db(Coheq(Z)) (resp. a functor (·) ⊗ F :

Db(Coheq(Z)) → Db(Coheq(Z)). This functor simply sends a complex J• ∈ Db(Coh(Z))

on the complex J• ⊗ F (resp. the complex F ⊗ J•).

We have a projection formula:

Proposition 5.2. Suppose that f : X → Y is a strongly projective morphism of G-equivariant
noetherian schemes. Let F be a G-equivariant locally free sheaf on Y . Then there is a natural
isomorphism of functors

Rf eq
∗ (f ∗(F )⊗ (·)) ∼= Rf eq

∗ (·)⊗ F
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Proof. Left to the reader. Apply the usual projection formula to the definition of Rf eq
∗ (·).

Recall that a morphism h : T → S of locally noetherian schemes is called lci (local com-
plete intersection), if locally on S, there is a factorisation of h into a regular closed im-
mersion T → T1 followed by a smooth morphism T1 → S. We recall the

Proposition 5.3. If a morphism h : T → S of noetherian schemes is lci and strongly projective
and F • is an object of Db(Coh(T )), which is a perfect complex then R•f∗(F

•) is also a perfect
complex.

Proof. See [17, Cor. 4.8.1, Exp. III].

Suppose now that Z is a locally noetherian scheme, thatG = Z/2Z and that 2 is invertible
on Z. Suppose also that the scheme Z is endowed with a trivial G-equivariant structure.
If F is an equivariant coherent sheaf on Z, we shall write

F+ := F0

and
F− := F1.

The functors
(·)− = (·)1 : Coheq(Z)→ Coh(Z)

and
(·)+ = (·)0 : Coheq(Z)→ Coh(Z)

are exact functors and so they uniquely extend to functors fromDb(Coheq(Z)) toDb(Coh(Z)),
which are their right and left derived functors simultaneously. We shall also call these
extensions (·)+ and (·)−. If F • is an object in Db(Coheq(Z)) then we have by construction
a canonical direct sum decomposition F • ∼= (F •)+ ⊕ (F •)− in Db(Coh(Z)). In particular,
if the image of F • in Db(Coh(Z)) is a perfect complex, so are (F •)+ and (F •)−. We shall
say that an object F • of Db(Coheq(Z)) is a perfect complex if its image in Db(Coh(Z)) (or
Db(Z)) is a perfect complex. If F • is an object ofDb(Coheq(Z)), which is a perfect complex,
we can thus write

deteq(F •) := det((F •)+)⊗ det((F •)−)∨.

If
F • → H• → J• → F •[1]

is a triangle of perfect complexes inDb(Coheq(Z)), we then have a canonical isomorphism

deteq(F •)⊗ deteq(J•) ∼= deteq(H•)
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by the standard properties of determinants (see [22]) and the fact that the functors

(·)± : Db(Coheq(Z))→ Db(Coh(Z))

respect triangulations (because they are derived functors).

Let f : X → Y be a locally projective and lci morphism of G-equivariant locally noethe-
rian schemes, where the G-action on Y is trivial. Suppose that G = Z/2Z and that 2 is
invertible on Y (and thus on X). Let F • be an object of Db(Coheq(X)), which is a perfect
complex. Let U ⊆ Y be an open subset, such that f |U : f−1(U)→ U is strongly projective.
By Corollary 5.3 and the above discussion, we may define

λeq(F •|f−1(U)) := det((R•(f eq|U)∗(F
•|f−1(U)))+)⊗ det((R•(f eq|U)∗(F

•|f−1(U)))−)∨

which is a line bundle on U . Since this line bundle is defined locally on Y , by varying
U , we obtain a line bundle on all of Y , which we denote by λeq(F •). If the equivariant
structure on X and F is trivial, then we of course have a canonical identification

λeq(F •) ∼= λ(F •).

Note that if
F • → H• → J• → F •[1]

is a triangle of perfect complexes in Db(Coheq(X)), then we have canonically

λeq(F •)⊗ λeq(J•) ∼= λeq(H•) (8)

(because R•f eq
∗ (·) respects triangles, locally in Y ).

Let I be a finite set. Let {Fi}i∈I be a collection of equivariant vector bundles on X in-
dexed by I . For any non commutative polynomial P = ((Fi)i∈I) with integral coefficients
and variables in I , we may now define λeq(P ) in a manner entirely similar to the non
equivariant case (see beginning of section 4). The evident equivariant analog of Lemma
4.1 then also holds.

Finally, we shall write {−1} for the trivial sheaf OX , endowed with the G-equivariant
structure such that for any g ∈ G the isomorphism αg,{−1} : {−1} → g∗({−1}) composed
with the canonical non equivariant identification g∗({−1}) ∼= {−1} is given by multipli-
cation by (−1)g. If F is a G-equivariant sheaf on X , we shall write F{−1} for F ⊗ {−1}.
Note that if F is an equivariant coherent locally free sheaf on X and l ∈ Z, we have
canonical isomorphisms

λeq((F{−1})⊗l) ∼= λeq(F⊗l)⊗(−1)l ∼= λeq((−F )⊗l). (9)
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6 Local refinement of the fixed point formula for an invo-
lution

Let S be a locally noetherian scheme and let f : X → S be a separated morphism of finite
type. Suppose that 2 is invertible in S. Let G = Z/2, so that we have a canonical isomor-
phism GS

∼= µ2S . Suppose that we have a G-equivariant structure on X over S. Suppose
finally that the orbit of every point in X is contained in an open affine subscheme. Let
ι : XG ↪→ X be the fixed scheme of X and let q : X → X/G be the quotient morphism.
These morphisms exist by Proposition 2.3 and Theorem 2.1. Note that if q is flat then it
is faithfully flat (since it is surjective) and thus if q and f are flat the natural morphism
X/G → S is also flat. Similarly, if f is locally projective then so is the natural morphism
X/G→ S.

In this section, we shall prove a version of the relative geometric fixed point formula for
the G-action of G on X , which avoids K-theory entirely, replacing all the equalities in a
Grothendieck group or a Picard group by explicit isomorphisms. This is the following
Theorem.

Theorem 6.1. Suppose in addition that f is smooth, locally projective and that f has constant
relative dimension d. Suppose also that the morphism XG → S is flat. Then XG → S is
smooth and thus XG is regularly immersed in X . Let N = NXG/X be the conormal bundle of
ι : XG ↪→ X , endowed with its canonical G-equivariant structure. Let M be a G-equivariant line
bundle on X . We have a canonical isomorphism

λeq(M)⊗2d+1 ∼=
d⊗
j=0

λeq(ι∗(M)⊗ Symj(N))⊗
∑d−j

i=0 (d+1
i )

which is compatible with any base change h : S ′ → S such that S ′ is locally noetherian.

For the proof, we shall need the following

Lemma 6.2. Let Z → T be a morphism of locally noetherian schemes. Let C ↪→ Z be a regular
closed immersion. Suppose that C and Z are flat over T . Let h : T ′ → T be a morphism of
schemes, where T ′ is locally noetherian. Then

(a) the natural morphism BlCT ′
(ZT ′)→ BlC(Z)T ′ is an isomorphism;

(b) BlC(Z) is flat over T .

Proof. Let I be the sheaf of ideals of C in Z. By definition, we have

BlC(Z) := Proj(
⊕
i≥0

I i)
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so that
BlC(Z)T ′ := Proj(

⊕
i≥0

h∗Z(I i))

where hZ : ZT ′ → Z is the base change of h to Z and h∗Z(I i) is the pull-back to ZT ′ of I i as
a coherent sheaf on Z. On the other hand, we have again by definition

BlCT ′
(ZT ′) := Proj(

⊕
i≥0

h−1
Z (I)i) = Proj(

⊕
i≥0

h−1
Z (I i))

where h−1
Z (I i) is the ideal sheaf onZT ′ , which is the image of h∗Z(I i) inOZT ′

. The surjection
of sheaves h∗Z(I i)→ h−1

Z (I i) provide a natural ZT ′-morphism from BlCT ′
(ZT ′) to BlC(Z)T ′ ,

which is the natural map mentioned in the lemma. To prove (a), we need to show that
this morphism is an isomorphism. For this, it is sufficient to show that the surjection
h∗Z(I i)→ h−1

Z (I i) is an isomorphism for all i ≥ 0. We will show that the closed subscheme
of Z defined by I i is flat over T , from which this immediately follows. Now note that
because C is regularly immersed in Z we have Ik/Ik+1 ∼= Symk(NC/Z) for all k ≥ 0. Here
NC/Z is the conormal sheaf of C in Z. See eg [13, IV, par. 2, Cor. 2.4] for this. Since NC/Z

is locally free over C and C is flat over T , we see that Ik/Ik+1 is flat over T for all k ≥ 0.
SinceOZ/I i has a natural filtration, whose quotients are of the form Ik/Ik+1, we conclude
that OZ/I i is also flat over T . In other words, the closed subscheme of Z defined by I i is
flat over T . This concludes the proof of (a). For (b), note that since Z is flat over T and
OZ/I i is flat over T (see the proof of (a)), the sheaf I i is also flat over T (for all i ≥ 0).
Thus the graded OZ-algebra

⊕
i≥0 I

i is flat over T , which implies that BlC(Z) is flat over
T .

Proof. (of Theorem 6.1). First note that since the advertised isomorphism of line bundles
is local on S, we may assume that S is affine. In particular, we may assume that f is a
strongly projective morphism.

We start with an identity in Z[t]. Define

Pk(t) := 2k + 2k−1(2− t) + 2k−2(2− t)2 + · · ·+ (2− t)k ∈ Z[t].

Setting q := 1− t
2
, we have

tPk(t) = 2(1− q)2k(1 + q+ · · ·+ qk) = −2k+1(qk+1− 1) = 2k+1− (2q)k+1 = 2k+1− (2− t)k+1.

(I am grateful to one of the referees for providing a simplification of earlier calculations).

Now suppose first that XG is a Cartier divisor. Let L := O(−XG).

We have an exact sequence

0→ L⊗M →M → ι∗(ι
∗(M))→ 0 (10)
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The existence of this sequence, unspectacular as it may seem, is the linchpin of the proof.

Note that by the adjunction formula (or by definition, according to taste) we have a
canonical equivariant isomorphism ι∗(L) ∼= N . Note also that by Proposition 2.5 (2), G
acts by −1 on N . Let J := q∗(L{−1})0. Proposition 2.5 (5) implies that this is a line
bundle on X/G such that q∗(J) = L{−1}.

Now we compute

λeq(ι∗(M)⊗ Pk(OXG
−N)))

(b)∼= λeq(ι∗(M)⊗ Pk(OXG
− ι∗(L)))

(c)∼= λeq(M ⊗ (OX − L)⊗ Pk(OX − L))
(d)∼= λeq(M ⊗ (O⊕2k+1

X − (O⊕2
X − (OX − L))⊗(k+1)))

(e)∼= λeq(M ⊗ (O⊕2k+1

X − (O⊕2
X − (OX + L{−1}))⊗(k+1)))

(f)∼= λeq(M ⊗ (O⊕2k+1

X − (OX − L{−1})⊗(k+1)))
(g)∼= λeq(M)⊗2k+1 ⊗ λeq(M ⊗ (OX − L{−1})⊗(k+1))∨

(h)∼= λeq(M)⊗2k+1 ⊗ λeq(q∗(M)⊗ (OX/G − J)⊗(k+1))∨

(i)∼= λeq(M)⊗2k+1 ⊗ λ((q∗(M)+ − q∗(M)−)⊗ (OX/G − J)⊗(k+1))∨

(j)∼= λeq(M)⊗2k+1 ⊗ λ(((OX/G − q∗(M)−)− (OX/G − q∗(M)+))⊗ (OX/G − J)⊗(k+1))∨

(k)∼= λeq(M)⊗2k+1 ⊗ λ((OX/G − q∗(M)−)⊗ (OX/G − J)⊗(k+1))∨

⊗ λ((OX/G − q∗(M)+)⊗ (OX/G − J)⊗(k+1))

Equality (b) is justified by the adjunction formula. Equality (c) follows from the existence
of the exact sequence (10) and the compatibility of λeq(·) with triangles. Equality (d)
follows from the equality t · Pk(t) = 2k+1 − (2 − t)k+1 and the equivariant analogue of
Lemma 4.1. Equality (e) follows from (9). Equality (f) is a simple cancellation and so
is equality (g). Equality (h) follows from the projection formula 5.2, the compatibility
of equivariant derived functors with compositions of morphisms (see before Proposition
5.2) and the fact that we have q∗(J) ∼= L{−1}. Equality (i) follows from the definition of
λeq(·). Equality (j) is a simple cancellation and so is equality (k).

Now if we let k = d, we obtain by Theorem 4.2 canonical trivialisations

λeq((OX/G− q∗(M)−)⊗ (OX/G−J)⊗(k+1)) ∼= λ((OX/G− q∗(M)−)⊗ (OX/G−J)⊗(k+1)) ∼= OS

and

λeq((OX/G− q∗(M)+)⊗ (OX/G−J)⊗(k+1)) ∼= λ((OX/G− q∗(M)+)⊗ (OX/G−J)⊗(k+1)) ∼= OS
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and thus a canonical isomorphism

λeq(ι∗(M)⊗ Pd(OXG
−N)) ∼= λeq(M)⊗2d+1

. (11)

Note that all the isomorphisms (b),. . . , (k) are compatible with any base change to a
locally noetherian scheme. This follows from that fact that X → S and XG → S are flat,
from Lemma 2.4 and from Theorem 4.2.

We repeat the calculation for M = OX and d = 1 (ie when X → S is a fibration in curves)
to make the calculation completely explicit in a simple situation. In the case d = 1 , we
may choose k = d = 1 (see above). We then have Pk(t) = P1(t) = 4 − t. We shall write
F := q∗(OX)−. We compute

λeq(OXG
)⊗3 ⊗ λeq(N)

α∼= λeq(OX)⊗3 ⊗ λeq(L)⊗(−3) ⊗ λeq(L)⊗ λeq(L⊗2)⊗(−1)

β∼= λeq(OX)⊗3 ⊗ λeq(L{−1})⊗2 ⊗ λeq(L{−1}⊗2)⊗(−1)

γ∼= λeq(OX)⊗3 ⊗ λ(J)⊗2 ⊗ λ(J ⊗ F )⊗(−2) ⊗ λ(J⊗2)⊗(−1) ⊗ λ(J⊗2 ⊗ F )
δ∼= λeq(OX)⊗4 ⊗ λ(OX/G)⊗(−1) ⊗ λ(F )⊗ λ(J)⊗2 ⊗ λ(J ⊗ F )⊗(−2) ⊗ λ(J⊗2)⊗(−1) ⊗ λ(J2 ⊗ F )
ε∼= λeq(OX)⊗4 ⊗ λ((1− F )⊗ (1− J)⊗ (1− J))⊗(−1)

ζ∼= λeq(OX)⊗4

The isomorphism α comes from the adjunction formula, the exact sequence (10) and the
identity (8). The isomorphism β is a consequence of the identities (9). The isomorphisms
γ and δ come from the equivariant projection formula (Proposition 5.2) and the fact that
equivariant derived functors are compatible with compositions of morphisms (see before
Proposition 5.2). Isomorphism ε is just a reshuffling of terms, taking into account the
commutativity of the tensor product. Isomorphism ζ comes from Theorem 4.2.

We now go back to the general situation. If XG is not a Cartier divisor let X̃ be the
blow-up of X along XG and let b : X̃ → X be the canonical morphism. Note that since
S is affine, the scheme X carries an ample line bundle. In particular the morphism b

is strongly projective. Also, the scheme X̃ is flat over S by Lemma 6.2 (b) and it has
geometrically regular fibres over S by Lemma 6.2 (a) and the fact that XG → S is smooth.
Thus X̃ is smooth over S and this implies that b is lci. The scheme X̃ is canonically G-
equivariant since the sheaf of ideals of XG is equivariant. The exceptional divisor E of X̃
is isomorphic to the projectivised bundle P(N). Since G acts by multiplication by −1 on
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N , we see that the action of G is trivial on E. Hence E = X̃G and X̃G is a Cartier divisor,
which is clearly smooth over S.

Let µ : X̃G ↪→ X̃ and p : X̃G → XG be the canonical morphisms. From equality (11), we
obtain

λeq(M)⊗2d+1
(p)∼= λeq(b∗(M))⊗2d+1

(o)∼= λeq(µ∗(b∗(M))⊗ Pd(OX̃G
−NX̃G/X̃

))

(l)∼= λeq(ι∗(M)

⊗ R•peq
∗

(
O⊕2d

X̃G
+ 2d−1(O⊕2

X̃G
− (OX̃G

−NX̃G/X
)) + 2d−2(O⊕2

X̃G
− (OX̃G

−NX̃G/X̃
))⊗2 + . . .

+ (O⊕2

X̃G
− (OX̃G

−NX̃G/X̃
))⊗d

)
)

(m)∼= λeq(ι∗(M)

⊗ R•peq
∗

(
O⊕2d

X̃G
+ 2d−1(OX̃G

+NX̃G/X̃
) + 2d−2(OX̃G

+NX̃G/X̃
)⊗2 + . . .

+ (OX̃G
+NX̃G/X̃

)⊗d
)

)

(n)∼= λeq(ι∗(M)⊗ R•peq
∗

( d∑
i=0

i∑
j=0

2d−i
(
i

j

)
(NX̃G/X̃

)⊗j
)

)

For equality (l), use the projection formula (Proposition 5.2) and the fact that the functors
Rf eq
∗ · Rbeq

∗ and R(f ◦ b)eq
∗ are naturally isomorphic (see discussion after Lemma 5.1).

Equality (m) is a simple cancellation. Equality (n) follows from the equivariant analogue
of Lemma 4.1 and from the polynomial identity Pd(1 − t) =

∑d
i=0

∑i
j=0 2d−i

(
i
j

)
tj , which

itself follows from the binomial formula. Equality (o) follows from (11). Equality (p)
follows from the projection formula and the fact that R•b∗(OX̃) = OX (see [13, VI, §4,
proof of Prop. 4.1] for lack of a better reference).

Now since X̃G = P(N) we have

R•p∗(N
⊗j
X̃G/X̃

) ∼= Symj(N)

(see [19, Lemma 3.1]) and we obtain

λeq(M)⊗2d+1 ∼= λeq
(
ι∗(M)⊗

d∑
i=0

i∑
j=0

2d−i
(
i

j

)
Symj(N)

)
.

Now note that we have the formal equality

d∑
i=0

i∑
j=0

2d−i
(
i

j

)
Symj(N) =

d∑
j=0

[ d−j∑
i=0

2d−j−i
(
i+ j

j

)]
Symj(N).
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To simplify this expression, we shall make use of the following combinatorial lemma,
that was kindly communicated to us by E. Gomezllata Marmolejo.

Lemma 6.3 (E. Gomezllata Marmolejo). For 0 ≤ j ≤ d, we have

d−j∑
i=0

2d−j−i
(
i+ j

j

)
=

d−j∑
i=0

(
d+ 1

i

)
.

Proof. (of Lemma 6.3). The equality clearly holds if d = j. We prove it by induction on d,
starting at d = j:

d−j∑
i=0

(
d+ 1

i

)
=

(
d

0

)
+

d−j∑
i=1

[

(
d

i

)
+

(
d

i− 1

)
] = 2[

d−j−1∑
i=0

(
d

i

)
] +

(
d

d− j

)

= 2[

(d−1)−j∑
i=0

(
(d− 1) + 1

i

)
] +

(
d

j

)
= 2[

(d−1)−j∑
i=0

2(d−1)−j−i
(
i+ j

j

)
] +

(
d

j

)

=

d−j∑
i=0

2d−j−i
(
i+ j

j

)
(12)

The first and third equality in (12) follow from standard properties of binomial coeffi-
cients, the second and last one are just simplifications and the fourth one relies on the
inductive hypothesis.

Using Lemma 6.3, we finally get the advertised canonical isomorphism

λeq(M)⊗2d+1 ∼= λeq
(
ι∗(M)⊗

d∑
j=0

[ d−j∑
i=0

(
d+ 1

i

)]
Symj(N)

)
∼=

d⊗
j=0

λeq(ι∗(M)⊗ Symj(N))⊗
∑d−j

i=0 (d+1
i )

Note again that this isomorphism is invariant under any base change to a locally noethe-
rian scheme by Lemma 6.2 and by the fact that it is invariant under any base change to a
locally noetherian scheme when XG is a Cartier divisor.

7 Local refinement of the Adams-Riemann-Roch formula

We shall now prove Theorem 1.1. We recall the terminology. We let π : Y → S be a
smooth and locally projective morphism of locally noetherian schemes. We suppose that
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the fibres of π are geometrically connected and that π has constant relative dimension
d > 0. We suppose that 2 is invertible on S. We want to prove that there is a canonical
isomorphism

λ(L)⊗22d+2 ∼=
2d⊗
j=0

λ(L⊗2 ⊗ Symj(ΩY/S))⊗(−1)j
∑2d−j

i=0 (2d+1
i )

(this is (1) in Theorem 1.1) which is invariant under any base change to a locally noethe-
rian scheme.

We shall write
X := Y ×S Y

and we shall write π1 : X → Y and π2 : X → Y for the two projections. The group
scheme G = Z/2Z acts on X by swapping the coordinates, with fixed point scheme the
relative diagonal ∆. The diagonal ∆ is then regularly immersed.

Note that we used the fact that the fibres of π are smooth and geometrically connected
here. If π is only supposed to be smooth, the diagonal ∆ might not be regularly im-
mersed. This can be seen on the example of a finite and étale morphism. In that case, the
immersion of the diagonal is open and closed and thus ∆ is not a Cartier divisor.

Let L be a line bundle on Y and suppose that L is cohomologically flat over S (see the be-
ginning of the introduction for the definition of cohomological flatness). The line bundle
M = π∗1(L) ⊗ π∗2(L) is naturally G-equivariant and M |∆ ∼= L⊗2 carries the trivial action.
Furthermore N∆/X

∼= ΩY/S by definition.

Proposition 7.1. We have a canonical isomorphism

λeq(M) ∼= λ(L)⊗2

where λeq(M) is computed using the above equivariant structure on M. This isomorphism is
invariant under any base change to a locally noetherian scheme.

Lemma 7.2. Let W be a vector bundle on a locally noetherian scheme T . Suppose that 2 is
invertible on T . Endow W ⊗W with the G-action which swaps the factors. There is a canonical
isomorphism

deteq(W ⊗W ) := det((W ⊗W )+)⊗ det((W ⊗W )−)∨ ∼= det(W )⊗2 (13)

which is compatible with any base change to a locally noetherian scheme.
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Proof. (of Lemma 7.2) Note that we have by definition

Sym2(W ) := (W ⊗W )+

and
Λ2(W ) := (W ⊗W )−.

The identity (13) can be proven ”by pure thought”. We sketch the argument, leaving
some of the details to the reader. Let r := rk(W ). Recall that there is an additive and
exact functor A from the additive category of the GLr-comodules (ie representations of
the group scheme GLr), which are finitely generated and free Z-modules, to the additive
category of vector bundles over T . This functor can be described as follows. Choose an
open covering (Ui) of S, such that W |Ui

∼= O⊕rUi
for all indices i. This leads to transition

functions τij : Ui ∩ Uj → GLr(Ui ∩ Uj). Now let h ≥ 0 and choose a GLr-comodule
structure on Zh. This corresponds to a homomorphism of group schemes ρ : GLr → GLh.
We then define the vector bundle A(W ) as the vector bundle described by the transition
functions ρ(τij). See [17, Exp. VI, after Th. 3.3] for more details on this. The functor
A is compatible by construction with all the usual tensor constructions (tensor powers,
exterior powers, etc.) and the construction of A is naturally compatible with any base
change of W . Let now V be the standard representation of GLr (so that V = Zr as a
Z-module). Consider the two GLr-comodules det(Λ2(V )) and det(V ). These are both
one-dimensional GLr-representations. Since the one dimensional GLr-comodules are all
of the form (det(V ))⊗n for some n ∈ Z (see eg [29, par. 3.8] for this), we see that there
exists a uniquely determined integer m and an isomorphism of comodules

det(Λ2(V )) ∼= det(V )⊗m.

We fix one such isomorphism (it is actually fixed up to sign, since det(W ) is a one dimen-
sional Z-module). In view of the definition of the functor A(·), we see that this isomor-
phism induces an isomorphism of vector bundles

det(Λ2(W )) ∼= det(W )⊗m

To compute m, it is sufficient to find a locally noetherian scheme Z and a vector bundle
J of rank r on Z, such that det(Λ2(J)) is isomorphic to at most one tensor power of
det(J). The scheme P1 has this property, since Pic(P1)) = Z, provided det(J) 6∼= OP1 . So
supposing that Z = P1 and J = O(1)⊕r, we compute

det(Λ2(J)) ∼= det(
⊕

1≤i<j≤r

O(1)⊗O(1)) ∼= O(2
∑

1≤i<j≤r

1) = O(2

(
r

2

)
)
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We can repeat this reasoning for Sym2(·) in place of Λ2(·) and we obtain

det(Sym2(J)) = O(2

(
r + 1

r − 1

)
).

We conclude that for any T and W , we have

det(Λ2(W )) ∼= det(W )⊗
(r−1)!
(r−2)! ∼= det(W )⊗(r−1)

and
det(Sym2(W )) ∼= det(W )⊗

(r+1)!
r(r−1)! ∼= det(W )⊗(r+1)

and the lemma follows from these two equations.

Lemma 7.3. Let W be a vector bundle on a locally noetherian scheme T . Suppose that 2 is
invertible on T . Let G be the action of G on W ⊕W , which swaps the summands. Then there is
a canonical isomorphism

deteq(W ⊕W ) := det((W ⊕W )+)⊗ det((W ⊕W )−)∨ ∼= OT , (14)

which is compatible with any base change to a locally noetherian scheme.

Proof. (of Lemma 7.3). Note that the diagonal morphism of sheaves W → W ⊕ W

identifies (W ⊕W )+ with W . Similarly, the antidiagonal morphism W → W ⊕W (given
by the formula w 7→ (w,−w)) identifies (W ⊕ W )− with W . The lemma follows from
this.

Proof. (of Proposition 7.1) Let f : X → S be the canonical morphism. By the Künneth
formula (see [14, III, par. 6, Th. 6.7.3]), we have a canonical isomorphism

Rif∗(M) ∼=
⊕
t

Rtπ∗(L)⊗ Ri−tπ∗(L). (15)

Note that we used the fact that L is cohomologically flat here. The vector bundle⊕
t

Rtπ∗(L)⊗ Ri−tπ∗(L)

carries a natural G-action by permutation, namely the action such that the non trivial
element of G sends

⊕
twt⊗wi−t to

⊕
t(−1)t(i−t)wi−t ⊗ wt. By the Koszul rule of signs, the

isomorphism (15) becomes G-equivariant with this choice of G-action on the righthand
side. Let sgn : G → {0, 1} be the non trivial character of G. Let us first suppose that i is
odd. We compute

deteq(Rif∗(M)) ∼=
⊗

0≤t≤bi/2c

deteq(Rtπ∗(L)⊗ Ri−tπ∗(L)⊕ Ri−tπ∗(L)⊗ Rtπ∗(L)). (16)
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In the righthand side of the isomorphism (16), the terms

Rtπ∗(L)⊗ Ri−tπ∗(L)⊕ Ri−tπ∗(L)⊗ Rtπ∗(L)

carry a G-equivariant structure of the form considered in Lemma 7.3. We thus see that
we have a canonical isomorphism

deteq(Rif∗(M)) ∼= OS

Now suppose that i is even. We then have

deteq(Rif∗(M))

∼= deteq(Ri/2π∗(L)⊗ Ri/2π∗(L))⊗
⊗

0≤t<i/2

deteq(Rtπ∗(L)⊗ Ri−tπ∗(L)⊕ Ri−tπ∗(L)⊗ Rtπ∗(L)).

Here the summands Rtπ∗(L) ⊗ Ri−tπ∗(L) ⊕ Ri−tπ∗(L) ⊗ Rtπ∗(L) carry a G-equivariant
structure of the type considered in Lemma 7.3 multiplied by sgnt and the summand
Ri/2π∗(L)⊗ Ri/2π∗(L) carries the equivariant structure considered in Lemma 7.2 multi-
plied by sgni/2. As before, we conclude that

deteq(Rif∗(M)) ∼= deteq(Ri/2π∗(L)⊗ Ri/2π∗(L)).

On the other hand, by Lemma 7.2, we have

deteq(Ri/2π∗(L)⊗ Ri/2π∗(L)) ∼= det(Ri/2π∗(L))⊗2(−1)i/2

Summarising, we have

deteq(Rif∗(M)) ∼= det(Ri/2π∗(L))⊗2(−1)i/2

if i is even and
deteq(Rif∗(M)) ∼= OS

if i is odd. We conclude that we have

λeq(M) =
⊗
i≥0

deteq(Rif∗(M))⊗(−1)i ∼=
⊗

i≥0, i even

deteq(Rif∗(M)) ∼=
⊗
j≥0

det(Rjπ∗(L))⊗2(−1)j = λ(L)⊗2

which is what we wanted to prove.

Remark 7.4. Lemma 7.1 is the only place in the proof of Theorem 1.1 where we use the
assumption that L is cohomologically flat over S. We conjecture that Lemma 7.1 holds
without that assumption. If this is true then Theorem 1.1 holds without the assumption
that L is cohomologically flat over S. If one tries to prove Lemma 7.1 without the as-
sumption of cohomological flatness, one is faced with a difficult problem in the linear
algebra of perfect complexes that to date we have not been able to solve. See also [28]
about this.
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Finally, combining Proposition 7.1 and Theorem 6.1 we get an isomorphism

λ(L)⊗22d+2 ∼=
2d⊗
j=0

λ(L⊗2 ⊗ Symj(ΩY/S))⊗(−1)j
∑2d−j

i=0 (2d+1
i ). (17)

and this completes the proof of Theorem 1.1.

8 Proof of Proposition 1.3

We work with the assumptions and terminology of Theorem 1.1 and we suppose that
d = 1. Consider the formal linear combinations of line bundles

MT(L) := 7L⊗2 − 4ΩY/S ⊗ L⊗2 + L⊗2 ⊗ Ω⊗2
Y/S

and
DT(L) := 18 + 6L⊗2 ⊗ Ω∨Y/S − 6L⊗ Ω∨Y/S

Theorem 1.1 for dim(Y/S) = 1 says that we have a canonical isomorphism

λ(MT(L)) ∼= λ(L)⊗16.

Similarly, Deligne’s theorem (4) implies that there is a canonical isomorphism

λ(DT(L)) ∼= λ(L)⊗18.

We shall prove that the line bundle λ
(

9MT(L) − 8DT(L)
)

is canonically trivial, even
without the assumption that L is cohomologically flat over S. Assuming Theorem 1.1 for
dim(Y/S) = 1, this will prove that λ(8DT(L)) is canonically trivial, which is the conclu-
sion of Proposition 1.3 (note that 9 · 16 = 8 · 18 = 144).

Now since L is arbitrary, it is sufficient to prove that

λ
(

9MT(L⊗ ΩY/S)− 8DT(L⊗ ΩY/S)
)

is canonically trivial.

We first compute

9MT(L⊗ΩY/S)−8DT(L⊗ΩY/S) = (9Ω⊗4
Y/S−36Ω⊗3

Y/S +63Ω⊗2
Y/S−48ΩY/S)⊗L⊗2 +48L−144.

Let
P (x, y) := (9y4 − 36y3 + 63y2 − 48y)x2 + 48x− 144 ∈ Z[x, y].
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We compute

P (x, y) = P (1− (1− x), 1− (1− y))

= (9(1− y)4 + 9(1− y)2 − 6(1− y)− 12)(1− x)2

+ (−18(1− y)4 − 18(1− y)2 + 12(1− y)− 24)(1− x) + (9(1− y)4 + 9(1− y)2 − 6(1− y)− 108)

= −12(1− x)2 + (12(1− y)− 24)(1− x) + (9(1− y)2 − 6(1− y)− 108)

mod ((1− y)3, (1− y)(1− x)2, (1− y)2(1− x), (1− x)3)

(where ((1 − y)3, (1 − y)(1 − x)2, (1 − y)2(1 − x), (1 − x)3) refers to the ideal of Z[x, y]

generated by (1− y)3, (1− y)(1− x)2, (1− y)2(1− x) and (1− x)3).

We deduce from this identity, Lemma 4.1 and Corollary 4.3 that we have a canonical
isomorphism

λ
(

9MT(L⊗ ΩY/S)− 8DT(L⊗ ΩY/S)
)

∼= λ
(
− 12(1− L)2 + (12(1− ΩY/S)− 24)(1− L) + (9(1− ΩY/S)2 − 6(1− ΩY/S)− 108)

)
∼= λ

(
− 12L⊗2 + (12ΩY/S + 36)⊗ L+ (9Ω⊗2

Y/S − 24ΩY/S − 129)
)

Note that by Grothendieck duality, we have a canonical isomorphism

λ(ΩY/S ⊗ L) ∼= λ(L∨).

We deduce that we have

λ
(

9MT(L⊗ ΩY/S)− 8DT(L⊗ ΩY/S)
)
∼= λ

(
− 12L⊗2 + 12L∨ + 36L+ 9Ω⊗2

Y/S − 24ΩY/S − 129
)
.(18)

Now by Corollay 4.3, we have a canonical trivialisation

λ(L∨ ⊗ (1− L)⊗3) ∼= OS

or in other words a canonical isomorphism

λ(L∨) ∼= λ(L⊗2 − 3L+ 3).

Merging this with (18), we obtain a canonical isomorphism

λ
(

9MT(L)− 8DT(L)
)
∼= λ(9Ω⊗2

Y/S − 117) ∼= (λ(Ω⊗2
Y/S)⊗ λ(OX)⊗−13)⊗9. (19)

To conclude, notice that by (3), we have canonically

λ(Ω⊗2
Y/S) ∼= λ(OX)⊗13.
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no. 2, 195–226 (French).

[9] Dennis Eriksson, Un isomorphisme de type Deligne-Riemann-Roch, C. R. Math. Acad. Sci. Paris 347 (2009),
no. 19-20, 1115–1118, DOI 10.1016/j.crma.2009.09.003 (French, with English and French summaries).

[10] , Un isomorphisme de Deligne-Riemann-Roch. Thesis, Université Paris 6, 2008, see
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Math. 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967).

[15] Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical
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groupes réductifs, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 8, Société
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