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Preface

The following is a set of very informal notes on the subject of my minicourse
at the CRM in Barcelona, given during the last week of February 2006. Few
proofs are given and the aim of the text is to show the computational power
of the Riemann-Roch theorem. Bibliographical references to the sources of the
results presented here are sketchy and by no means exhaustive. The ideal pre-
requisites for the course are the first three chapters of R. Hartshorne’s textbook
[H].



2 Preface



Chapter 1

Riemann-Roch formulae in
algebraic geometry

Convention. A scheme will be short for a noetherian scheme separated over Spec Z.

1.1 The Grothendieck-Riemann-Roch formula

Let C be a smooth projective curve over C. Let D :=
∑

i niDi be a divisor on C.
The simplest instance of the Grothendieck-Riemann-Roch formula is probably the
well-known equality

χ(O(D)) := dimC H0(C,O(D))− dimC H1(C,O(D)) = deg D + 1− g (1.1)

where deg D :=
∑

i ni is the degree of D and g := dimC H0(C,ΩC) is the genus
of C. One can show that

deg D =
∫

C

c1(O(D)),

where c1(O(D)) is the first Chern class of D, so (1.1) is a formula for the Euler
characteristic χ(O(D)) in terms of integrals of cohomology classes.

The Grothendieck-Riemann-Roch formula aims at giving such a formula for
the Euler characteristic of any vector bundle, on any (regular, quasi-projective)
scheme and in a relative setting. Furthermore, the Grothendieck-Riemann-Roch
formula is universal in the sense that it is independent of the cohomology theory.
This chapter is dedicated to the formulation of this theorem.

We first define

Definition 1.1.1. Let X be a scheme. The group K0(X) (resp. K ′
0(X)) is the free

abelian group generated by the isomorphism classes of locally free sheaves (resp.
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4 Chapter 1. Riemann-Roch formulae in algebraic geometry

coherent sheaves) on X, with relations E = E′ + E′′ if there is a short exact
sequence

0 → E′ → E → E′′ → 0

If f : X → Y is a proper morphism of schemes, we define the map of abelian
groups Rf∗ : K ′

0(X) → K ′
0(Y ) by the formula

Rf∗(E) :=
∑
k>0

(−1)kRkf∗(E).

This is well-defined, for Rf∗E = Rf∗E
′ + Rf∗E

′′ in K ′
0(Y ) by the long exact

sequence in cohomology. The group K0(X) is a commutative ring under the ten-
sor product ⊗ and K ′

0(X) is a K0(X)-module under the natural map of abelian
groups K0(X) → K ′

0(X). This map is an isomorphism if X is regular. Via this
isomorphism, we obtain a map Rf∗ : K0(X) → K0(Y ), if both X and Y are
regular. For any morphism f : X → Y of schemes, there is a pull-back map
Lf∗ : K0(Y ) → K0(X), defined in the obvious way, which is a map of rings.
Similarly, this gives a pull-back map Lf∗ : K ′

0(Y ) → K ′
0(X), if X and Y are

regular
A theory kindred to K0-theory is Chow theory:

Definition 1.1.2. The group CH ·(X) is the free abelian group on all integral closed
subschemes of X, with relations div f = 0, f ∈ k(Z)∗ a rational function on a
closed integral subscheme Z of X.

A (p-)cycle in X is a formal Z-linear combination of integral closed sub-
schemes (of codimension p) of X. If V is a closed subscheme of X, we write [V ]
for the element

∑
C∈Irr(V ) length(κ(C))C ∈ CH·(X), if the lengths length(κ(C))

are finite.
By work of Gillet and Soulé, if X is regular, the group CH·(X)Q can be

made into a commutative ring such that [W ] · [Z] = [Y ∩ Z], if W,Z are closed
integral subschemes of X intersecting transversally. If f : X → Y is a proper map,
there is a push-forward map f∗ : CH(X) → CH(Y ) such that f∗([Z]) = [k(Z) :
k(f∗(Z))] · [f∗Z] if dim f∗Z = dim Z and such that f∗([Z]) = 0 otherwise. If X
and Y are of finite type over a regular scheme S and f is a flat S-morphism, there
is a pull-back map such that f∗[Z] = [f∗Z]. We denote by CHk(X) the subgroup
generated by the closed integral subschemes of codimension k. If X is regular, the
group CH·(X)Q is naturally a graded ring.

If X is projective and smooth over C (say) then we may consider the singular
cohomology group Hev(X(C), C). If j : Z ↪→ X is the inclusion morphism of a
codimension p integral closed subscheme, we may define a C-linear functional on
H2 dimC(X)−2p(X(C), C) by the formula

η 7→
∫

Zns

j∗(η)
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where Zns is th non-singular locus of Z. Poincaré duality then gives an element
cl(Z) ∈ H2p(X(C), C), the cycle class of Z. The cycle class commutes with push-
forward.

Suppose now that X is regular, flat and quasi-projective over a Dedekind
domain. There is a unique ring homomorphism

ch : K0(X) → CH·(X)Q

called the Chern character, with the following properties:
- it is functorial with respect to (flat) pull-back;
- if Z is a 1-cycle in X, then ch(O(Z)) = exp([Z]).
There is also a unique map

Td : K0(X) → CH·(X)∗Q

called the Todd class, with the properties:
- Td is functorial with respect to flat pull-back;
- Td(x + x′) = Td(x)Td(x′);
- if Z is a 1-cycle in X, then

Td(O(Z)) =
[Z]

1− exp(−[Z])
.

Finally, for each k > 0, there is a unique map c : K0(X) → CH·(X)∗Q, called
the total Chern class, such that

- it is functorial as above;
- c(x + x′) = c(x)c(x′);
- if Z is a 1-cycle in X, then c(O(Z)) = 1 + [Z].
The element ck(x) := c(x)[k](x) ([k] takes the k-th graded part) is called the

k-th Chern class of x ∈ K0(X). For a vector bundle E/X, the following identities
hold

ch(E) = 1+c1(E)+
1
2
(c1(E)2−2c2(E))+

1
6
(c1(E)3−3c1(E)c2(E)+3c3(E))+ . . .

and
Td(E) = 1 +

1
2
c1(E) +

1
12

(c1(E)2 + c2(E)) +
1
24

c1(E)c2(E)

If X is smooth and projective over C, then cl(ck(E)) = ck(E) ∈ Hev(X(C), C).
We can now formulate the Grothendieck-Riemann-Roch theorem:

Theorem 1.1.3. Let X, Y be regular schemes, which are quasi-projective over the
spectrum S of a Dedekind ring. Let f : X → Y be a smooth S-morphism. Then

ch(Rf∗(x)) = f∗(Td(Tf)ch(x))

for any x ∈ K0(X). Here Tf := Ω∨
f .
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Example. Let X := C be a smooth and projective curve over C as at the
beginning. Let S := Spec C = Y . Notice that CH ·(S) = CH0(S) = Z and that
the Chern character of a vector bundle is in this case simply its rank. If we apply
the Theorem 1.1.3 to E := O(D), we obtain,

ch(Rf∗(O(D))) = χ(O(D)) = f∗((1 +
1
2
c1(TC))(1 + c1(O(D))))

= f∗(c1(O(D))− 1
2
c1(ΩC)) = deg(D)− 1

2
deg(KC) = deg(D)− 1

2
(2g − 2)

= deg(D) + 1− g

which is the formula (1.1).
The Theorem 1.1.3 can be extended to hold for any projective morphism. If

f : X → Y has a factorisation

f : X
j→ Pr ×S Y

π→ Y,

where j is a closed immersion and π is the natural projection, then the theorem
still holds if one replaces Td(Tf) by j∗Td(Tπ)Td(N)−1. Here N is the normal
bundle of the closed immersion j. The expression j∗Td(Tπ)Td(N)−1 can be shown
to be independent of the factorisation into j and π.

Bibliographical and historical notes. The Riemann-Roch theorem for curves
was discovered by B. Riemann at the end of the nineteenth century. The general-
isation of the theorem to higher dimensional manifolds (but still not in a relative
situation) is due to F. Hirzebruch, who described the latter theorem in his book
[Hi]. The general relative case was treated in the seminar [SGA6]. The presenta-
tion of the Grothendieck-Riemann-Roch theorem given here follows W. Fulton’s
book [F].

1.2 Thomasson’s fixed point formula

In this section, we shall review a relative fixed point formula which is formally
similar to the Theorem 1.1.3, but whose mathematical content is quite different.
In the next subsection, this formula will be joined to the Grothendieck-Riemann-
Roch theorem to obtain the equivariant Grothendieck-Riemann-Roch theorem.

Let S be a noetherian affine scheme. Let X be a regular scheme which is
quasi-projective over S. Let µn be the diagonalisable group scheme over S which
corresponds to Z/nZ. Suppose that X carries a µn-action over S; furthermore, sup-
pose that there is an ample line bundle on X, which carries a µn-equivariant struc-
ture compatible with the µn-equivariant structure of X. We shall write Kµn

0 (X)
for the Grothendieck group of locally free sheaves on X which carry a compatible
µn-equivariant structure. This group is defined exactly as in Definition 1.1.1. Re-
placing locally free sheaves by coherent sheaves in the definition of Kµn

0 (X) leads to
the group K

′µn

0 (X), which is naturally isomorphic, as before. If the µn-equivariant
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structure of X is trivial, then the datum of a (compatible) µn-equivariant struc-
ture on a locally free sheaf E on X is equivalent to the datum of a Z/nZ-grading
of E. For any µn-equivariant locally free sheaf E on X, we write Λ−1(E) for∑rk(E)

k=0 (−1)kΛk(E) ∈ Kµn

0 (X), where Λk(E) is the k-th exterior power of E.
There is a unique isomorphism of rings Kµn

0 (S) ' K0(S)[T ]/(1 − Tn) with the
following property: it maps the structure sheaf of S endowed with a homogenous
Z/nZ-grading of weight one to T and it maps any locally free sheaf carrying a
trivial equivariant structure to the corresponding element of K0(S) (= K ′

0
µ1(S)).

The functor of fixed points associated to X is by definition the functor

Schemes/S → Sets

described by the rule
T 7→ X(T )µn(T ).

Here X(T )µn(T ) is the set of elements of X(T ) which are fixed under each element
of µn(T ). The functor of fixed points is representable by a scheme Xµn

and the
canonical morphism Xµn

→ X is a closed immersion. Furthermore, the scheme
Xµn

is regular . We shall denote the immersion Xµn
↪→ X by i. Write N∨ for the

dual of the normal sheaf of the closed immersion Xµn ↪→ X. It is locally free on
Xµn and carries a natural µn-equivariant structure. This structure corresponds to
a µn-grading, since Xµn

carries the trivial µn-equivariant structure and it can be
shown that the weight 0 term of this grading vanishes.

Let Y be a regular scheme which is quasi-projective over S and suppose that
Y carries a µn-action over S. Let f : X → Y be a projective S-morphism which
respects the µn-actions and write fµn for the induced morphism Xµn → Y . The
morphism f induces a direct image map Rf∗ : K ′

0
µn(X) → K ′

0
µn(Y ), which is a ho-

momorphism of groups described by the formula Rf∗(E) :=
∑

k>0(−1)kRkf∗(E)
for a µn-equivariant coherent sheaf E on X. Here Rkf∗(E) refers to the k-th higher
direct image sheave of E under h; the sheaves Rkf∗(E) are coherent and carry a
natural µn-equivariant structure. The morphism h also induces a pull-back map
Lf∗ : Kµn

0 (Y ) → Kµn

0 (X); this is a ring morphism which sends a µn-equivariant
locally free sheaf E on Y on the locally free sheaf f∗(E) on X, endowed with its
natural µn-equivariant structure. For any elements z ∈ Kµn

0 (X) and w ∈ Kµn

0 (Y ),
the projection formula Rf∗(z · Lf∗(w)) = w · Rf∗(z) holds. This implies that
the group homomorphism Rf∗ is a morphism of Kµn

0 (S)-modules, if the group
Kµn

0 (X) (resp. Kµn

0 (Y )) is endowed with the Kµn

0 (S)-module structure induced
by the pull-back map Kµn

0 (S) → Kµn

0 (X) (resp. Kµn

0 (S) → Kµn

0 (Y )).
Let R be a Kµn

0 (S)-algebra such that 1−T k is a unit in R for all k such that
1 6 k < n.

Theorem 1.2.1. (1) The element λ−1(N∨) is a unit in the ring Kµn

0 (Xµn
)⊗K0

µn (S) R.
(2) If the µn-equivariant structure on Y is trivial, then for any element x ∈ Kµn

0 (X),
the equality

Rf∗(x) = Rfµn,∗(Λ−1(N∨)−1 · Li∗(x))
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holds in Kµn

0 (Y )⊗Kµn
0 (S) R.

For R one may for example choose C or Q(µn) (sending T on a primitive root
of unity). Notice that the formal analogy between Theorem 1.2.1 and Theorem
1.1.3: Li∗ takes the place of the Chern character and Λ−1(N∨)−1 takes the place
of the Todd class.

Bibliographical and historical notes. In the formulation given above, the The-
orem 1.2.1 is contained in the article [LRR1], provided the base scheme S is a
Dedekind ring which is embeddable in C and X and Y are flat over S, although
these assumptions are not necessary. If R is taken to be a field, then the Theorem
1.2.1 is a consequence of the main result of [T3].

1.3 An equivariant Grothendieck-Riemann-Roch theo-

rem

If we combine the Grothendieck-Riemann-Roch theorem and the fixed point the-
orem of Thomasson and Nori, we obtain the following theorem. We set ζn :=
exp(2iπ/n).

Theorem 1.3.1. Let X, Y be regular schemes, which are quasi-projective over the
spectrum S of a Dedekind ring. Suppose that they are both equipped with a µn-
action over S and that they both carry µn-equivariant ample line bundles. Suppose
also that the µn-structure of Y is trivial. Let f : X → Y be a µn-equivariant
projective morphism. Then for any x ∈ Kµn

0 (X), the formula

chµn
(Rf∗(x)) = f∗(chµn

(Λ−1(N∨))−1Td(Tfµn)chµn
(x))

holds in CH·(Y )C.

Here again, N refers to the normal bundle of the immersion Xµn → X. Here,
if E is a µn-equivariant vector bundle on X, we write Ek for the k-th graded piece
of the restriction of E to Xµn

and

chµn
(E) :=

∑
k∈Z/n

ζk
nch(Ek) ∈ CH(Xµn

)C.

We could also have replaced C by Q(µn) in the Theorem 1.3.1.
Example. Let S = Spec C and let Y := S and X be a a projective complex

manifold of dimension d over S. Suppose that X is endowed with a µnC-action.
This is equivalent to specifying an action of the group µn(C). We shall apply
Theorem 1.3.1 to the de Rham complex

x := 1− ΩX + Λ2ΩX − Λ3ΩX + · · ·+ (−1)dΛdΩX ,

which consists of naturally equivariant vector bundles on X. Thanks to the exact
sequence on Xµn

0 → N∨ → ΩX |Xµn
→ ΩXµn

→ 0
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we have the equality

Λ−1(N∨)Λ−1(ΩXµn
) = Λ−1(ΩX |Xµn

)

in Kµn

0 (Xµn
). We can thus compute the localised side of the formula of Theorem

1.3.1 as

chµn
(chµn

(Λ−1(N∨))−1Td(Xµn
)Λ−1(ΩX |Xµn

)) = ch(Λ−1(ΩXµn
)Td(Ω∨

Xµn
)) = ctop(TXµn

)

whereas the global side can be computed as

chµn
(Rf∗(1− ΩX + Ω2

X − Ω3X + · · ·+ (−1)dΩd
X)) =

∑
i,j

(−1)i+jTr ζn
(Hi(X, Ωj

X))

=
∑

k

(−1)kTr ζn(Hk(X(C), C))

the last equality being justified by the Hodge decomposition theorem and the fact
that analytic and algebraic cohomology coincide on smooth projective manifolds
over C. We thus obtain, after application of the cycle class∑

k

(−1)kTr ζn
(Hk(X(C), C)) =

∫
Xµn

ctop(TXµn
)

and in particular, if Xµn consists of a finite set of points∑
k

(−1)kTr ζn
(Hk(X(C), C)) = #Xµn

(C).

This last formula is just the classical topological Lefschetz fixed point formula for
X(C) and the endomorphism given by ζn.
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Chapter 2

Riemann-Roch formulae in
Arakelov geometry

2.1 Arakelov geometry

Arakelov geometry is an extension of scheme-theoretic algebraic geometry, where
one tries to treat the places at infinity (corresponding to the archimedean val-
uations) on the same footing as the finite ones. To be more precise, consider a
scheme S which is proper over Spec Z and generically smooth. For each prime
p ∈ Spec Z, we then obtain by base-change a scheme SZp

on the spectrum of the
ring of p-adic integers Zp. The set S(Qp) is then endowed with the following natu-
ral notion of distance. Let P,R ∈ S(Qp); by the valuative criterion of properness,
we can uniquely extend P and Q to elements P̃ , R̃ of S(Zp). We can then define
the distance d(P,R) by the formula

d(P,R) := p−max{k∈Z| eP mod pk= eQ mod pk}

This distance arises naturally from the scheme structure. No such distance arises
for the set S(C) and the strategy of Arakelov geometry is to equip S(C), as well
as the vector bundles thereon with a metric in order to make up for that lack.
The scheme S together with a metric on S(C) is then understood as a ”compact-
ification” of S, in the sense that it is supposed to live on the ”compactification”
of Spec Z obtained by adding the archimedean valuation. The introduction of
hermitian metrics, which are purely analytic data, implies that Arakelov will rely
on a lot of analysis to define direct images, intersection numbers etc. Here is the
beginning of a list of extensions of classical scheme-theoretic objects that have
been worked out:

11
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S S with a hermitian metric on S(C)
E a vector bundle on S E a vector bundle on S with a hermitian metric on E(C)

cycle Z on S a cycle Z on S with a Green current for Z(C)
the degree of a variety the height of a variety

the determinant of cohomology the determinant of cohomology equipped with its Quillen metric
the Todd class of Tf the arithmetic Todd class multiplied by (1-R(Tf))

...
...

Many theorems of classical algebraic geometry have been extended to Arakelov
theory. In particular, there are analogs of the Hilbert-Samuel theorem (see [GS8]
and [Abbes]), of the Nakai-Moishezon of ampleness (see [Zhang]), of the Grothendieck-
Riemann-Roch theorem (see [GS8]) and finally there is an analog of the equivariant
Grothendieck-Riemann-Roch, whose description is the main aim of this series of
lectures.

Bibliographical and historical notes. Arakelov geometry started officially in
S. Arakelov’s paper [Ara]. It was then further developped by G. Faltings, who
extended the Riemann-Roch theorem for surfaces in [Fal] and by L. Szpiro and his
students. The theory was then vastly generalised by H. Gillet and C. Soulé, who
defined compactified Chow rings, Grothendieck groups and characteristic classes
in all dimensions (see [GS2] and [GS3]). For an introduction to Arakelov geometry,
see the book [SABK].

2.2 An arithmetic equivariant Grothendieck-Riemann-

Roch theorem

The aim of this section is to formulate the analog in Arakelov geometry of the
Theorem 1.3.1.

Let D be a regular arithmetic ring. By this we mean a regular, excellent,
Noetherian integral ring, together with a finite set S of injective ring homomor-
phisms of D → C, which is invariant under complex conjugation. We fix as before
ζn := exp(2iπ/n).

We shall call equivariant arithmetic variety an integral scheme which is reg-
ular and quasi-projective over Spec D, endowed with a µn-equivariant structure
over D and such that there is an ample µn-equivariant line bundle on X. We
write X(C) for the set of complex points of the variety

∐
e∈S X ×D C, which

naturally carries the structure of a complex manifold. The groups µ(C) acts on
X(C) by holomorphic automorphisms and we shall write g for the automorphism
corresponding to ζn. As we have seen, the fixed point scheme Xµn

is regular and
there are natural isomorphisms of complex manifolds Xµn(C) ' (X(C))g, where
(X(C))g is the set of fixed points of X under the action of µ(C). Complex conju-
gation induces an antiholomorphic automorphism of X(C) and Xµn

(C), both of
which we denote by F∞.
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We write Ã(Xµn) for

Ã(X(C)g) :=
⊕
p>0

(Ap,p(X(C)g)/(Im ∂ + Im ∂)),

where Ap,p(·) denotes the set of smooth complex differential forms ω of type (p, p),
such that F ∗

∞ω = (−1)pω.
A hermitian equivariant sheaf (resp. vector bundle) on X is a coherent sheaf

(resp. a vector bundle) E on X, assumed locally free on X(C), equipped with a
µn-action which lifts the action of µn on X and a hermitian metric h on E(C),
the bundle associated to E on the complex points, which is invariant under F∞
and µn. We shall write (E, h) or E for an hermitian equivariant sheaf (resp. vector
bundle). There is a natural Z/(n)-grading E|Xµn

' ⊕k∈Z/(n)Ek on the restriction
of E to Xµn , whose terms are orthogonal, because of the invariance of the metric.
We write Ek for the k-th term (k ∈ Z/(n)), endowed with the induced metric. We
also often write Eµn

for E0.
If V = (V, hV ) is a hermitian vector bundle on Xµn we write ch(V ) for

the differential form Tr (exp(Ω)), where Ω is the curvature form associated to the
connection on V (C) whose matrix is given locally by ∂H ·H−1. This differential
form represents the Chern character in de Rham cohomology. We write chg(E) for
the equivariant Chern character form

chg((EC, h)) :=
∑

k∈Z/(n)

ζk
nch(Ek).

The symbol Tdg(E) refers to the differential form

Td(Eµn)
( ∑

i>0

(−1)ichg(Λi(E))
)−1

.

If E : 0 → E′ → E → E′′ → 0 is an exact sequence of equivariant sheaves
(resp. vector bundles), we shall write E for the sequence E together with µ(C)-
and F∞- invariant hermitian metrics on E′(C), E(C) and E′′(C). To E and chg

is associated an equivariant Bott-Chern secondary class c̃hg(E) ∈ Ã(Xµn
), which

satisfies the equation i
2π ∂∂c̃hg(E) = chg(E

′
) + chg(E

′′
) − chg(E). This class is

functorial for any morphism of arithmetic varieties and vanishes if the sequence E
splits isometrically.

Definition 2.2.1. The arithmetic equivariant Grothendieck group K̂
′µn

0 (X) (resp.
K̂µn

0 (X)) of X is the free abelian group generated by the elements of Ã(Xµn
) and

by the equivariant isometry classes of hermitian equivariant sheaves (resp. vector
bundles), together with the relations

(a) for every exact sequence E as above, c̃hg(E) = E
′ − E + E

′′
;
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(b) if η ∈ Ã(Xµn) is the sum in Ã(Xµn) of two elements η′ and η′′, then η = η′+η′′

in K̂
′µn

0 (X) (resp. K̂µn

0 (X)).

We shall now define a ring structure on K̂µn

0 (X) (resp. K̂µn

0 (X)-module struc-
ture on K̂

′µn

0 (X)). Let V be a hermitian equivariant vector bundle and let V
′
be a

hermitian equivariant sheaf. Let η, η′ be elements of Ã(Xµn
). We define a product ·

by the rules V · V ′
:= V ⊗ V

′
, V · η = η · V := chg(V )∧ η and η · η′ := i

2π ∂∂η ∧ η′

and we extend it by linearity. We omit the proof that it is well-defined. Notice that
the definition of K̂

′µn

0 (X) (resp. K̂µn

0 (X)) implies that there is an exact sequence
of abelian groups

Ã(Xµn
) → K̂µn

′

0 (X) → K
′µn

0 (X) → 0 (2.1)

(resp.
Ã(Xµn

) → K̂µn

0 (X) → Kµn

0 (X) → 0 ),

where K
′µn

0 (X) (resp. Kµn

0 (X)) is the ordinary Grothendieck group of µn-equivariant
coherent sheaves (resp. locally free sheaves). Notice finally that there is a map
from K̂

µ′
n

0 (X) to the space of complex closed differential forms, which is defined
by the formula chg(E + κ) := chg(E) + i

2π ∂∂κ (E an hermitian equivariant sheaf,
κ ∈ Ã(Xµn

)). This map is well-defined and we shall denote it by chg(·) as well. We
have as before: if X is regular then the natural morphism K̂µn

0 (X) → K̂
′µn

0 (X) is
an isomorphism.

Now let f : X → Y be an equivariant projective morphism of relative dimen-
sion d over D of equivariant arithmetic varieties. We suppose that f is smooth
over the generic point of D. We endow X with a Kähler fibration structure; this
is a family of Kähler metrics on the fibers of fC : X(C) → Y (C), satisfying a
supplementary condition that we do not have the room to detail here. It is en-
coded in a (1, 1)-form ωf on X(C). We shall see an example of such a structure
in the applications. We suppose that ωf is g-equivariant. Suppose that the action
of µn on Y is trivial. Suppose as well that there is a µn-equivariant line bundle
over X, which is very ample relatively to f . Let E := (E, h) be an equivariant
hermitian sheaf on X. Suppose that Rkf∗(E)C is locally free for all k > 0. We let
R·f∗E :=

∑
k>0(−1)kRkf∗E be the alternating sum of the higher direct image

sheaves, endowed with their natural equivariant structures and L2-metrics. For
each y ∈ Y (C), the L2-metric on Rif∗E(C)y ' Hi

∂
(X(C)y, E(C)|X(C)y

) is defined
by the formula

1
(2π)d

∫
Y (C)y

h(s, t)ωd
X (2.2)

where s and t are harmonic (i.e. in the kernel of the Kodaira Laplacian ∂∂
∗
+∂

∗
∂)

sections of Λi(T ∗(0,1)X(C)y)⊗ E(C)|X(C)y
. This definition is meaningful because

by Hodge theory there is exactly one harmonic representative in each cohomology
class.
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Let η ∈ Ã(Xµn). Consider the rule which associates the element Rf ·∗E −
Tg(X, E) of K̂

′µn

0 (Y ) to E and the element
∫

X(C)g
Tdg(TX)η ∈ K̂

′µn

0 (Y ) to η.

Here Tg(E) ∈ Ã(Y ) is the equivariant analytic torsion form. Its definition is too
involved to be given in its entirety here but we shall define its component of
degree 0.

Let �E
q be the differential operator (∂+∂

∗
)2 acting on the C∞-sections of the

bundle ΛqT ∗(0,1)X(C)y ⊗E(C)|X(C)y
. This space of sections is equipped with the

L2-metric as above and the operator �
E(C)|X(C)y
q is symmetric for that metric; we

let Sp(�
E(C)|X(C)y
q ) ⊆ R be the set of eigenvalues of �

E(C)|X(C)y
q (which is discrete

and bounded from below) and we let Eig
E(C)|X(C)y
q (λ) be the eigenspace associated

to an eigenvalue λ (which is finite-dimensional). Define

Z(E|X(C)y
, g, s) :=

∑
q>1

(−1)q+1q
∑

λ∈Sp(�
E(C)|X(C)y
q )\{0}

Tr(g∗|
Eig

E(C)|X(C)y
q (λ)

)λ−s

for <(s) sufficiently large. As a function of s, the function Z(E|X(C)y
, g, s) has a

meromorphic continuation to the whole plane, which is holomorphic around 0. By
definition, the equivariant analytic torsion of E|X(C)y

is given by Tg(E|X(C)y
) :=

Z ′(E|X(C)y
, g, 0). If E is f -acyclic (which is our assumption) then Tg(E|X(C)y

) is
a C∞-function of y and it is the degree 0-part of the equivariant analytic torsion
form Tg(E).

Proposition 2.2.2. The above rule extends to a well defined group homomorphism
f∗ : K̂

′µn

0 (X) → K̂
′µn

0 (Y ).

We shall need the definition (due to Gillet and Soulé) of ”compactified” Chow
theory. Let p > 0. We shall write Dp,p(X(C)) for the space of complex currents of
type p, p on X(C) on which F ∗

∞ acts by multiplication by (−1)p. Now let A be a
subring of C. If Z is a p-cycle with coefficients in A on X, a Green current gZ for
Z is an element of Dp,p(X(C)) which satisfies the equation

i

2π
∂∂gZ + δZ(C) = ωZ

where ωZ is a differential form.

Definition 2.2.3. Let p > 0. The arithmetic Chow group ĈH
p

A(X) is the A-vector
space generated by the ordered pairs (Z, gZ), where Z is a p-cycle with coefficients
in A on X and gZ is a Green current for Z(C), with the relations

(i) λ · (Z, gZ) + (Z ′, gZ′) = (λ · Z + Z ′, λ · gZ + gZ′);

(ii) (div(f),− log |f |2 + ∂u + ∂v) = 0;
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where f is a non-zero rational function defined on a closed integral subscheme of
X and u (resp. v) is a complex current of type (p− 2, p− 1) (resp. (p− 1, p− 2))
such that F ∗

∞(∂u + ∂v) = (−1)p−1(∂u + ∂v).

We shall write ĈH
·
(X) := ⊕p>0ĈH

p
(X). The group ĈH(X) is equipped with

a natural A-algebra structure, such that (Z, gZ)·(Z ′, gZ′) = (Z∩Z ′, gZ∗gZ′) if Z,Z ′

are integral, intersect transversally. Here the symbol * refers to the star product,
whose definition is too involved to be given here. The group ĈH

∗
(X) has pull-back

maps (given by the obvious formula) with respect to flat and generically smooth
morphisms. If f : X → Y is as above, there is a push-forward map ĈH

·
(X) →

ĈH
·
(Y ), such that f∗(Z, gZ) = (deg(Z/f∗Z)f∗Z, f∗gZ) for every integral closed

subscheme Z of X and Green current gZ of Z. Here we set deg(Z/f∗Z) = [κ(Z) :
κ(f∗(Z))] if dim(f∗(Z)) = dim(Z) and deg(Z/f∗Z) = 0 otherwise. It is an easy

exercise to show that the map of A-modules C → ĈH
1

A(Z), defined by the recipe
z 7→ (0, z) is an isomorphism.

There is a ring morphism

ĉh : K̂0(X) → ĈH
·
C(X)

called the arithmetic Chern character, such that
- it is functorial;
- ĉh(η) = (0, η);
- if L = (L, h) is a hermitian line bundle on X and s a rational section of L

then ĉh(O(Z)) = exp((div s,− log h(s, s))).
Example. Suppose in this example that X is of relative dimension 1 and

proper over D = Z. Suppose also that Z and Z ′ are two integral closed subschemes
of codimension 1 of X, which intersect transversally, are flat over Spec Z and do
not intersect on the generic fiber. As Z(C) (resp. Z ′(C)) consists of one point P
(resp. P ′), this last condition just says that Z(C) 6= Z ′(C). Now equip O(Z) (resp.
O(Z ′)) with a (conjugation invariant) hermitian metric h (resp. h′) and let s be a
rational section of O(Z) (resp. s′ be a rational section of O(Z ′)) vanishing exactly
on Z (resp. Z ′). In this case, we have

(Z,− log h(s, s))·(Z ′,− log h′(s′, s′)) = (Z∩Z ′,− log h(s(P ′, P ′))δZ−c1(O(Z)) log h′(s′, s′))

and hence, if f is the morphism X → Spec Z,

f∗(ĉ1(O(Z))·ĉ1(O(Z ′))) = 2
∑

p∈f∗(Z∩Z′)

log p− log h(s(P ′, P ′))−
∫

X(C)

c1(O(Z)) log h′(s′, s′).

Using the arithmetic Chern character, we may also define an arithmetic Todd class
T̂d : K̂0(X) → ĈH

·
C(X) and an arithmetic total Chern class.

If E is an equivariant hermitian vector bundle on X, we write

ĉhµn
(E) :=

∑
k∈Z/n

ζk
n ĉh(Ek) ∈ ĈH

·
Q(µn)(Xµn

)
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for the equivariant arithmetic Chern character. We write as before Λ−1(E) :=∑rk(E)
k=0 (−1)kΛk(E) ∈ K̂µn

0 (X), where Λk(E) is the k-th exterior power of E,
endowed with its natural hermitian and equivariant structure.

For any z ∈ C, |z| = 1, define the Lerch zeta function

ζL(z, s) :=
∑
k>1

zk

ks

which is naturally defined for Re(s) > 1 and can be meromorphically continued
to the whole plane. Define the formal complex power series

R̃(z, x) :=
∑
k>0

(
2ζ ′L(z,−k) + (1 +

1
2

+ · · ·+ 1
k

)ζL(z,−k)
)xk

k!
.

and
R(z, x) :=

1
2
(R̃(z, x)− R̃(z,−x))

We identify R(z, x) with the unique additive cohomology class it defines. For a
µn(C)-equivariant vector bundle on X(C), define the cohomology class on X(C)g

by the formula
Rg(E) :=

∑
k∈µn(C)

R(ζk
n, Ek).

Choose any µn-invariant (conjugation invariant) hermitian metric on VC; this her-
mitian metric induces a connection of type (1, 0) on each VC,k; using this connec-
tion, we may compute a differential form representative of R(arg(ζ(g)k), Ek) in
complex de Rham cohomology; this representative is a sum of differential forms of
type (p, p) (p ≥ 0), which is both ∂− and ∂−closed. In the next theorem, we may
thus consider that the values of Rg(·) lie in Ã(Xµn

).
Let N = NX/Xµn

be the normal bundle of Xµn in X, endowed with its quo-
tient equivariant structure and quotient metric structure (which is F∞-invariant).

Theorem 2.2.4. The equality

ĉhµn
(f∗(x)) = f∗(ĉhµn

(Λ−1(N
∨
))−1Td(Tf

µn)(1−Rg(Tf))ĉhµn
(x))

holds in ĈH
·
Q(µn)(Y ), for any x ∈ K̂µn

0 (X).

Here T̂d(Tf
µn) is the arithmetic Todd class of Ω

∨
(fµn) if fµn is smooth.

Bibliographical and historical notes. A complete proof of the Theorem 2.2.4
yet has to be published but a proof of the degree 1 part of the equality in 2.2.4
follows immediately from [LRR1] and [GS8]. It is important to underline that the
most difficult part of the proof is analytic in nature and is contained in J.-M.
Bismut’s article [B3].
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2.3 First applications

2.3.1 The key formula on abelian varieties

Suppose S is the spectrum of the ring of integers of a number field and let π :
A → S be an abelian scheme of relative dimension d over S. We shall apply the
Theorem 2.2.4 to the morphism π and the trivial equivariant structure. Choose
a line bundle L on A which is symmetric and ample on the generic fiber of A.
Endow it with a positive hermitian metric whose curvature form is translation
invariant and endow A(C) with the Kähler metric whose Kähler form is c1(L).
We also suppose that Rkπ∗(L) = 0 for k > 1 and that the restriction of L via the
zero-section is isometrically isomorphic to the trivial line bundle with the trivial
metric. It can be shown that τ(L) = 1

2χ(L) log 1
(2π)d and that π∗(ĉ1(L)d+1) = 0.

We can thus compute

ĉ1(Rπ∗(L))− 1
2
χ(L) log

1
(2π)d

= ĉ1(π∗(L))− 1
2
χ(L) log

1
(2π)d

= T̂d(Ω
∨
)π∗(ĉh(L))

= −1
2
χ(L)ĉ1(Ω).

We now takes the direct image of both ends of the last equation under the mor-
phism S → Spec Z and we divide by χ(L). We get

1
χ(L)[κ(S) : Q]

ĉ1(π∗(L)) = −1
2

1
[κ(S) : Q]

ĉ1(Ω) +
1
2

log
1

(2π)d
(2.3)

(we have sometimes identified Ω with its restriction to C via the zero-section in
the computation). The equation (2.3) is usually called the key formula. It was first
proved by L. Moret-Bailly, who even proved a more general version allowing semi-
abelian singularities on the finite fibers. It turns out that the quantity ĉ1(Ω) (which
can be identified with a real number) is independent of the choices of the hermitian
metrics. When d = 1 and the generic fiber has complex multiplication, it can be
computed and is given (via the Chowla-Selberg formula) by linear combinations
of logarithms of special values of the Γ function. For instance, in the case of the
elliptic curve y2 = x3 + 1, the equality can be made completly explicit. Let Λ be
the lattice Z + jZ in C, where j := − 1

2 + i
√

3
2 . Let p(·,Λ) (resp. σ(·,Λ)) be the

associated p function (resp. σ-function). We choose a number field where the curve
y2 = x3 + 1 has good reduction everywhere and we take the associated S. The
resulting equality is

log
∫ 1

0

∫ 1

0

|e−(α+jβ)(p( 1
2 ,Λ)α+p( j

2 ,Λ)β)σ(α + jβ, Λ)|2 dα dβ

= −3
2

log(
1√
3
(
Γ(1/3)
Γ(2/3)

)3)− log(
2√
3
) +

1
2

log 2− 1
2

log π.

This identity seems rather mysterious and I do not know of a direct analytic proof
for it.
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Bibliographical and historical notes. The key formula was first proved in
[MB]. A proof of the formula via the arithmetic Riemann-Roch theorem is given
in [Bost].

2.3.2 Fibrations of abelian varieties

Let S be an open subscheme of the spectrum of the ring of integers of a number
field. Consider an arithmetic variety C over S. Consider furthermore a principally
polarised abelian scheme π : A → C of relative dimension d. The principal po-
larisation induces a Kähler fibration structure on A(C) → C(C) and shall apply
the Theorem 2.2.4 to the morphism π, to the trivial µn-structure on A and to the
trivial bundle endowed with the trivial µn-structure and metric. We also normalise
the Kähler fibration in such a way that the volume of the fibers is 1.

We compute in ĈH
·
Q(µn)(C):

ĉh(Rπ∗(O))− τ(O) = ĉh(Λ−1(R1π∗O))− τ(O)

= ĉh(Λ−1(Ω
∨
))− τ(O)

= ĉtop(Ω) + terms of higher degree− τ(O)

= π∗(T̂d(Ω∨)(1−R(Ω∨)) = 0

(again we have sometimes identified Ω with its restriction to C via the zero-
section). We have used the equality

ĉtop(E)T̂d(E
∨
) = ctop(E

∨
)

valid for any hermitian vector bundle E. We thus obtain the equality

(−1)dĉtop(Ω) = τ(O)[d−1]

We now consider the same situation again but we suppose that S does not
contain a prime dividing 2 and we consider the action of µ2 given by the inversion
in the group scheme. We compute

ĉhµ2(Rπ∗(O))− τ−1(O) = 22d(1−R−1(Ω∨))ĉhµ2(Λ−1(Ω))−1.

One can show that τ−1(O) = 0. We multiply both sides by ĉhµ2(Λ−1(Ω)) to obtain

ĉhµ2(H) = 22d(1−R−1(Ω∨))

where we have written H := Ω⊕ Ω
∨
. We now need a lemma:

Lemma 2.3.1. The equality

log6l(
1 + exp(x)

2
) = −

∞∑
j=1

ζL(−1, 1− j)xj/j!

holds in C[[x]].
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Now, by definition, we have

ζL(−1, s) =
∑
k>1

(−1)k

ks

and
ζQ(s) =

∑
k>1

1
ks

where ζQ is Riemann’s ζ-function. From these equalities, we deduce that ζL(−1, s) =
ζQ(s)(21−s − 1). Resuming our computations, we get

R−1(Ω∨) =
1
2

( ∑
k>0

ch[k](Ω∨)(2ζ ′L(−1,−k) + (1 + · · ·+ 1
k

)ζL(−1,−k))−

−
∑
k>0

(−1)kch[k](Ω∨)(2ζ ′L(−1,−k) + (1 + · · ·+ 1
k

)ζL(−1,−k))
)

=
∑
k>0

ch[2k+1](Ω∨)(2ζ ′L(−1,−2k − 1) + (1 + · · ·+ 1
2k + 1

)ζL(−1,−2k − 1))

=
∑
k>0

ch[2k+1](Ω∨)
(
(ζ ′Q(−2k − 1)(23+2k − 2)− log(2)ζQ(−2k − 1)22+2k)

+ (1 + · · ·+ 1
2k + 1

)ζQ(−1,−2k − 1)(22+2k − 1)
)

Using the lemma and applying the log map, we obtain

−
∑
k>1

ζL(−1, 1− k)ĉh
k
(H) = −

∑
k>1

ζQ(1− k)(2k − 1)ĉh
k
(H)

=
∑
k>0

ch[2k+1](Ω∨)
(
(ζ ′Q(−2k − 1)− log(2)ζQ(−2k − 1))(23+2k − 2)

+ (1 + · · ·+ 1
2k + 1

)ζQ(−1,−2k − 1)(22+2k − 1)
)

and in particular

−
∑
2k>1

ζQ(1− 2k)(22k − 1)ĉh
2k

(H)

=
∑
k>0

ch[2k+1](Ω∨)
(
(ζ ′Q(−2k − 1)(23+2k − 2)− log(2)ζQ(−2k − 1)22+2k)

+ (1 + · · ·+ 1
2k + 1

)ζQ(−1,−2k − 1)(22+2k − 1)
)

which implies that

ĉh
2k

(Ω) = ch[2k−1](Ω)
(ζ ′Q(−2k + 1)

ζQ(−2k + 1)
− 1

1− 2−2k
log(2) +

1
2
(1 + · · ·+ 1

2k − 1
)
)
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Computations by J.-B. Bost and U. Kühn (see [Kuehn]) suggest that the last
identity should hold also in the case of semi-abelian fibrations, in which case the
bundle Ω carries a metric with mild (logarithmic) singularities and the theory
ĈH

·
(·) has to be extended (see [BKK] and [BKK2]).

2.3.3 The Chowla-Selberg formula: a special case

In this subsection, we shall compute explicitly the Faltings height of the elliptic
curve y2 = x3 + 6 using the Theorem 2.2.4. We omit notes, as we are going to
follow very closely the Appendix of C. Soulé’s Bourbaki talk [Bourbaki], where this
computation is performed. The text of the talk is freely available at the address
http://www.institut.math.jussieu.fr/Arakelov/0029.

2.3.4 The height of Grassmannians

Another application of the Theorem 2.2.4 is the computation of heights of arith-
metic varieties that carry the action of a diagonalisable torus T := Spec Z[X, X−1].
For every n > 1, there is a natural closed immersion µn ↪→ T over Z. Suppose that
we are given a smooth and projective arithmetic variety f : X → Spec Z (say) of
relative dimension d, endowed with a T -action. Suppose also that X is endowed
with a T -equivariant ample line bundle L. The arithmetic Hilbert -Samuel theo-
rem implies that the height f∗(ĉ1(L)d+1) of X with respect tot L is given by the
limit

lim
k→∞

(d + 1)!ĉ1(Rf∗(L
⊗k

))
kd+1

.

Recall that ζn := exp(2iπ/n). It is easy to see that

lim
n→∞

ĉ1
µn

(Rf∗(L
⊗k

)) = ĉ1(Rf∗(L
⊗k

))

and furthermore XT = Xµn
for n >> 0. Hence, via the Theorem 2.2.4, we get an

expression for the height of the type

lim
k→∞

(d + 1)!
kd+1

(
lim

n→∞
τµn

(L
⊗k

) + (something localised on XT )
)
.

This method was initially used by K. Köhler and the author to compute the height
of the Grassmannians G(d, n) of d-places in n-space, for the ample line bundle
coming from the Plücker embedding. It is based on the explicit computation of
the equivariant analytic torsion of Grassmannians carried out by K. Köhler in
[K2]. In this case, the local contribution vanishes. The answer is

height of G(d,n) =
1!2! . . . (d− 1)!(d(n− d))!d(n− d)(d(n− d) + 1)

2(n− d)! . . . (n− 1)!
+
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∑
16i1<...id6n

d(n−d)∑
l=1

(d(n− d) + 1)!(−1)l

2l!(l + 1)2(d(n− d)− l)!
(
d(n+1)/2−(i1+. . . id)

)d(n−d)−l
( d∑

k=1

∑
16s6n

s 6=i1,...id

(s−ik)l
)( d∏

k=1

∏
16s6n

s 6=i1,...id

1
s− ik

)
This method to compute the height was greatly generalised by K. Köhler and C.
Kaiser in [KK], where they give closed formulae for the height of any flag variety.
H. Tamvakis, buiding on work of V. Maillot, gave in [Ta] a different approach to
the computation of this height, based on an extension of the classical Schubert
calculus to Arakelov geometry. In particular, he obtains the formula:

height of G(2,n) =
(
1 + · · ·+ 1

n + 2
)− 2n + 1

2n + 2

)(
2n + 1

n

)
− 4n

n + 1

The comparison of the first and second formula seems to be a hard combinatorial
problem.
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[Abbes] Abbes, A.; Bouche, T.:Théorème de Hilbert-Samuel ”arithmétique”. Ann.
Inst. Fourier 45, no. 2, 375-401 (1995).

[Ara] Arakelov, S. Ju.: An intersection theory for divisors on an arithmetic sur-
face. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 38, 1179-1192 (1974).

[B3] Bismut, J.-M.: Equivariant immersions and Quillen metrics. J. Differential
Geom. 41, 53-157 (1995).

[Bost] Bost, J.-B.: Intrinsic heights of stable varieties and abelian varieties. Duke
Math. J. 82, no. 1, 21-70 (1996).
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acteristic classes of automorphic vector bundles. Preprint
http://www.arxiv.org/abs/math.AG/0502085.

[Fal] Faltings, G.: Calculus on arithmetic surfaces. Ann. of Math. (2) 119, no. 2,
387-424 (1984).

[F] Fulton, W.: Intersection theory: Springer 1984.
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